1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <vector> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 using namespace llvm::sys; 33 using namespace lld; 34 using namespace lld::elf; 35 36 SmallVector<InputSectionBase *, 0> elf::inputSections; 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t alignment, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 58 link), 59 file(file), rawData(data) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(alignment, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->alignment = v; 72 73 // In ELF, each section can be compressed by zlib, and if compressed, 74 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 75 // If that's the case, demangle section name so that we can handle a 76 // section as if it weren't compressed. 77 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 78 if (!zlib::isAvailable()) 79 error(toString(file) + ": contains a compressed section, " + 80 "but zlib is not available"); 81 invokeELFT(parseCompressedHeader); 82 } 83 } 84 85 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 86 // SHF_GROUP is a marker that a section belongs to some comdat group. 87 // That flag doesn't make sense in an executable. 88 static uint64_t getFlags(uint64_t flags) { 89 flags &= ~(uint64_t)SHF_INFO_LINK; 90 if (!config->relocatable) 91 flags &= ~(uint64_t)SHF_GROUP; 92 return flags; 93 } 94 95 template <class ELFT> 96 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 97 const typename ELFT::Shdr &hdr, 98 StringRef name, Kind sectionKind) 99 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 100 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 101 hdr.sh_addralign, getSectionContents(file, hdr), name, 102 sectionKind) { 103 // We reject object files having insanely large alignments even though 104 // they are allowed by the spec. I think 4GB is a reasonable limitation. 105 // We might want to relax this in the future. 106 if (hdr.sh_addralign > UINT32_MAX) 107 fatal(toString(&file) + ": section sh_addralign is too large"); 108 } 109 110 size_t InputSectionBase::getSize() const { 111 if (auto *s = dyn_cast<SyntheticSection>(this)) 112 return s->getSize(); 113 if (uncompressedSize >= 0) 114 return uncompressedSize; 115 return rawData.size() - bytesDropped; 116 } 117 118 void InputSectionBase::uncompress() const { 119 size_t size = uncompressedSize; 120 char *uncompressedBuf; 121 { 122 static std::mutex mu; 123 std::lock_guard<std::mutex> lock(mu); 124 uncompressedBuf = bAlloc().Allocate<char>(size); 125 } 126 127 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 128 fatal(toString(this) + 129 ": uncompress failed: " + llvm::toString(std::move(e))); 130 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 131 uncompressedSize = -1; 132 } 133 134 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 135 if (relSecIdx == 0) 136 return {}; 137 RelsOrRelas<ELFT> ret; 138 typename ELFT::Shdr shdr = 139 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 140 if (shdr.sh_type == SHT_REL) { 141 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 142 file->mb.getBufferStart() + shdr.sh_offset), 143 shdr.sh_size / sizeof(typename ELFT::Rel)); 144 } else { 145 assert(shdr.sh_type == SHT_RELA); 146 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 147 file->mb.getBufferStart() + shdr.sh_offset), 148 shdr.sh_size / sizeof(typename ELFT::Rela)); 149 } 150 return ret; 151 } 152 153 uint64_t SectionBase::getOffset(uint64_t offset) const { 154 switch (kind()) { 155 case Output: { 156 auto *os = cast<OutputSection>(this); 157 // For output sections we treat offset -1 as the end of the section. 158 return offset == uint64_t(-1) ? os->size : offset; 159 } 160 case Regular: 161 case Synthetic: 162 return cast<InputSection>(this)->outSecOff + offset; 163 case EHFrame: 164 // The file crtbeginT.o has relocations pointing to the start of an empty 165 // .eh_frame that is known to be the first in the link. It does that to 166 // identify the start of the output .eh_frame. 167 return offset; 168 case Merge: 169 const MergeInputSection *ms = cast<MergeInputSection>(this); 170 if (InputSection *isec = ms->getParent()) 171 return isec->outSecOff + ms->getParentOffset(offset); 172 return ms->getParentOffset(offset); 173 } 174 llvm_unreachable("invalid section kind"); 175 } 176 177 uint64_t SectionBase::getVA(uint64_t offset) const { 178 const OutputSection *out = getOutputSection(); 179 return (out ? out->addr : 0) + getOffset(offset); 180 } 181 182 OutputSection *SectionBase::getOutputSection() { 183 InputSection *sec; 184 if (auto *isec = dyn_cast<InputSection>(this)) 185 sec = isec; 186 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 187 sec = ms->getParent(); 188 else if (auto *eh = dyn_cast<EhInputSection>(this)) 189 sec = eh->getParent(); 190 else 191 return cast<OutputSection>(this); 192 return sec ? sec->getParent() : nullptr; 193 } 194 195 // When a section is compressed, `rawData` consists with a header followed 196 // by zlib-compressed data. This function parses a header to initialize 197 // `uncompressedSize` member and remove the header from `rawData`. 198 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 199 // Old-style header 200 if (!(flags & SHF_COMPRESSED)) { 201 assert(name.startswith(".zdebug")); 202 if (!toStringRef(rawData).startswith("ZLIB")) { 203 error(toString(this) + ": corrupted compressed section header"); 204 return; 205 } 206 rawData = rawData.slice(4); 207 208 if (rawData.size() < 8) { 209 error(toString(this) + ": corrupted compressed section header"); 210 return; 211 } 212 213 uncompressedSize = read64be(rawData.data()); 214 rawData = rawData.slice(8); 215 216 // Restore the original section name. 217 // (e.g. ".zdebug_info" -> ".debug_info") 218 name = saver().save("." + name.substr(2)); 219 return; 220 } 221 222 flags &= ~(uint64_t)SHF_COMPRESSED; 223 224 // New-style header 225 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 226 error(toString(this) + ": corrupted compressed section"); 227 return; 228 } 229 230 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 231 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 232 error(toString(this) + ": unsupported compression type"); 233 return; 234 } 235 236 uncompressedSize = hdr->ch_size; 237 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 238 rawData = rawData.slice(sizeof(*hdr)); 239 } 240 241 InputSection *InputSectionBase::getLinkOrderDep() const { 242 assert(flags & SHF_LINK_ORDER); 243 if (!link) 244 return nullptr; 245 return cast<InputSection>(file->getSections()[link]); 246 } 247 248 // Find a function symbol that encloses a given location. 