1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 numRelocations = 0; 74 areRelocsRela = false; 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraints. 78 uint32_t v = std::max<uint32_t>(alignment, 1); 79 if (!isPowerOf2_64(v)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->alignment = v; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(file) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 parseCompressedHeader(); 92 } 93 } 94 95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 96 // SHF_GROUP is a marker that a section belongs to some comdat group. 97 // That flag doesn't make sense in an executable. 98 static uint64_t getFlags(uint64_t flags) { 99 flags &= ~(uint64_t)SHF_INFO_LINK; 100 if (!config->relocatable) 101 flags &= ~(uint64_t)SHF_GROUP; 102 return flags; 103 } 104 105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 106 // March 2017) fail to infer section types for sections starting with 107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 108 // SHF_INIT_ARRAY. As a result, the following assembler directive 109 // creates ".init_array.100" with SHT_PROGBITS, for example. 110 // 111 // .section .init_array.100, "aw" 112 // 113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 114 // incorrect inputs as if they were correct from the beginning. 115 static uint64_t getType(uint64_t type, StringRef name) { 116 if (type == SHT_PROGBITS && name.startswith(".init_array.")) 117 return SHT_INIT_ARRAY; 118 if (type == SHT_PROGBITS && name.startswith(".fini_array.")) 119 return SHT_FINI_ARRAY; 120 return type; 121 } 122 123 template <class ELFT> 124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 125 const typename ELFT::Shdr &hdr, 126 StringRef name, Kind sectionKind) 127 : InputSectionBase(&file, getFlags(hdr.sh_flags), 128 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, 129 hdr.sh_info, hdr.sh_addralign, 130 getSectionContents(file, hdr), name, sectionKind) { 131 // We reject object files having insanely large alignments even though 132 // they are allowed by the spec. I think 4GB is a reasonable limitation. 133 // We might want to relax this in the future. 134 if (hdr.sh_addralign > UINT32_MAX) 135 fatal(toString(&file) + ": section sh_addralign is too large"); 136 } 137 138 size_t InputSectionBase::getSize() const { 139 if (auto *s = dyn_cast<SyntheticSection>(this)) 140 return s->getSize(); 141 if (uncompressedSize >= 0) 142 return uncompressedSize; 143 return rawData.size() - bytesDropped; 144 } 145 146 void InputSectionBase::uncompress() const { 147 size_t size = uncompressedSize; 148 char *uncompressedBuf; 149 { 150 static std::mutex mu; 151 std::lock_guard<std::mutex> lock(mu); 152 uncompressedBuf = bAlloc.Allocate<char>(size); 153 } 154 155 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 156 fatal(toString(this) + 157 ": uncompress failed: " + llvm::toString(std::move(e))); 158 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 159 uncompressedSize = -1; 160 } 161 162 uint64_t InputSectionBase::getOffsetInFile() const { 163 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 164 const uint8_t *secStart = data().begin(); 165 return secStart - fileStart; 166 } 167 168 uint64_t SectionBase::getOffset(uint64_t offset) const { 169 switch (kind()) { 170 case Output: { 171 auto *os = cast<OutputSection>(this); 172 // For output sections we treat offset -1 as the end of the section. 173 return offset == uint64_t(-1) ? os->size : offset; 174 } 175 case Regular: 176 case Synthetic: 177 return cast<InputSection>(this)->getOffset(offset); 178 case EHFrame: 179 // The file crtbeginT.o has relocations pointing to the start of an empty 180 // .eh_frame that is known to be the first in the link. It does that to 181 // identify the start of the output .eh_frame. 182 return offset; 183 case Merge: 184 const MergeInputSection *ms = cast<MergeInputSection>(this); 185 if (InputSection *isec = ms->getParent()) 186 return isec->getOffset(ms->getParentOffset(offset)); 187 return ms->getParentOffset(offset); 188 } 189 llvm_unreachable("invalid section kind"); 190 } 191 192 uint64_t SectionBase::getVA(uint64_t offset) const { 193 const OutputSection *out = getOutputSection(); 194 return (out ? out->addr : 0) + getOffset(offset); 195 } 196 197 OutputSection *SectionBase::getOutputSection() { 198 InputSection *sec; 199 if (auto *isec = dyn_cast<InputSection>(this)) 200 sec = isec; 201 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 202 sec = ms->getParent(); 203 else if (auto *eh = dyn_cast<EhInputSection>(this)) 204 sec = eh->getParent(); 205 else 206 return cast<OutputSection>(this); 207 return sec ? sec->getParent() : nullptr; 208 } 209 210 // When a section is compressed, `rawData` consists with a header followed 211 // by zlib-compressed data. This function parses a header to initialize 212 // `uncompressedSize` member and remove the header from `rawData`. 213 void InputSectionBase::parseCompressedHeader() { 214 using Chdr64 = typename ELF64LE::Chdr; 215 using Chdr32 = typename ELF32LE::Chdr; 216 217 // Old-style header 218 if (name.startswith(".zdebug")) { 219 if (!toStringRef(rawData).startswith("ZLIB")) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 rawData = rawData.slice(4); 224 225 if (rawData.size() < 8) { 226 error(toString(this) + ": corrupted compressed section header"); 227 return; 228 } 229 230 uncompressedSize = read64be(rawData.data()); 231 rawData = rawData.slice(8); 232 233 // Restore the original section name. 234 // (e.g. ".zdebug_info" -> ".debug_info") 235 name = saver.save("." + name.substr(2)); 236 return; 237 } 238 239 assert(flags & SHF_COMPRESSED); 240 flags &= ~(uint64_t)SHF_COMPRESSED; 241 242 // New-style 64-bit header 243 if (config->is64) { 244 if (rawData.size() < sizeof(Chdr64)) { 245 error(toString(this) + ": corrupted compressed section"); 246 return; 247 } 248 249 auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data()); 250 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 251 error(toString(this) + ": unsupported compression type"); 252 return; 253 } 254 255 uncompressedSize = hdr->ch_size; 256 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 257 rawData = rawData.slice(sizeof(*hdr)); 258 return; 259 } 260 261 // New-style 32-bit header 262 if (rawData.size() < sizeof(Chdr32)) { 263 error(toString(this) + ": corrupted compressed section"); 264 return; 265 } 266 267 auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data()); 268 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 269 error(toString(this) + ": unsupported compression type"); 270 return; 271 } 272 273 uncompressedSize = hdr->ch_size; 274 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 275 rawData = rawData.slice(sizeof(*hdr)); 276 } 277 278 InputSection *InputSectionBase::getLinkOrderDep() const { 279 assert(flags & SHF_LINK_ORDER); 280 if (!link) 281 return nullptr; 282 return cast<InputSection>(file->getSections()[link]); 283 } 284 285 // Find a function symbol that encloses a given location. 