1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <vector> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 using namespace llvm::sys; 33 using namespace lld; 34 using namespace lld::elf; 35 36 SmallVector<InputSectionBase *, 0> elf::inputSections; 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t alignment, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 58 link), 59 file(file), rawData(data) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(alignment, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->alignment = v; 72 73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no 74 // longer supported. 75 if (flags & SHF_COMPRESSED) { 76 if (!zlib::isAvailable()) 77 error(toString(file) + ": contains a compressed section, " + 78 "but zlib is not available"); 79 invokeELFT(parseCompressedHeader); 80 } 81 } 82 83 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 84 // SHF_GROUP is a marker that a section belongs to some comdat group. 85 // That flag doesn't make sense in an executable. 86 static uint64_t getFlags(uint64_t flags) { 87 flags &= ~(uint64_t)SHF_INFO_LINK; 88 if (!config->relocatable) 89 flags &= ~(uint64_t)SHF_GROUP; 90 return flags; 91 } 92 93 template <class ELFT> 94 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 95 const typename ELFT::Shdr &hdr, 96 StringRef name, Kind sectionKind) 97 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 98 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 99 hdr.sh_addralign, getSectionContents(file, hdr), name, 100 sectionKind) { 101 // We reject object files having insanely large alignments even though 102 // they are allowed by the spec. I think 4GB is a reasonable limitation. 103 // We might want to relax this in the future. 104 if (hdr.sh_addralign > UINT32_MAX) 105 fatal(toString(&file) + ": section sh_addralign is too large"); 106 } 107 108 size_t InputSectionBase::getSize() const { 109 if (auto *s = dyn_cast<SyntheticSection>(this)) 110 return s->getSize(); 111 if (uncompressedSize >= 0) 112 return uncompressedSize; 113 return rawData.size() - bytesDropped; 114 } 115 116 void InputSectionBase::uncompress() const { 117 size_t size = uncompressedSize; 118 char *uncompressedBuf; 119 { 120 static std::mutex mu; 121 std::lock_guard<std::mutex> lock(mu); 122 uncompressedBuf = bAlloc().Allocate<char>(size); 123 } 124 125 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 126 fatal(toString(this) + 127 ": uncompress failed: " + llvm::toString(std::move(e))); 128 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 129 uncompressedSize = -1; 130 } 131 132 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 133 if (relSecIdx == 0) 134 return {}; 135 RelsOrRelas<ELFT> ret; 136 typename ELFT::Shdr shdr = 137 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 138 if (shdr.sh_type == SHT_REL) { 139 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 140 file->mb.getBufferStart() + shdr.sh_offset), 141 shdr.sh_size / sizeof(typename ELFT::Rel)); 142 } else { 143 assert(shdr.sh_type == SHT_RELA); 144 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 145 file->mb.getBufferStart() + shdr.sh_offset), 146 shdr.sh_size / sizeof(typename ELFT::Rela)); 147 } 148 return ret; 149 } 150 151 uint64_t SectionBase::getOffset(uint64_t offset) const { 152 switch (kind()) { 153 case Output: { 154 auto *os = cast<OutputSection>(this); 155 // For output sections we treat offset -1 as the end of the section. 156 return offset == uint64_t(-1) ? os->size : offset; 157 } 158 case Regular: 159 case Synthetic: 160 return cast<InputSection>(this)->outSecOff + offset; 161 case EHFrame: { 162 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC 163 // crtbeginT.o may reference the start of an empty .eh_frame to identify the 164 // start of the output .eh_frame. Just return offset. 165 // 166 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be 167 // discarded due to GC/ICF. We should compute the output section offset. 168 const EhInputSection *es = cast<EhInputSection>(this); 169 if (!es->rawData.empty()) 170 if (InputSection *isec = es->getParent()) 171 return isec->outSecOff + es->getParentOffset(offset); 172 return offset; 173 } 174 case Merge: 175 const MergeInputSection *ms = cast<MergeInputSection>(this); 176 if (InputSection *isec = ms->getParent()) 177 return isec->outSecOff + ms->getParentOffset(offset); 178 return ms->getParentOffset(offset); 179 } 180 llvm_unreachable("invalid section kind"); 181 } 182 183 uint64_t SectionBase::getVA(uint64_t offset) const { 184 const OutputSection *out = getOutputSection(); 185 return (out ? out->addr : 0) + getOffset(offset); 186 } 187 188 OutputSection *SectionBase::getOutputSection() { 189 InputSection *sec; 190 if (auto *isec = dyn_cast<InputSection>(this)) 191 sec = isec; 192 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 193 sec = ms->getParent(); 194 else if (auto *eh = dyn_cast<EhInputSection>(this)) 195 sec = eh->getParent(); 196 else 197 return cast<OutputSection>(this); 198 return sec ? sec->getParent() : nullptr; 199 } 200 201 // When a section is compressed, `rawData` consists with a header followed 202 // by zlib-compressed data. This function parses a header to initialize 203 // `uncompressedSize` member and remove the header from `rawData`. 204 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 205 flags &= ~(uint64_t)SHF_COMPRESSED; 206 207 // New-style header 208 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 209 error(toString(this) + ": corrupted compressed section"); 210 return; 211 } 212 213 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 214 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 215 error(toString(this) + ": unsupported compression type"); 216 return; 217 } 218 219 uncompressedSize = hdr->ch_size; 220 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 221 rawData = rawData.slice(sizeof(*hdr)); 222 } 223 224 InputSection *InputSectionBase::getLinkOrderDep() const { 225 assert(flags & SHF_LINK_ORDER); 226 if (!link) 227 return nullptr; 228 return cast<InputSection>(file->getSections()[link]); 229 } 230 231 // Find a function symbol that encloses a given location. 232 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 233 for (Symbol *b : file->getSymbols()) 234 if (Defined *d = dyn_cast<Defined>(b)) 235 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 236 offset < d->value + d->size) 237 return d; 238 return nullptr; 239 } 240 241 // Returns an object file location string. Used to construct an error message. 