1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 SmallVector<InputSectionBase *, 0> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 // The ELF spec states that a value of 0 means the section has 74 // no alignment constraints. 75 uint32_t v = std::max<uint32_t>(alignment, 1); 76 if (!isPowerOf2_64(v)) 77 fatal(toString(this) + ": sh_addralign is not a power of 2"); 78 this->alignment = v; 79 80 // In ELF, each section can be compressed by zlib, and if compressed, 81 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 82 // If that's the case, demangle section name so that we can handle a 83 // section as if it weren't compressed. 84 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 85 if (!zlib::isAvailable()) 86 error(toString(file) + ": contains a compressed section, " + 87 "but zlib is not available"); 88 switch (config->ekind) { 89 case ELF32LEKind: 90 parseCompressedHeader<ELF32LE>(); 91 break; 92 case ELF32BEKind: 93 parseCompressedHeader<ELF32BE>(); 94 break; 95 case ELF64LEKind: 96 parseCompressedHeader<ELF64LE>(); 97 break; 98 case ELF64BEKind: 99 parseCompressedHeader<ELF64BE>(); 100 break; 101 default: 102 llvm_unreachable("unknown ELFT"); 103 } 104 } 105 } 106 107 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 108 // SHF_GROUP is a marker that a section belongs to some comdat group. 109 // That flag doesn't make sense in an executable. 110 static uint64_t getFlags(uint64_t flags) { 111 flags &= ~(uint64_t)SHF_INFO_LINK; 112 if (!config->relocatable) 113 flags &= ~(uint64_t)SHF_GROUP; 114 return flags; 115 } 116 117 template <class ELFT> 118 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 119 const typename ELFT::Shdr &hdr, 120 StringRef name, Kind sectionKind) 121 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 122 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 123 hdr.sh_addralign, getSectionContents(file, hdr), name, 124 sectionKind) { 125 // We reject object files having insanely large alignments even though 126 // they are allowed by the spec. I think 4GB is a reasonable limitation. 127 // We might want to relax this in the future. 128 if (hdr.sh_addralign > UINT32_MAX) 129 fatal(toString(&file) + ": section sh_addralign is too large"); 130 } 131 132 size_t InputSectionBase::getSize() const { 133 if (auto *s = dyn_cast<SyntheticSection>(this)) 134 return s->getSize(); 135 if (uncompressedSize >= 0) 136 return uncompressedSize; 137 return rawData.size() - bytesDropped; 138 } 139 140 void InputSectionBase::uncompress() const { 141 size_t size = uncompressedSize; 142 char *uncompressedBuf; 143 { 144 static std::mutex mu; 145 std::lock_guard<std::mutex> lock(mu); 146 uncompressedBuf = bAlloc.Allocate<char>(size); 147 } 148 149 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 150 fatal(toString(this) + 151 ": uncompress failed: " + llvm::toString(std::move(e))); 152 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 153 uncompressedSize = -1; 154 } 155 156 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 157 if (relSecIdx == 0) 158 return {}; 159 RelsOrRelas<ELFT> ret; 160 typename ELFT::Shdr shdr = 161 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 162 if (shdr.sh_type == SHT_REL) { 163 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 164 file->mb.getBufferStart() + shdr.sh_offset), 165 shdr.sh_size / sizeof(typename ELFT::Rel)); 166 } else { 167 assert(shdr.sh_type == SHT_RELA); 168 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 169 file->mb.getBufferStart() + shdr.sh_offset), 170 shdr.sh_size / sizeof(typename ELFT::Rela)); 171 } 172 return ret; 173 } 174 175 uint64_t SectionBase::getOffset(uint64_t offset) const { 176 switch (kind()) { 177 case Output: { 178 auto *os = cast<OutputSection>(this); 179 // For output sections we treat offset -1 as the end of the section. 180 return offset == uint64_t(-1) ? os->size : offset; 181 } 182 case Regular: 183 case Synthetic: 184 return cast<InputSection>(this)->outSecOff + offset; 185 case EHFrame: 186 // The file crtbeginT.o has relocations pointing to the start of an empty 187 // .eh_frame that is known to be the first in the link. It does that to 188 // identify the start of the output .eh_frame. 189 return offset; 190 case Merge: 191 const MergeInputSection *ms = cast<MergeInputSection>(this); 192 if (InputSection *isec = ms->getParent()) 193 return isec->outSecOff + ms->getParentOffset(offset); 194 return ms->getParentOffset(offset); 195 } 196 llvm_unreachable("invalid section kind"); 197 } 198 199 uint64_t SectionBase::getVA(uint64_t offset) const { 200 const OutputSection *out = getOutputSection(); 201 return (out ? out->addr : 0) + getOffset(offset); 202 } 203 204 OutputSection *SectionBase::getOutputSection() { 205 InputSection *sec; 206 if (auto *isec = dyn_cast<InputSection>(this)) 207 sec = isec; 208 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 209 sec = ms->getParent(); 210 else if (auto *eh = dyn_cast<EhInputSection>(this)) 211 sec = eh->getParent(); 212 else 213 return cast<OutputSection>(this); 214 return sec ? sec->getParent() : nullptr; 215 } 216 217 // When a section is compressed, `rawData` consists with a header followed 218 // by zlib-compressed data. This function parses a header to initialize 219 // `uncompressedSize` member and remove the header from `rawData`. 220 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 221 // Old-style header 222 if (!(flags & SHF_COMPRESSED)) { 223 assert(name.startswith(".zdebug")); 224 if (!toStringRef(rawData).startswith("ZLIB")) { 225 error(toString(this) + ": corrupted compressed section header"); 226 return; 227 } 228 rawData = rawData.slice(4); 229 230 if (rawData.size() < 8) { 231 error(toString(this) + ": corrupted compressed section header"); 232 return; 233 } 234 235 uncompressedSize = read64be(rawData.data()); 236 rawData = rawData.slice(8); 237 238 // Restore the original section name. 239 // (e.g. ".zdebug_info" -> ".debug_info") 240 name = saver.save("." + name.substr(2)); 241 return; 242 } 243 244 flags &= ~(uint64_t)SHF_COMPRESSED; 245 246 // New-style header 247 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 248 error(toString(this) + ": corrupted compressed section"); 249 return; 250 } 251 252 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 253 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 254 error(toString(this) + ": unsupported compression type"); 255 return; 256 } 257 258 uncompressedSize = hdr->ch_size; 259 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 260 rawData = rawData.slice(sizeof(*hdr)); 261 } 262 263 InputSection *InputSectionBase::getLinkOrderDep() const { 264 assert(flags & SHF_LINK_ORDER); 265 if (!link) 266 return nullptr; 267 return cast<InputSection>(file->getSections()[link]); 268 } 269 270 // Find a function symbol that encloses a given location. 