1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(&hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 numRelocations = 0; 74 areRelocsRela = false; 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraints. 78 uint32_t v = std::max<uint32_t>(alignment, 1); 79 if (!isPowerOf2_64(v)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->alignment = v; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(file) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 parseCompressedHeader(); 92 } 93 } 94 95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 96 // SHF_GROUP is a marker that a section belongs to some comdat group. 97 // That flag doesn't make sense in an executable. 98 static uint64_t getFlags(uint64_t flags) { 99 flags &= ~(uint64_t)SHF_INFO_LINK; 100 if (!config->relocatable) 101 flags &= ~(uint64_t)SHF_GROUP; 102 return flags; 103 } 104 105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 106 // March 2017) fail to infer section types for sections starting with 107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 108 // SHF_INIT_ARRAY. As a result, the following assembler directive 109 // creates ".init_array.100" with SHT_PROGBITS, for example. 110 // 111 // .section .init_array.100, "aw" 112 // 113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 114 // incorrect inputs as if they were correct from the beginning. 115 static uint64_t getType(uint64_t type, StringRef name) { 116 if (type == SHT_PROGBITS && name.startswith(".init_array.")) 117 return SHT_INIT_ARRAY; 118 if (type == SHT_PROGBITS && name.startswith(".fini_array.")) 119 return SHT_FINI_ARRAY; 120 return type; 121 } 122 123 template <class ELFT> 124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 125 const typename ELFT::Shdr &hdr, 126 StringRef name, Kind sectionKind) 127 : InputSectionBase(&file, getFlags(hdr.sh_flags), 128 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, 129 hdr.sh_info, hdr.sh_addralign, 130 getSectionContents(file, hdr), name, sectionKind) { 131 // We reject object files having insanely large alignments even though 132 // they are allowed by the spec. I think 4GB is a reasonable limitation. 133 // We might want to relax this in the future. 134 if (hdr.sh_addralign > UINT32_MAX) 135 fatal(toString(&file) + ": section sh_addralign is too large"); 136 } 137 138 size_t InputSectionBase::getSize() const { 139 if (auto *s = dyn_cast<SyntheticSection>(this)) 140 return s->getSize(); 141 if (uncompressedSize >= 0) 142 return uncompressedSize; 143 return rawData.size() - bytesDropped; 144 } 145 146 void InputSectionBase::uncompress() const { 147 size_t size = uncompressedSize; 148 char *uncompressedBuf; 149 { 150 static std::mutex mu; 151 std::lock_guard<std::mutex> lock(mu); 152 uncompressedBuf = bAlloc.Allocate<char>(size); 153 } 154 155 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 156 fatal(toString(this) + 157 ": uncompress failed: " + llvm::toString(std::move(e))); 158 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 159 uncompressedSize = -1; 160 } 161 162 uint64_t InputSectionBase::getOffsetInFile() const { 163 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 164 const uint8_t *secStart = data().begin(); 165 return secStart - fileStart; 166 } 167 168 uint64_t SectionBase::getOffset(uint64_t offset) const { 169 switch (kind()) { 170 case Output: { 171 auto *os = cast<OutputSection>(this); 172 // For output sections we treat offset -1 as the end of the section. 173 return offset == uint64_t(-1) ? os->size : offset; 174 } 175 case Regular: 176 case Synthetic: 177 return cast<InputSection>(this)->getOffset(offset); 178 case EHFrame: 179 // The file crtbeginT.o has relocations pointing to the start of an empty 180 // .eh_frame that is known to be the first in the link. It does that to 181 // identify the start of the output .eh_frame. 182 return offset; 183 case Merge: 184 const MergeInputSection *ms = cast<MergeInputSection>(this); 185 if (InputSection *isec = ms->getParent()) 186 return isec->getOffset(ms->getParentOffset(offset)); 187 return ms->getParentOffset(offset); 188 } 189 llvm_unreachable("invalid section kind"); 190 } 191 192 uint64_t SectionBase::getVA(uint64_t offset) const { 193 const OutputSection *out = getOutputSection(); 194 return (out ? out->addr : 0) + getOffset(offset); 195 } 196 197 OutputSection *SectionBase::getOutputSection() { 198 InputSection *sec; 199 if (auto *isec = dyn_cast<InputSection>(this)) 200 sec = isec; 201 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 202 sec = ms->getParent(); 203 else if (auto *eh = dyn_cast<EhInputSection>(this)) 204 sec = eh->getParent(); 205 else 206 return cast<OutputSection>(this); 207 return sec ? sec->getParent() : nullptr; 208 } 209 210 // When a section is compressed, `rawData` consists with a header followed 211 // by zlib-compressed data. This function parses a header to initialize 212 // `uncompressedSize` member and remove the header from `rawData`. 