242 std::string InputSectionBase::getLocation(uint64_t offset) { 243 std::string secAndOffset = 244 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 245 246 // We don't have file for synthetic sections. 247 if (file == nullptr) 248 return (config->outputFile + ":(" + secAndOffset).str(); 249 250 std::string filename = toString(file); 251 if (Defined *d = getEnclosingFunction(offset)) 252 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 253 254 return filename + ":(" + secAndOffset; 255 } 256 257 // This function is intended to be used for constructing an error message. 258 // The returned message looks like this: 259 // 260 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 261 // 262 // Returns an empty string if there's no way to get line info. 263 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 264 return file->getSrcMsg(sym, *this, offset); 265 } 266 267 // Returns a filename string along with an optional section name. This 268 // function is intended to be used for constructing an error 269 // message. The returned message looks like this: 270 // 271 // path/to/foo.o:(function bar) 272 // 273 // or 274 // 275 // path/to/foo.o:(function bar) in archive path/to/bar.a 276 std::string InputSectionBase::getObjMsg(uint64_t off) { 277 std::string filename = std::string(file->getName()); 278 279 std::string archive; 280 if (!file->archiveName.empty()) 281 archive = (" in archive " + file->archiveName).str(); 282 283 // Find a symbol that encloses a given location. getObjMsg may be called 284 // before ObjFile::initializeLocalSymbols where local symbols are initialized. 285 for (Symbol *b : file->getSymbols()) 286 if (auto *d = dyn_cast_or_null<Defined>(b)) 287 if (d->section == this && d->value <= off && off < d->value + d->size) 288 return filename + ":(" + toString(*d) + ")" + archive; 289 290 // If there's no symbol, print out the offset in the section. 291 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 292 .str(); 293 } 294 295 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 296 297 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 298 uint32_t alignment, ArrayRef<uint8_t> data, 299 StringRef name, Kind k) 300 : InputSectionBase(f, flags, type, 301 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 302 name, k) {} 303 304 template <class ELFT> 305 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 306 StringRef name) 307 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 308 309 // Copy SHT_GROUP section contents. Used only for the -r option. 310 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 311 // ELFT::Word is the 32-bit integral type in the target endianness. 312 using u32 = typename ELFT::Word; 313 ArrayRef<u32> from = getDataAs<u32>(); 314 auto *to = reinterpret_cast<u32 *>(buf); 315 316 // The first entry is not a section number but a flag. 317 *to++ = from[0]; 318 319 // Adjust section numbers because section numbers in an input object files are 320 // different in the output. We also need to handle combined or discarded 321 // members. 322 ArrayRef<InputSectionBase *> sections = file->getSections(); 323 DenseSet<uint32_t> seen; 324 for (uint32_t idx : from.slice(1)) { 325 OutputSection *osec = sections[idx]->getOutputSection(); 326 if (osec && seen.insert(osec->sectionIndex).second) 327 *to++ = osec->sectionIndex; 328 } 329 } 330 331 InputSectionBase *InputSection::getRelocatedSection() const { 332 if (!file || (type != SHT_RELA && type != SHT_REL)) 333 return nullptr; 334 ArrayRef<InputSectionBase *> sections = file->getSections(); 335 return sections[info]; 336 } 337 338 // This is used for -r and --emit-relocs. We can't use memcpy to copy 339 // relocations because we need to update symbol table offset and section index 340 // for each relocation. So we copy relocations one by one. 341 template <class ELFT, class RelTy> 342 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 343 const TargetInfo &target = *elf::target; 344 InputSectionBase *sec = getRelocatedSection(); 345 (void)sec->data(); // uncompress if needed 346 347 for (const RelTy &rel : rels) { 348 RelType type = rel.getType(config->isMips64EL); 349 const ObjFile<ELFT> *file = getFile<ELFT>(); 350 Symbol &sym = file->getRelocTargetSym(rel); 351 352 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 353 buf += sizeof(RelTy); 354 355 if (RelTy::IsRela) 356 p->r_addend = getAddend<ELFT>(rel); 357 358 // Output section VA is zero for -r, so r_offset is an offset within the 359 // section, but for --emit-relocs it is a virtual address. 360 p->r_offset = sec->getVA(rel.r_offset); 361 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 362 config->isMips64EL); 363 364 if (sym.type == STT_SECTION) { 365 // We combine multiple section symbols into only one per 366 // section. This means we have to update the addend. That is 367 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 368 // section data. We do that by adding to the Relocation vector. 369 370 // .eh_frame is horribly special and can reference discarded sections. To 371 // avoid having to parse and recreate .eh_frame, we just replace any 372 // relocation in it pointing to discarded sections with R_*_NONE, which 373 // hopefully creates a frame that is ignored at runtime. Also, don't warn 374 // on .gcc_except_table and debug sections. 375 // 376 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 377 auto *d = dyn_cast<Defined>(&sym); 378 if (!d) { 379 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 380 sec->name != ".gcc_except_table" && sec->name != ".got2" && 381 sec->name != ".toc") { 382 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 383 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 384 warn("relocation refers to a discarded section: " + 385 CHECK(file->getObj().getSectionName(sec), file) + 386 "\n>>> referenced by " + getObjMsg(p->r_offset)); 387 } 388 p->setSymbolAndType(0, 0, false); 389 continue; 390 } 391 SectionBase *section = d->section; 392 if (!section->isLive()) { 393 p->setSymbolAndType(0, 0, false); 394 continue; 395 } 396 397 int64_t addend = getAddend<ELFT>(rel); 398 const uint8_t *bufLoc = sec->rawData.begin() + rel.r_offset; 399 if (!RelTy::IsRela) 400 addend = target.getImplicitAddend(bufLoc, type); 401 402 if (config->emachine == EM_MIPS && 403 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 404 // Some MIPS relocations depend on "gp" value. By default, 405 // this value has 0x7ff0 offset from a .got section. But 406 // relocatable files produced by a compiler or a linker 407 // might redefine this default value and we must use it 408 // for a calculation of the relocation result. When we 409 // generate EXE or DSO it's trivial. Generating a relocatable 410 // output is more difficult case because the linker does 411 // not calculate relocations in this mode and loses 412 // individual "gp" values used by each input object file. 413 // As a workaround we add the "gp" value to the relocation 414 // addend and save it back to the file. 415 addend += sec->getFile<ELFT>()->mipsGp0; 416 } 417 418 if (RelTy::IsRela) 419 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 420 else if (config->relocatable && type != target.noneRel) 421 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 422 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 423 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 424 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 425 // indicates that r30 is relative to the input section .got2 426 // (r_addend>=0x8000), after linking, r30 should be relative to the output 427 // section .got2 . To compensate for the shift, adjust r_addend by 428 // ppc32Got->outSecOff. 