271 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 272 for (Symbol *b : file->getSymbols()) 273 if (Defined *d = dyn_cast<Defined>(b)) 274 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 275 offset < d->value + d->size) 276 return d; 277 return nullptr; 278 } 279 280 // Returns an object file location string. Used to construct an error message. 281 std::string InputSectionBase::getLocation(uint64_t offset) { 282 std::string secAndOffset = 283 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 284 285 // We don't have file for synthetic sections. 286 if (file == nullptr) 287 return (config->outputFile + ":(" + secAndOffset).str(); 288 289 std::string filename = toString(file); 290 if (Defined *d = getEnclosingFunction(offset)) 291 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 292 293 return filename + ":(" + secAndOffset; 294 } 295 296 // This function is intended to be used for constructing an error message. 297 // The returned message looks like this: 298 // 299 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 300 // 301 // Returns an empty string if there's no way to get line info. 302 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 303 return file->getSrcMsg(sym, *this, offset); 304 } 305 306 // Returns a filename string along with an optional section name. This 307 // function is intended to be used for constructing an error 308 // message. The returned message looks like this: 309 // 310 // path/to/foo.o:(function bar) 311 // 312 // or 313 // 314 // path/to/foo.o:(function bar) in archive path/to/bar.a 315 std::string InputSectionBase::getObjMsg(uint64_t off) { 316 std::string filename = std::string(file->getName()); 317 318 std::string archive; 319 if (!file->archiveName.empty()) 320 archive = (" in archive " + file->archiveName).str(); 321 322 // Find a symbol that encloses a given location. 323 for (Symbol *b : file->getSymbols()) 324 if (auto *d = dyn_cast<Defined>(b)) 325 if (d->section == this && d->value <= off && off < d->value + d->size) 326 return filename + ":(" + toString(*d) + ")" + archive; 327 328 // If there's no symbol, print out the offset in the section. 329 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 330 .str(); 331 } 332 333 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 334 335 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 336 uint32_t alignment, ArrayRef<uint8_t> data, 337 StringRef name, Kind k) 338 : InputSectionBase(f, flags, type, 339 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 340 name, k) {} 341 342 template <class ELFT> 343 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 344 StringRef name) 345 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 346 347 bool InputSection::classof(const SectionBase *s) { 348 return s->kind() == SectionBase::Regular || 349 s->kind() == SectionBase::Synthetic; 350 } 351 352 OutputSection *InputSection::getParent() const { 353 return cast_or_null<OutputSection>(parent); 354 } 355 356 // Copy SHT_GROUP section contents. Used only for the -r option. 357 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 358 // ELFT::Word is the 32-bit integral type in the target endianness. 359 using u32 = typename ELFT::Word; 360 ArrayRef<u32> from = getDataAs<u32>(); 361 auto *to = reinterpret_cast<u32 *>(buf); 362 363 // The first entry is not a section number but a flag. 364 *to++ = from[0]; 365 366 // Adjust section numbers because section numbers in an input object files are 367 // different in the output. We also need to handle combined or discarded 368 // members. 369 ArrayRef<InputSectionBase *> sections = file->getSections(); 370 std::unordered_set<uint32_t> seen; 371 for (uint32_t idx : from.slice(1)) { 372 OutputSection *osec = sections[idx]->getOutputSection(); 373 if (osec && seen.insert(osec->sectionIndex).second) 374 *to++ = osec->sectionIndex; 375 } 376 } 377 378 InputSectionBase *InputSection::getRelocatedSection() const { 379 if (!file || (type != SHT_RELA && type != SHT_REL)) 380 return nullptr; 381 ArrayRef<InputSectionBase *> sections = file->getSections(); 382 return sections[info]; 383 } 384 385 // This is used for -r and --emit-relocs. We can't use memcpy to copy 386 // relocations because we need to update symbol table offset and section index 387 // for each relocation. So we copy relocations one by one. 388 template <class ELFT, class RelTy> 389 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 390 const TargetInfo &target = *elf::target; 391 InputSectionBase *sec = getRelocatedSection(); 392 393 for (const RelTy &rel : rels) { 394 RelType type = rel.getType(config->isMips64EL); 395 const ObjFile<ELFT> *file = getFile<ELFT>(); 396 Symbol &sym = file->getRelocTargetSym(rel); 397 398 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 399 buf += sizeof(RelTy); 400 401 if (RelTy::IsRela) 402 p->r_addend = getAddend<ELFT>(rel); 403 404 // Output section VA is zero for -r, so r_offset is an offset within the 405 // section, but for --emit-relocs it is a virtual address. 406 p->r_offset = sec->getVA(rel.r_offset); 407 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 408 config->isMips64EL); 409 410 if (sym.type == STT_SECTION) { 411 // We combine multiple section symbols into only one per 412 // section. This means we have to update the addend. That is 413 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 414 // section data. We do that by adding to the Relocation vector. 415 416 // .eh_frame is horribly special and can reference discarded sections. To 417 // avoid having to parse and recreate .eh_frame, we just replace any 418 // relocation in it pointing to discarded sections with R_*_NONE, which 419 // hopefully creates a frame that is ignored at runtime. Also, don't warn 420 // on .gcc_except_table and debug sections. 