1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <unordered_set>
32 #include <vector>
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::support;
38 using namespace llvm::support::endian;
39 using namespace llvm::sys;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 std::vector<InputSectionBase *> elf::inputSections;
44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
45 
46 // Returns a string to construct an error message.
47 std::string lld::toString(const InputSectionBase *sec) {
48   return (toString(sec->file) + ":(" + sec->name + ")").str();
49 }
50 
51 template <class ELFT>
52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
53                                             const typename ELFT::Shdr &hdr) {
54   if (hdr.sh_type == SHT_NOBITS)
55     return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
56   return check(file.getObj().getSectionContents(hdr));
57 }
58 
59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
60                                    uint32_t type, uint64_t entsize,
61                                    uint32_t link, uint32_t info,
62                                    uint32_t alignment, ArrayRef<uint8_t> data,
63                                    StringRef name, Kind sectionKind)
64     : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
65                   link),
66       file(file), rawData(data) {
67   // In order to reduce memory allocation, we assume that mergeable
68   // sections are smaller than 4 GiB, which is not an unreasonable
69   // assumption as of 2017.
70   if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
71     error(toString(this) + ": section too large");
72 
73   // The ELF spec states that a value of 0 means the section has
74   // no alignment constraints.
75   uint32_t v = std::max<uint32_t>(alignment, 1);
76   if (!isPowerOf2_64(v))
77     fatal(toString(this) + ": sh_addralign is not a power of 2");
78   this->alignment = v;
79 
80   // In ELF, each section can be compressed by zlib, and if compressed,
81   // section name may be mangled by appending "z" (e.g. ".zdebug_info").
82   // If that's the case, demangle section name so that we can handle a
83   // section as if it weren't compressed.
84   if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
85     if (!zlib::isAvailable())
86       error(toString(file) + ": contains a compressed section, " +
87             "but zlib is not available");
88     switch (config->ekind) {
89     case ELF32LEKind:
90       parseCompressedHeader<ELF32LE>();
91       break;
92     case ELF32BEKind:
93       parseCompressedHeader<ELF32BE>();
94       break;
95     case ELF64LEKind:
96       parseCompressedHeader<ELF64LE>();
97       break;
98     case ELF64BEKind:
99       parseCompressedHeader<ELF64BE>();
100       break;
101     default:
102       llvm_unreachable("unknown ELFT");
103     }
104   }
105 }
106 
107 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
108 // SHF_GROUP is a marker that a section belongs to some comdat group.
109 // That flag doesn't make sense in an executable.
110 static uint64_t getFlags(uint64_t flags) {
111   flags &= ~(uint64_t)SHF_INFO_LINK;
112   if (!config->relocatable)
113     flags &= ~(uint64_t)SHF_GROUP;
114   return flags;
115 }
116 
117 template <class ELFT>
118 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
119                                    const typename ELFT::Shdr &hdr,
120                                    StringRef name, Kind sectionKind)
121     : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
122                        hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
123                        hdr.sh_addralign, getSectionContents(file, hdr), name,
124                        sectionKind) {
125   // We reject object files having insanely large alignments even though
126   // they are allowed by the spec. I think 4GB is a reasonable limitation.
127   // We might want to relax this in the future.
128   if (hdr.sh_addralign > UINT32_MAX)
129     fatal(toString(&file) + ": section sh_addralign is too large");
130 }
131 
132 size_t InputSectionBase::getSize() const {
133   if (auto *s = dyn_cast<SyntheticSection>(this))
134     return s->getSize();
135   if (uncompressedSize >= 0)
136     return uncompressedSize;
137   return rawData.size() - bytesDropped;
138 }
139 
140 void InputSectionBase::uncompress() const {
141   size_t size = uncompressedSize;
142   char *uncompressedBuf;
143   {
144     static std::mutex mu;
145     std::lock_guard<std::mutex> lock(mu);
146     uncompressedBuf = bAlloc.Allocate<char>(size);
147   }
148 
149   if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
150     fatal(toString(this) +
151           ": uncompress failed: " + llvm::toString(std::move(e)));
152   rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
153   uncompressedSize = -1;
154 }
155 
156 uint64_t InputSectionBase::getOffsetInFile() const {
157   const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
158   const uint8_t *secStart = data().begin();
159   return secStart - fileStart;
160 }
161 
162 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const {
163   if (relSecIdx == 0)
164     return {};
165   RelsOrRelas<ELFT> ret;
166   const ELFFile<ELFT> obj = cast<ELFFileBase>(file)->getObj<ELFT>();
167   typename ELFT::Shdr shdr = cantFail(obj.sections())[relSecIdx];
168   if (shdr.sh_type == SHT_REL) {
169     ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>(
170                                 obj.base() + shdr.sh_offset),
171                             shdr.sh_size / sizeof(typename ELFT::Rel));
172   } else {
173     assert(shdr.sh_type == SHT_RELA);
174     ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>(
175                                  obj.base() + shdr.sh_offset),
176                              shdr.sh_size / sizeof(typename ELFT::Rela));
177   }
178   return ret;
179 }
180 
181 uint64_t SectionBase::getOffset(uint64_t offset) const {
182   switch (kind()) {
183   case Output: {
184     auto *os = cast<OutputSection>(this);
185     // For output sections we treat offset -1 as the end of the section.
186     return offset == uint64_t(-1) ? os->size : offset;
187   }
188   case Regular:
189   case Synthetic:
190     return cast<InputSection>(this)->getOffset(offset);
191   case EHFrame:
192     // The file crtbeginT.o has relocations pointing to the start of an empty
193     // .eh_frame that is known to be the first in the link. It does that to
194     // identify the start of the output .eh_frame.
195     return offset;
196   case Merge:
197     const MergeInputSection *ms = cast<MergeInputSection>(this);
198     if (InputSection *isec = ms->getParent())
199       return isec->getOffset(ms->getParentOffset(offset));
200     return ms->getParentOffset(offset);
201   }
202   llvm_unreachable("invalid section kind");
203 }
204 
205 uint64_t SectionBase::getVA(uint64_t offset) const {
206   const OutputSection *out = getOutputSection();
207   return (out ? out->addr : 0) + getOffset(offset);
208 }
209 
210 OutputSection *SectionBase::getOutputSection() {
211   InputSection *sec;
212   if (auto *isec = dyn_cast<InputSection>(this))
213     sec = isec;
214   else if (auto *ms = dyn_cast<MergeInputSection>(this))
215     sec = ms->getParent();
216   else if (auto *eh = dyn_cast<EhInputSection>(this))
217     sec = eh->getParent();
218   else
219     return cast<OutputSection>(this);
220   return sec ? sec->getParent() : nullptr;
221 }
222 
223 // When a section is compressed, `rawData` consists with a header followed
224 // by zlib-compressed data. This function parses a header to initialize
225 // `uncompressedSize` member and remove the header from `rawData`.