429 p->r_addend += sec->file->ppc32Got2->outSecOff; 430 } 431 } 432 } 433 434 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 435 // references specially. The general rule is that the value of the symbol in 436 // this context is the address of the place P. A further special case is that 437 // branch relocations to an undefined weak reference resolve to the next 438 // instruction. 439 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 440 uint32_t p) { 441 switch (type) { 442 // Unresolved branch relocations to weak references resolve to next 443 // instruction, this will be either 2 or 4 bytes on from P. 444 case R_ARM_THM_JUMP8: 445 case R_ARM_THM_JUMP11: 446 return p + 2 + a; 447 case R_ARM_CALL: 448 case R_ARM_JUMP24: 449 case R_ARM_PC24: 450 case R_ARM_PLT32: 451 case R_ARM_PREL31: 452 case R_ARM_THM_JUMP19: 453 case R_ARM_THM_JUMP24: 454 return p + 4 + a; 455 case R_ARM_THM_CALL: 456 // We don't want an interworking BLX to ARM 457 return p + 5 + a; 458 // Unresolved non branch pc-relative relocations 459 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 460 // targets a weak-reference. 461 case R_ARM_MOVW_PREL_NC: 462 case R_ARM_MOVT_PREL: 463 case R_ARM_REL32: 464 case R_ARM_THM_ALU_PREL_11_0: 465 case R_ARM_THM_MOVW_PREL_NC: 466 case R_ARM_THM_MOVT_PREL: 467 case R_ARM_THM_PC12: 468 return p + a; 469 // p + a is unrepresentable as negative immediates can't be encoded. 470 case R_ARM_THM_PC8: 471 return p; 472 } 473 llvm_unreachable("ARM pc-relative relocation expected\n"); 474 } 475 476 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 477 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 478 switch (type) { 479 // Unresolved branch relocations to weak references resolve to next 480 // instruction, this is 4 bytes on from P. 481 case R_AARCH64_CALL26: 482 case R_AARCH64_CONDBR19: 483 case R_AARCH64_JUMP26: 484 case R_AARCH64_TSTBR14: 485 return p + 4; 486 // Unresolved non branch pc-relative relocations 487 case R_AARCH64_PREL16: 488 case R_AARCH64_PREL32: 489 case R_AARCH64_PREL64: 490 case R_AARCH64_ADR_PREL_LO21: 491 case R_AARCH64_LD_PREL_LO19: 492 case R_AARCH64_PLT32: 493 return p; 494 } 495 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 496 } 497 498 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 499 switch (type) { 500 case R_RISCV_BRANCH: 501 case R_RISCV_JAL: 502 case R_RISCV_CALL: 503 case R_RISCV_CALL_PLT: 504 case R_RISCV_RVC_BRANCH: 505 case R_RISCV_RVC_JUMP: 506 return p; 507 default: 508 return 0; 509 } 510 } 511 512 // ARM SBREL relocations are of the form S + A - B where B is the static base 513 // The ARM ABI defines base to be "addressing origin of the output segment 514 // defining the symbol S". We defined the "addressing origin"/static base to be 515 // the base of the PT_LOAD segment containing the Sym. 516 // The procedure call standard only defines a Read Write Position Independent 517 // RWPI variant so in practice we should expect the static base to be the base 518 // of the RW segment. 519 static uint64_t getARMStaticBase(const Symbol &sym) { 520 OutputSection *os = sym.getOutputSection(); 521 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 522 fatal("SBREL relocation to " + sym.getName() + " without static base"); 523 return os->ptLoad->firstSec->addr; 524 } 525 526 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 527 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 528 // is calculated using PCREL_HI20's symbol. 529 // 530 // This function returns the R_RISCV_PCREL_HI20 relocation from 531 // R_RISCV_PCREL_LO12's symbol and addend. 532 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 533 const Defined *d = cast<Defined>(sym); 534 if (!d->section) { 535 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 536 sym->getName()); 537 return nullptr; 538 } 539 InputSection *isec = cast<InputSection>(d->section); 540 541 if (addend != 0) 542 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 543 isec->getObjMsg(d->value) + " is ignored"); 544 545 // Relocations are sorted by offset, so we can use std::equal_range to do 546 // binary search. 547 Relocation r; 548 r.offset = d->value; 549 auto range = 550 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 551 [](const Relocation &lhs, const Relocation &rhs) { 552 return lhs.offset < rhs.offset; 553 }); 554 555 for (auto it = range.first; it != range.second; ++it) 556 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 557 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 558 return &*it; 559 560 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " + 561 isec->getObjMsg(d->value) + 562 " without an associated R_RISCV_PCREL_HI20 relocation"); 563 return nullptr; 564 } 565 566 // A TLS symbol's virtual address is relative to the TLS segment. Add a 567 // target-specific adjustment to produce a thread-pointer-relative offset. 568 static int64_t getTlsTpOffset(const Symbol &s) { 569 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 570 if (&s == ElfSym::tlsModuleBase) 571 return 0; 572 573 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 574 // while most others use Variant 1. At run time TP will be aligned to p_align. 575 576 // Variant 1. TP will be followed by an optional gap (which is the size of 2 577 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 578 // padding, then the static TLS blocks. The alignment padding is added so that 579 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 580 // 581 // Variant 2. Static TLS blocks, followed by alignment padding are placed 582 // before TP. The alignment padding is added so that (TP - padding - 583 // p_memsz) is congruent to p_vaddr modulo p_align. 