421 // 422 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 423 auto *d = dyn_cast<Defined>(&sym); 424 if (!d) { 425 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 426 sec->name != ".gcc_except_table" && sec->name != ".got2" && 427 sec->name != ".toc") { 428 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 429 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 430 warn("relocation refers to a discarded section: " + 431 CHECK(file->getObj().getSectionName(sec), file) + 432 "\n>>> referenced by " + getObjMsg(p->r_offset)); 433 } 434 p->setSymbolAndType(0, 0, false); 435 continue; 436 } 437 SectionBase *section = d->section; 438 if (!section->isLive()) { 439 p->setSymbolAndType(0, 0, false); 440 continue; 441 } 442 443 int64_t addend = getAddend<ELFT>(rel); 444 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 445 if (!RelTy::IsRela) 446 addend = target.getImplicitAddend(bufLoc, type); 447 448 if (config->emachine == EM_MIPS && 449 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 450 // Some MIPS relocations depend on "gp" value. By default, 451 // this value has 0x7ff0 offset from a .got section. But 452 // relocatable files produced by a compiler or a linker 453 // might redefine this default value and we must use it 454 // for a calculation of the relocation result. When we 455 // generate EXE or DSO it's trivial. Generating a relocatable 456 // output is more difficult case because the linker does 457 // not calculate relocations in this mode and loses 458 // individual "gp" values used by each input object file. 459 // As a workaround we add the "gp" value to the relocation 460 // addend and save it back to the file. 461 addend += sec->getFile<ELFT>()->mipsGp0; 462 } 463 464 if (RelTy::IsRela) 465 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 466 else if (config->relocatable && type != target.noneRel) 467 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 468 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 469 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 470 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 471 // indicates that r30 is relative to the input section .got2 472 // (r_addend>=0x8000), after linking, r30 should be relative to the output 473 // section .got2 . To compensate for the shift, adjust r_addend by 474 // ppc32Got->outSecOff. 475 p->r_addend += sec->file->ppc32Got2->outSecOff; 476 } 477 } 478 } 479 480 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 481 // references specially. The general rule is that the value of the symbol in 482 // this context is the address of the place P. A further special case is that 483 // branch relocations to an undefined weak reference resolve to the next 484 // instruction. 485 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 486 uint32_t p) { 487 switch (type) { 488 // Unresolved branch relocations to weak references resolve to next 489 // instruction, this will be either 2 or 4 bytes on from P. 490 case R_ARM_THM_JUMP8: 491 case R_ARM_THM_JUMP11: 492 return p + 2 + a; 493 case R_ARM_CALL: 494 case R_ARM_JUMP24: 495 case R_ARM_PC24: 496 case R_ARM_PLT32: 497 case R_ARM_PREL31: 498 case R_ARM_THM_JUMP19: 499 case R_ARM_THM_JUMP24: 500 return p + 4 + a; 501 case R_ARM_THM_CALL: 502 // We don't want an interworking BLX to ARM 503 return p + 5 + a; 504 // Unresolved non branch pc-relative relocations 505 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 506 // targets a weak-reference. 507 case R_ARM_MOVW_PREL_NC: 508 case R_ARM_MOVT_PREL: 509 case R_ARM_REL32: 510 case R_ARM_THM_ALU_PREL_11_0: 511 case R_ARM_THM_MOVW_PREL_NC: 512 case R_ARM_THM_MOVT_PREL: 513 case R_ARM_THM_PC12: 514 return p + a; 515 // p + a is unrepresentable as negative immediates can't be encoded. 516 case R_ARM_THM_PC8: 517 return p; 518 } 519 llvm_unreachable("ARM pc-relative relocation expected\n"); 520 } 521 522 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 523 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 524 switch (type) { 525 // Unresolved branch relocations to weak references resolve to next 526 // instruction, this is 4 bytes on from P. 527 case R_AARCH64_CALL26: 528 case R_AARCH64_CONDBR19: 529 case R_AARCH64_JUMP26: 530 case R_AARCH64_TSTBR14: 531 return p + 4; 532 // Unresolved non branch pc-relative relocations 533 case R_AARCH64_PREL16: 534 case R_AARCH64_PREL32: 535 case R_AARCH64_PREL64: 536 case R_AARCH64_ADR_PREL_LO21: 537 case R_AARCH64_LD_PREL_LO19: 538 case R_AARCH64_PLT32: 539 return p; 540 } 541 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 542 } 543 544 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 545 switch (type) { 546 case R_RISCV_BRANCH: 547 case R_RISCV_JAL: 548 case R_RISCV_CALL: 549 case R_RISCV_CALL_PLT: 550 case R_RISCV_RVC_BRANCH: 551 case R_RISCV_RVC_JUMP: 552 return p; 553 default: 554 return 0; 555 } 556 } 557 558 // ARM SBREL relocations are of the form S + A - B where B is the static base 559 // The ARM ABI defines base to be "addressing origin of the output segment 560 // defining the symbol S". We defined the "addressing origin"/static base to be 561 // the base of the PT_LOAD segment containing the Sym. 562 // The procedure call standard only defines a Read Write Position Independent 563 // RWPI variant so in practice we should expect the static base to be the base 564 // of the RW segment. 565 static uint64_t getARMStaticBase(const Symbol &sym) { 566 OutputSection *os = sym.getOutputSection(); 567 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 568 fatal("SBREL relocation to " + sym.getName() + " without static base"); 569 return os->ptLoad->firstSec->addr; 570 } 571 572 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 573 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 574 // is calculated using PCREL_HI20's symbol. 575 // 576 // This function returns the R_RISCV_PCREL_HI20 relocation from 577 // R_RISCV_PCREL_LO12's symbol and addend. 578 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 579 const Defined *d = cast<Defined>(sym); 580 if (!d->section) { 581 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 582 sym->getName()); 583 return nullptr; 584 } 585 InputSection *isec = cast<InputSection>(d->section); 586 587 if (addend != 0) 588 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 589 isec->getObjMsg(d->value) + " is ignored"); 590 591 // Relocations are sorted by offset, so we can use std::equal_range to do 592 // binary search. 593 Relocation r; 594 r.offset = d->value; 595 auto range = 596 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 597 [](const Relocation &lhs, const Relocation &rhs) { 598 return lhs.offset < rhs.offset; 599 }); 600 601 for (auto it = range.first; it != range.second; ++it) 602 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 603 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 604 return &*it; 605 606 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 607 " without an associated R_RISCV_PCREL_HI20 relocation"); 608 return nullptr; 609 } 610 611 // A TLS symbol's virtual address is relative to the TLS segment. Add a 612 // target-specific adjustment to produce a thread-pointer-relative offset. 613 static int64_t getTlsTpOffset(const Symbol &s) { 614 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 615 if (&s == ElfSym::tlsModuleBase) 616 return 0; 617 618 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 619 // while most others use Variant 1. At run time TP will be aligned to p_align. 