286 template <class ELFT> 287 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 288 for (Symbol *b : file->getSymbols()) 289 if (Defined *d = dyn_cast<Defined>(b)) 290 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 291 offset < d->value + d->size) 292 return d; 293 return nullptr; 294 } 295 296 // Returns a source location string. Used to construct an error message. 297 template <class ELFT> 298 std::string InputSectionBase::getLocation(uint64_t offset) { 299 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 300 301 // We don't have file for synthetic sections. 302 if (getFile<ELFT>() == nullptr) 303 return (config->outputFile + ":(" + secAndOffset + ")") 304 .str(); 305 306 // First check if we can get desired values from debugging information. 307 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 308 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 309 secAndOffset + ")"; 310 311 // File->sourceFile contains STT_FILE symbol that contains a 312 // source file name. If it's missing, we use an object file name. 313 std::string srcFile = std::string(getFile<ELFT>()->sourceFile); 314 if (srcFile.empty()) 315 srcFile = toString(file); 316 317 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 318 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 319 320 // If there's no symbol, print out the offset in the section. 321 return (srcFile + ":(" + secAndOffset + ")"); 322 } 323 324 // This function is intended to be used for constructing an error message. 325 // The returned message looks like this: 326 // 327 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 328 // 329 // Returns an empty string if there's no way to get line info. 330 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 331 return file->getSrcMsg(sym, *this, offset); 332 } 333 334 // Returns a filename string along with an optional section name. This 335 // function is intended to be used for constructing an error 336 // message. The returned message looks like this: 337 // 338 // path/to/foo.o:(function bar) 339 // 340 // or 341 // 342 // path/to/foo.o:(function bar) in archive path/to/bar.a 343 std::string InputSectionBase::getObjMsg(uint64_t off) { 344 std::string filename = std::string(file->getName()); 345 346 std::string archive; 347 if (!file->archiveName.empty()) 348 archive = " in archive " + file->archiveName; 349 350 // Find a symbol that encloses a given location. 351 for (Symbol *b : file->getSymbols()) 352 if (auto *d = dyn_cast<Defined>(b)) 353 if (d->section == this && d->value <= off && off < d->value + d->size) 354 return filename + ":(" + toString(*d) + ")" + archive; 355 356 // If there's no symbol, print out the offset in the section. 357 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 358 .str(); 359 } 360 361 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 362 363 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 364 uint32_t alignment, ArrayRef<uint8_t> data, 365 StringRef name, Kind k) 366 : InputSectionBase(f, flags, type, 367 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 368 name, k) {} 369 370 template <class ELFT> 371 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 372 StringRef name) 373 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 374 375 bool InputSection::classof(const SectionBase *s) { 376 return s->kind() == SectionBase::Regular || 377 s->kind() == SectionBase::Synthetic; 378 } 379 380 OutputSection *InputSection::getParent() const { 381 return cast_or_null<OutputSection>(parent); 382 } 383 384 // Copy SHT_GROUP section contents. Used only for the -r option. 385 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 386 // ELFT::Word is the 32-bit integral type in the target endianness. 387 using u32 = typename ELFT::Word; 388 ArrayRef<u32> from = getDataAs<u32>(); 389 auto *to = reinterpret_cast<u32 *>(buf); 390 391 // The first entry is not a section number but a flag. 392 *to++ = from[0]; 393 394 // Adjust section numbers because section numbers in an input object files are 395 // different in the output. We also need to handle combined or discarded 396 // members. 397 ArrayRef<InputSectionBase *> sections = file->getSections(); 398 std::unordered_set<uint32_t> seen; 399 for (uint32_t idx : from.slice(1)) { 400 OutputSection *osec = sections[idx]->getOutputSection(); 401 if (osec && seen.insert(osec->sectionIndex).second) 402 *to++ = osec->sectionIndex; 403 } 404 } 405 406 InputSectionBase *InputSection::getRelocatedSection() const { 407 if (!file || (type != SHT_RELA && type != SHT_REL)) 408 return nullptr; 409 ArrayRef<InputSectionBase *> sections = file->getSections(); 410 return sections[info]; 411 } 412 413 // This is used for -r and --emit-relocs. We can't use memcpy to copy 414 // relocations because we need to update symbol table offset and section index 415 // for each relocation. So we copy relocations one by one. 416 template <class ELFT, class RelTy> 417 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 418 InputSectionBase *sec = getRelocatedSection(); 419 420 for (const RelTy &rel : rels) { 421 RelType type = rel.getType(config->isMips64EL); 422 const ObjFile<ELFT> *file = getFile<ELFT>(); 423 Symbol &sym = file->getRelocTargetSym(rel); 424 425 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 426 buf += sizeof(RelTy); 427 428 if (RelTy::IsRela) 429 p->r_addend = getAddend<ELFT>(rel); 430 431 // Output section VA is zero for -r, so r_offset is an offset within the 432 // section, but for --emit-relocs it is a virtual address. 433 p->r_offset = sec->getVA(rel.r_offset); 434 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 435 config->isMips64EL); 436 437 if (sym.type == STT_SECTION) { 438 // We combine multiple section symbols into only one per 439 // section. This means we have to update the addend. That is 440 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 441 // section data. We do that by adding to the Relocation vector. 