584 PhdrEntry *tls = Out::tlsPhdr; 585 switch (config->emachine) { 586 // Variant 1. 587 case EM_ARM: 588 case EM_AARCH64: 589 return s.getVA(0) + config->wordsize * 2 + 590 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 591 case EM_MIPS: 592 case EM_PPC: 593 case EM_PPC64: 594 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 595 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 596 // data and 0xf000 of the program's TLS segment. 597 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 598 case EM_RISCV: 599 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 600 601 // Variant 2. 602 case EM_HEXAGON: 603 case EM_SPARCV9: 604 case EM_386: 605 case EM_X86_64: 606 return s.getVA(0) - tls->p_memsz - 607 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 608 default: 609 llvm_unreachable("unhandled Config->EMachine"); 610 } 611 } 612 613 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 614 int64_t a, uint64_t p, 615 const Symbol &sym, RelExpr expr) { 616 switch (expr) { 617 case R_ABS: 618 case R_DTPREL: 619 case R_RELAX_TLS_LD_TO_LE_ABS: 620 case R_RELAX_GOT_PC_NOPIC: 621 case R_RISCV_ADD: 622 return sym.getVA(a); 623 case R_ADDEND: 624 return a; 625 case R_RELAX_HINT: 626 return 0; 627 case R_ARM_SBREL: 628 return sym.getVA(a) - getARMStaticBase(sym); 629 case R_GOT: 630 case R_RELAX_TLS_GD_TO_IE_ABS: 631 return sym.getGotVA() + a; 632 case R_GOTONLY_PC: 633 return in.got->getVA() + a - p; 634 case R_GOTPLTONLY_PC: 635 return in.gotPlt->getVA() + a - p; 636 case R_GOTREL: 637 case R_PPC64_RELAX_TOC: 638 return sym.getVA(a) - in.got->getVA(); 639 case R_GOTPLTREL: 640 return sym.getVA(a) - in.gotPlt->getVA(); 641 case R_GOTPLT: 642 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 643 return sym.getGotVA() + a - in.gotPlt->getVA(); 644 case R_TLSLD_GOT_OFF: 645 case R_GOT_OFF: 646 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 647 return sym.getGotOffset() + a; 648 case R_AARCH64_GOT_PAGE_PC: 649 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 650 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 651 case R_AARCH64_GOT_PAGE: 652 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 653 case R_GOT_PC: 654 case R_RELAX_TLS_GD_TO_IE: 655 return sym.getGotVA() + a - p; 656 case R_MIPS_GOTREL: 657 return sym.getVA(a) - in.mipsGot->getGp(file); 658 case R_MIPS_GOT_GP: 659 return in.mipsGot->getGp(file) + a; 660 case R_MIPS_GOT_GP_PC: { 661 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 662 // is _gp_disp symbol. In that case we should use the following 663 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 664 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 665 // microMIPS variants of these relocations use slightly different 666 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 667 // to correctly handle less-significant bit of the microMIPS symbol. 668 uint64_t v = in.mipsGot->getGp(file) + a - p; 669 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 670 v += 4; 671 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 672 v -= 1; 673 return v; 674 } 675 case R_MIPS_GOT_LOCAL_PAGE: 676 // If relocation against MIPS local symbol requires GOT entry, this entry 677 // should be initialized by 'page address'. This address is high 16-bits 678 // of sum the symbol's value and the addend. 679 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 680 in.mipsGot->getGp(file); 681 case R_MIPS_GOT_OFF: 682 case R_MIPS_GOT_OFF32: 683 // In case of MIPS if a GOT relocation has non-zero addend this addend 684 // should be applied to the GOT entry content not to the GOT entry offset. 685 // That is why we use separate expression type. 686 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 687 in.mipsGot->getGp(file); 688 case R_MIPS_TLSGD: 689 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 690 in.mipsGot->getGp(file); 691 case R_MIPS_TLSLD: 692 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 693 in.mipsGot->getGp(file); 694 case R_AARCH64_PAGE_PC: { 695 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 696 return getAArch64Page(val) - getAArch64Page(p); 697 } 698 case R_RISCV_PC_INDIRECT: { 699 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 700 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 701 *hiRel->sym, hiRel->expr); 702 return 0; 703 } 704 case R_PC: 705 case R_ARM_PCA: { 706 uint64_t dest; 707 if (expr == R_ARM_PCA) 708 // Some PC relative ARM (Thumb) relocations align down the place. 709 p = p & 0xfffffffc; 710 if (sym.isUndefined()) { 711 // On ARM and AArch64 a branch to an undefined weak resolves to the next 712 // instruction, otherwise the place. On RISCV, resolve an undefined weak 713 // to the same instruction to cause an infinite loop (making the user 714 // aware of the issue) while ensuring no overflow. 715 // Note: if the symbol is hidden, its binding has been converted to local, 716 // so we just check isUndefined() here. 717 if (config->emachine == EM_ARM) 718 dest = getARMUndefinedRelativeWeakVA(type, a, p); 719 else if (config->emachine == EM_AARCH64) 720 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 721 else if (config->emachine == EM_PPC) 722 dest = p; 723 else if (config->emachine == EM_RISCV) 724 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 725 else 726 dest = sym.getVA(a); 727 } else { 728 dest = sym.getVA(a); 729 } 730 return dest - p; 731 } 732 case R_PLT: 733 return sym.getPltVA() + a; 734 case R_PLT_PC: 735 case R_PPC64_CALL_PLT: 736 return sym.getPltVA() + a - p; 737 case R_PLT_GOTPLT: 738 return sym.getPltVA() + a - in.gotPlt->getVA(); 739 case R_PPC32_PLTREL: 740 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 741 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 742 // target VA computation. 743 return sym.getPltVA() - p; 744 case R_PPC64_CALL: { 745 uint64_t symVA = sym.getVA(a); 746 // If we have an undefined weak symbol, we might get here with a symbol 747 // address of zero. That could overflow, but the code must be unreachable, 748 // so don't bother doing anything at all. 749 if (!symVA) 750 return 0; 751 752 // PPC64 V2 ABI describes two entry points to a function. The global entry 753 // point is used for calls where the caller and callee (may) have different 754 // TOC base pointers and r2 needs to be modified to hold the TOC base for 755 // the callee. For local calls the caller and callee share the same 756 // TOC base and so the TOC pointer initialization code should be skipped by 757 // branching to the local entry point. 