249 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 250 for (Symbol *b : file->getSymbols()) 251 if (Defined *d = dyn_cast<Defined>(b)) 252 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 253 offset < d->value + d->size) 254 return d; 255 return nullptr; 256 } 257 258 // Returns an object file location string. Used to construct an error message. 259 std::string InputSectionBase::getLocation(uint64_t offset) { 260 std::string secAndOffset = 261 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 262 263 // We don't have file for synthetic sections. 264 if (file == nullptr) 265 return (config->outputFile + ":(" + secAndOffset).str(); 266 267 std::string filename = toString(file); 268 if (Defined *d = getEnclosingFunction(offset)) 269 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 270 271 return filename + ":(" + secAndOffset; 272 } 273 274 // This function is intended to be used for constructing an error message. 275 // The returned message looks like this: 276 // 277 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 278 // 279 // Returns an empty string if there's no way to get line info. 280 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 281 return file->getSrcMsg(sym, *this, offset); 282 } 283 284 // Returns a filename string along with an optional section name. This 285 // function is intended to be used for constructing an error 286 // message. The returned message looks like this: 287 // 288 // path/to/foo.o:(function bar) 289 // 290 // or 291 // 292 // path/to/foo.o:(function bar) in archive path/to/bar.a 293 std::string InputSectionBase::getObjMsg(uint64_t off) { 294 std::string filename = std::string(file->getName()); 295 296 std::string archive; 297 if (!file->archiveName.empty()) 298 archive = (" in archive " + file->archiveName).str(); 299 300 // Find a symbol that encloses a given location. getObjMsg may be called 301 // before ObjFile::initializeLocalSymbols where local symbols are initialized. 302 for (Symbol *b : file->getSymbols()) 303 if (auto *d = dyn_cast_or_null<Defined>(b)) 304 if (d->section == this && d->value <= off && off < d->value + d->size) 305 return filename + ":(" + toString(*d) + ")" + archive; 306 307 // If there's no symbol, print out the offset in the section. 308 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 309 .str(); 310 } 311 312 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 313 314 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 315 uint32_t alignment, ArrayRef<uint8_t> data, 316 StringRef name, Kind k) 317 : InputSectionBase(f, flags, type, 318 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 319 name, k) {} 320 321 template <class ELFT> 322 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 323 StringRef name) 324 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 325 326 OutputSection *InputSection::getParent() const { 327 return cast_or_null<OutputSection>(parent); 328 } 329 330 // Copy SHT_GROUP section contents. Used only for the -r option. 331 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 332 // ELFT::Word is the 32-bit integral type in the target endianness. 333 using u32 = typename ELFT::Word; 334 ArrayRef<u32> from = getDataAs<u32>(); 335 auto *to = reinterpret_cast<u32 *>(buf); 336 337 // The first entry is not a section number but a flag. 338 *to++ = from[0]; 339 340 // Adjust section numbers because section numbers in an input object files are 341 // different in the output. We also need to handle combined or discarded 342 // members. 343 ArrayRef<InputSectionBase *> sections = file->getSections(); 344 DenseSet<uint32_t> seen; 345 for (uint32_t idx : from.slice(1)) { 346 OutputSection *osec = sections[idx]->getOutputSection(); 347 if (osec && seen.insert(osec->sectionIndex).second) 348 *to++ = osec->sectionIndex; 349 } 350 } 351 352 InputSectionBase *InputSection::getRelocatedSection() const { 353 if (!file || (type != SHT_RELA && type != SHT_REL)) 354 return nullptr; 355 ArrayRef<InputSectionBase *> sections = file->getSections(); 356 return sections[info]; 357 } 358 359 // This is used for -r and --emit-relocs. We can't use memcpy to copy 360 // relocations because we need to update symbol table offset and section index 361 // for each relocation. So we copy relocations one by one. 362 template <class ELFT, class RelTy> 363 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 364 const TargetInfo &target = *elf::target; 365 InputSectionBase *sec = getRelocatedSection(); 366 (void)sec->data(); // uncompress if needed 367 368 for (const RelTy &rel : rels) { 369 RelType type = rel.getType(config->isMips64EL); 370 const ObjFile<ELFT> *file = getFile<ELFT>(); 371 Symbol &sym = file->getRelocTargetSym(rel); 372 373 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 374 buf += sizeof(RelTy); 375 376 if (RelTy::IsRela) 377 p->r_addend = getAddend<ELFT>(rel); 378 379 // Output section VA is zero for -r, so r_offset is an offset within the 380 // section, but for --emit-relocs it is a virtual address. 381 p->r_offset = sec->getVA(rel.r_offset); 382 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 383 config->isMips64EL); 384 385 if (sym.type == STT_SECTION) { 386 // We combine multiple section symbols into only one per 387 // section. This means we have to update the addend. That is 388 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 389 // section data. We do that by adding to the Relocation vector. 390 391 // .eh_frame is horribly special and can reference discarded sections. To 392 // avoid having to parse and recreate .eh_frame, we just replace any 393 // relocation in it pointing to discarded sections with R_*_NONE, which 394 // hopefully creates a frame that is ignored at runtime. Also, don't warn 395 // on .gcc_except_table and debug sections. 