442 443 // .eh_frame is horribly special and can reference discarded sections. To 444 // avoid having to parse and recreate .eh_frame, we just replace any 445 // relocation in it pointing to discarded sections with R_*_NONE, which 446 // hopefully creates a frame that is ignored at runtime. Also, don't warn 447 // on .gcc_except_table and debug sections. 448 // 449 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 450 auto *d = dyn_cast<Defined>(&sym); 451 if (!d) { 452 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 453 sec->name != ".gcc_except_table" && sec->name != ".got2" && 454 sec->name != ".toc") { 455 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 456 Elf_Shdr_Impl<ELFT> sec = 457 CHECK(file->getObj().sections(), file)[secIdx]; 458 warn("relocation refers to a discarded section: " + 459 CHECK(file->getObj().getSectionName(sec), file) + 460 "\n>>> referenced by " + getObjMsg(p->r_offset)); 461 } 462 p->setSymbolAndType(0, 0, false); 463 continue; 464 } 465 SectionBase *section = d->section->repl; 466 if (!section->isLive()) { 467 p->setSymbolAndType(0, 0, false); 468 continue; 469 } 470 471 int64_t addend = getAddend<ELFT>(rel); 472 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 473 if (!RelTy::IsRela) 474 addend = target->getImplicitAddend(bufLoc, type); 475 476 if (config->emachine == EM_MIPS && 477 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 478 // Some MIPS relocations depend on "gp" value. By default, 479 // this value has 0x7ff0 offset from a .got section. But 480 // relocatable files produced by a compiler or a linker 481 // might redefine this default value and we must use it 482 // for a calculation of the relocation result. When we 483 // generate EXE or DSO it's trivial. Generating a relocatable 484 // output is more difficult case because the linker does 485 // not calculate relocations in this mode and loses 486 // individual "gp" values used by each input object file. 487 // As a workaround we add the "gp" value to the relocation 488 // addend and save it back to the file. 489 addend += sec->getFile<ELFT>()->mipsGp0; 490 } 491 492 if (RelTy::IsRela) 493 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 494 else if (config->relocatable && type != target->noneRel) 495 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 496 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 497 p->r_addend >= 0x8000) { 498 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 499 // indicates that r30 is relative to the input section .got2 500 // (r_addend>=0x8000), after linking, r30 should be relative to the output 501 // section .got2 . To compensate for the shift, adjust r_addend by 502 // ppc32Got2OutSecOff. 503 p->r_addend += sec->file->ppc32Got2OutSecOff; 504 } 505 } 506 } 507 508 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 509 // references specially. The general rule is that the value of the symbol in 510 // this context is the address of the place P. A further special case is that 511 // branch relocations to an undefined weak reference resolve to the next 512 // instruction. 513 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 514 uint32_t p) { 515 switch (type) { 516 // Unresolved branch relocations to weak references resolve to next 517 // instruction, this will be either 2 or 4 bytes on from P. 518 case R_ARM_THM_JUMP11: 519 return p + 2 + a; 520 case R_ARM_CALL: 521 case R_ARM_JUMP24: 522 case R_ARM_PC24: 523 case R_ARM_PLT32: 524 case R_ARM_PREL31: 525 case R_ARM_THM_JUMP19: 526 case R_ARM_THM_JUMP24: 527 return p + 4 + a; 528 case R_ARM_THM_CALL: 529 // We don't want an interworking BLX to ARM 530 return p + 5 + a; 531 // Unresolved non branch pc-relative relocations 532 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 533 // targets a weak-reference. 534 case R_ARM_MOVW_PREL_NC: 535 case R_ARM_MOVT_PREL: 536 case R_ARM_REL32: 537 case R_ARM_THM_ALU_PREL_11_0: 538 case R_ARM_THM_MOVW_PREL_NC: 539 case R_ARM_THM_MOVT_PREL: 540 case R_ARM_THM_PC12: 541 return p + a; 542 // p + a is unrepresentable as negative immediates can't be encoded. 543 case R_ARM_THM_PC8: 544 return p; 545 } 546 llvm_unreachable("ARM pc-relative relocation expected\n"); 547 } 548 549 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 550 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a, 551 uint64_t p) { 552 switch (type) { 553 // Unresolved branch relocations to weak references resolve to next 554 // instruction, this is 4 bytes on from P. 555 case R_AARCH64_CALL26: 556 case R_AARCH64_CONDBR19: 557 case R_AARCH64_JUMP26: 558 case R_AARCH64_TSTBR14: 559 return p + 4 + a; 560 // Unresolved non branch pc-relative relocations 561 case R_AARCH64_PREL16: 562 case R_AARCH64_PREL32: 563 case R_AARCH64_PREL64: 564 case R_AARCH64_ADR_PREL_LO21: 565 case R_AARCH64_LD_PREL_LO19: 566 case R_AARCH64_PLT32: 567 return p + a; 568 } 569 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 570 } 571 572 // ARM SBREL relocations are of the form S + A - B where B is the static base 573 // The ARM ABI defines base to be "addressing origin of the output segment 574 // defining the symbol S". We defined the "addressing origin"/static base to be 575 // the base of the PT_LOAD segment containing the Sym. 576 // The procedure call standard only defines a Read Write Position Independent 577 // RWPI variant so in practice we should expect the static base to be the base 578 // of the RW segment. 579 static uint64_t getARMStaticBase(const Symbol &sym) { 580 OutputSection *os = sym.getOutputSection(); 581 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 582 fatal("SBREL relocation to " + sym.getName() + " without static base"); 583 return os->ptLoad->firstSec->addr; 584 } 585 586 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 587 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 588 // is calculated using PCREL_HI20's symbol. 589 // 590 // This function returns the R_RISCV_PCREL_HI20 relocation from 591 // R_RISCV_PCREL_LO12's symbol and addend. 592 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 593 const Defined *d = cast<Defined>(sym); 594 if (!d->section) { 595 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 596 sym->getName()); 597 return nullptr; 598 } 599 InputSection *isec = cast<InputSection>(d->section); 600 601 if (addend != 0) 602 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 603 isec->getObjMsg(d->value) + " is ignored"); 604 605 // Relocations are sorted by offset, so we can use std::equal_range to do 606 // binary search. 