758 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 759 } 760 case R_PPC64_TOCBASE: 761 return getPPC64TocBase() + a; 762 case R_RELAX_GOT_PC: 763 case R_PPC64_RELAX_GOT_PC: 764 return sym.getVA(a) - p; 765 case R_RELAX_TLS_GD_TO_LE: 766 case R_RELAX_TLS_IE_TO_LE: 767 case R_RELAX_TLS_LD_TO_LE: 768 case R_TPREL: 769 // It is not very clear what to return if the symbol is undefined. With 770 // --noinhibit-exec, even a non-weak undefined reference may reach here. 771 // Just return A, which matches R_ABS, and the behavior of some dynamic 772 // loaders. 773 if (sym.isUndefined()) 774 return a; 775 return getTlsTpOffset(sym) + a; 776 case R_RELAX_TLS_GD_TO_LE_NEG: 777 case R_TPREL_NEG: 778 if (sym.isUndefined()) 779 return a; 780 return -getTlsTpOffset(sym) + a; 781 case R_SIZE: 782 return sym.getSize() + a; 783 case R_TLSDESC: 784 return in.got->getTlsDescAddr(sym) + a; 785 case R_TLSDESC_PC: 786 return in.got->getTlsDescAddr(sym) + a - p; 787 case R_TLSDESC_GOTPLT: 788 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 789 case R_AARCH64_TLSDESC_PAGE: 790 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 791 case R_TLSGD_GOT: 792 return in.got->getGlobalDynOffset(sym) + a; 793 case R_TLSGD_GOTPLT: 794 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 795 case R_TLSGD_PC: 796 return in.got->getGlobalDynAddr(sym) + a - p; 797 case R_TLSLD_GOTPLT: 798 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 799 case R_TLSLD_GOT: 800 return in.got->getTlsIndexOff() + a; 801 case R_TLSLD_PC: 802 return in.got->getTlsIndexVA() + a - p; 803 default: 804 llvm_unreachable("invalid expression"); 805 } 806 } 807 808 // This function applies relocations to sections without SHF_ALLOC bit. 809 // Such sections are never mapped to memory at runtime. Debug sections are 810 // an example. Relocations in non-alloc sections are much easier to 811 // handle than in allocated sections because it will never need complex 812 // treatment such as GOT or PLT (because at runtime no one refers them). 813 // So, we handle relocations for non-alloc sections directly in this 814 // function as a performance optimization. 815 template <class ELFT, class RelTy> 816 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 817 const unsigned bits = sizeof(typename ELFT::uint) * 8; 818 const TargetInfo &target = *elf::target; 819 const bool isDebug = isDebugSection(*this); 820 const bool isDebugLocOrRanges = 821 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 822 const bool isDebugLine = isDebug && name == ".debug_line"; 823 Optional<uint64_t> tombstone; 824 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 825 if (patAndValue.first.match(this->name)) { 826 tombstone = patAndValue.second; 827 break; 828 } 829 830 for (const RelTy &rel : rels) { 831 RelType type = rel.getType(config->isMips64EL); 832 833 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 834 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 835 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 836 // need to keep this bug-compatible code for a while. 837 if (config->emachine == EM_386 && type == R_386_GOTPC) 838 continue; 839 840 uint64_t offset = rel.r_offset; 841 uint8_t *bufLoc = buf + offset; 842 int64_t addend = getAddend<ELFT>(rel); 843 if (!RelTy::IsRela) 844 addend += target.getImplicitAddend(bufLoc, type); 845 846 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 847 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 848 if (expr == R_NONE) 849 continue; 850 851 if (tombstone || 852 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 853 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 854 // folded section symbols) to a tombstone value. Resolving to addend is 855 // unsatisfactory because the result address range may collide with a 856 // valid range of low address, or leave multiple CUs claiming ownership of 857 // the same range of code, which may confuse consumers. 858 // 859 // To address the problems, we use -1 as a tombstone value for most 860 // .debug_* sections. We have to ignore the addend because we don't want 861 // to resolve an address attribute (which may have a non-zero addend) to 862 // -1+addend (wrap around to a low address). 863 // 864 // R_DTPREL type relocations represent an offset into the dynamic thread 865 // vector. The computed value is st_value plus a non-negative offset. 866 // Negative values are invalid, so -1 can be used as the tombstone value. 867 // 868 // If the referenced symbol is discarded (made Undefined), or the 869 // section defining the referenced symbol is garbage collected, 870 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 871 // case. However, resolving a relocation in .debug_line to -1 would stop 872 // debugger users from setting breakpoints on the folded-in function, so 873 // exclude .debug_line. 874 // 875 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 876 // (base address selection entry), use 1 (which is used by GNU ld for 877 // .debug_ranges). 878 // 879 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 880 // value. Enable -1 in a future release. 881 auto *ds = dyn_cast<Defined>(&sym); 882 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 883 // If -z dead-reloc-in-nonalloc= is specified, respect it. 884 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 885 : (isDebugLocOrRanges ? 1 : 0); 886 target.relocateNoSym(bufLoc, type, value); 887 continue; 888 } 889 } 890 891 // For a relocatable link, only tombstone values are applied. 892 if (config->relocatable) 893 continue; 894 895 if (expr == R_SIZE) { 896 target.relocateNoSym(bufLoc, type, 897 SignExtend64<bits>(sym.getSize() + addend)); 898 continue; 899 } 900 901 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 902 // sections. 903 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 904 expr == R_RISCV_ADD) { 905 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 906 continue; 907 } 908 909 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 910 toString(type) + " against symbol '" + toString(sym) + 911 "'"; 912 if (expr != R_PC && expr != R_ARM_PCA) { 913 error(msg); 914 return; 915 } 916 917 // If the control reaches here, we found a PC-relative relocation in a 918 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 919 // at runtime, the notion of PC-relative doesn't make sense here. So, 920 // this is a usage error. However, GNU linkers historically accept such 921 // relocations without any errors and relocate them as if they were at 922 // address 0. For bug-compatibilty, we accept them with warnings. We 923 // know Steel Bank Common Lisp as of 2018 have this bug. 924 warn(msg); 925 target.relocateNoSym( 926 bufLoc, type, 927 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 928 } 929 } 930 931 // This is used when '-r' is given. 