620 621 // Variant 1. TP will be followed by an optional gap (which is the size of 2 622 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 623 // padding, then the static TLS blocks. The alignment padding is added so that 624 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 625 // 626 // Variant 2. Static TLS blocks, followed by alignment padding are placed 627 // before TP. The alignment padding is added so that (TP - padding - 628 // p_memsz) is congruent to p_vaddr modulo p_align. 629 PhdrEntry *tls = Out::tlsPhdr; 630 switch (config->emachine) { 631 // Variant 1. 632 case EM_ARM: 633 case EM_AARCH64: 634 return s.getVA(0) + config->wordsize * 2 + 635 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 636 case EM_MIPS: 637 case EM_PPC: 638 case EM_PPC64: 639 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 640 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 641 // data and 0xf000 of the program's TLS segment. 642 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 643 case EM_RISCV: 644 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 645 646 // Variant 2. 647 case EM_HEXAGON: 648 case EM_SPARCV9: 649 case EM_386: 650 case EM_X86_64: 651 return s.getVA(0) - tls->p_memsz - 652 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 653 default: 654 llvm_unreachable("unhandled Config->EMachine"); 655 } 656 } 657 658 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 659 int64_t a, uint64_t p, 660 const Symbol &sym, RelExpr expr) { 661 switch (expr) { 662 case R_ABS: 663 case R_DTPREL: 664 case R_RELAX_TLS_LD_TO_LE_ABS: 665 case R_RELAX_GOT_PC_NOPIC: 666 case R_RISCV_ADD: 667 return sym.getVA(a); 668 case R_ADDEND: 669 return a; 670 case R_ARM_SBREL: 671 return sym.getVA(a) - getARMStaticBase(sym); 672 case R_GOT: 673 case R_RELAX_TLS_GD_TO_IE_ABS: 674 return sym.getGotVA() + a; 675 case R_GOTONLY_PC: 676 return in.got->getVA() + a - p; 677 case R_GOTPLTONLY_PC: 678 return in.gotPlt->getVA() + a - p; 679 case R_GOTREL: 680 case R_PPC64_RELAX_TOC: 681 return sym.getVA(a) - in.got->getVA(); 682 case R_GOTPLTREL: 683 return sym.getVA(a) - in.gotPlt->getVA(); 684 case R_GOTPLT: 685 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 686 return sym.getGotVA() + a - in.gotPlt->getVA(); 687 case R_TLSLD_GOT_OFF: 688 case R_GOT_OFF: 689 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 690 return sym.getGotOffset() + a; 691 case R_AARCH64_GOT_PAGE_PC: 692 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 693 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 694 case R_AARCH64_GOT_PAGE: 695 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 696 case R_GOT_PC: 697 case R_RELAX_TLS_GD_TO_IE: 698 return sym.getGotVA() + a - p; 699 case R_MIPS_GOTREL: 700 return sym.getVA(a) - in.mipsGot->getGp(file); 701 case R_MIPS_GOT_GP: 702 return in.mipsGot->getGp(file) + a; 703 case R_MIPS_GOT_GP_PC: { 704 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 705 // is _gp_disp symbol. In that case we should use the following 706 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 707 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 708 // microMIPS variants of these relocations use slightly different 709 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 710 // to correctly handle less-significant bit of the microMIPS symbol. 711 uint64_t v = in.mipsGot->getGp(file) + a - p; 712 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 713 v += 4; 714 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 715 v -= 1; 716 return v; 717 } 718 case R_MIPS_GOT_LOCAL_PAGE: 719 // If relocation against MIPS local symbol requires GOT entry, this entry 720 // should be initialized by 'page address'. This address is high 16-bits 721 // of sum the symbol's value and the addend. 722 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 723 in.mipsGot->getGp(file); 724 case R_MIPS_GOT_OFF: 725 case R_MIPS_GOT_OFF32: 726 // In case of MIPS if a GOT relocation has non-zero addend this addend 727 // should be applied to the GOT entry content not to the GOT entry offset. 728 // That is why we use separate expression type. 729 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 730 in.mipsGot->getGp(file); 731 case R_MIPS_TLSGD: 732 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 733 in.mipsGot->getGp(file); 734 case R_MIPS_TLSLD: 735 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 736 in.mipsGot->getGp(file); 737 case R_AARCH64_PAGE_PC: { 738 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 739 return getAArch64Page(val) - getAArch64Page(p); 740 } 741 case R_RISCV_PC_INDIRECT: { 742 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 743 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 744 *hiRel->sym, hiRel->expr); 745 return 0; 746 } 747 case R_PC: 748 case R_ARM_PCA: { 749 uint64_t dest; 750 if (expr == R_ARM_PCA) 751 // Some PC relative ARM (Thumb) relocations align down the place. 752 p = p & 0xfffffffc; 753 if (sym.isUndefWeak()) { 754 // On ARM and AArch64 a branch to an undefined weak resolves to the next 755 // instruction, otherwise the place. On RISCV, resolve an undefined weak 756 // to the same instruction to cause an infinite loop (making the user 757 // aware of the issue) while ensuring no overflow. 758 if (config->emachine == EM_ARM) 759 dest = getARMUndefinedRelativeWeakVA(type, a, p); 760 else if (config->emachine == EM_AARCH64) 761 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 762 else if (config->emachine == EM_PPC) 763 dest = p; 764 else if (config->emachine == EM_RISCV) 765 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 766 else 767 dest = sym.getVA(a); 768 } else { 769 dest = sym.getVA(a); 770 } 771 return dest - p; 772 } 773 case R_PLT: 774 return sym.getPltVA() + a; 775 case R_PLT_PC: 776 case R_PPC64_CALL_PLT: 777 return sym.getPltVA() + a - p; 778 case R_PLT_GOTPLT: 779 return sym.getPltVA() + a - in.gotPlt->getVA(); 780 case R_PPC32_PLTREL: 781 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 782 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 783 // target VA computation. 784 return sym.getPltVA() - p; 785 case R_PPC64_CALL: { 786 uint64_t symVA = sym.getVA(a); 787 // If we have an undefined weak symbol, we might get here with a symbol 788 // address of zero. That could overflow, but the code must be unreachable, 789 // so don't bother doing anything at all. 790 if (!symVA) 791 return 0; 792 793 // PPC64 V2 ABI describes two entry points to a function. The global entry 794 // point is used for calls where the caller and callee (may) have different 795 // TOC base pointers and r2 needs to be modified to hold the TOC base for 796 // the callee. For local calls the caller and callee share the same 797 // TOC base and so the TOC pointer initialization code should be skipped by 798 // branching to the local entry point. 