607 Relocation r; 608 r.offset = d->value; 609 auto range = 610 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 611 [](const Relocation &lhs, const Relocation &rhs) { 612 return lhs.offset < rhs.offset; 613 }); 614 615 for (auto it = range.first; it != range.second; ++it) 616 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 617 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 618 return &*it; 619 620 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 621 " without an associated R_RISCV_PCREL_HI20 relocation"); 622 return nullptr; 623 } 624 625 // A TLS symbol's virtual address is relative to the TLS segment. Add a 626 // target-specific adjustment to produce a thread-pointer-relative offset. 627 static int64_t getTlsTpOffset(const Symbol &s) { 628 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 629 if (&s == ElfSym::tlsModuleBase) 630 return 0; 631 632 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 633 // while most others use Variant 1. At run time TP will be aligned to p_align. 634 635 // Variant 1. TP will be followed by an optional gap (which is the size of 2 636 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 637 // padding, then the static TLS blocks. The alignment padding is added so that 638 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 639 // 640 // Variant 2. Static TLS blocks, followed by alignment padding are placed 641 // before TP. The alignment padding is added so that (TP - padding - 642 // p_memsz) is congruent to p_vaddr modulo p_align. 643 PhdrEntry *tls = Out::tlsPhdr; 644 switch (config->emachine) { 645 // Variant 1. 646 case EM_ARM: 647 case EM_AARCH64: 648 return s.getVA(0) + config->wordsize * 2 + 649 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 650 case EM_MIPS: 651 case EM_PPC: 652 case EM_PPC64: 653 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 654 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 655 // data and 0xf000 of the program's TLS segment. 656 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 657 case EM_RISCV: 658 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 659 660 // Variant 2. 661 case EM_HEXAGON: 662 case EM_SPARCV9: 663 case EM_386: 664 case EM_X86_64: 665 return s.getVA(0) - tls->p_memsz - 666 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 667 default: 668 llvm_unreachable("unhandled Config->EMachine"); 669 } 670 } 671 672 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 673 int64_t a, uint64_t p, 674 const Symbol &sym, RelExpr expr) { 675 switch (expr) { 676 case R_ABS: 677 case R_DTPREL: 678 case R_RELAX_TLS_LD_TO_LE_ABS: 679 case R_RELAX_GOT_PC_NOPIC: 680 case R_RISCV_ADD: 681 return sym.getVA(a); 682 case R_ADDEND: 683 return a; 684 case R_ARM_SBREL: 685 return sym.getVA(a) - getARMStaticBase(sym); 686 case R_GOT: 687 case R_RELAX_TLS_GD_TO_IE_ABS: 688 return sym.getGotVA() + a; 689 case R_GOTONLY_PC: 690 return in.got->getVA() + a - p; 691 case R_GOTPLTONLY_PC: 692 return in.gotPlt->getVA() + a - p; 693 case R_GOTREL: 694 case R_PPC64_RELAX_TOC: 695 return sym.getVA(a) - in.got->getVA(); 696 case R_GOTPLTREL: 697 return sym.getVA(a) - in.gotPlt->getVA(); 698 case R_GOTPLT: 699 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 700 return sym.getGotVA() + a - in.gotPlt->getVA(); 701 case R_TLSLD_GOT_OFF: 702 case R_GOT_OFF: 703 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 704 return sym.getGotOffset() + a; 705 case R_AARCH64_GOT_PAGE_PC: 706 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 707 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 708 case R_GOT_PC: 709 case R_RELAX_TLS_GD_TO_IE: 710 return sym.getGotVA() + a - p; 711 case R_MIPS_GOTREL: 712 return sym.getVA(a) - in.mipsGot->getGp(file); 713 case R_MIPS_GOT_GP: 714 return in.mipsGot->getGp(file) + a; 715 case R_MIPS_GOT_GP_PC: { 716 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 717 // is _gp_disp symbol. In that case we should use the following 718 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 719 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 720 // microMIPS variants of these relocations use slightly different 721 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 722 // to correctly handle less-significant bit of the microMIPS symbol. 723 uint64_t v = in.mipsGot->getGp(file) + a - p; 724 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 725 v += 4; 726 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 727 v -= 1; 728 return v; 729 } 730 case R_MIPS_GOT_LOCAL_PAGE: 731 // If relocation against MIPS local symbol requires GOT entry, this entry 732 // should be initialized by 'page address'. This address is high 16-bits 733 // of sum the symbol's value and the addend. 734 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 735 in.mipsGot->getGp(file); 736 case R_MIPS_GOT_OFF: 737 case R_MIPS_GOT_OFF32: 738 // In case of MIPS if a GOT relocation has non-zero addend this addend 739 // should be applied to the GOT entry content not to the GOT entry offset. 740 // That is why we use separate expression type. 741 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 742 in.mipsGot->getGp(file); 743 case R_MIPS_TLSGD: 744 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 745 in.mipsGot->getGp(file); 746 case R_MIPS_TLSLD: 747 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 748 in.mipsGot->getGp(file); 749 case R_AARCH64_PAGE_PC: { 750 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 751 return getAArch64Page(val) - getAArch64Page(p); 752 } 753 case R_RISCV_PC_INDIRECT: { 754 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 755 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 756 *hiRel->sym, hiRel->expr); 757 return 0; 758 } 759 case R_PC: 760 case R_ARM_PCA: { 761 uint64_t dest; 762 if (expr == R_ARM_PCA) 763 // Some PC relative ARM (Thumb) relocations align down the place. 764 p = p & 0xfffffffc; 765 if (sym.isUndefWeak()) { 766 // On ARM and AArch64 a branch to an undefined weak resolves to the 767 // next instruction, otherwise the place. 768 if (config->emachine == EM_ARM) 769 dest = getARMUndefinedRelativeWeakVA(type, a, p); 770 else if (config->emachine == EM_AARCH64) 771 dest = getAArch64UndefinedRelativeWeakVA(type, a, p); 772 else if (config->emachine == EM_PPC) 773 dest = p; 774 else 775 dest = sym.getVA(a); 776 } else { 777 dest = sym.getVA(a); 778 } 779 return dest - p; 780 } 781 case R_PLT: 782 return sym.getPltVA() + a; 783 case R_PLT_PC: 784 case R_PPC64_CALL_PLT: 785 return sym.getPltVA() + a - p; 786 case R_PPC32_PLTREL: 787 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 788 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 789 // target VA computation. 