396 // 397 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 398 auto *d = dyn_cast<Defined>(&sym); 399 if (!d) { 400 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 401 sec->name != ".gcc_except_table" && sec->name != ".got2" && 402 sec->name != ".toc") { 403 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 404 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 405 warn("relocation refers to a discarded section: " + 406 CHECK(file->getObj().getSectionName(sec), file) + 407 "\n>>> referenced by " + getObjMsg(p->r_offset)); 408 } 409 p->setSymbolAndType(0, 0, false); 410 continue; 411 } 412 SectionBase *section = d->section; 413 if (!section->isLive()) { 414 p->setSymbolAndType(0, 0, false); 415 continue; 416 } 417 418 int64_t addend = getAddend<ELFT>(rel); 419 const uint8_t *bufLoc = sec->rawData.begin() + rel.r_offset; 420 if (!RelTy::IsRela) 421 addend = target.getImplicitAddend(bufLoc, type); 422 423 if (config->emachine == EM_MIPS && 424 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 425 // Some MIPS relocations depend on "gp" value. By default, 426 // this value has 0x7ff0 offset from a .got section. But 427 // relocatable files produced by a compiler or a linker 428 // might redefine this default value and we must use it 429 // for a calculation of the relocation result. When we 430 // generate EXE or DSO it's trivial. Generating a relocatable 431 // output is more difficult case because the linker does 432 // not calculate relocations in this mode and loses 433 // individual "gp" values used by each input object file. 434 // As a workaround we add the "gp" value to the relocation 435 // addend and save it back to the file. 436 addend += sec->getFile<ELFT>()->mipsGp0; 437 } 438 439 if (RelTy::IsRela) 440 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 441 else if (config->relocatable && type != target.noneRel) 442 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 443 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 444 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 445 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 446 // indicates that r30 is relative to the input section .got2 447 // (r_addend>=0x8000), after linking, r30 should be relative to the output 448 // section .got2 . To compensate for the shift, adjust r_addend by 449 // ppc32Got->outSecOff. 450 p->r_addend += sec->file->ppc32Got2->outSecOff; 451 } 452 } 453 } 454 455 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 456 // references specially. The general rule is that the value of the symbol in 457 // this context is the address of the place P. A further special case is that 458 // branch relocations to an undefined weak reference resolve to the next 459 // instruction. 460 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 461 uint32_t p) { 462 switch (type) { 463 // Unresolved branch relocations to weak references resolve to next 464 // instruction, this will be either 2 or 4 bytes on from P. 465 case R_ARM_THM_JUMP8: 466 case R_ARM_THM_JUMP11: 467 return p + 2 + a; 468 case R_ARM_CALL: 469 case R_ARM_JUMP24: 470 case R_ARM_PC24: 471 case R_ARM_PLT32: 472 case R_ARM_PREL31: 473 case R_ARM_THM_JUMP19: 474 case R_ARM_THM_JUMP24: 475 return p + 4 + a; 476 case R_ARM_THM_CALL: 477 // We don't want an interworking BLX to ARM 478 return p + 5 + a; 479 // Unresolved non branch pc-relative relocations 480 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 481 // targets a weak-reference. 482 case R_ARM_MOVW_PREL_NC: 483 case R_ARM_MOVT_PREL: 484 case R_ARM_REL32: 485 case R_ARM_THM_ALU_PREL_11_0: 486 case R_ARM_THM_MOVW_PREL_NC: 487 case R_ARM_THM_MOVT_PREL: 488 case R_ARM_THM_PC12: 489 return p + a; 490 // p + a is unrepresentable as negative immediates can't be encoded. 491 case R_ARM_THM_PC8: 492 return p; 493 } 494 llvm_unreachable("ARM pc-relative relocation expected\n"); 495 } 496 497 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 498 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 499 switch (type) { 500 // Unresolved branch relocations to weak references resolve to next 501 // instruction, this is 4 bytes on from P. 502 case R_AARCH64_CALL26: 503 case R_AARCH64_CONDBR19: 504 case R_AARCH64_JUMP26: 505 case R_AARCH64_TSTBR14: 506 return p + 4; 507 // Unresolved non branch pc-relative relocations 508 case R_AARCH64_PREL16: 509 case R_AARCH64_PREL32: 510 case R_AARCH64_PREL64: 511 case R_AARCH64_ADR_PREL_LO21: 512 case R_AARCH64_LD_PREL_LO19: 513 case R_AARCH64_PLT32: 514 return p; 515 } 516 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 517 } 518 519 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 520 switch (type) { 521 case R_RISCV_BRANCH: 522 case R_RISCV_JAL: 523 case R_RISCV_CALL: 524 case R_RISCV_CALL_PLT: 525 case R_RISCV_RVC_BRANCH: 526 case R_RISCV_RVC_JUMP: 527 return p; 528 default: 529 return 0; 530 } 531 } 532 533 // ARM SBREL relocations are of the form S + A - B where B is the static base 534 // The ARM ABI defines base to be "addressing origin of the output segment 535 // defining the symbol S". We defined the "addressing origin"/static base to be 536 // the base of the PT_LOAD segment containing the Sym. 537 // The procedure call standard only defines a Read Write Position Independent 538 // RWPI variant so in practice we should expect the static base to be the base 539 // of the RW segment. 540 static uint64_t getARMStaticBase(const Symbol &sym) { 541 OutputSection *os = sym.getOutputSection(); 542 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 543 fatal("SBREL relocation to " + sym.getName() + " without static base"); 544 return os->ptLoad->firstSec->addr; 545 } 546 547 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 548 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 549 // is calculated using PCREL_HI20's symbol. 550 // 551 // This function returns the R_RISCV_PCREL_HI20 relocation from 552 // R_RISCV_PCREL_LO12's symbol and addend. 553 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 554 const Defined *d = cast<Defined>(sym); 555 if (!d->section) { 556 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 557 sym->getName()); 558 return nullptr; 559 } 560 InputSection *isec = cast<InputSection>(d->section); 561 562 if (addend != 0) 563 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 564 isec->getObjMsg(d->value) + " is ignored"); 565 566 // Relocations are sorted by offset, so we can use std::equal_range to do 567 // binary search. 568 Relocation r; 569 r.offset = d->value; 570 auto range = 571 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 572 [](const Relocation &lhs, const Relocation &rhs) { 573 return lhs.offset < rhs.offset; 574 }); 575 576 for (auto it = range.first; it != range.second; ++it) 577 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 578 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 579 return &*it; 580 581 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 582 " without an associated R_RISCV_PCREL_HI20 relocation"); 583 return nullptr; 584 } 585 586 // A TLS symbol's virtual address is relative to the TLS segment. Add a 587 // target-specific adjustment to produce a thread-pointer-relative offset. 588 static int64_t getTlsTpOffset(const Symbol &s) { 589 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 590 if (&s == ElfSym::tlsModuleBase) 591 return 0; 592 593 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 594 // while most others use Variant 1. At run time TP will be aligned to p_align. 