799 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 800 } 801 case R_PPC64_TOCBASE: 802 return getPPC64TocBase() + a; 803 case R_RELAX_GOT_PC: 804 case R_PPC64_RELAX_GOT_PC: 805 return sym.getVA(a) - p; 806 case R_RELAX_TLS_GD_TO_LE: 807 case R_RELAX_TLS_IE_TO_LE: 808 case R_RELAX_TLS_LD_TO_LE: 809 case R_TPREL: 810 // It is not very clear what to return if the symbol is undefined. With 811 // --noinhibit-exec, even a non-weak undefined reference may reach here. 812 // Just return A, which matches R_ABS, and the behavior of some dynamic 813 // loaders. 814 if (sym.isUndefined()) 815 return a; 816 return getTlsTpOffset(sym) + a; 817 case R_RELAX_TLS_GD_TO_LE_NEG: 818 case R_TPREL_NEG: 819 if (sym.isUndefined()) 820 return a; 821 return -getTlsTpOffset(sym) + a; 822 case R_SIZE: 823 return sym.getSize() + a; 824 case R_TLSDESC: 825 return in.got->getTlsDescAddr(sym) + a; 826 case R_TLSDESC_PC: 827 return in.got->getTlsDescAddr(sym) + a - p; 828 case R_TLSDESC_GOTPLT: 829 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 830 case R_AARCH64_TLSDESC_PAGE: 831 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 832 case R_TLSGD_GOT: 833 return in.got->getGlobalDynOffset(sym) + a; 834 case R_TLSGD_GOTPLT: 835 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 836 case R_TLSGD_PC: 837 return in.got->getGlobalDynAddr(sym) + a - p; 838 case R_TLSLD_GOTPLT: 839 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 840 case R_TLSLD_GOT: 841 return in.got->getTlsIndexOff() + a; 842 case R_TLSLD_PC: 843 return in.got->getTlsIndexVA() + a - p; 844 default: 845 llvm_unreachable("invalid expression"); 846 } 847 } 848 849 // This function applies relocations to sections without SHF_ALLOC bit. 850 // Such sections are never mapped to memory at runtime. Debug sections are 851 // an example. Relocations in non-alloc sections are much easier to 852 // handle than in allocated sections because it will never need complex 853 // treatment such as GOT or PLT (because at runtime no one refers them). 854 // So, we handle relocations for non-alloc sections directly in this 855 // function as a performance optimization. 856 template <class ELFT, class RelTy> 857 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 858 const unsigned bits = sizeof(typename ELFT::uint) * 8; 859 const TargetInfo &target = *elf::target; 860 const bool isDebug = isDebugSection(*this); 861 const bool isDebugLocOrRanges = 862 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 863 const bool isDebugLine = isDebug && name == ".debug_line"; 864 Optional<uint64_t> tombstone; 865 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 866 if (patAndValue.first.match(this->name)) { 867 tombstone = patAndValue.second; 868 break; 869 } 870 871 for (const RelTy &rel : rels) { 872 RelType type = rel.getType(config->isMips64EL); 873 874 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 875 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 876 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 877 // need to keep this bug-compatible code for a while. 878 if (config->emachine == EM_386 && type == R_386_GOTPC) 879 continue; 880 881 uint64_t offset = rel.r_offset; 882 uint8_t *bufLoc = buf + offset; 883 int64_t addend = getAddend<ELFT>(rel); 884 if (!RelTy::IsRela) 885 addend += target.getImplicitAddend(bufLoc, type); 886 887 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 888 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 889 if (expr == R_NONE) 890 continue; 891 892 if (tombstone || 893 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 894 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 895 // folded section symbols) to a tombstone value. Resolving to addend is 896 // unsatisfactory because the result address range may collide with a 897 // valid range of low address, or leave multiple CUs claiming ownership of 898 // the same range of code, which may confuse consumers. 899 // 900 // To address the problems, we use -1 as a tombstone value for most 901 // .debug_* sections. We have to ignore the addend because we don't want 902 // to resolve an address attribute (which may have a non-zero addend) to 903 // -1+addend (wrap around to a low address). 904 // 905 // R_DTPREL type relocations represent an offset into the dynamic thread 906 // vector. The computed value is st_value plus a non-negative offset. 907 // Negative values are invalid, so -1 can be used as the tombstone value. 908 // 909 // If the referenced symbol is discarded (made Undefined), or the 910 // section defining the referenced symbol is garbage collected, 911 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 912 // case. However, resolving a relocation in .debug_line to -1 would stop 913 // debugger users from setting breakpoints on the folded-in function, so 914 // exclude .debug_line. 915 // 916 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 917 // (base address selection entry), use 1 (which is used by GNU ld for 918 // .debug_ranges). 919 // 920 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 921 // value. Enable -1 in a future release. 922 auto *ds = dyn_cast<Defined>(&sym); 923 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 924 // If -z dead-reloc-in-nonalloc= is specified, respect it. 925 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 926 : (isDebugLocOrRanges ? 1 : 0); 927 target.relocateNoSym(bufLoc, type, value); 928 continue; 929 } 930 } 931 932 // For a relocatable link, only tombstone values are applied. 933 if (config->relocatable) 934 continue; 935 936 if (expr == R_SIZE) { 937 target.relocateNoSym(bufLoc, type, 938 SignExtend64<bits>(sym.getSize() + addend)); 939 continue; 940 } 941 942 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 943 // sections. 944 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 945 expr == R_RISCV_ADD) { 946 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 947 continue; 948 } 949 950 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 951 toString(type) + " against symbol '" + toString(sym) + 952 "'"; 953 if (expr != R_PC && expr != R_ARM_PCA) { 954 error(msg); 955 return; 956 } 957 958 // If the control reaches here, we found a PC-relative relocation in a 959 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 960 // at runtime, the notion of PC-relative doesn't make sense here. So, 961 // this is a usage error. However, GNU linkers historically accept such 962 // relocations without any errors and relocate them as if they were at 963 // address 0. For bug-compatibilty, we accept them with warnings. We 964 // know Steel Bank Common Lisp as of 2018 have this bug. 965 warn(msg); 966 target.relocateNoSym( 967 bufLoc, type, 968 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 969 } 970 } 971 972 // This is used when '-r' is given. 