790 return sym.getPltVA() - p; 791 case R_PPC64_CALL: { 792 uint64_t symVA = sym.getVA(a); 793 // If we have an undefined weak symbol, we might get here with a symbol 794 // address of zero. That could overflow, but the code must be unreachable, 795 // so don't bother doing anything at all. 796 if (!symVA) 797 return 0; 798 799 // PPC64 V2 ABI describes two entry points to a function. The global entry 800 // point is used for calls where the caller and callee (may) have different 801 // TOC base pointers and r2 needs to be modified to hold the TOC base for 802 // the callee. For local calls the caller and callee share the same 803 // TOC base and so the TOC pointer initialization code should be skipped by 804 // branching to the local entry point. 805 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 806 } 807 case R_PPC64_TOCBASE: 808 return getPPC64TocBase() + a; 809 case R_RELAX_GOT_PC: 810 case R_PPC64_RELAX_GOT_PC: 811 return sym.getVA(a) - p; 812 case R_RELAX_TLS_GD_TO_LE: 813 case R_RELAX_TLS_IE_TO_LE: 814 case R_RELAX_TLS_LD_TO_LE: 815 case R_TLS: 816 // It is not very clear what to return if the symbol is undefined. With 817 // --noinhibit-exec, even a non-weak undefined reference may reach here. 818 // Just return A, which matches R_ABS, and the behavior of some dynamic 819 // loaders. 820 if (sym.isUndefined() || sym.isLazy()) 821 return a; 822 return getTlsTpOffset(sym) + a; 823 case R_RELAX_TLS_GD_TO_LE_NEG: 824 case R_NEG_TLS: 825 if (sym.isUndefined()) 826 return a; 827 return -getTlsTpOffset(sym) + a; 828 case R_SIZE: 829 return sym.getSize() + a; 830 case R_TLSDESC: 831 return in.got->getGlobalDynAddr(sym) + a; 832 case R_TLSDESC_PC: 833 return in.got->getGlobalDynAddr(sym) + a - p; 834 case R_AARCH64_TLSDESC_PAGE: 835 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 836 getAArch64Page(p); 837 case R_TLSGD_GOT: 838 return in.got->getGlobalDynOffset(sym) + a; 839 case R_TLSGD_GOTPLT: 840 return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA(); 841 case R_TLSGD_PC: 842 return in.got->getGlobalDynAddr(sym) + a - p; 843 case R_TLSLD_GOTPLT: 844 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 845 case R_TLSLD_GOT: 846 return in.got->getTlsIndexOff() + a; 847 case R_TLSLD_PC: 848 return in.got->getTlsIndexVA() + a - p; 849 default: 850 llvm_unreachable("invalid expression"); 851 } 852 } 853 854 // This function applies relocations to sections without SHF_ALLOC bit. 855 // Such sections are never mapped to memory at runtime. Debug sections are 856 // an example. Relocations in non-alloc sections are much easier to 857 // handle than in allocated sections because it will never need complex 858 // treatment such as GOT or PLT (because at runtime no one refers them). 859 // So, we handle relocations for non-alloc sections directly in this 860 // function as a performance optimization. 861 template <class ELFT, class RelTy> 862 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 863 const unsigned bits = sizeof(typename ELFT::uint) * 8; 864 const bool isDebug = isDebugSection(*this); 865 const bool isDebugLocOrRanges = 866 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 867 const bool isDebugLine = isDebug && name == ".debug_line"; 868 Optional<uint64_t> tombstone; 869 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 870 if (patAndValue.first.match(this->name)) { 871 tombstone = patAndValue.second; 872 break; 873 } 874 875 for (const RelTy &rel : rels) { 876 RelType type = rel.getType(config->isMips64EL); 877 878 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 879 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 880 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 881 // need to keep this bug-compatible code for a while. 882 if (config->emachine == EM_386 && type == R_386_GOTPC) 883 continue; 884 885 uint64_t offset = rel.r_offset; 886 uint8_t *bufLoc = buf + offset; 887 int64_t addend = getAddend<ELFT>(rel); 888 if (!RelTy::IsRela) 889 addend += target->getImplicitAddend(bufLoc, type); 890 891 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 892 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 893 if (expr == R_NONE) 894 continue; 895 896 if (expr == R_SIZE) { 897 target->relocateNoSym(bufLoc, type, 898 SignExtend64<bits>(sym.getSize() + addend)); 899 continue; 900 } 901 902 if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) { 903 std::string msg = getLocation<ELFT>(offset) + 904 ": has non-ABS relocation " + toString(type) + 905 " against symbol '" + toString(sym) + "'"; 906 if (expr != R_PC && expr != R_ARM_PCA) { 907 error(msg); 908 return; 909 } 910 911 // If the control reaches here, we found a PC-relative relocation in a 912 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 913 // at runtime, the notion of PC-relative doesn't make sense here. So, 914 // this is a usage error. However, GNU linkers historically accept such 915 // relocations without any errors and relocate them as if they were at 916 // address 0. For bug-compatibilty, we accept them with warnings. We 917 // know Steel Bank Common Lisp as of 2018 have this bug. 918 warn(msg); 919 target->relocateNoSym( 920 bufLoc, type, 921 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 922 continue; 923 } 924 925 if (tombstone || 926 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 927 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 928 // folded section symbols) to a tombstone value. Resolving to addend is 929 // unsatisfactory because the result address range may collide with a 930 // valid range of low address, or leave multiple CUs claiming ownership of 931 // the same range of code, which may confuse consumers. 932 // 933 // To address the problems, we use -1 as a tombstone value for most 934 // .debug_* sections. We have to ignore the addend because we don't want 935 // to resolve an address attribute (which may have a non-zero addend) to 936 // -1+addend (wrap around to a low address). 937 // 938 // R_DTPREL type relocations represent an offset into the dynamic thread 939 // vector. The computed value is st_value plus a non-negative offset. 940 // Negative values are invalid, so -1 can be used as the tombstone value. 