226 template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
227   // Old-style header
228   if (name.startswith(".zdebug")) {
229     if (!toStringRef(rawData).startswith("ZLIB")) {
230       error(toString(this) + ": corrupted compressed section header");
231       return;
232     }
233     rawData = rawData.slice(4);
234 
235     if (rawData.size() < 8) {
236       error(toString(this) + ": corrupted compressed section header");
237       return;
238     }
239 
240     uncompressedSize = read64be(rawData.data());
241     rawData = rawData.slice(8);
242 
243     // Restore the original section name.
244     // (e.g. ".zdebug_info" -> ".debug_info")
245     name = saver.save("." + name.substr(2));
246     return;
247   }
248 
249   assert(flags & SHF_COMPRESSED);
250   flags &= ~(uint64_t)SHF_COMPRESSED;
251 
252   // New-style header
253   if (rawData.size() < sizeof(typename ELFT::Chdr)) {
254     error(toString(this) + ": corrupted compressed section");
255     return;
256   }
257 
258   auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data());
259   if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
260     error(toString(this) + ": unsupported compression type");
261     return;
262   }
263 
264   uncompressedSize = hdr->ch_size;
265   alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
266   rawData = rawData.slice(sizeof(*hdr));
267 }
268 
269 InputSection *InputSectionBase::getLinkOrderDep() const {
270   assert(flags & SHF_LINK_ORDER);
271   if (!link)
272     return nullptr;
273   return cast<InputSection>(file->getSections()[link]);
274 }
275 
276 // Find a function symbol that encloses a given location.
277 template <class ELFT>
278 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
279   for (Symbol *b : file->getSymbols())
280     if (Defined *d = dyn_cast<Defined>(b))
281       if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
282           offset < d->value + d->size)
283         return d;
284   return nullptr;
285 }
286 
287 // Returns an object file location string. Used to construct an error message.
288 template <class ELFT>
289 std::string InputSectionBase::getLocation(uint64_t offset) {
290   std::string secAndOffset =
291       (name + "+0x" + Twine::utohexstr(offset) + ")").str();
292 
293   // We don't have file for synthetic sections.
294   if (getFile<ELFT>() == nullptr)
295     return (config->outputFile + ":(" + secAndOffset).str();
296 
297   std::string file = toString(getFile<ELFT>());
298   if (Defined *d = getEnclosingFunction<ELFT>(offset))
299     return file + ":(function " + toString(*d) + ": " + secAndOffset;
300 
301   return file + ":(" + secAndOffset;
302 }
303 
304 // This function is intended to be used for constructing an error message.
305 // The returned message looks like this:
306 //
307 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
308 //
309 //  Returns an empty string if there's no way to get line info.
310 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
311   return file->getSrcMsg(sym, *this, offset);
312 }
313 
314 // Returns a filename string along with an optional section name. This
315 // function is intended to be used for constructing an error
316 // message. The returned message looks like this:
317 //
318 //   path/to/foo.o:(function bar)
319 //
320 // or
321 //
322 //   path/to/foo.o:(function bar) in archive path/to/bar.a
323 std::string InputSectionBase::getObjMsg(uint64_t off) {
324   std::string filename = std::string(file->getName());
325 
326   std::string archive;
327   if (!file->archiveName.empty())
328     archive = " in archive " + file->archiveName;
329 
330   // Find a symbol that encloses a given location.
331   for (Symbol *b : file->getSymbols())
332     if (auto *d = dyn_cast<Defined>(b))
333       if (d->section == this && d->value <= off && off < d->value + d->size)
334         return filename + ":(" + toString(*d) + ")" + archive;
335 
336   // If there's no symbol, print out the offset in the section.
337   return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
338       .str();
339 }
340 
341 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
342 
343 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
344                            uint32_t alignment, ArrayRef<uint8_t> data,
345                            StringRef name, Kind k)
346     : InputSectionBase(f, flags, type,
347                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
348                        name, k) {}
349 
350 template <class ELFT>
351 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
352                            StringRef name)
353     : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
354 
355 bool InputSection::classof(const SectionBase *s) {
356   return s->kind() == SectionBase::Regular ||
357          s->kind() == SectionBase::Synthetic;
358 }
359 
360 OutputSection *InputSection::getParent() const {
361   return cast_or_null<OutputSection>(parent);
362 }
363 
364 // Copy SHT_GROUP section contents. Used only for the -r option.
365 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
366   // ELFT::Word is the 32-bit integral type in the target endianness.
367   using u32 = typename ELFT::Word;
368   ArrayRef<u32> from = getDataAs<u32>();
369   auto *to = reinterpret_cast<u32 *>(buf);
370 
371   // The first entry is not a section number but a flag.
372   *to++ = from[0];
373 
374   // Adjust section numbers because section numbers in an input object files are
375   // different in the output. We also need to handle combined or discarded
376   // members.
377   ArrayRef<InputSectionBase *> sections = file->getSections();
378   std::unordered_set<uint32_t> seen;
379   for (uint32_t idx : from.slice(1)) {
380     OutputSection *osec = sections[idx]->getOutputSection();
381     if (osec && seen.insert(osec->sectionIndex).second)
382       *to++ = osec->sectionIndex;
383   }
384 }
385 
386 InputSectionBase *InputSection::getRelocatedSection() const {
387   if (!file || (type != SHT_RELA && type != SHT_REL))
388     return nullptr;
389   ArrayRef<InputSectionBase *> sections = file->getSections();
390   return sections[info];
391 }
392 
393 // This is used for -r and --emit-relocs. We can't use memcpy to copy
394 // relocations because we need to update symbol table offset and section index
395 // for each relocation. So we copy relocations one by one.
396 template <class ELFT, class RelTy>
397 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
398   InputSectionBase *sec = getRelocatedSection();
399 
400   for (const RelTy &rel : rels) {
401     RelType type = rel.getType(config->isMips64EL);
402     const ObjFile<ELFT> *file = getFile<ELFT>();
403     Symbol &sym = file->getRelocTargetSym(rel);
404 
405     auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
406     buf += sizeof(RelTy);
407 
408     if (RelTy::IsRela)
409       p->r_addend = getAddend<ELFT>(rel);
410 
411     // Output section VA is zero for -r, so r_offset is an offset within the
412     // section, but for --emit-relocs it is a virtual address.