973 // For REL targets, InputSection::copyRelocations() may store artificial 974 // relocations aimed to update addends. They are handled in relocateAlloc() 975 // for allocatable sections, and this function does the same for 976 // non-allocatable sections, such as sections with debug information. 977 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 978 const unsigned bits = config->is64 ? 64 : 32; 979 980 for (const Relocation &rel : sec->relocations) { 981 // InputSection::copyRelocations() adds only R_ABS relocations. 982 assert(rel.expr == R_ABS); 983 uint8_t *bufLoc = buf + rel.offset; 984 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 985 target->relocate(bufLoc, rel, targetVA); 986 } 987 } 988 989 template <class ELFT> 990 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 991 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 992 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 993 994 if (flags & SHF_ALLOC) { 995 relocateAlloc(buf, bufEnd); 996 return; 997 } 998 999 auto *sec = cast<InputSection>(this); 1000 if (config->relocatable) 1001 relocateNonAllocForRelocatable(sec, buf); 1002 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 1003 // locations with tombstone values. 1004 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1005 if (rels.areRelocsRel()) 1006 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1007 else 1008 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1009 } 1010 1011 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1012 assert(flags & SHF_ALLOC); 1013 const unsigned bits = config->wordsize * 8; 1014 const TargetInfo &target = *elf::target; 1015 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1016 AArch64Relaxer aarch64relaxer(relocations); 1017 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 1018 const Relocation &rel = relocations[i]; 1019 if (rel.expr == R_NONE) 1020 continue; 1021 uint64_t offset = rel.offset; 1022 uint8_t *bufLoc = buf + offset; 1023 1024 uint64_t secAddr = getOutputSection()->addr; 1025 if (auto *sec = dyn_cast<InputSection>(this)) 1026 secAddr += sec->outSecOff; 1027 const uint64_t addrLoc = secAddr + offset; 1028 const uint64_t targetVA = 1029 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1030 *rel.sym, rel.expr), 1031 bits); 1032 switch (rel.expr) { 1033 case R_RELAX_GOT_PC: 1034 case R_RELAX_GOT_PC_NOPIC: 1035 target.relaxGot(bufLoc, rel, targetVA); 1036 break; 1037 case R_AARCH64_GOT_PAGE_PC: 1038 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1039 rel, relocations[i + 1], secAddr, buf)) { 1040 ++i; 1041 continue; 1042 } 1043 target.relocate(bufLoc, rel, targetVA); 1044 break; 1045 case R_PPC64_RELAX_GOT_PC: { 1046 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1047 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1048 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1049 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1050 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1051 // and only relax the other if the saved offset matches. 1052 if (rel.type == R_PPC64_GOT_PCREL34) 1053 lastPPCRelaxedRelocOff = offset; 1054 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1055 break; 1056 target.relaxGot(bufLoc, rel, targetVA); 1057 break; 1058 } 1059 case R_PPC64_RELAX_TOC: 1060 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1061 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1062 // entry, there may be R_PPC64_TOC16_HA not paired with 1063 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1064 // opportunities but is safe. 1065 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1066 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1067 target.relocate(bufLoc, rel, targetVA); 1068 break; 1069 case R_RELAX_TLS_IE_TO_LE: 1070 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1071 break; 1072 case R_RELAX_TLS_LD_TO_LE: 1073 case R_RELAX_TLS_LD_TO_LE_ABS: 1074 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1075 break; 1076 case R_RELAX_TLS_GD_TO_LE: 1077 case R_RELAX_TLS_GD_TO_LE_NEG: 1078 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1079 break; 1080 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1081 case R_RELAX_TLS_GD_TO_IE: 1082 case R_RELAX_TLS_GD_TO_IE_ABS: 1083 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1084 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1085 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1086 break; 1087 case R_PPC64_CALL: 1088 // If this is a call to __tls_get_addr, it may be part of a TLS 1089 // sequence that has been relaxed and turned into a nop. In this 1090 // case, we don't want to handle it as a call. 1091 if (read32(bufLoc) == 0x60000000) // nop 1092 break; 1093 1094 // Patch a nop (0x60000000) to a ld. 1095 if (rel.sym->needsTocRestore) { 1096 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1097 // recursive calls even if the function is preemptible. This is not 1098 // wrong in the common case where the function is not preempted at 1099 // runtime. Just ignore. 1100 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1101 rel.sym->file != file) { 1102 // Use substr(6) to remove the "__plt_" prefix. 1103 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1104 lld::toString(*rel.sym).substr(6) + 1105 " lacks nop, can't restore toc"); 1106 break; 1107 } 1108 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1109 } 1110 target.relocate(bufLoc, rel, targetVA); 1111 break; 1112 default: 1113 target.relocate(bufLoc, rel, targetVA); 1114 break; 1115 } 1116 } 1117 1118 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1119 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1120 // insn. This is primarily used to relax and optimize jumps created with 1121 // basic block sections. 1122 if (jumpInstrMod) { 1123 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1124 jumpInstrMod->size); 1125 } 1126 } 1127 1128 // For each function-defining prologue, find any calls to __morestack, 1129 // and replace them with calls to __morestack_non_split. 1130 static void switchMorestackCallsToMorestackNonSplit( 1131 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1132 1133 // If the target adjusted a function's prologue, all calls to 1134 // __morestack inside that function should be switched to 1135 // __morestack_non_split. 