932 // For REL targets, InputSection::copyRelocations() may store artificial 933 // relocations aimed to update addends. They are handled in relocateAlloc() 934 // for allocatable sections, and this function does the same for 935 // non-allocatable sections, such as sections with debug information. 936 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 937 const unsigned bits = config->is64 ? 64 : 32; 938 939 for (const Relocation &rel : sec->relocations) { 940 // InputSection::copyRelocations() adds only R_ABS relocations. 941 assert(rel.expr == R_ABS); 942 uint8_t *bufLoc = buf + rel.offset; 943 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 944 target->relocate(bufLoc, rel, targetVA); 945 } 946 } 947 948 template <class ELFT> 949 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 950 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 951 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 952 953 if (flags & SHF_ALLOC) { 954 relocateAlloc(buf, bufEnd); 955 return; 956 } 957 958 auto *sec = cast<InputSection>(this); 959 if (config->relocatable) 960 relocateNonAllocForRelocatable(sec, buf); 961 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 962 // locations with tombstone values. 963 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 964 if (rels.areRelocsRel()) 965 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 966 else 967 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 968 } 969 970 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 971 assert(flags & SHF_ALLOC); 972 const unsigned bits = config->wordsize * 8; 973 const TargetInfo &target = *elf::target; 974 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 975 AArch64Relaxer aarch64relaxer(relocations); 976 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 977 const Relocation &rel = relocations[i]; 978 if (rel.expr == R_NONE) 979 continue; 980 uint64_t offset = rel.offset; 981 uint8_t *bufLoc = buf + offset; 982 983 uint64_t secAddr = getOutputSection()->addr; 984 if (auto *sec = dyn_cast<InputSection>(this)) 985 secAddr += sec->outSecOff; 986 const uint64_t addrLoc = secAddr + offset; 987 const uint64_t targetVA = 988 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 989 *rel.sym, rel.expr), 990 bits); 991 switch (rel.expr) { 992 case R_RELAX_HINT: 993 continue; 994 case R_RELAX_GOT_PC: 995 case R_RELAX_GOT_PC_NOPIC: 996 target.relaxGot(bufLoc, rel, targetVA); 997 break; 998 case R_AARCH64_GOT_PAGE_PC: 999 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1000 rel, relocations[i + 1], secAddr, buf)) { 1001 ++i; 1002 continue; 1003 } 1004 target.relocate(bufLoc, rel, targetVA); 1005 break; 1006 case R_AARCH64_PAGE_PC: 1007 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd( 1008 rel, relocations[i + 1], secAddr, buf)) { 1009 ++i; 1010 continue; 1011 } 1012 target.relocate(bufLoc, rel, targetVA); 1013 break; 1014 case R_PPC64_RELAX_GOT_PC: { 1015 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1016 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1017 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1018 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1019 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1020 // and only relax the other if the saved offset matches. 1021 if (rel.type == R_PPC64_GOT_PCREL34) 1022 lastPPCRelaxedRelocOff = offset; 1023 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1024 break; 1025 target.relaxGot(bufLoc, rel, targetVA); 1026 break; 1027 } 1028 case R_PPC64_RELAX_TOC: 1029 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1030 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1031 // entry, there may be R_PPC64_TOC16_HA not paired with 1032 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1033 // opportunities but is safe. 1034 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1035 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1036 target.relocate(bufLoc, rel, targetVA); 1037 break; 1038 case R_RELAX_TLS_IE_TO_LE: 1039 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1040 break; 1041 case R_RELAX_TLS_LD_TO_LE: 1042 case R_RELAX_TLS_LD_TO_LE_ABS: 1043 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1044 break; 1045 case R_RELAX_TLS_GD_TO_LE: 1046 case R_RELAX_TLS_GD_TO_LE_NEG: 1047 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1048 break; 1049 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1050 case R_RELAX_TLS_GD_TO_IE: 1051 case R_RELAX_TLS_GD_TO_IE_ABS: 1052 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1053 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1054 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1055 break; 1056 case R_PPC64_CALL: 1057 // If this is a call to __tls_get_addr, it may be part of a TLS 1058 // sequence that has been relaxed and turned into a nop. In this 1059 // case, we don't want to handle it as a call. 1060 if (read32(bufLoc) == 0x60000000) // nop 1061 break; 1062 1063 // Patch a nop (0x60000000) to a ld. 1064 if (rel.sym->needsTocRestore) { 1065 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1066 // recursive calls even if the function is preemptible. This is not 1067 // wrong in the common case where the function is not preempted at 1068 // runtime. Just ignore. 1069 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1070 rel.sym->file != file) { 1071 // Use substr(6) to remove the "__plt_" prefix. 1072 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1073 lld::toString(*rel.sym).substr(6) + 1074 " lacks nop, can't restore toc"); 1075 break; 1076 } 1077 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1078 } 1079 target.relocate(bufLoc, rel, targetVA); 1080 break; 1081 default: 1082 target.relocate(bufLoc, rel, targetVA); 1083 break; 1084 } 1085 } 1086 1087 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1088 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1089 // insn. This is primarily used to relax and optimize jumps created with 1090 // basic block sections. 1091 if (jumpInstrMod) { 1092 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1093 jumpInstrMod->size); 1094 } 1095 } 1096 1097 // For each function-defining prologue, find any calls to __morestack, 1098 // and replace them with calls to __morestack_non_split. 1099 static void switchMorestackCallsToMorestackNonSplit( 1100 DenseSet<Defined *> &prologues, 1101 SmallVector<Relocation *, 0> &morestackCalls) { 1102 1103 // If the target adjusted a function's prologue, all calls to 1104 // __morestack inside that function should be switched to 1105 // __morestack_non_split. 