413     p->r_offset = sec->getVA(rel.r_offset);
414     p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
415                         config->isMips64EL);
416 
417     if (sym.type == STT_SECTION) {
418       // We combine multiple section symbols into only one per
419       // section. This means we have to update the addend. That is
420       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
421       // section data. We do that by adding to the Relocation vector.
422 
423       // .eh_frame is horribly special and can reference discarded sections. To
424       // avoid having to parse and recreate .eh_frame, we just replace any
425       // relocation in it pointing to discarded sections with R_*_NONE, which
426       // hopefully creates a frame that is ignored at runtime. Also, don't warn
427       // on .gcc_except_table and debug sections.
428       //
429       // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
430       auto *d = dyn_cast<Defined>(&sym);
431       if (!d) {
432         if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
433             sec->name != ".gcc_except_table" && sec->name != ".got2" &&
434             sec->name != ".toc") {
435           uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
436           Elf_Shdr_Impl<ELFT> sec =
437               CHECK(file->getObj().sections(), file)[secIdx];
438           warn("relocation refers to a discarded section: " +
439                CHECK(file->getObj().getSectionName(sec), file) +
440                "\n>>> referenced by " + getObjMsg(p->r_offset));
441         }
442         p->setSymbolAndType(0, 0, false);
443         continue;
444       }
445       SectionBase *section = d->section->repl;
446       if (!section->isLive()) {
447         p->setSymbolAndType(0, 0, false);
448         continue;
449       }
450 
451       int64_t addend = getAddend<ELFT>(rel);
452       const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
453       if (!RelTy::IsRela)
454         addend = target->getImplicitAddend(bufLoc, type);
455 
456       if (config->emachine == EM_MIPS &&
457           target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
458         // Some MIPS relocations depend on "gp" value. By default,
459         // this value has 0x7ff0 offset from a .got section. But
460         // relocatable files produced by a compiler or a linker
461         // might redefine this default value and we must use it
462         // for a calculation of the relocation result. When we
463         // generate EXE or DSO it's trivial. Generating a relocatable
464         // output is more difficult case because the linker does
465         // not calculate relocations in this mode and loses
466         // individual "gp" values used by each input object file.
467         // As a workaround we add the "gp" value to the relocation
468         // addend and save it back to the file.
469         addend += sec->getFile<ELFT>()->mipsGp0;
470       }
471 
472       if (RelTy::IsRela)
473         p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
474       else if (config->relocatable && type != target->noneRel)
475         sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
476     } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
477                p->r_addend >= 0x8000) {
478       // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
479       // indicates that r30 is relative to the input section .got2
480       // (r_addend>=0x8000), after linking, r30 should be relative to the output
481       // section .got2 . To compensate for the shift, adjust r_addend by
482       // ppc32Got2OutSecOff.
483       p->r_addend += sec->file->ppc32Got2OutSecOff;
484     }
485   }
486 }
487 
488 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
489 // references specially. The general rule is that the value of the symbol in
490 // this context is the address of the place P. A further special case is that
491 // branch relocations to an undefined weak reference resolve to the next
492 // instruction.
493 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
494                                               uint32_t p) {
495   switch (type) {
496   // Unresolved branch relocations to weak references resolve to next
497   // instruction, this will be either 2 or 4 bytes on from P.
498   case R_ARM_THM_JUMP11:
499     return p + 2 + a;
500   case R_ARM_CALL:
501   case R_ARM_JUMP24:
502   case R_ARM_PC24:
503   case R_ARM_PLT32:
504   case R_ARM_PREL31:
505   case R_ARM_THM_JUMP19:
506   case R_ARM_THM_JUMP24:
507     return p + 4 + a;
508   case R_ARM_THM_CALL:
509     // We don't want an interworking BLX to ARM
510     return p + 5 + a;
511   // Unresolved non branch pc-relative relocations
512   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
513   // targets a weak-reference.
514   case R_ARM_MOVW_PREL_NC:
515   case R_ARM_MOVT_PREL:
516   case R_ARM_REL32:
517   case R_ARM_THM_ALU_PREL_11_0:
518   case R_ARM_THM_MOVW_PREL_NC:
519   case R_ARM_THM_MOVT_PREL:
520   case R_ARM_THM_PC12:
521     return p + a;
522   // p + a is unrepresentable as negative immediates can't be encoded.
523   case R_ARM_THM_PC8:
524     return p;
525   }
526   llvm_unreachable("ARM pc-relative relocation expected\n");
527 }
528 
529 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
530 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
531   switch (type) {
532   // Unresolved branch relocations to weak references resolve to next
533   // instruction, this is 4 bytes on from P.
534   case R_AARCH64_CALL26:
535   case R_AARCH64_CONDBR19:
536   case R_AARCH64_JUMP26:
537   case R_AARCH64_TSTBR14:
538     return p + 4;
539   // Unresolved non branch pc-relative relocations
540   case R_AARCH64_PREL16:
541   case R_AARCH64_PREL32:
542   case R_AARCH64_PREL64:
543   case R_AARCH64_ADR_PREL_LO21:
544   case R_AARCH64_LD_PREL_LO19:
545   case R_AARCH64_PLT32:
546     return p;
547   }
548   llvm_unreachable("AArch64 pc-relative relocation expected\n");
549 }
550 
551 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
552   switch (type) {
553   case R_RISCV_BRANCH:
554   case R_RISCV_JAL:
555   case R_RISCV_CALL:
556   case R_RISCV_CALL_PLT:
557   case R_RISCV_RVC_BRANCH:
558   case R_RISCV_RVC_JUMP:
559     return p;
560   default:
561     return 0;
562   }
563 }
564 
565 // ARM SBREL relocations are of the form S + A - B where B is the static base
566 // The ARM ABI defines base to be "addressing origin of the output segment
567 // defining the symbol S". We defined the "addressing origin"/static base to be
568 // the base of the PT_LOAD segment containing the Sym.
569 // The procedure call standard only defines a Read Write Position Independent
570 // RWPI variant so in practice we should expect the static base to be the base
571 // of the RW segment.
572 static uint64_t getARMStaticBase(const Symbol &sym) {
573   OutputSection *os = sym.getOutputSection();
574   if (!os || !os->ptLoad || !os->ptLoad->firstSec)
575     fatal("SBREL relocation to " + sym.getName() + " without static base");
576   return os->ptLoad->firstSec->addr;
577 }
578 
579 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
580 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
581 // is calculated using PCREL_HI20's symbol.