1136 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1137 if (!moreStackNonSplit) { 1138 error("mixing split-stack objects requires a definition of " 1139 "__morestack_non_split"); 1140 return; 1141 } 1142 1143 // Sort both collections to compare addresses efficiently. 1144 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1145 return l->offset < r->offset; 1146 }); 1147 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1148 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1149 return l->value < r->value; 1150 }); 1151 1152 auto it = morestackCalls.begin(); 1153 for (Defined *f : functions) { 1154 // Find the first call to __morestack within the function. 1155 while (it != morestackCalls.end() && (*it)->offset < f->value) 1156 ++it; 1157 // Adjust all calls inside the function. 1158 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1159 (*it)->sym = moreStackNonSplit; 1160 ++it; 1161 } 1162 } 1163 } 1164 1165 static bool enclosingPrologueAttempted(uint64_t offset, 1166 const DenseSet<Defined *> &prologues) { 1167 for (Defined *f : prologues) 1168 if (f->value <= offset && offset < f->value + f->size) 1169 return true; 1170 return false; 1171 } 1172 1173 // If a function compiled for split stack calls a function not 1174 // compiled for split stack, then the caller needs its prologue 1175 // adjusted to ensure that the called function will have enough stack 1176 // available. Find those functions, and adjust their prologues. 1177 template <class ELFT> 1178 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1179 uint8_t *end) { 1180 DenseSet<Defined *> prologues; 1181 std::vector<Relocation *> morestackCalls; 1182 1183 for (Relocation &rel : relocations) { 1184 // Ignore calls into the split-stack api. 1185 if (rel.sym->getName().startswith("__morestack")) { 1186 if (rel.sym->getName().equals("__morestack")) 1187 morestackCalls.push_back(&rel); 1188 continue; 1189 } 1190 1191 // A relocation to non-function isn't relevant. Sometimes 1192 // __morestack is not marked as a function, so this check comes 1193 // after the name check. 1194 if (rel.sym->type != STT_FUNC) 1195 continue; 1196 1197 // If the callee's-file was compiled with split stack, nothing to do. In 1198 // this context, a "Defined" symbol is one "defined by the binary currently 1199 // being produced". So an "undefined" symbol might be provided by a shared 1200 // library. It is not possible to tell how such symbols were compiled, so be 1201 // conservative. 1202 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1203 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1204 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1205 continue; 1206 1207 if (enclosingPrologueAttempted(rel.offset, prologues)) 1208 continue; 1209 1210 if (Defined *f = getEnclosingFunction(rel.offset)) { 1211 prologues.insert(f); 1212 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1213 f->stOther)) 1214 continue; 1215 if (!getFile<ELFT>()->someNoSplitStack) 1216 error(lld::toString(this) + ": " + f->getName() + 1217 " (with -fsplit-stack) calls " + rel.sym->getName() + 1218 " (without -fsplit-stack), but couldn't adjust its prologue"); 1219 } 1220 } 1221 1222 if (target->needsMoreStackNonSplit) 1223 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1224 } 1225 1226 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1227 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1228 s->writeTo(buf); 1229 return; 1230 } 1231 1232 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1233 return; 1234 // If -r or --emit-relocs is given, then an InputSection 1235 // may be a relocation section. 1236 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1237 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1238 return; 1239 } 1240 if (LLVM_UNLIKELY(type == SHT_REL)) { 1241 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1242 return; 1243 } 1244 1245 // If -r is given, we may have a SHT_GROUP section. 1246 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1247 copyShtGroup<ELFT>(buf); 1248 return; 1249 } 1250 1251 // If this is a compressed section, uncompress section contents directly 1252 // to the buffer. 1253 if (uncompressedSize >= 0) { 1254 size_t size = uncompressedSize; 1255 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1256 fatal(toString(this) + 1257 ": uncompress failed: " + llvm::toString(std::move(e))); 1258 uint8_t *bufEnd = buf + size; 1259 relocate<ELFT>(buf, bufEnd); 1260 return; 1261 } 1262 1263 // Copy section contents from source object file to output file 1264 // and then apply relocations. 1265 memcpy(buf, data().data(), data().size()); 1266 uint8_t *bufEnd = buf + data().size(); 1267 relocate<ELFT>(buf, bufEnd); 1268 } 1269 1270 void InputSection::replace(InputSection *other) { 1271 alignment = std::max(alignment, other->alignment); 1272 1273 // When a section is replaced with another section that was allocated to 1274 // another partition, the replacement section (and its associated sections) 1275 // need to be placed in the main partition so that both partitions will be 1276 // able to access it. 1277 if (partition != other->partition) { 1278 partition = 1; 1279 for (InputSection *isec : dependentSections) 1280 isec->partition = 1; 1281 } 1282 1283 other->repl = repl; 1284 other->markDead(); 1285 } 1286 1287 template <class ELFT> 1288 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1289 const typename ELFT::Shdr &header, 1290 StringRef name) 1291 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1292 1293 SyntheticSection *EhInputSection::getParent() const { 1294 return cast_or_null<SyntheticSection>(parent); 1295 } 1296 1297 // Returns the index of the first relocation that points to a region between 1298 // Begin and Begin+Size. 1299 template <class IntTy, class RelTy> 1300 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1301 unsigned &relocI) { 1302 // Start search from RelocI for fast access. That works because the 1303 // relocations are sorted in .eh_frame. 1304 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1305 const RelTy &rel = rels[relocI]; 1306 if (rel.r_offset < begin) 1307 continue; 1308 1309 if (rel.r_offset < begin + size) 1310 return relocI; 1311 return -1; 1312 } 1313 return -1; 1314 } 1315 1316 // .eh_frame is a sequence of CIE or FDE records. 1317 // This function splits an input section into records and returns them. 1318 template <class ELFT> void EhInputSection::split() { 1319 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1320 // getReloc expects the relocations to be sorted by r_offset. See the comment 1321 // in scanRelocs. 