1106 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1107 if (!moreStackNonSplit) { 1108 error("mixing split-stack objects requires a definition of " 1109 "__morestack_non_split"); 1110 return; 1111 } 1112 1113 // Sort both collections to compare addresses efficiently. 1114 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1115 return l->offset < r->offset; 1116 }); 1117 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1118 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1119 return l->value < r->value; 1120 }); 1121 1122 auto it = morestackCalls.begin(); 1123 for (Defined *f : functions) { 1124 // Find the first call to __morestack within the function. 1125 while (it != morestackCalls.end() && (*it)->offset < f->value) 1126 ++it; 1127 // Adjust all calls inside the function. 1128 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1129 (*it)->sym = moreStackNonSplit; 1130 ++it; 1131 } 1132 } 1133 } 1134 1135 static bool enclosingPrologueAttempted(uint64_t offset, 1136 const DenseSet<Defined *> &prologues) { 1137 for (Defined *f : prologues) 1138 if (f->value <= offset && offset < f->value + f->size) 1139 return true; 1140 return false; 1141 } 1142 1143 // If a function compiled for split stack calls a function not 1144 // compiled for split stack, then the caller needs its prologue 1145 // adjusted to ensure that the called function will have enough stack 1146 // available. Find those functions, and adjust their prologues. 1147 template <class ELFT> 1148 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1149 uint8_t *end) { 1150 DenseSet<Defined *> prologues; 1151 SmallVector<Relocation *, 0> morestackCalls; 1152 1153 for (Relocation &rel : relocations) { 1154 // Ignore calls into the split-stack api. 1155 if (rel.sym->getName().startswith("__morestack")) { 1156 if (rel.sym->getName().equals("__morestack")) 1157 morestackCalls.push_back(&rel); 1158 continue; 1159 } 1160 1161 // A relocation to non-function isn't relevant. Sometimes 1162 // __morestack is not marked as a function, so this check comes 1163 // after the name check. 1164 if (rel.sym->type != STT_FUNC) 1165 continue; 1166 1167 // If the callee's-file was compiled with split stack, nothing to do. In 1168 // this context, a "Defined" symbol is one "defined by the binary currently 1169 // being produced". So an "undefined" symbol might be provided by a shared 1170 // library. It is not possible to tell how such symbols were compiled, so be 1171 // conservative. 1172 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1173 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1174 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1175 continue; 1176 1177 if (enclosingPrologueAttempted(rel.offset, prologues)) 1178 continue; 1179 1180 if (Defined *f = getEnclosingFunction(rel.offset)) { 1181 prologues.insert(f); 1182 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1183 f->stOther)) 1184 continue; 1185 if (!getFile<ELFT>()->someNoSplitStack) 1186 error(lld::toString(this) + ": " + f->getName() + 1187 " (with -fsplit-stack) calls " + rel.sym->getName() + 1188 " (without -fsplit-stack), but couldn't adjust its prologue"); 1189 } 1190 } 1191 1192 if (target->needsMoreStackNonSplit) 1193 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1194 } 1195 1196 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1197 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1198 return; 1199 // If -r or --emit-relocs is given, then an InputSection 1200 // may be a relocation section. 1201 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1202 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1203 return; 1204 } 1205 if (LLVM_UNLIKELY(type == SHT_REL)) { 1206 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1207 return; 1208 } 1209 1210 // If -r is given, we may have a SHT_GROUP section. 1211 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1212 copyShtGroup<ELFT>(buf); 1213 return; 1214 } 1215 1216 // If this is a compressed section, uncompress section contents directly 1217 // to the buffer. 1218 if (uncompressedSize >= 0) { 1219 size_t size = uncompressedSize; 1220 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1221 fatal(toString(this) + 1222 ": uncompress failed: " + llvm::toString(std::move(e))); 1223 uint8_t *bufEnd = buf + size; 1224 relocate<ELFT>(buf, bufEnd); 1225 return; 1226 } 1227 1228 // Copy section contents from source object file to output file 1229 // and then apply relocations. 1230 memcpy(buf, rawData.data(), rawData.size()); 1231 relocate<ELFT>(buf, buf + rawData.size()); 1232 } 1233 1234 void InputSection::replace(InputSection *other) { 1235 alignment = std::max(alignment, other->alignment); 1236 1237 // When a section is replaced with another section that was allocated to 1238 // another partition, the replacement section (and its associated sections) 1239 // need to be placed in the main partition so that both partitions will be 1240 // able to access it. 1241 if (partition != other->partition) { 1242 partition = 1; 1243 for (InputSection *isec : dependentSections) 1244 isec->partition = 1; 1245 } 1246 1247 other->repl = repl; 1248 other->markDead(); 1249 } 1250 1251 template <class ELFT> 1252 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1253 const typename ELFT::Shdr &header, 1254 StringRef name) 1255 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1256 1257 SyntheticSection *EhInputSection::getParent() const { 1258 return cast_or_null<SyntheticSection>(parent); 1259 } 1260 1261 // Returns the index of the first relocation that points to a region between 1262 // Begin and Begin+Size. 1263 template <class IntTy, class RelTy> 1264 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1265 unsigned &relocI) { 1266 // Start search from RelocI for fast access. That works because the 1267 // relocations are sorted in .eh_frame. 1268 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1269 const RelTy &rel = rels[relocI]; 1270 if (rel.r_offset < begin) 1271 continue; 1272 1273 if (rel.r_offset < begin + size) 1274 return relocI; 1275 return -1; 1276 } 1277 return -1; 1278 } 1279 1280 // .eh_frame is a sequence of CIE or FDE records. 1281 // This function splits an input section into records and returns them. 1282 template <class ELFT> void EhInputSection::split() { 1283 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1284 // getReloc expects the relocations to be sorted by r_offset. See the comment 1285 // in scanRelocs. 