595 596 // Variant 1. TP will be followed by an optional gap (which is the size of 2 597 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 598 // padding, then the static TLS blocks. The alignment padding is added so that 599 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 600 // 601 // Variant 2. Static TLS blocks, followed by alignment padding are placed 602 // before TP. The alignment padding is added so that (TP - padding - 603 // p_memsz) is congruent to p_vaddr modulo p_align. 604 PhdrEntry *tls = Out::tlsPhdr; 605 switch (config->emachine) { 606 // Variant 1. 607 case EM_ARM: 608 case EM_AARCH64: 609 return s.getVA(0) + config->wordsize * 2 + 610 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 611 case EM_MIPS: 612 case EM_PPC: 613 case EM_PPC64: 614 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 615 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 616 // data and 0xf000 of the program's TLS segment. 617 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 618 case EM_RISCV: 619 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 620 621 // Variant 2. 622 case EM_HEXAGON: 623 case EM_SPARCV9: 624 case EM_386: 625 case EM_X86_64: 626 return s.getVA(0) - tls->p_memsz - 627 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 628 default: 629 llvm_unreachable("unhandled Config->EMachine"); 630 } 631 } 632 633 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 634 int64_t a, uint64_t p, 635 const Symbol &sym, RelExpr expr) { 636 switch (expr) { 637 case R_ABS: 638 case R_DTPREL: 639 case R_RELAX_TLS_LD_TO_LE_ABS: 640 case R_RELAX_GOT_PC_NOPIC: 641 case R_RISCV_ADD: 642 return sym.getVA(a); 643 case R_ADDEND: 644 return a; 645 case R_ARM_SBREL: 646 return sym.getVA(a) - getARMStaticBase(sym); 647 case R_GOT: 648 case R_RELAX_TLS_GD_TO_IE_ABS: 649 return sym.getGotVA() + a; 650 case R_GOTONLY_PC: 651 return in.got->getVA() + a - p; 652 case R_GOTPLTONLY_PC: 653 return in.gotPlt->getVA() + a - p; 654 case R_GOTREL: 655 case R_PPC64_RELAX_TOC: 656 return sym.getVA(a) - in.got->getVA(); 657 case R_GOTPLTREL: 658 return sym.getVA(a) - in.gotPlt->getVA(); 659 case R_GOTPLT: 660 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 661 return sym.getGotVA() + a - in.gotPlt->getVA(); 662 case R_TLSLD_GOT_OFF: 663 case R_GOT_OFF: 664 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 665 return sym.getGotOffset() + a; 666 case R_AARCH64_GOT_PAGE_PC: 667 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 668 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 669 case R_AARCH64_GOT_PAGE: 670 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 671 case R_GOT_PC: 672 case R_RELAX_TLS_GD_TO_IE: 673 return sym.getGotVA() + a - p; 674 case R_MIPS_GOTREL: 675 return sym.getVA(a) - in.mipsGot->getGp(file); 676 case R_MIPS_GOT_GP: 677 return in.mipsGot->getGp(file) + a; 678 case R_MIPS_GOT_GP_PC: { 679 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 680 // is _gp_disp symbol. In that case we should use the following 681 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 682 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 683 // microMIPS variants of these relocations use slightly different 684 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 685 // to correctly handle less-significant bit of the microMIPS symbol. 686 uint64_t v = in.mipsGot->getGp(file) + a - p; 687 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 688 v += 4; 689 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 690 v -= 1; 691 return v; 692 } 693 case R_MIPS_GOT_LOCAL_PAGE: 694 // If relocation against MIPS local symbol requires GOT entry, this entry 695 // should be initialized by 'page address'. This address is high 16-bits 696 // of sum the symbol's value and the addend. 697 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 698 in.mipsGot->getGp(file); 699 case R_MIPS_GOT_OFF: 700 case R_MIPS_GOT_OFF32: 701 // In case of MIPS if a GOT relocation has non-zero addend this addend 702 // should be applied to the GOT entry content not to the GOT entry offset. 703 // That is why we use separate expression type. 704 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 705 in.mipsGot->getGp(file); 706 case R_MIPS_TLSGD: 707 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 708 in.mipsGot->getGp(file); 709 case R_MIPS_TLSLD: 710 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 711 in.mipsGot->getGp(file); 712 case R_AARCH64_PAGE_PC: { 713 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 714 return getAArch64Page(val) - getAArch64Page(p); 715 } 716 case R_RISCV_PC_INDIRECT: { 717 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 718 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 719 *hiRel->sym, hiRel->expr); 720 return 0; 721 } 722 case R_PC: 723 case R_ARM_PCA: { 724 uint64_t dest; 725 if (expr == R_ARM_PCA) 726 // Some PC relative ARM (Thumb) relocations align down the place. 727 p = p & 0xfffffffc; 728 if (sym.isUndefWeak()) { 729 // On ARM and AArch64 a branch to an undefined weak resolves to the next 730 // instruction, otherwise the place. On RISCV, resolve an undefined weak 731 // to the same instruction to cause an infinite loop (making the user 732 // aware of the issue) while ensuring no overflow. 733 if (config->emachine == EM_ARM) 734 dest = getARMUndefinedRelativeWeakVA(type, a, p); 735 else if (config->emachine == EM_AARCH64) 736 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 737 else if (config->emachine == EM_PPC) 738 dest = p; 739 else if (config->emachine == EM_RISCV) 740 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 741 else 742 dest = sym.getVA(a); 743 } else { 744 dest = sym.getVA(a); 745 } 746 return dest - p; 747 } 748 case R_PLT: 749 return sym.getPltVA() + a; 750 case R_PLT_PC: 751 case R_PPC64_CALL_PLT: 752 return sym.getPltVA() + a - p; 753 case R_PLT_GOTPLT: 754 return sym.getPltVA() + a - in.gotPlt->getVA(); 755 case R_PPC32_PLTREL: 756 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 757 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 758 // target VA computation. 759 return sym.getPltVA() - p; 760 case R_PPC64_CALL: { 761 uint64_t symVA = sym.getVA(a); 762 // If we have an undefined weak symbol, we might get here with a symbol 763 // address of zero. That could overflow, but the code must be unreachable, 764 // so don't bother doing anything at all. 765 if (!symVA) 766 return 0; 767 768 // PPC64 V2 ABI describes two entry points to a function. The global entry 769 // point is used for calls where the caller and callee (may) have different 770 // TOC base pointers and r2 needs to be modified to hold the TOC base for 771 // the callee. For local calls the caller and callee share the same 772 // TOC base and so the TOC pointer initialization code should be skipped by 773 // branching to the local entry point. 