1322 if (rels.areRelocsRel()) { 1323 SmallVector<typename ELFT::Rel, 0> storage; 1324 split<ELFT>(sortRels(rels.rels, storage)); 1325 } else { 1326 SmallVector<typename ELFT::Rela, 0> storage; 1327 split<ELFT>(sortRels(rels.relas, storage)); 1328 } 1329 } 1330 1331 template <class ELFT, class RelTy> 1332 void EhInputSection::split(ArrayRef<RelTy> rels) { 1333 ArrayRef<uint8_t> d = rawData; 1334 const char *msg = nullptr; 1335 unsigned relI = 0; 1336 while (!d.empty()) { 1337 if (d.size() < 4) { 1338 msg = "CIE/FDE too small"; 1339 break; 1340 } 1341 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1342 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1343 // but we do not support that format yet. 1344 if (size == UINT32_MAX) { 1345 msg = "CIE/FDE too large"; 1346 break; 1347 } 1348 size += 4; 1349 if (size > d.size()) { 1350 msg = "CIE/FDE ends past the end of the section"; 1351 break; 1352 } 1353 1354 uint64_t off = d.data() - rawData.data(); 1355 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1356 d = d.slice(size); 1357 } 1358 if (msg) 1359 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1360 getObjMsg(d.data() - rawData.data())); 1361 } 1362 1363 static size_t findNull(StringRef s, size_t entSize) { 1364 // Optimize the common case. 1365 if (entSize == 1) 1366 return s.find(0); 1367 1368 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1369 const char *b = s.begin() + i; 1370 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1371 return i; 1372 } 1373 return StringRef::npos; 1374 } 1375 1376 SyntheticSection *MergeInputSection::getParent() const { 1377 return cast_or_null<SyntheticSection>(parent); 1378 } 1379 1380 // Split SHF_STRINGS section. Such section is a sequence of 1381 // null-terminated strings. 1382 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1383 size_t off = 0; 1384 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1385 StringRef s = toStringRef(data); 1386 1387 while (!s.empty()) { 1388 size_t end = findNull(s, entSize); 1389 if (end == StringRef::npos) 1390 fatal(toString(this) + ": string is not null terminated"); 1391 size_t size = end + entSize; 1392 1393 pieces.emplace_back(off, xxHash64(s.substr(0, size)), live); 1394 s = s.substr(size); 1395 off += size; 1396 } 1397 } 1398 1399 // Split non-SHF_STRINGS section. Such section is a sequence of 1400 // fixed size records. 1401 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1402 size_t entSize) { 1403 size_t size = data.size(); 1404 assert((size % entSize) == 0); 1405 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1406 1407 pieces.assign(size / entSize, SectionPiece(0, 0, false)); 1408 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1409 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1410 } 1411 1412 template <class ELFT> 1413 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1414 const typename ELFT::Shdr &header, 1415 StringRef name) 1416 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1417 1418 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1419 uint64_t entsize, ArrayRef<uint8_t> data, 1420 StringRef name) 1421 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1422 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1423 1424 // This function is called after we obtain a complete list of input sections 1425 // that need to be linked. This is responsible to split section contents 1426 // into small chunks for further processing. 1427 // 1428 // Note that this function is called from parallelForEach. This must be 1429 // thread-safe (i.e. no memory allocation from the pools). 1430 void MergeInputSection::splitIntoPieces() { 1431 assert(pieces.empty()); 1432 1433 if (flags & SHF_STRINGS) 1434 splitStrings(data(), entsize); 1435 else 1436 splitNonStrings(data(), entsize); 1437 } 1438 1439 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1440 if (this->data().size() <= offset) 1441 fatal(toString(this) + ": offset is outside the section"); 1442 1443 // If Offset is not at beginning of a section piece, it is not in the map. 1444 // In that case we need to do a binary search of the original section piece vector. 1445 auto it = partition_point( 1446 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1447 return &it[-1]; 1448 } 1449 1450 // Returns the offset in an output section for a given input offset. 1451 // Because contents of a mergeable section is not contiguous in output, 1452 // it is not just an addition to a base output offset. 1453 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1454 // If Offset is not at beginning of a section piece, it is not in the map. 1455 // In that case we need to search from the original section piece vector. 1456 const SectionPiece &piece = *getSectionPiece(offset); 1457 uint64_t addend = offset - piece.inputOff; 1458 return piece.outputOff + addend; 1459 } 1460 1461 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1462 StringRef); 1463 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1464 StringRef); 1465 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1466 StringRef); 1467 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1468 StringRef); 1469 1470 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1471 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1472 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1473 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1474 1475 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1476 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1477 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1478 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1479 1480 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1481 const ELF32LE::Shdr &, StringRef); 1482 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1483 const ELF32BE::Shdr &, StringRef); 1484 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1485 const ELF64LE::Shdr &, StringRef); 1486 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1487 const ELF64BE::Shdr &, StringRef); 1488 1489 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1490 const ELF32LE::Shdr &, StringRef); 1491 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1492 const ELF32BE::Shdr &, StringRef); 1493 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1494 const ELF64LE::Shdr &, StringRef); 1495 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1496 const ELF64BE::Shdr &, StringRef); 1497 1498 template void EhInputSection::split<ELF32LE>(); 1499 template void EhInputSection::split<ELF32BE>(); 1500 template void EhInputSection::split<ELF64LE>(); 1501 template void EhInputSection::split<ELF64BE>(); 1502