582 //
583 // This function returns the R_RISCV_PCREL_HI20 relocation from
584 // R_RISCV_PCREL_LO12's symbol and addend.
585 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
586   const Defined *d = cast<Defined>(sym);
587   if (!d->section) {
588     error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
589           sym->getName());
590     return nullptr;
591   }
592   InputSection *isec = cast<InputSection>(d->section);
593 
594   if (addend != 0)
595     warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
596          isec->getObjMsg(d->value) + " is ignored");
597 
598   // Relocations are sorted by offset, so we can use std::equal_range to do
599   // binary search.
600   Relocation r;
601   r.offset = d->value;
602   auto range =
603       std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
604                        [](const Relocation &lhs, const Relocation &rhs) {
605                          return lhs.offset < rhs.offset;
606                        });
607 
608   for (auto it = range.first; it != range.second; ++it)
609     if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
610         it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
611       return &*it;
612 
613   error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
614         " without an associated R_RISCV_PCREL_HI20 relocation");
615   return nullptr;
616 }
617 
618 // A TLS symbol's virtual address is relative to the TLS segment. Add a
619 // target-specific adjustment to produce a thread-pointer-relative offset.
620 static int64_t getTlsTpOffset(const Symbol &s) {
621   // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
622   if (&s == ElfSym::tlsModuleBase)
623     return 0;
624 
625   // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
626   // while most others use Variant 1. At run time TP will be aligned to p_align.
627 
628   // Variant 1. TP will be followed by an optional gap (which is the size of 2
629   // pointers on ARM/AArch64, 0 on other targets), followed by alignment
630   // padding, then the static TLS blocks. The alignment padding is added so that
631   // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
632   //
633   // Variant 2. Static TLS blocks, followed by alignment padding are placed
634   // before TP. The alignment padding is added so that (TP - padding -
635   // p_memsz) is congruent to p_vaddr modulo p_align.
636   PhdrEntry *tls = Out::tlsPhdr;
637   switch (config->emachine) {
638     // Variant 1.
639   case EM_ARM:
640   case EM_AARCH64:
641     return s.getVA(0) + config->wordsize * 2 +
642            ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
643   case EM_MIPS:
644   case EM_PPC:
645   case EM_PPC64:
646     // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
647     // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
648     // data and 0xf000 of the program's TLS segment.
649     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
650   case EM_RISCV:
651     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
652 
653     // Variant 2.
654   case EM_HEXAGON:
655   case EM_SPARCV9:
656   case EM_386:
657   case EM_X86_64:
658     return s.getVA(0) - tls->p_memsz -
659            ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
660   default:
661     llvm_unreachable("unhandled Config->EMachine");
662   }
663 }
664 
665 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
666                                             int64_t a, uint64_t p,
667                                             const Symbol &sym, RelExpr expr) {
668   switch (expr) {
669   case R_ABS:
670   case R_DTPREL:
671   case R_RELAX_TLS_LD_TO_LE_ABS:
672   case R_RELAX_GOT_PC_NOPIC:
673   case R_RISCV_ADD:
674     return sym.getVA(a);
675   case R_ADDEND:
676     return a;
677   case R_ARM_SBREL:
678     return sym.getVA(a) - getARMStaticBase(sym);
679   case R_GOT:
680   case R_RELAX_TLS_GD_TO_IE_ABS:
681     return sym.getGotVA() + a;
682   case R_GOTONLY_PC:
683     return in.got->getVA() + a - p;
684   case R_GOTPLTONLY_PC:
685     return in.gotPlt->getVA() + a - p;
686   case R_GOTREL:
687   case R_PPC64_RELAX_TOC:
688     return sym.getVA(a) - in.got->getVA();
689   case R_GOTPLTREL:
690     return sym.getVA(a) - in.gotPlt->getVA();
691   case R_GOTPLT:
692   case R_RELAX_TLS_GD_TO_IE_GOTPLT:
693     return sym.getGotVA() + a - in.gotPlt->getVA();
694   case R_TLSLD_GOT_OFF:
695   case R_GOT_OFF:
696   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
697     return sym.getGotOffset() + a;
698   case R_AARCH64_GOT_PAGE_PC:
699   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
700     return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
701   case R_AARCH64_GOT_PAGE:
702     return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
703   case R_GOT_PC:
704   case R_RELAX_TLS_GD_TO_IE:
705     return sym.getGotVA() + a - p;
706   case R_MIPS_GOTREL:
707     return sym.getVA(a) - in.mipsGot->getGp(file);
708   case R_MIPS_GOT_GP:
709     return in.mipsGot->getGp(file) + a;
710   case R_MIPS_GOT_GP_PC: {
711     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
712     // is _gp_disp symbol. In that case we should use the following
713     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
714     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
715     // microMIPS variants of these relocations use slightly different
716     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
717     // to correctly handle less-significant bit of the microMIPS symbol.
718     uint64_t v = in.mipsGot->getGp(file) + a - p;
719     if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
720       v += 4;
721     if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
722       v -= 1;
723     return v;
724   }
725   case R_MIPS_GOT_LOCAL_PAGE:
726     // If relocation against MIPS local symbol requires GOT entry, this entry
727     // should be initialized by 'page address'. This address is high 16-bits
728     // of sum the symbol's value and the addend.
729     return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
730            in.mipsGot->getGp(file);
731   case R_MIPS_GOT_OFF:
732   case R_MIPS_GOT_OFF32:
733     // In case of MIPS if a GOT relocation has non-zero addend this addend
734     // should be applied to the GOT entry content not to the GOT entry offset.
735     // That is why we use separate expression type.
736     return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
737            in.mipsGot->getGp(file);
738   case R_MIPS_TLSGD:
739     return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
740            in.mipsGot->getGp(file);
741   case R_MIPS_TLSLD:
742     return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
743            in.mipsGot->getGp(file);
744   case R_AARCH64_PAGE_PC: {
745     uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
746     return getAArch64Page(val) - getAArch64Page(p);
747   }
748   case R_RISCV_PC_INDIRECT: {
749     if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
750       return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
751                               *hiRel->sym, hiRel->expr);
752     return 0;
753   }
754   case R_PC:
755   case R_ARM_PCA: {
756     uint64_t dest;
757     if (expr == R_ARM_PCA)
758       // Some PC relative ARM (Thumb) relocations align down the place.
759       p = p & 0xfffffffc;
760     if (sym.isUndefWeak()) {
761       // On ARM and AArch64 a branch to an undefined weak resolves to the next
762       // instruction, otherwise the place. On RISCV, resolve an undefined weak
763       // to the same instruction to cause an infinite loop (making the user
764       // aware of the issue) while ensuring no overflow.