774 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 775 } 776 case R_PPC64_TOCBASE: 777 return getPPC64TocBase() + a; 778 case R_RELAX_GOT_PC: 779 case R_PPC64_RELAX_GOT_PC: 780 return sym.getVA(a) - p; 781 case R_RELAX_TLS_GD_TO_LE: 782 case R_RELAX_TLS_IE_TO_LE: 783 case R_RELAX_TLS_LD_TO_LE: 784 case R_TPREL: 785 // It is not very clear what to return if the symbol is undefined. With 786 // --noinhibit-exec, even a non-weak undefined reference may reach here. 787 // Just return A, which matches R_ABS, and the behavior of some dynamic 788 // loaders. 789 if (sym.isUndefined()) 790 return a; 791 return getTlsTpOffset(sym) + a; 792 case R_RELAX_TLS_GD_TO_LE_NEG: 793 case R_TPREL_NEG: 794 if (sym.isUndefined()) 795 return a; 796 return -getTlsTpOffset(sym) + a; 797 case R_SIZE: 798 return sym.getSize() + a; 799 case R_TLSDESC: 800 return in.got->getTlsDescAddr(sym) + a; 801 case R_TLSDESC_PC: 802 return in.got->getTlsDescAddr(sym) + a - p; 803 case R_TLSDESC_GOTPLT: 804 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 805 case R_AARCH64_TLSDESC_PAGE: 806 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 807 case R_TLSGD_GOT: 808 return in.got->getGlobalDynOffset(sym) + a; 809 case R_TLSGD_GOTPLT: 810 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 811 case R_TLSGD_PC: 812 return in.got->getGlobalDynAddr(sym) + a - p; 813 case R_TLSLD_GOTPLT: 814 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 815 case R_TLSLD_GOT: 816 return in.got->getTlsIndexOff() + a; 817 case R_TLSLD_PC: 818 return in.got->getTlsIndexVA() + a - p; 819 default: 820 llvm_unreachable("invalid expression"); 821 } 822 } 823 824 // This function applies relocations to sections without SHF_ALLOC bit. 825 // Such sections are never mapped to memory at runtime. Debug sections are 826 // an example. Relocations in non-alloc sections are much easier to 827 // handle than in allocated sections because it will never need complex 828 // treatment such as GOT or PLT (because at runtime no one refers them). 829 // So, we handle relocations for non-alloc sections directly in this 830 // function as a performance optimization. 831 template <class ELFT, class RelTy> 832 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 833 const unsigned bits = sizeof(typename ELFT::uint) * 8; 834 const TargetInfo &target = *elf::target; 835 const bool isDebug = isDebugSection(*this); 836 const bool isDebugLocOrRanges = 837 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 838 const bool isDebugLine = isDebug && name == ".debug_line"; 839 Optional<uint64_t> tombstone; 840 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 841 if (patAndValue.first.match(this->name)) { 842 tombstone = patAndValue.second; 843 break; 844 } 845 846 for (const RelTy &rel : rels) { 847 RelType type = rel.getType(config->isMips64EL); 848 849 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 850 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 851 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 852 // need to keep this bug-compatible code for a while. 853 if (config->emachine == EM_386 && type == R_386_GOTPC) 854 continue; 855 856 uint64_t offset = rel.r_offset; 857 uint8_t *bufLoc = buf + offset; 858 int64_t addend = getAddend<ELFT>(rel); 859 if (!RelTy::IsRela) 860 addend += target.getImplicitAddend(bufLoc, type); 861 862 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 863 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 864 if (expr == R_NONE) 865 continue; 866 867 if (tombstone || 868 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 869 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 870 // folded section symbols) to a tombstone value. Resolving to addend is 871 // unsatisfactory because the result address range may collide with a 872 // valid range of low address, or leave multiple CUs claiming ownership of 873 // the same range of code, which may confuse consumers. 874 // 875 // To address the problems, we use -1 as a tombstone value for most 876 // .debug_* sections. We have to ignore the addend because we don't want 877 // to resolve an address attribute (which may have a non-zero addend) to 878 // -1+addend (wrap around to a low address). 879 // 880 // R_DTPREL type relocations represent an offset into the dynamic thread 881 // vector. The computed value is st_value plus a non-negative offset. 882 // Negative values are invalid, so -1 can be used as the tombstone value. 883 // 884 // If the referenced symbol is discarded (made Undefined), or the 885 // section defining the referenced symbol is garbage collected, 886 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 887 // case. However, resolving a relocation in .debug_line to -1 would stop 888 // debugger users from setting breakpoints on the folded-in function, so 889 // exclude .debug_line. 890 // 891 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 892 // (base address selection entry), use 1 (which is used by GNU ld for 893 // .debug_ranges). 894 // 895 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 896 // value. Enable -1 in a future release. 897 auto *ds = dyn_cast<Defined>(&sym); 898 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 899 // If -z dead-reloc-in-nonalloc= is specified, respect it. 900 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 901 : (isDebugLocOrRanges ? 1 : 0); 902 target.relocateNoSym(bufLoc, type, value); 903 continue; 904 } 905 } 906 907 // For a relocatable link, only tombstone values are applied. 908 if (config->relocatable) 909 continue; 910 911 if (expr == R_SIZE) { 912 target.relocateNoSym(bufLoc, type, 913 SignExtend64<bits>(sym.getSize() + addend)); 914 continue; 915 } 916 917 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 918 // sections. 919 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 920 expr == R_RISCV_ADD) { 921 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 922 continue; 923 } 924 925 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 926 toString(type) + " against symbol '" + toString(sym) + 927 "'"; 928 if (expr != R_PC && expr != R_ARM_PCA) { 929 error(msg); 930 return; 931 } 932 933 // If the control reaches here, we found a PC-relative relocation in a 934 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 935 // at runtime, the notion of PC-relative doesn't make sense here. So, 936 // this is a usage error. However, GNU linkers historically accept such 937 // relocations without any errors and relocate them as if they were at 938 // address 0. For bug-compatibilty, we accept them with warnings. We 939 // know Steel Bank Common Lisp as of 2018 have this bug. 940 warn(msg); 941 target.relocateNoSym( 942 bufLoc, type, 943 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 944 } 945 } 946 947 // This is used when '-r' is given. 