213 void InputSectionBase::parseCompressedHeader() { 214 using Chdr64 = typename ELF64LE::Chdr; 215 using Chdr32 = typename ELF32LE::Chdr; 216 217 // Old-style header 218 if (name.startswith(".zdebug")) { 219 if (!toStringRef(rawData).startswith("ZLIB")) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 rawData = rawData.slice(4); 224 225 if (rawData.size() < 8) { 226 error(toString(this) + ": corrupted compressed section header"); 227 return; 228 } 229 230 uncompressedSize = read64be(rawData.data()); 231 rawData = rawData.slice(8); 232 233 // Restore the original section name. 234 // (e.g. ".zdebug_info" -> ".debug_info") 235 name = saver.save("." + name.substr(2)); 236 return; 237 } 238 239 assert(flags & SHF_COMPRESSED); 240 flags &= ~(uint64_t)SHF_COMPRESSED; 241 242 // New-style 64-bit header 243 if (config->is64) { 244 if (rawData.size() < sizeof(Chdr64)) { 245 error(toString(this) + ": corrupted compressed section"); 246 return; 247 } 248 249 auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data()); 250 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 251 error(toString(this) + ": unsupported compression type"); 252 return; 253 } 254 255 uncompressedSize = hdr->ch_size; 256 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 257 rawData = rawData.slice(sizeof(*hdr)); 258 return; 259 } 260 261 // New-style 32-bit header 262 if (rawData.size() < sizeof(Chdr32)) { 263 error(toString(this) + ": corrupted compressed section"); 264 return; 265 } 266 267 auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data()); 268 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 269 error(toString(this) + ": unsupported compression type"); 270 return; 271 } 272 273 uncompressedSize = hdr->ch_size; 274 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 275 rawData = rawData.slice(sizeof(*hdr)); 276 } 277 278 InputSection *InputSectionBase::getLinkOrderDep() const { 279 assert(link); 280 assert(flags & SHF_LINK_ORDER); 281 return cast<InputSection>(file->getSections()[link]); 282 } 283 284 // Find a function symbol that encloses a given location. 285 template <class ELFT> 286 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 287 for (Symbol *b : file->getSymbols()) 288 if (Defined *d = dyn_cast<Defined>(b)) 289 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 290 offset < d->value + d->size) 291 return d; 292 return nullptr; 293 } 294 295 // Returns a source location string. Used to construct an error message. 296 template <class ELFT> 297 std::string InputSectionBase::getLocation(uint64_t offset) { 298 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 299 300 // We don't have file for synthetic sections. 301 if (getFile<ELFT>() == nullptr) 302 return (config->outputFile + ":(" + secAndOffset + ")") 303 .str(); 304 305 // First check if we can get desired values from debugging information. 306 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 307 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 308 secAndOffset + ")"; 309 310 // File->sourceFile contains STT_FILE symbol that contains a 311 // source file name. If it's missing, we use an object file name. 312 std::string srcFile = std::string(getFile<ELFT>()->sourceFile); 313 if (srcFile.empty()) 314 srcFile = toString(file); 315 316 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 317 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 318 319 // If there's no symbol, print out the offset in the section. 320 return (srcFile + ":(" + secAndOffset + ")"); 321 } 322 323 // This function is intended to be used for constructing an error message. 324 // The returned message looks like this: 325 // 326 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 327 // 328 // Returns an empty string if there's no way to get line info. 329 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 330 return file->getSrcMsg(sym, *this, offset); 331 } 332 333 // Returns a filename string along with an optional section name. This 334 // function is intended to be used for constructing an error 335 // message. The returned message looks like this: 336 // 337 // path/to/foo.o:(function bar) 338 // 339 // or 340 // 341 // path/to/foo.o:(function bar) in archive path/to/bar.a 342 std::string InputSectionBase::getObjMsg(uint64_t off) { 343 std::string filename = std::string(file->getName()); 344 345 std::string archive; 346 if (!file->archiveName.empty()) 347 archive = " in archive " + file->archiveName; 348 349 // Find a symbol that encloses a given location. 350 for (Symbol *b : file->getSymbols()) 351 if (auto *d = dyn_cast<Defined>(b)) 352 if (d->section == this && d->value <= off && off < d->value + d->size) 353 return filename + ":(" + toString(*d) + ")" + archive; 354 355 // If there's no symbol, print out the offset in the section. 