765       if (config->emachine == EM_ARM)
766         dest = getARMUndefinedRelativeWeakVA(type, a, p);
767       else if (config->emachine == EM_AARCH64)
768         dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
769       else if (config->emachine == EM_PPC)
770         dest = p;
771       else if (config->emachine == EM_RISCV)
772         dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
773       else
774         dest = sym.getVA(a);
775     } else {
776       dest = sym.getVA(a);
777     }
778     return dest - p;
779   }
780   case R_PLT:
781     return sym.getPltVA() + a;
782   case R_PLT_PC:
783   case R_PPC64_CALL_PLT:
784     return sym.getPltVA() + a - p;
785   case R_PLT_GOTPLT:
786     return sym.getPltVA() + a - in.gotPlt->getVA();
787   case R_PPC32_PLTREL:
788     // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
789     // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
790     // target VA computation.
791     return sym.getPltVA() - p;
792   case R_PPC64_CALL: {
793     uint64_t symVA = sym.getVA(a);
794     // If we have an undefined weak symbol, we might get here with a symbol
795     // address of zero. That could overflow, but the code must be unreachable,
796     // so don't bother doing anything at all.
797     if (!symVA)
798       return 0;
799 
800     // PPC64 V2 ABI describes two entry points to a function. The global entry
801     // point is used for calls where the caller and callee (may) have different
802     // TOC base pointers and r2 needs to be modified to hold the TOC base for
803     // the callee. For local calls the caller and callee share the same
804     // TOC base and so the TOC pointer initialization code should be skipped by
805     // branching to the local entry point.
806     return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
807   }
808   case R_PPC64_TOCBASE:
809     return getPPC64TocBase() + a;
810   case R_RELAX_GOT_PC:
811   case R_PPC64_RELAX_GOT_PC:
812     return sym.getVA(a) - p;
813   case R_RELAX_TLS_GD_TO_LE:
814   case R_RELAX_TLS_IE_TO_LE:
815   case R_RELAX_TLS_LD_TO_LE:
816   case R_TPREL:
817     // It is not very clear what to return if the symbol is undefined. With
818     // --noinhibit-exec, even a non-weak undefined reference may reach here.
819     // Just return A, which matches R_ABS, and the behavior of some dynamic
820     // loaders.
821     if (sym.isUndefined())
822       return a;
823     return getTlsTpOffset(sym) + a;
824   case R_RELAX_TLS_GD_TO_LE_NEG:
825   case R_TPREL_NEG:
826     if (sym.isUndefined())
827       return a;
828     return -getTlsTpOffset(sym) + a;
829   case R_SIZE:
830     return sym.getSize() + a;
831   case R_TLSDESC:
832     return in.got->getGlobalDynAddr(sym) + a;
833   case R_TLSDESC_PC:
834     return in.got->getGlobalDynAddr(sym) + a - p;
835   case R_TLSDESC_GOTPLT:
836     return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
837   case R_AARCH64_TLSDESC_PAGE:
838     return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
839            getAArch64Page(p);
840   case R_TLSGD_GOT:
841     return in.got->getGlobalDynOffset(sym) + a;
842   case R_TLSGD_GOTPLT:
843     return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
844   case R_TLSGD_PC:
845     return in.got->getGlobalDynAddr(sym) + a - p;
846   case R_TLSLD_GOTPLT:
847     return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
848   case R_TLSLD_GOT:
849     return in.got->getTlsIndexOff() + a;
850   case R_TLSLD_PC:
851     return in.got->getTlsIndexVA() + a - p;
852   default:
853     llvm_unreachable("invalid expression");
854   }
855 }
856 
857 // This function applies relocations to sections without SHF_ALLOC bit.
858 // Such sections are never mapped to memory at runtime. Debug sections are
859 // an example. Relocations in non-alloc sections are much easier to
860 // handle than in allocated sections because it will never need complex
861 // treatment such as GOT or PLT (because at runtime no one refers them).
862 // So, we handle relocations for non-alloc sections directly in this
863 // function as a performance optimization.
864 template <class ELFT, class RelTy>
865 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
866   const unsigned bits = sizeof(typename ELFT::uint) * 8;
867   const bool isDebug = isDebugSection(*this);
868   const bool isDebugLocOrRanges =
869       isDebug && (name == ".debug_loc" || name == ".debug_ranges");
870   const bool isDebugLine = isDebug && name == ".debug_line";
871   Optional<uint64_t> tombstone;
872   for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
873     if (patAndValue.first.match(this->name)) {
874       tombstone = patAndValue.second;
875       break;
876     }
877 
878   for (const RelTy &rel : rels) {
879     RelType type = rel.getType(config->isMips64EL);
880 
881     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
882     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
883     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
884     // need to keep this bug-compatible code for a while.
885     if (config->emachine == EM_386 && type == R_386_GOTPC)
886       continue;
887 
888     uint64_t offset = rel.r_offset;
889     uint8_t *bufLoc = buf + offset;
890     int64_t addend = getAddend<ELFT>(rel);
891     if (!RelTy::IsRela)
892       addend += target->getImplicitAddend(bufLoc, type);
893 
894     Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
895     RelExpr expr = target->getRelExpr(type, sym, bufLoc);
896     if (expr == R_NONE)
897       continue;
898 
899     if (expr == R_SIZE) {
900       target->relocateNoSym(bufLoc, type,
901                             SignExtend64<bits>(sym.getSize() + addend));
902       continue;
903     }
904 
905     // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
906     // sections.
907     if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL &&
908         expr != R_RISCV_ADD) {
909       std::string msg = getLocation<ELFT>(offset) +
910                         ": has non-ABS relocation " + toString(type) +
911                         " against symbol '" + toString(sym) + "'";
912       if (expr != R_PC && expr != R_ARM_PCA) {
913         error(msg);
914         return;
915       }
916 
917       // If the control reaches here, we found a PC-relative relocation in a
918       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
919       // at runtime, the notion of PC-relative doesn't make sense here. So,
920       // this is a usage error. However, GNU linkers historically accept such
921       // relocations without any errors and relocate them as if they were at
922       // address 0. For bug-compatibilty, we accept them with warnings. We
923       // know Steel Bank Common Lisp as of 2018 have this bug.
924       warn(msg);
925       target->relocateNoSym(
926           bufLoc, type,
927           SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
928       continue;
929     }
930 
931     if (tombstone ||
932         (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) {
933       // Resolve relocations in .debug_* referencing (discarded symbols or ICF
934       // folded section symbols) to a tombstone value. Resolving to addend is
935       // unsatisfactory because the result address range may collide with a
936       // valid range of low address, or leave multiple CUs claiming ownership of
937       // the same range of code, which may confuse consumers.