941 // 942 // If the referenced symbol is discarded (made Undefined), or the 943 // section defining the referenced symbol is garbage collected, 944 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 945 // catches the ICF folded case. However, resolving a relocation in 946 // .debug_line to -1 would stop debugger users from setting breakpoints on 947 // the folded-in function, so exclude .debug_line. 948 // 949 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 950 // (base address selection entry), use 1 (which is used by GNU ld for 951 // .debug_ranges). 952 // 953 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 954 // value. Enable -1 in a future release. 955 auto *ds = dyn_cast<Defined>(&sym); 956 if (!sym.getOutputSection() || 957 (ds && ds->section->repl != ds->section && !isDebugLine)) { 958 // If -z dead-reloc-in-nonalloc= is specified, respect it. 959 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 960 : (isDebugLocOrRanges ? 1 : 0); 961 target->relocateNoSym(bufLoc, type, value); 962 continue; 963 } 964 } 965 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 966 } 967 } 968 969 // This is used when '-r' is given. 970 // For REL targets, InputSection::copyRelocations() may store artificial 971 // relocations aimed to update addends. They are handled in relocateAlloc() 972 // for allocatable sections, and this function does the same for 973 // non-allocatable sections, such as sections with debug information. 974 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 975 const unsigned bits = config->is64 ? 64 : 32; 976 977 for (const Relocation &rel : sec->relocations) { 978 // InputSection::copyRelocations() adds only R_ABS relocations. 979 assert(rel.expr == R_ABS); 980 uint8_t *bufLoc = buf + rel.offset; 981 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 982 target->relocate(bufLoc, rel, targetVA); 983 } 984 } 985 986 template <class ELFT> 987 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 988 if (flags & SHF_EXECINSTR) 989 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 990 991 if (flags & SHF_ALLOC) { 992 relocateAlloc(buf, bufEnd); 993 return; 994 } 995 996 auto *sec = cast<InputSection>(this); 997 if (config->relocatable) 998 relocateNonAllocForRelocatable(sec, buf); 999 else if (sec->areRelocsRela) 1000 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 1001 else 1002 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 1003 } 1004 1005 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1006 assert(flags & SHF_ALLOC); 1007 const unsigned bits = config->wordsize * 8; 1008 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1009 1010 for (const Relocation &rel : relocations) { 1011 if (rel.expr == R_NONE) 1012 continue; 1013 uint64_t offset = rel.offset; 1014 uint8_t *bufLoc = buf + offset; 1015 RelType type = rel.type; 1016 1017 uint64_t addrLoc = getOutputSection()->addr + offset; 1018 if (auto *sec = dyn_cast<InputSection>(this)) 1019 addrLoc += sec->outSecOff; 1020 RelExpr expr = rel.expr; 1021 uint64_t targetVA = SignExtend64( 1022 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1023 bits); 1024 1025 switch (expr) { 1026 case R_RELAX_GOT_PC: 1027 case R_RELAX_GOT_PC_NOPIC: 1028 target->relaxGot(bufLoc, rel, targetVA); 1029 break; 1030 case R_PPC64_RELAX_GOT_PC: { 1031 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1032 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1033 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1034 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1035 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1036 // and only relax the other if the saved offset matches. 1037 if (type == R_PPC64_GOT_PCREL34) 1038 lastPPCRelaxedRelocOff = offset; 1039 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1040 break; 1041 target->relaxGot(bufLoc, rel, targetVA); 1042 break; 1043 } 1044 case R_PPC64_RELAX_TOC: 1045 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1046 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1047 // entry, there may be R_PPC64_TOC16_HA not paired with 1048 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1049 // opportunities but is safe. 1050 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1051 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1052 target->relocate(bufLoc, rel, targetVA); 1053 break; 1054 case R_RELAX_TLS_IE_TO_LE: 1055 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1056 break; 1057 case R_RELAX_TLS_LD_TO_LE: 1058 case R_RELAX_TLS_LD_TO_LE_ABS: 1059 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1060 break; 1061 case R_RELAX_TLS_GD_TO_LE: 1062 case R_RELAX_TLS_GD_TO_LE_NEG: 1063 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1064 break; 1065 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1066 case R_RELAX_TLS_GD_TO_IE: 1067 case R_RELAX_TLS_GD_TO_IE_ABS: 1068 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1069 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1070 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1071 break; 1072 case R_PPC64_CALL: 1073 // If this is a call to __tls_get_addr, it may be part of a TLS 1074 // sequence that has been relaxed and turned into a nop. In this 1075 // case, we don't want to handle it as a call. 1076 if (read32(bufLoc) == 0x60000000) // nop 1077 break; 1078 1079 // Patch a nop (0x60000000) to a ld. 1080 if (rel.sym->needsTocRestore) { 1081 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1082 // recursive calls even if the function is preemptible. This is not 1083 // wrong in the common case where the function is not preempted at 1084 // runtime. Just ignore. 1085 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1086 rel.sym->file != file) { 1087 // Use substr(6) to remove the "__plt_" prefix. 1088 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1089 lld::toString(*rel.sym).substr(6) + 1090 " lacks nop, can't restore toc"); 1091 break; 1092 } 1093 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1094 } 1095 target->relocate(bufLoc, rel, targetVA); 1096 break; 1097 default: 1098 target->relocate(bufLoc, rel, targetVA); 1099 break; 1100 } 1101 } 1102 1103 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1104 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1105 // insn. This is primarily used to relax and optimize jumps created with 1106 // basic block sections. 1107 if (isa<InputSection>(this)) { 1108 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1109 uint64_t offset = jumpMod.offset; 1110 uint8_t *bufLoc = buf + offset; 1111 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1112 } 1113 } 1114 } 1115 1116 // For each function-defining prologue, find any calls to __morestack, 1117 // and replace them with calls to __morestack_non_split. 