948 // For REL targets, InputSection::copyRelocations() may store artificial 949 // relocations aimed to update addends. They are handled in relocateAlloc() 950 // for allocatable sections, and this function does the same for 951 // non-allocatable sections, such as sections with debug information. 952 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 953 const unsigned bits = config->is64 ? 64 : 32; 954 955 for (const Relocation &rel : sec->relocations) { 956 // InputSection::copyRelocations() adds only R_ABS relocations. 957 assert(rel.expr == R_ABS); 958 uint8_t *bufLoc = buf + rel.offset; 959 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 960 target->relocate(bufLoc, rel, targetVA); 961 } 962 } 963 964 template <class ELFT> 965 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 966 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 967 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 968 969 if (flags & SHF_ALLOC) { 970 relocateAlloc(buf, bufEnd); 971 return; 972 } 973 974 auto *sec = cast<InputSection>(this); 975 if (config->relocatable) 976 relocateNonAllocForRelocatable(sec, buf); 977 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 978 // locations with tombstone values. 979 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 980 if (rels.areRelocsRel()) 981 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 982 else 983 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 984 } 985 986 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 987 assert(flags & SHF_ALLOC); 988 const unsigned bits = config->wordsize * 8; 989 const TargetInfo &target = *elf::target; 990 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 991 AArch64Relaxer aarch64relaxer(relocations); 992 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 993 const Relocation &rel = relocations[i]; 994 if (rel.expr == R_NONE) 995 continue; 996 uint64_t offset = rel.offset; 997 uint8_t *bufLoc = buf + offset; 998 999 uint64_t secAddr = getOutputSection()->addr; 1000 if (auto *sec = dyn_cast<InputSection>(this)) 1001 secAddr += sec->outSecOff; 1002 const uint64_t addrLoc = secAddr + offset; 1003 const uint64_t targetVA = 1004 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1005 *rel.sym, rel.expr), 1006 bits); 1007 switch (rel.expr) { 1008 case R_RELAX_GOT_PC: 1009 case R_RELAX_GOT_PC_NOPIC: 1010 target.relaxGot(bufLoc, rel, targetVA); 1011 break; 1012 case R_AARCH64_GOT_PAGE_PC: 1013 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1014 rel, relocations[i + 1], secAddr, buf)) { 1015 ++i; 1016 continue; 1017 } 1018 target.relocate(bufLoc, rel, targetVA); 1019 break; 1020 case R_AARCH64_PAGE_PC: 1021 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd( 1022 rel, relocations[i + 1], secAddr, buf)) { 1023 ++i; 1024 continue; 1025 } 1026 target.relocate(bufLoc, rel, targetVA); 1027 break; 1028 case R_PPC64_RELAX_GOT_PC: { 1029 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1030 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1031 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1032 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1033 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1034 // and only relax the other if the saved offset matches. 1035 if (rel.type == R_PPC64_GOT_PCREL34) 1036 lastPPCRelaxedRelocOff = offset; 1037 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1038 break; 1039 target.relaxGot(bufLoc, rel, targetVA); 1040 break; 1041 } 1042 case R_PPC64_RELAX_TOC: 1043 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1044 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1045 // entry, there may be R_PPC64_TOC16_HA not paired with 1046 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1047 // opportunities but is safe. 1048 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1049 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1050 target.relocate(bufLoc, rel, targetVA); 1051 break; 1052 case R_RELAX_TLS_IE_TO_LE: 1053 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1054 break; 1055 case R_RELAX_TLS_LD_TO_LE: 1056 case R_RELAX_TLS_LD_TO_LE_ABS: 1057 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1058 break; 1059 case R_RELAX_TLS_GD_TO_LE: 1060 case R_RELAX_TLS_GD_TO_LE_NEG: 1061 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1062 break; 1063 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1064 case R_RELAX_TLS_GD_TO_IE: 1065 case R_RELAX_TLS_GD_TO_IE_ABS: 1066 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1067 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1068 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1069 break; 1070 case R_PPC64_CALL: 1071 // If this is a call to __tls_get_addr, it may be part of a TLS 1072 // sequence that has been relaxed and turned into a nop. In this 1073 // case, we don't want to handle it as a call. 1074 if (read32(bufLoc) == 0x60000000) // nop 1075 break; 1076 1077 // Patch a nop (0x60000000) to a ld. 1078 if (rel.sym->needsTocRestore) { 1079 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1080 // recursive calls even if the function is preemptible. This is not 1081 // wrong in the common case where the function is not preempted at 1082 // runtime. Just ignore. 1083 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1084 rel.sym->file != file) { 1085 // Use substr(6) to remove the "__plt_" prefix. 1086 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1087 lld::toString(*rel.sym).substr(6) + 1088 " lacks nop, can't restore toc"); 1089 break; 1090 } 1091 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1092 } 1093 target.relocate(bufLoc, rel, targetVA); 1094 break; 1095 default: 1096 target.relocate(bufLoc, rel, targetVA); 1097 break; 1098 } 1099 } 1100 1101 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1102 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1103 // insn. This is primarily used to relax and optimize jumps created with 1104 // basic block sections. 1105 if (jumpInstrMod) { 1106 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1107 jumpInstrMod->size); 1108 } 1109 } 1110 1111 // For each function-defining prologue, find any calls to __morestack, 1112 // and replace them with calls to __morestack_non_split. 1113 static void switchMorestackCallsToMorestackNonSplit( 1114 DenseSet<Defined *> &prologues, 1115 SmallVector<Relocation *, 0> &morestackCalls) { 1116 1117 // If the target adjusted a function's prologue, all calls to 1118 // __morestack inside that function should be switched to 1119 // __morestack_non_split. 