356 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 357 .str(); 358 } 359 360 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 361 362 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 363 uint32_t alignment, ArrayRef<uint8_t> data, 364 StringRef name, Kind k) 365 : InputSectionBase(f, flags, type, 366 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 367 name, k) {} 368 369 template <class ELFT> 370 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 371 StringRef name) 372 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 373 374 bool InputSection::classof(const SectionBase *s) { 375 return s->kind() == SectionBase::Regular || 376 s->kind() == SectionBase::Synthetic; 377 } 378 379 OutputSection *InputSection::getParent() const { 380 return cast_or_null<OutputSection>(parent); 381 } 382 383 // Copy SHT_GROUP section contents. Used only for the -r option. 384 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 385 // ELFT::Word is the 32-bit integral type in the target endianness. 386 using u32 = typename ELFT::Word; 387 ArrayRef<u32> from = getDataAs<u32>(); 388 auto *to = reinterpret_cast<u32 *>(buf); 389 390 // The first entry is not a section number but a flag. 391 *to++ = from[0]; 392 393 // Adjust section numbers because section numbers in an input object files are 394 // different in the output. We also need to handle combined or discarded 395 // members. 396 ArrayRef<InputSectionBase *> sections = file->getSections(); 397 std::unordered_set<uint32_t> seen; 398 for (uint32_t idx : from.slice(1)) { 399 OutputSection *osec = sections[idx]->getOutputSection(); 400 if (osec && seen.insert(osec->sectionIndex).second) 401 *to++ = osec->sectionIndex; 402 } 403 } 404 405 InputSectionBase *InputSection::getRelocatedSection() const { 406 if (!file || (type != SHT_RELA && type != SHT_REL)) 407 return nullptr; 408 ArrayRef<InputSectionBase *> sections = file->getSections(); 409 return sections[info]; 410 } 411 412 // This is used for -r and --emit-relocs. We can't use memcpy to copy 413 // relocations because we need to update symbol table offset and section index 414 // for each relocation. So we copy relocations one by one. 415 template <class ELFT, class RelTy> 416 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 417 InputSectionBase *sec = getRelocatedSection(); 418 419 for (const RelTy &rel : rels) { 420 RelType type = rel.getType(config->isMips64EL); 421 const ObjFile<ELFT> *file = getFile<ELFT>(); 422 Symbol &sym = file->getRelocTargetSym(rel); 423 424 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 425 buf += sizeof(RelTy); 426 427 if (RelTy::IsRela) 428 p->r_addend = getAddend<ELFT>(rel); 429 430 // Output section VA is zero for -r, so r_offset is an offset within the 431 // section, but for --emit-relocs it is a virtual address. 432 p->r_offset = sec->getVA(rel.r_offset); 433 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 434 config->isMips64EL); 435 436 if (sym.type == STT_SECTION) { 437 // We combine multiple section symbols into only one per 438 // section. This means we have to update the addend. That is 439 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 440 // section data. We do that by adding to the Relocation vector. 441 442 // .eh_frame is horribly special and can reference discarded sections. To 443 // avoid having to parse and recreate .eh_frame, we just replace any 444 // relocation in it pointing to discarded sections with R_*_NONE, which 445 // hopefully creates a frame that is ignored at runtime. Also, don't warn 446 // on .gcc_except_table and debug sections. 447 // 448 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 449 auto *d = dyn_cast<Defined>(&sym); 450 if (!d) { 451 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 452 sec->name != ".gcc_except_table" && sec->name != ".got2" && 453 sec->name != ".toc") { 454 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 455 Elf_Shdr_Impl<ELFT> sec = 456 CHECK(file->getObj().sections(), file)[secIdx]; 457 warn("relocation refers to a discarded section: " + 458 CHECK(file->getObj().getSectionName(&sec), file) + 459 "\n>>> referenced by " + getObjMsg(p->r_offset)); 460 } 461 p->setSymbolAndType(0, 0, false); 462 continue; 463 } 464 SectionBase *section = d->section->repl; 465 if (!section->isLive()) { 466 p->setSymbolAndType(0, 0, false); 467 continue; 468 } 469 470 int64_t addend = getAddend<ELFT>(rel); 471 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 472 if (!RelTy::IsRela) 473 addend = target->getImplicitAddend(bufLoc, type); 474 475 if (config->emachine == EM_MIPS && 476 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 477 // Some MIPS relocations depend on "gp" value. By default, 478 // this value has 0x7ff0 offset from a .got section. But 479 // relocatable files produced by a compiler or a linker 480 // might redefine this default value and we must use it 481 // for a calculation of the relocation result. When we 482 // generate EXE or DSO it's trivial. Generating a relocatable 483 // output is more difficult case because the linker does 484 // not calculate relocations in this mode and loses 485 // individual "gp" values used by each input object file. 486 // As a workaround we add the "gp" value to the relocation 487 // addend and save it back to the file. 488 addend += sec->getFile<ELFT>()->mipsGp0; 489 } 490 491 if (RelTy::IsRela) 492 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 493 else if (config->relocatable && type != target->noneRel) 494 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 495 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 496 p->r_addend >= 0x8000) { 497 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 498 // indicates that r30 is relative to the input section .got2 499 // (r_addend>=0x8000), after linking, r30 should be relative to the output 500 // section .got2 . To compensate for the shift, adjust r_addend by 501 // ppc32Got2OutSecOff. 