1118 static void switchMorestackCallsToMorestackNonSplit( 1119 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1120 1121 // If the target adjusted a function's prologue, all calls to 1122 // __morestack inside that function should be switched to 1123 // __morestack_non_split. 1124 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1125 if (!moreStackNonSplit) { 1126 error("Mixing split-stack objects requires a definition of " 1127 "__morestack_non_split"); 1128 return; 1129 } 1130 1131 // Sort both collections to compare addresses efficiently. 1132 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1133 return l->offset < r->offset; 1134 }); 1135 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1136 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1137 return l->value < r->value; 1138 }); 1139 1140 auto it = morestackCalls.begin(); 1141 for (Defined *f : functions) { 1142 // Find the first call to __morestack within the function. 1143 while (it != morestackCalls.end() && (*it)->offset < f->value) 1144 ++it; 1145 // Adjust all calls inside the function. 1146 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1147 (*it)->sym = moreStackNonSplit; 1148 ++it; 1149 } 1150 } 1151 } 1152 1153 static bool enclosingPrologueAttempted(uint64_t offset, 1154 const DenseSet<Defined *> &prologues) { 1155 for (Defined *f : prologues) 1156 if (f->value <= offset && offset < f->value + f->size) 1157 return true; 1158 return false; 1159 } 1160 1161 // If a function compiled for split stack calls a function not 1162 // compiled for split stack, then the caller needs its prologue 1163 // adjusted to ensure that the called function will have enough stack 1164 // available. Find those functions, and adjust their prologues. 1165 template <class ELFT> 1166 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1167 uint8_t *end) { 1168 if (!getFile<ELFT>()->splitStack) 1169 return; 1170 DenseSet<Defined *> prologues; 1171 std::vector<Relocation *> morestackCalls; 1172 1173 for (Relocation &rel : relocations) { 1174 // Local symbols can't possibly be cross-calls, and should have been 1175 // resolved long before this line. 1176 if (rel.sym->isLocal()) 1177 continue; 1178 1179 // Ignore calls into the split-stack api. 1180 if (rel.sym->getName().startswith("__morestack")) { 1181 if (rel.sym->getName().equals("__morestack")) 1182 morestackCalls.push_back(&rel); 1183 continue; 1184 } 1185 1186 // A relocation to non-function isn't relevant. Sometimes 1187 // __morestack is not marked as a function, so this check comes 1188 // after the name check. 1189 if (rel.sym->type != STT_FUNC) 1190 continue; 1191 1192 // If the callee's-file was compiled with split stack, nothing to do. In 1193 // this context, a "Defined" symbol is one "defined by the binary currently 1194 // being produced". So an "undefined" symbol might be provided by a shared 1195 // library. It is not possible to tell how such symbols were compiled, so be 1196 // conservative. 1197 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1198 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1199 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1200 continue; 1201 1202 if (enclosingPrologueAttempted(rel.offset, prologues)) 1203 continue; 1204 1205 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1206 prologues.insert(f); 1207 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1208 f->stOther)) 1209 continue; 1210 if (!getFile<ELFT>()->someNoSplitStack) 1211 error(lld::toString(this) + ": " + f->getName() + 1212 " (with -fsplit-stack) calls " + rel.sym->getName() + 1213 " (without -fsplit-stack), but couldn't adjust its prologue"); 1214 } 1215 } 1216 1217 if (target->needsMoreStackNonSplit) 1218 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1219 } 1220 1221 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1222 if (type == SHT_NOBITS) 1223 return; 1224 1225 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1226 s->writeTo(buf + outSecOff); 1227 return; 1228 } 1229 1230 // If -r or --emit-relocs is given, then an InputSection 1231 // may be a relocation section. 1232 if (type == SHT_RELA) { 1233 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1234 return; 1235 } 1236 if (type == SHT_REL) { 1237 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1238 return; 1239 } 1240 1241 // If -r is given, we may have a SHT_GROUP section. 1242 if (type == SHT_GROUP) { 1243 copyShtGroup<ELFT>(buf + outSecOff); 1244 return; 1245 } 1246 1247 // If this is a compressed section, uncompress section contents directly 1248 // to the buffer. 1249 if (uncompressedSize >= 0) { 1250 size_t size = uncompressedSize; 1251 if (Error e = zlib::uncompress(toStringRef(rawData), 1252 (char *)(buf + outSecOff), size)) 1253 fatal(toString(this) + 1254 ": uncompress failed: " + llvm::toString(std::move(e))); 1255 uint8_t *bufEnd = buf + outSecOff + size; 1256 relocate<ELFT>(buf + outSecOff, bufEnd); 1257 return; 1258 } 1259 1260 // Copy section contents from source object file to output file 1261 // and then apply relocations. 1262 memcpy(buf + outSecOff, data().data(), data().size()); 1263 uint8_t *bufEnd = buf + outSecOff + data().size(); 1264 relocate<ELFT>(buf + outSecOff, bufEnd); 1265 } 1266 1267 void InputSection::replace(InputSection *other) { 1268 alignment = std::max(alignment, other->alignment); 1269 1270 // When a section is replaced with another section that was allocated to 1271 // another partition, the replacement section (and its associated sections) 1272 // need to be placed in the main partition so that both partitions will be 1273 // able to access it. 1274 if (partition != other->partition) { 1275 partition = 1; 1276 for (InputSection *isec : dependentSections) 1277 isec->partition = 1; 1278 } 1279 1280 other->repl = repl; 1281 other->markDead(); 1282 } 1283 1284 template <class ELFT> 1285 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1286 const typename ELFT::Shdr &header, 1287 StringRef name) 1288 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1289 1290 SyntheticSection *EhInputSection::getParent() const { 1291 return cast_or_null<SyntheticSection>(parent); 1292 } 1293 1294 // Returns the index of the first relocation that points to a region between 1295 // Begin and Begin+Size. 1296 template <class IntTy, class RelTy> 1297 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1298 unsigned &relocI) { 1299 // Start search from RelocI for fast access. That works because the 1300 // relocations are sorted in .eh_frame. 