1120 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1121 if (!moreStackNonSplit) { 1122 error("mixing split-stack objects requires a definition of " 1123 "__morestack_non_split"); 1124 return; 1125 } 1126 1127 // Sort both collections to compare addresses efficiently. 1128 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1129 return l->offset < r->offset; 1130 }); 1131 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1132 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1133 return l->value < r->value; 1134 }); 1135 1136 auto it = morestackCalls.begin(); 1137 for (Defined *f : functions) { 1138 // Find the first call to __morestack within the function. 1139 while (it != morestackCalls.end() && (*it)->offset < f->value) 1140 ++it; 1141 // Adjust all calls inside the function. 1142 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1143 (*it)->sym = moreStackNonSplit; 1144 ++it; 1145 } 1146 } 1147 } 1148 1149 static bool enclosingPrologueAttempted(uint64_t offset, 1150 const DenseSet<Defined *> &prologues) { 1151 for (Defined *f : prologues) 1152 if (f->value <= offset && offset < f->value + f->size) 1153 return true; 1154 return false; 1155 } 1156 1157 // If a function compiled for split stack calls a function not 1158 // compiled for split stack, then the caller needs its prologue 1159 // adjusted to ensure that the called function will have enough stack 1160 // available. Find those functions, and adjust their prologues. 1161 template <class ELFT> 1162 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1163 uint8_t *end) { 1164 DenseSet<Defined *> prologues; 1165 SmallVector<Relocation *, 0> morestackCalls; 1166 1167 for (Relocation &rel : relocations) { 1168 // Ignore calls into the split-stack api. 1169 if (rel.sym->getName().startswith("__morestack")) { 1170 if (rel.sym->getName().equals("__morestack")) 1171 morestackCalls.push_back(&rel); 1172 continue; 1173 } 1174 1175 // A relocation to non-function isn't relevant. Sometimes 1176 // __morestack is not marked as a function, so this check comes 1177 // after the name check. 1178 if (rel.sym->type != STT_FUNC) 1179 continue; 1180 1181 // If the callee's-file was compiled with split stack, nothing to do. In 1182 // this context, a "Defined" symbol is one "defined by the binary currently 1183 // being produced". So an "undefined" symbol might be provided by a shared 1184 // library. It is not possible to tell how such symbols were compiled, so be 1185 // conservative. 1186 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1187 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1188 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1189 continue; 1190 1191 if (enclosingPrologueAttempted(rel.offset, prologues)) 1192 continue; 1193 1194 if (Defined *f = getEnclosingFunction(rel.offset)) { 1195 prologues.insert(f); 1196 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1197 f->stOther)) 1198 continue; 1199 if (!getFile<ELFT>()->someNoSplitStack) 1200 error(lld::toString(this) + ": " + f->getName() + 1201 " (with -fsplit-stack) calls " + rel.sym->getName() + 1202 " (without -fsplit-stack), but couldn't adjust its prologue"); 1203 } 1204 } 1205 1206 if (target->needsMoreStackNonSplit) 1207 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1208 } 1209 1210 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1211 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1212 return; 1213 // If -r or --emit-relocs is given, then an InputSection 1214 // may be a relocation section. 1215 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1216 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1217 return; 1218 } 1219 if (LLVM_UNLIKELY(type == SHT_REL)) { 1220 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1221 return; 1222 } 1223 1224 // If -r is given, we may have a SHT_GROUP section. 1225 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1226 copyShtGroup<ELFT>(buf); 1227 return; 1228 } 1229 1230 // If this is a compressed section, uncompress section contents directly 1231 // to the buffer. 1232 if (uncompressedSize >= 0) { 1233 size_t size = uncompressedSize; 1234 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1235 fatal(toString(this) + 1236 ": uncompress failed: " + llvm::toString(std::move(e))); 1237 uint8_t *bufEnd = buf + size; 1238 relocate<ELFT>(buf, bufEnd); 1239 return; 1240 } 1241 1242 // Copy section contents from source object file to output file 1243 // and then apply relocations. 1244 memcpy(buf, rawData.data(), rawData.size()); 1245 relocate<ELFT>(buf, buf + rawData.size()); 1246 } 1247 1248 void InputSection::replace(InputSection *other) { 1249 alignment = std::max(alignment, other->alignment); 1250 1251 // When a section is replaced with another section that was allocated to 1252 // another partition, the replacement section (and its associated sections) 1253 // need to be placed in the main partition so that both partitions will be 1254 // able to access it. 1255 if (partition != other->partition) { 1256 partition = 1; 1257 for (InputSection *isec : dependentSections) 1258 isec->partition = 1; 1259 } 1260 1261 other->repl = repl; 1262 other->markDead(); 1263 } 1264 1265 template <class ELFT> 1266 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1267 const typename ELFT::Shdr &header, 1268 StringRef name) 1269 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1270 1271 SyntheticSection *EhInputSection::getParent() const { 1272 return cast_or_null<SyntheticSection>(parent); 1273 } 1274 1275 // Returns the index of the first relocation that points to a region between 1276 // Begin and Begin+Size. 1277 template <class IntTy, class RelTy> 1278 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1279 unsigned &relocI) { 1280 // Start search from RelocI for fast access. That works because the 1281 // relocations are sorted in .eh_frame. 1282 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1283 const RelTy &rel = rels[relocI]; 1284 if (rel.r_offset < begin) 1285 continue; 1286 1287 if (rel.r_offset < begin + size) 1288 return relocI; 1289 return -1; 1290 } 1291 return -1; 1292 } 1293 1294 // .eh_frame is a sequence of CIE or FDE records. 1295 // This function splits an input section into records and returns them. 1296 template <class ELFT> void EhInputSection::split() { 1297 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1298 // getReloc expects the relocations to be sorted by r_offset. See the comment 1299 // in scanRelocs. 