938       //
939       // To address the problems, we use -1 as a tombstone value for most
940       // .debug_* sections. We have to ignore the addend because we don't want
941       // to resolve an address attribute (which may have a non-zero addend) to
942       // -1+addend (wrap around to a low address).
943       //
944       // R_DTPREL type relocations represent an offset into the dynamic thread
945       // vector. The computed value is st_value plus a non-negative offset.
946       // Negative values are invalid, so -1 can be used as the tombstone value.
947       //
948       // If the referenced symbol is discarded (made Undefined), or the
949       // section defining the referenced symbol is garbage collected,
950       // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section`
951       // catches the ICF folded case. However, resolving a relocation in
952       // .debug_line to -1 would stop debugger users from setting breakpoints on
953       // the folded-in function, so exclude .debug_line.
954       //
955       // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
956       // (base address selection entry), use 1 (which is used by GNU ld for
957       // .debug_ranges).
958       //
959       // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
960       // value. Enable -1 in a future release.
961       auto *ds = dyn_cast<Defined>(&sym);
962       if (!sym.getOutputSection() ||
963           (ds && ds->section->repl != ds->section && !isDebugLine)) {
964         // If -z dead-reloc-in-nonalloc= is specified, respect it.
965         const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
966                                          : (isDebugLocOrRanges ? 1 : 0);
967         target->relocateNoSym(bufLoc, type, value);
968         continue;
969       }
970     }
971     target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
972   }
973 }
974 
975 // This is used when '-r' is given.
976 // For REL targets, InputSection::copyRelocations() may store artificial
977 // relocations aimed to update addends. They are handled in relocateAlloc()
978 // for allocatable sections, and this function does the same for
979 // non-allocatable sections, such as sections with debug information.
980 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
981   const unsigned bits = config->is64 ? 64 : 32;
982 
983   for (const Relocation &rel : sec->relocations) {
984     // InputSection::copyRelocations() adds only R_ABS relocations.
985     assert(rel.expr == R_ABS);
986     uint8_t *bufLoc = buf + rel.offset;
987     uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
988     target->relocate(bufLoc, rel, targetVA);
989   }
990 }
991 
992 template <class ELFT>
993 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
994   if (flags & SHF_EXECINSTR)
995     adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
996 
997   if (flags & SHF_ALLOC) {
998     relocateAlloc(buf, bufEnd);
999     return;
1000   }
1001 
1002   auto *sec = cast<InputSection>(this);
1003   if (config->relocatable) {
1004     relocateNonAllocForRelocatable(sec, buf);
1005   } else {
1006     const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
1007     if (rels.areRelocsRel())
1008       sec->relocateNonAlloc<ELFT>(buf, rels.rels);
1009     else
1010       sec->relocateNonAlloc<ELFT>(buf, rels.relas);
1011   }
1012 }
1013 
1014 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
1015   assert(flags & SHF_ALLOC);
1016   const unsigned bits = config->wordsize * 8;
1017   uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1);
1018 
1019   for (const Relocation &rel : relocations) {
1020     if (rel.expr == R_NONE)
1021       continue;
1022     uint64_t offset = rel.offset;
1023     uint8_t *bufLoc = buf + offset;
1024     RelType type = rel.type;
1025 
1026     uint64_t addrLoc = getOutputSection()->addr + offset;
1027     if (auto *sec = dyn_cast<InputSection>(this))
1028       addrLoc += sec->outSecOff;
1029     RelExpr expr = rel.expr;
1030     uint64_t targetVA = SignExtend64(
1031         getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
1032         bits);
1033 
1034     switch (expr) {
1035     case R_RELAX_GOT_PC:
1036     case R_RELAX_GOT_PC_NOPIC:
1037       target->relaxGot(bufLoc, rel, targetVA);
1038       break;
1039     case R_PPC64_RELAX_GOT_PC: {
1040       // The R_PPC64_PCREL_OPT relocation must appear immediately after
1041       // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1042       // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1043       // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1044       // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1045       // and only relax the other if the saved offset matches.
1046       if (type == R_PPC64_GOT_PCREL34)
1047         lastPPCRelaxedRelocOff = offset;
1048       if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff)
1049         break;
1050       target->relaxGot(bufLoc, rel, targetVA);
1051       break;
1052     }
1053     case R_PPC64_RELAX_TOC:
1054       // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1055       // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1056       // entry, there may be R_PPC64_TOC16_HA not paired with
1057       // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1058       // opportunities but is safe.
1059       if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1060           !tryRelaxPPC64TocIndirection(rel, bufLoc))
1061         target->relocate(bufLoc, rel, targetVA);
1062       break;
1063     case R_RELAX_TLS_IE_TO_LE:
1064       target->relaxTlsIeToLe(bufLoc, rel, targetVA);
1065       break;
1066     case R_RELAX_TLS_LD_TO_LE:
1067     case R_RELAX_TLS_LD_TO_LE_ABS:
1068       target->relaxTlsLdToLe(bufLoc, rel, targetVA);
1069       break;
1070     case R_RELAX_TLS_GD_TO_LE:
1071     case R_RELAX_TLS_GD_TO_LE_NEG:
1072       target->relaxTlsGdToLe(bufLoc, rel, targetVA);
1073       break;
1074     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
1075     case R_RELAX_TLS_GD_TO_IE:
1076     case R_RELAX_TLS_GD_TO_IE_ABS:
1077     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1078     case R_RELAX_TLS_GD_TO_IE_GOTPLT:
1079       target->relaxTlsGdToIe(bufLoc, rel, targetVA);
1080       break;
1081     case R_PPC64_CALL:
1082       // If this is a call to __tls_get_addr, it may be part of a TLS
1083       // sequence that has been relaxed and turned into a nop. In this
1084       // case, we don't want to handle it as a call.
1085       if (read32(bufLoc) == 0x60000000) // nop
1086         break;
1087 
1088       // Patch a nop (0x60000000) to a ld.
1089       if (rel.sym->needsTocRestore) {
1090         // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1091         // recursive calls even if the function is preemptible. This is not
1092         // wrong in the common case where the function is not preempted at
1093         // runtime. Just ignore.
1094         if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
1095             rel.sym->file != file) {
1096           // Use substr(6) to remove the "__plt_" prefix.