1286 if (rels.areRelocsRel()) { 1287 SmallVector<typename ELFT::Rel, 0> storage; 1288 split<ELFT>(sortRels(rels.rels, storage)); 1289 } else { 1290 SmallVector<typename ELFT::Rela, 0> storage; 1291 split<ELFT>(sortRels(rels.relas, storage)); 1292 } 1293 } 1294 1295 template <class ELFT, class RelTy> 1296 void EhInputSection::split(ArrayRef<RelTy> rels) { 1297 ArrayRef<uint8_t> d = rawData; 1298 const char *msg = nullptr; 1299 unsigned relI = 0; 1300 while (!d.empty()) { 1301 if (d.size() < 4) { 1302 msg = "CIE/FDE too small"; 1303 break; 1304 } 1305 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1306 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1307 // but we do not support that format yet. 1308 if (size == UINT32_MAX) { 1309 msg = "CIE/FDE too large"; 1310 break; 1311 } 1312 size += 4; 1313 if (size > d.size()) { 1314 msg = "CIE/FDE ends past the end of the section"; 1315 break; 1316 } 1317 1318 uint64_t off = d.data() - rawData.data(); 1319 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1320 d = d.slice(size); 1321 } 1322 if (msg) 1323 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1324 getObjMsg(d.data() - rawData.data())); 1325 } 1326 1327 // Return the offset in an output section for a given input offset. 1328 uint64_t EhInputSection::getParentOffset(uint64_t offset) const { 1329 const EhSectionPiece &piece = partition_point( 1330 pieces, [=](EhSectionPiece p) { return p.inputOff <= offset; })[-1]; 1331 if (piece.outputOff == -1) // invalid piece 1332 return offset - piece.inputOff; 1333 return piece.outputOff + (offset - piece.inputOff); 1334 } 1335 1336 static size_t findNull(StringRef s, size_t entSize) { 1337 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1338 const char *b = s.begin() + i; 1339 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1340 return i; 1341 } 1342 llvm_unreachable(""); 1343 } 1344 1345 SyntheticSection *MergeInputSection::getParent() const { 1346 return cast_or_null<SyntheticSection>(parent); 1347 } 1348 1349 // Split SHF_STRINGS section. Such section is a sequence of 1350 // null-terminated strings. 1351 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1352 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1353 const char *p = s.data(), *end = s.data() + s.size(); 1354 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1355 fatal(toString(this) + ": string is not null terminated"); 1356 if (entSize == 1) { 1357 // Optimize the common case. 1358 do { 1359 size_t size = strlen(p); 1360 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1361 p += size + 1; 1362 } while (p != end); 1363 } else { 1364 do { 1365 size_t size = findNull(StringRef(p, end - p), entSize); 1366 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1367 p += size + entSize; 1368 } while (p != end); 1369 } 1370 } 1371 1372 // Split non-SHF_STRINGS section. Such section is a sequence of 1373 // fixed size records. 1374 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1375 size_t entSize) { 1376 size_t size = data.size(); 1377 assert((size % entSize) == 0); 1378 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1379 1380 pieces.resize_for_overwrite(size / entSize); 1381 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1382 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1383 } 1384 1385 template <class ELFT> 1386 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1387 const typename ELFT::Shdr &header, 1388 StringRef name) 1389 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1390 1391 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1392 uint64_t entsize, ArrayRef<uint8_t> data, 1393 StringRef name) 1394 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1395 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1396 1397 // This function is called after we obtain a complete list of input sections 1398 // that need to be linked. This is responsible to split section contents 1399 // into small chunks for further processing. 1400 // 1401 // Note that this function is called from parallelForEach. This must be 1402 // thread-safe (i.e. no memory allocation from the pools). 1403 void MergeInputSection::splitIntoPieces() { 1404 assert(pieces.empty()); 1405 1406 if (flags & SHF_STRINGS) 1407 splitStrings(toStringRef(data()), entsize); 1408 else 1409 splitNonStrings(data(), entsize); 1410 } 1411 1412 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { 1413 if (rawData.size() <= offset) 1414 fatal(toString(this) + ": offset is outside the section"); 1415 return partition_point( 1416 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; 1417 } 1418 1419 // Return the offset in an output section for a given input offset. 1420 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1421 const SectionPiece &piece = getSectionPiece(offset); 1422 return piece.outputOff + (offset - piece.inputOff); 1423 } 1424 1425 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1426 StringRef); 1427 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1428 StringRef); 1429 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1430 StringRef); 1431 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1432 StringRef); 1433 1434 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1435 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1436 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1437 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1438 1439 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1440 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1441 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1442 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1443 1444 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1445 const ELF32LE::Shdr &, StringRef); 1446 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1447 const ELF32BE::Shdr &, StringRef); 1448 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1449 const ELF64LE::Shdr &, StringRef); 1450 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1451 const ELF64BE::Shdr &, StringRef); 1452 1453 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1454 const ELF32LE::Shdr &, StringRef); 1455 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1456 const ELF32BE::Shdr &, StringRef); 1457 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1458 const ELF64LE::Shdr &, StringRef); 1459 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1460 const ELF64BE::Shdr &, StringRef); 1461 1462 template void EhInputSection::split<ELF32LE>(); 1463 template void EhInputSection::split<ELF32BE>(); 1464 template void EhInputSection::split<ELF64LE>(); 1465 template void EhInputSection::split<ELF64BE>(); 1466