1300 if (rels.areRelocsRel()) { 1301 SmallVector<typename ELFT::Rel, 0> storage; 1302 split<ELFT>(sortRels(rels.rels, storage)); 1303 } else { 1304 SmallVector<typename ELFT::Rela, 0> storage; 1305 split<ELFT>(sortRels(rels.relas, storage)); 1306 } 1307 } 1308 1309 template <class ELFT, class RelTy> 1310 void EhInputSection::split(ArrayRef<RelTy> rels) { 1311 ArrayRef<uint8_t> d = rawData; 1312 const char *msg = nullptr; 1313 unsigned relI = 0; 1314 while (!d.empty()) { 1315 if (d.size() < 4) { 1316 msg = "CIE/FDE too small"; 1317 break; 1318 } 1319 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1320 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1321 // but we do not support that format yet. 1322 if (size == UINT32_MAX) { 1323 msg = "CIE/FDE too large"; 1324 break; 1325 } 1326 size += 4; 1327 if (size > d.size()) { 1328 msg = "CIE/FDE ends past the end of the section"; 1329 break; 1330 } 1331 1332 uint64_t off = d.data() - rawData.data(); 1333 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1334 d = d.slice(size); 1335 } 1336 if (msg) 1337 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1338 getObjMsg(d.data() - rawData.data())); 1339 } 1340 1341 static size_t findNull(StringRef s, size_t entSize) { 1342 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1343 const char *b = s.begin() + i; 1344 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1345 return i; 1346 } 1347 llvm_unreachable(""); 1348 } 1349 1350 SyntheticSection *MergeInputSection::getParent() const { 1351 return cast_or_null<SyntheticSection>(parent); 1352 } 1353 1354 // Split SHF_STRINGS section. Such section is a sequence of 1355 // null-terminated strings. 1356 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1357 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1358 const char *p = s.data(), *end = s.data() + s.size(); 1359 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1360 fatal(toString(this) + ": string is not null terminated"); 1361 if (entSize == 1) { 1362 // Optimize the common case. 1363 do { 1364 size_t size = strlen(p) + 1; 1365 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1366 p += size; 1367 } while (p != end); 1368 } else { 1369 do { 1370 size_t size = findNull(StringRef(p, end - p), entSize) + entSize; 1371 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1372 p += size; 1373 } while (p != end); 1374 } 1375 } 1376 1377 // Split non-SHF_STRINGS section. Such section is a sequence of 1378 // fixed size records. 1379 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1380 size_t entSize) { 1381 size_t size = data.size(); 1382 assert((size % entSize) == 0); 1383 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1384 1385 pieces.resize_for_overwrite(size / entSize); 1386 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1387 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1388 } 1389 1390 template <class ELFT> 1391 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1392 const typename ELFT::Shdr &header, 1393 StringRef name) 1394 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1395 1396 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1397 uint64_t entsize, ArrayRef<uint8_t> data, 1398 StringRef name) 1399 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1400 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1401 1402 // This function is called after we obtain a complete list of input sections 1403 // that need to be linked. This is responsible to split section contents 1404 // into small chunks for further processing. 1405 // 1406 // Note that this function is called from parallelForEach. This must be 1407 // thread-safe (i.e. no memory allocation from the pools). 1408 void MergeInputSection::splitIntoPieces() { 1409 assert(pieces.empty()); 1410 1411 if (flags & SHF_STRINGS) 1412 splitStrings(toStringRef(data()), entsize); 1413 else 1414 splitNonStrings(data(), entsize); 1415 } 1416 1417 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1418 if (this->rawData.size() <= offset) 1419 fatal(toString(this) + ": offset is outside the section"); 1420 1421 // If Offset is not at beginning of a section piece, it is not in the map. 1422 // In that case we need to do a binary search of the original section piece vector. 1423 auto it = partition_point( 1424 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1425 return &it[-1]; 1426 } 1427 1428 // Returns the offset in an output section for a given input offset. 1429 // Because contents of a mergeable section is not contiguous in output, 1430 // it is not just an addition to a base output offset. 1431 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1432 // If Offset is not at beginning of a section piece, it is not in the map. 1433 // In that case we need to search from the original section piece vector. 1434 const SectionPiece &piece = *getSectionPiece(offset); 1435 uint64_t addend = offset - piece.inputOff; 1436 return piece.outputOff + addend; 1437 } 1438 1439 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1440 StringRef); 1441 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1442 StringRef); 1443 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1444 StringRef); 1445 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1446 StringRef); 1447 1448 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1449 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1450 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1451 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1452 1453 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1454 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1455 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1456 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1457 1458 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1459 const ELF32LE::Shdr &, StringRef); 1460 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1461 const ELF32BE::Shdr &, StringRef); 1462 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1463 const ELF64LE::Shdr &, StringRef); 1464 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1465 const ELF64BE::Shdr &, StringRef); 1466 1467 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1468 const ELF32LE::Shdr &, StringRef); 1469 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1470 const ELF32BE::Shdr &, StringRef); 1471 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1472 const ELF64LE::Shdr &, StringRef); 1473 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1474 const ELF64BE::Shdr &, StringRef); 1475 1476 template void EhInputSection::split<ELF32LE>(); 1477 template void EhInputSection::split<ELF32BE>(); 1478 template void EhInputSection::split<ELF64LE>(); 1479 template void EhInputSection::split<ELF64BE>(); 1480