1097           errorOrWarn(getErrorLocation(bufLoc) + "call to " +
1098                       lld::toString(*rel.sym).substr(6) +
1099                       " lacks nop, can't restore toc");
1100           break;
1101         }
1102         write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
1103       }
1104       target->relocate(bufLoc, rel, targetVA);
1105       break;
1106     default:
1107       target->relocate(bufLoc, rel, targetVA);
1108       break;
1109     }
1110   }
1111 
1112   // Apply jumpInstrMods.  jumpInstrMods are created when the opcode of
1113   // a jmp insn must be modified to shrink the jmp insn or to flip the jmp
1114   // insn.  This is primarily used to relax and optimize jumps created with
1115   // basic block sections.
1116   if (isa<InputSection>(this)) {
1117     for (const JumpInstrMod &jumpMod : jumpInstrMods) {
1118       uint64_t offset = jumpMod.offset;
1119       uint8_t *bufLoc = buf + offset;
1120       target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size);
1121     }
1122   }
1123 }
1124 
1125 // For each function-defining prologue, find any calls to __morestack,
1126 // and replace them with calls to __morestack_non_split.
1127 static void switchMorestackCallsToMorestackNonSplit(
1128     DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {
1129 
1130   // If the target adjusted a function's prologue, all calls to
1131   // __morestack inside that function should be switched to
1132   // __morestack_non_split.
1133   Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1134   if (!moreStackNonSplit) {
1135     error("Mixing split-stack objects requires a definition of "
1136           "__morestack_non_split");
1137     return;
1138   }
1139 
1140   // Sort both collections to compare addresses efficiently.
1141   llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1142     return l->offset < r->offset;
1143   });
1144   std::vector<Defined *> functions(prologues.begin(), prologues.end());
1145   llvm::sort(functions, [](const Defined *l, const Defined *r) {
1146     return l->value < r->value;
1147   });
1148 
1149   auto it = morestackCalls.begin();
1150   for (Defined *f : functions) {
1151     // Find the first call to __morestack within the function.
1152     while (it != morestackCalls.end() && (*it)->offset < f->value)
1153       ++it;
1154     // Adjust all calls inside the function.
1155     while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1156       (*it)->sym = moreStackNonSplit;
1157       ++it;
1158     }
1159   }
1160 }
1161 
1162 static bool enclosingPrologueAttempted(uint64_t offset,
1163                                        const DenseSet<Defined *> &prologues) {
1164   for (Defined *f : prologues)
1165     if (f->value <= offset && offset < f->value + f->size)
1166       return true;
1167   return false;
1168 }
1169 
1170 // If a function compiled for split stack calls a function not
1171 // compiled for split stack, then the caller needs its prologue
1172 // adjusted to ensure that the called function will have enough stack
1173 // available. Find those functions, and adjust their prologues.
1174 template <class ELFT>
1175 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1176                                                          uint8_t *end) {
1177   if (!getFile<ELFT>()->splitStack)
1178     return;
1179   DenseSet<Defined *> prologues;
1180   std::vector<Relocation *> morestackCalls;
1181 
1182   for (Relocation &rel : relocations) {
1183     // Local symbols can't possibly be cross-calls, and should have been
1184     // resolved long before this line.
1185     if (rel.sym->isLocal())
1186       continue;
1187 
1188     // Ignore calls into the split-stack api.
1189     if (rel.sym->getName().startswith("__morestack")) {
1190       if (rel.sym->getName().equals("__morestack"))
1191         morestackCalls.push_back(&rel);
1192       continue;
1193     }
1194 
1195     // A relocation to non-function isn't relevant. Sometimes
1196     // __morestack is not marked as a function, so this check comes
1197     // after the name check.
1198     if (rel.sym->type != STT_FUNC)
1199       continue;
1200 
1201     // If the callee's-file was compiled with split stack, nothing to do.  In
1202     // this context, a "Defined" symbol is one "defined by the binary currently
1203     // being produced". So an "undefined" symbol might be provided by a shared
1204     // library. It is not possible to tell how such symbols were compiled, so be
1205     // conservative.
1206     if (Defined *d = dyn_cast<Defined>(rel.sym))
1207       if (InputSection *isec = cast_or_null<InputSection>(d->section))
1208         if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1209           continue;
1210 
1211     if (enclosingPrologueAttempted(rel.offset, prologues))
1212       continue;
1213 
1214     if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
1215       prologues.insert(f);
1216       if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1217                                                    f->stOther))
1218         continue;
1219       if (!getFile<ELFT>()->someNoSplitStack)
1220         error(lld::toString(this) + ": " + f->getName() +
1221               " (with -fsplit-stack) calls " + rel.sym->getName() +
1222               " (without -fsplit-stack), but couldn't adjust its prologue");
1223     }
1224   }
1225 
1226   if (target->needsMoreStackNonSplit)
1227     switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1228 }
1229 
1230 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1231   if (type == SHT_NOBITS)
1232     return;
1233 
1234   if (auto *s = dyn_cast<SyntheticSection>(this)) {
1235     s->writeTo(buf + outSecOff);
1236     return;
1237   }
1238 
1239   // If -r or --emit-relocs is given, then an InputSection
1240   // may be a relocation section.
1241   if (type == SHT_RELA) {
1242     copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
1243     return;
1244   }
1245   if (type == SHT_REL) {
1246     copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
1247     return;
1248   }
1249 
1250   // If -r is given, we may have a SHT_GROUP section.
1251   if (type == SHT_GROUP) {
1252     copyShtGroup<ELFT>(buf + outSecOff);
1253     return;
1254   }
1255 
1256   // If this is a compressed section, uncompress section contents directly
1257   // to the buffer.
1258   if (uncompressedSize >= 0) {
1259     size_t size = uncompressedSize;
1260     if (Error e = zlib::uncompress(toStringRef(rawData),
1261                                    (char *)(buf + outSecOff), size))
1262       fatal(toString(this) +
1263             ": uncompress failed: " + llvm::toString(std::move(e)));
1264     uint8_t *bufEnd = buf + outSecOff + size;
1265     relocate<ELFT>(buf + outSecOff, bufEnd);
1266     return;
1267   }
1268 
1269   // Copy section contents from source object file to output file
1270   // and then apply relocations.
1271   memcpy(buf + outSecOff, data().data(), data().size());
1272   uint8_t *bufEnd = buf + outSecOff + data().size();
1273   relocate<ELFT>(buf + outSecOff, bufEnd);
1274 }
1275 
1276 void InputSection::replace(InputSection *other) {
1277   alignment = std::max(alignment, other->alignment);
1278 
1279   // When a section is replaced with another section that was allocated to
1280   // another partition, the replacement section (and its associated sections)
1281   // need to be placed in the main partition so that both partitions will be
1282   // able to access it.