1301 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1302 const RelTy &rel = rels[relocI]; 1303 if (rel.r_offset < begin) 1304 continue; 1305 1306 if (rel.r_offset < begin + size) 1307 return relocI; 1308 return -1; 1309 } 1310 return -1; 1311 } 1312 1313 // .eh_frame is a sequence of CIE or FDE records. 1314 // This function splits an input section into records and returns them. 1315 template <class ELFT> void EhInputSection::split() { 1316 if (areRelocsRela) 1317 split<ELFT>(relas<ELFT>()); 1318 else 1319 split<ELFT>(rels<ELFT>()); 1320 } 1321 1322 template <class ELFT, class RelTy> 1323 void EhInputSection::split(ArrayRef<RelTy> rels) { 1324 unsigned relI = 0; 1325 for (size_t off = 0, end = data().size(); off != end;) { 1326 size_t size = readEhRecordSize(this, off); 1327 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1328 // The empty record is the end marker. 1329 if (size == 4) 1330 break; 1331 off += size; 1332 } 1333 } 1334 1335 static size_t findNull(StringRef s, size_t entSize) { 1336 // Optimize the common case. 1337 if (entSize == 1) 1338 return s.find(0); 1339 1340 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1341 const char *b = s.begin() + i; 1342 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1343 return i; 1344 } 1345 return StringRef::npos; 1346 } 1347 1348 SyntheticSection *MergeInputSection::getParent() const { 1349 return cast_or_null<SyntheticSection>(parent); 1350 } 1351 1352 // Split SHF_STRINGS section. Such section is a sequence of 1353 // null-terminated strings. 1354 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1355 size_t off = 0; 1356 bool isAlloc = flags & SHF_ALLOC; 1357 StringRef s = toStringRef(data); 1358 1359 while (!s.empty()) { 1360 size_t end = findNull(s, entSize); 1361 if (end == StringRef::npos) 1362 fatal(toString(this) + ": string is not null terminated"); 1363 size_t size = end + entSize; 1364 1365 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1366 s = s.substr(size); 1367 off += size; 1368 } 1369 } 1370 1371 // Split non-SHF_STRINGS section. Such section is a sequence of 1372 // fixed size records. 1373 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1374 size_t entSize) { 1375 size_t size = data.size(); 1376 assert((size % entSize) == 0); 1377 bool isAlloc = flags & SHF_ALLOC; 1378 1379 for (size_t i = 0; i != size; i += entSize) 1380 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1381 } 1382 1383 template <class ELFT> 1384 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1385 const typename ELFT::Shdr &header, 1386 StringRef name) 1387 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1388 1389 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1390 uint64_t entsize, ArrayRef<uint8_t> data, 1391 StringRef name) 1392 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1393 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1394 1395 // This function is called after we obtain a complete list of input sections 1396 // that need to be linked. This is responsible to split section contents 1397 // into small chunks for further processing. 1398 // 1399 // Note that this function is called from parallelForEach. This must be 1400 // thread-safe (i.e. no memory allocation from the pools). 1401 void MergeInputSection::splitIntoPieces() { 1402 assert(pieces.empty()); 1403 1404 if (flags & SHF_STRINGS) 1405 splitStrings(data(), entsize); 1406 else 1407 splitNonStrings(data(), entsize); 1408 } 1409 1410 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1411 if (this->data().size() <= offset) 1412 fatal(toString(this) + ": offset is outside the section"); 1413 1414 // If Offset is not at beginning of a section piece, it is not in the map. 1415 // In that case we need to do a binary search of the original section piece vector. 1416 auto it = partition_point( 1417 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1418 return &it[-1]; 1419 } 1420 1421 // Returns the offset in an output section for a given input offset. 1422 // Because contents of a mergeable section is not contiguous in output, 1423 // it is not just an addition to a base output offset. 1424 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1425 // If Offset is not at beginning of a section piece, it is not in the map. 1426 // In that case we need to search from the original section piece vector. 1427 const SectionPiece &piece = 1428 *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset)); 1429 uint64_t addend = offset - piece.inputOff; 1430 return piece.outputOff + addend; 1431 } 1432 1433 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1434 StringRef); 1435 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1436 StringRef); 1437 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1438 StringRef); 1439 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1440 StringRef); 1441 1442 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1443 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1444 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1445 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1446 1447 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1448 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1449 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1450 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1451 1452 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1453 const ELF32LE::Shdr &, StringRef); 1454 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1455 const ELF32BE::Shdr &, StringRef); 1456 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1457 const ELF64LE::Shdr &, StringRef); 1458 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1459 const ELF64BE::Shdr &, StringRef); 1460 1461 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1462 const ELF32LE::Shdr &, StringRef); 1463 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1464 const ELF32BE::Shdr &, StringRef); 1465 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1466 const ELF64LE::Shdr &, StringRef); 1467 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1468 const ELF64BE::Shdr &, StringRef); 1469 1470 template void EhInputSection::split<ELF32LE>(); 1471 template void EhInputSection::split<ELF32BE>(); 1472 template void EhInputSection::split<ELF64LE>(); 1473 template void EhInputSection::split<ELF64BE>(); 1474