1283   if (partition != other->partition) {
1284     partition = 1;
1285     for (InputSection *isec : dependentSections)
1286       isec->partition = 1;
1287   }
1288 
1289   other->repl = repl;
1290   other->markDead();
1291 }
1292 
1293 template <class ELFT>
1294 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1295                                const typename ELFT::Shdr &header,
1296                                StringRef name)
1297     : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1298 
1299 SyntheticSection *EhInputSection::getParent() const {
1300   return cast_or_null<SyntheticSection>(parent);
1301 }
1302 
1303 // Returns the index of the first relocation that points to a region between
1304 // Begin and Begin+Size.
1305 template <class IntTy, class RelTy>
1306 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1307                          unsigned &relocI) {
1308   // Start search from RelocI for fast access. That works because the
1309   // relocations are sorted in .eh_frame.
1310   for (unsigned n = rels.size(); relocI < n; ++relocI) {
1311     const RelTy &rel = rels[relocI];
1312     if (rel.r_offset < begin)
1313       continue;
1314 
1315     if (rel.r_offset < begin + size)
1316       return relocI;
1317     return -1;
1318   }
1319   return -1;
1320 }
1321 
1322 // .eh_frame is a sequence of CIE or FDE records.
1323 // This function splits an input section into records and returns them.
1324 template <class ELFT> void EhInputSection::split() {
1325   const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>();
1326   if (rels.areRelocsRel())
1327     split<ELFT>(rels.rels);
1328   else
1329     split<ELFT>(rels.relas);
1330 }
1331 
1332 template <class ELFT, class RelTy>
1333 void EhInputSection::split(ArrayRef<RelTy> rels) {
1334   // getReloc expects the relocations to be sorted by r_offset. See the comment
1335   // in scanRelocs.
1336   SmallVector<RelTy, 0> storage;
1337   rels = sortRels(rels, storage);
1338 
1339   unsigned relI = 0;
1340   for (size_t off = 0, end = data().size(); off != end;) {
1341     size_t size = readEhRecordSize(this, off);
1342     pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1343     // The empty record is the end marker.
1344     if (size == 4)
1345       break;
1346     off += size;
1347   }
1348 }
1349 
1350 static size_t findNull(StringRef s, size_t entSize) {
1351   // Optimize the common case.
1352   if (entSize == 1)
1353     return s.find(0);
1354 
1355   for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1356     const char *b = s.begin() + i;
1357     if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1358       return i;
1359   }
1360   return StringRef::npos;
1361 }
1362 
1363 SyntheticSection *MergeInputSection::getParent() const {
1364   return cast_or_null<SyntheticSection>(parent);
1365 }
1366 
1367 // Split SHF_STRINGS section. Such section is a sequence of
1368 // null-terminated strings.
1369 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
1370   size_t off = 0;
1371   bool isAlloc = flags & SHF_ALLOC;
1372   StringRef s = toStringRef(data);
1373 
1374   while (!s.empty()) {
1375     size_t end = findNull(s, entSize);
1376     if (end == StringRef::npos)
1377       fatal(toString(this) + ": string is not null terminated");
1378     size_t size = end + entSize;
1379 
1380     pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
1381     s = s.substr(size);
1382     off += size;
1383   }
1384 }
1385 
1386 // Split non-SHF_STRINGS section. Such section is a sequence of
1387 // fixed size records.
1388 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1389                                         size_t entSize) {
1390   size_t size = data.size();
1391   assert((size % entSize) == 0);
1392   bool isAlloc = flags & SHF_ALLOC;
1393 
1394   for (size_t i = 0; i != size; i += entSize)
1395     pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
1396 }
1397 
1398 template <class ELFT>
1399 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1400                                      const typename ELFT::Shdr &header,
1401                                      StringRef name)
1402     : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1403 
1404 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1405                                      uint64_t entsize, ArrayRef<uint8_t> data,
1406                                      StringRef name)
1407     : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1408                        /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1409 
1410 // This function is called after we obtain a complete list of input sections
1411 // that need to be linked. This is responsible to split section contents
1412 // into small chunks for further processing.
1413 //
1414 // Note that this function is called from parallelForEach. This must be
1415 // thread-safe (i.e. no memory allocation from the pools).
1416 void MergeInputSection::splitIntoPieces() {
1417   assert(pieces.empty());
1418 
1419   if (flags & SHF_STRINGS)
1420     splitStrings(data(), entsize);
1421   else
1422     splitNonStrings(data(), entsize);
1423 }
1424 
1425 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
1426   if (this->data().size() <= offset)
1427     fatal(toString(this) + ": offset is outside the section");
1428 
1429   // If Offset is not at beginning of a section piece, it is not in the map.
1430   // In that case we need to  do a binary search of the original section piece vector.
1431   auto it = partition_point(
1432       pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
1433   return &it[-1];
1434 }
1435 
1436 // Returns the offset in an output section for a given input offset.
1437 // Because contents of a mergeable section is not contiguous in output,
1438 // it is not just an addition to a base output offset.
1439 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1440   // If Offset is not at beginning of a section piece, it is not in the map.
1441   // In that case we need to search from the original section piece vector.
1442   const SectionPiece &piece = *getSectionPiece(offset);
1443   uint64_t addend = offset - piece.inputOff;
1444   return piece.outputOff + addend;
1445 }
1446 
1447 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1448                                     StringRef);
1449 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1450                                     StringRef);
1451 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1452                                     StringRef);
1453 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1454                                     StringRef);
1455 
1456 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1457 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1458 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1459 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1460 
1461 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1462 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1463 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1464 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1465 
1466 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const;
1467 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const;
1468 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const;
1469 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const;
1470 
1471 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1472                                               const ELF32LE::Shdr &, StringRef);
1473 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1474                                               const ELF32BE::Shdr &, StringRef);
1475 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1476                                               const ELF64LE::Shdr &, StringRef);
1477 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1478                                               const ELF64BE::Shdr &, StringRef);
1479 
1480 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1481                                         const ELF32LE::Shdr &, StringRef);
1482 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1483                                         const ELF32BE::Shdr &, StringRef);
1484 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1485                                         const ELF64LE::Shdr &, StringRef);
1486 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1487                                         const ELF64BE::Shdr &, StringRef);
1488 
1489 template void EhInputSection::split<ELF32LE>();
1490 template void EhInputSection::split<ELF32BE>();
1491 template void EhInputSection::split<ELF64LE>();
1492 template void EhInputSection::split<ELF64BE>();
1493