502 p->r_addend += sec->file->ppc32Got2OutSecOff; 503 } 504 } 505 } 506 507 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 508 // references specially. The general rule is that the value of the symbol in 509 // this context is the address of the place P. A further special case is that 510 // branch relocations to an undefined weak reference resolve to the next 511 // instruction. 512 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 513 uint32_t p) { 514 switch (type) { 515 // Unresolved branch relocations to weak references resolve to next 516 // instruction, this will be either 2 or 4 bytes on from P. 517 case R_ARM_THM_JUMP11: 518 return p + 2 + a; 519 case R_ARM_CALL: 520 case R_ARM_JUMP24: 521 case R_ARM_PC24: 522 case R_ARM_PLT32: 523 case R_ARM_PREL31: 524 case R_ARM_THM_JUMP19: 525 case R_ARM_THM_JUMP24: 526 return p + 4 + a; 527 case R_ARM_THM_CALL: 528 // We don't want an interworking BLX to ARM 529 return p + 5 + a; 530 // Unresolved non branch pc-relative relocations 531 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 532 // targets a weak-reference. 533 case R_ARM_MOVW_PREL_NC: 534 case R_ARM_MOVT_PREL: 535 case R_ARM_REL32: 536 case R_ARM_THM_ALU_PREL_11_0: 537 case R_ARM_THM_MOVW_PREL_NC: 538 case R_ARM_THM_MOVT_PREL: 539 case R_ARM_THM_PC12: 540 return p + a; 541 // p + a is unrepresentable as negative immediates can't be encoded. 542 case R_ARM_THM_PC8: 543 return p; 544 } 545 llvm_unreachable("ARM pc-relative relocation expected\n"); 546 } 547 548 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 549 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a, 550 uint64_t p) { 551 switch (type) { 552 // Unresolved branch relocations to weak references resolve to next 553 // instruction, this is 4 bytes on from P. 554 case R_AARCH64_CALL26: 555 case R_AARCH64_CONDBR19: 556 case R_AARCH64_JUMP26: 557 case R_AARCH64_TSTBR14: 558 return p + 4 + a; 559 // Unresolved non branch pc-relative relocations 560 case R_AARCH64_PREL16: 561 case R_AARCH64_PREL32: 562 case R_AARCH64_PREL64: 563 case R_AARCH64_ADR_PREL_LO21: 564 case R_AARCH64_LD_PREL_LO19: 565 case R_AARCH64_PLT32: 566 return p + a; 567 } 568 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 569 } 570 571 // ARM SBREL relocations are of the form S + A - B where B is the static base 572 // The ARM ABI defines base to be "addressing origin of the output segment 573 // defining the symbol S". We defined the "addressing origin"/static base to be 574 // the base of the PT_LOAD segment containing the Sym. 575 // The procedure call standard only defines a Read Write Position Independent 576 // RWPI variant so in practice we should expect the static base to be the base 577 // of the RW segment. 578 static uint64_t getARMStaticBase(const Symbol &sym) { 579 OutputSection *os = sym.getOutputSection(); 580 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 581 fatal("SBREL relocation to " + sym.getName() + " without static base"); 582 return os->ptLoad->firstSec->addr; 583 } 584 585 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 586 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 587 // is calculated using PCREL_HI20's symbol. 588 // 589 // This function returns the R_RISCV_PCREL_HI20 relocation from 590 // R_RISCV_PCREL_LO12's symbol and addend. 591 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 592 const Defined *d = cast<Defined>(sym); 593 if (!d->section) { 594 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 595 sym->getName()); 596 return nullptr; 597 } 598 InputSection *isec = cast<InputSection>(d->section); 599 600 if (addend != 0) 601 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 602 isec->getObjMsg(d->value) + " is ignored"); 603 604 // Relocations are sorted by offset, so we can use std::equal_range to do 605 // binary search. 606 Relocation r; 607 r.offset = d->value; 608 auto range = 609 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 610 [](const Relocation &lhs, const Relocation &rhs) { 611 return lhs.offset < rhs.offset; 612 }); 613 614 for (auto it = range.first; it != range.second; ++it) 615 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 616 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 617 return &*it; 618 619 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 620 " without an associated R_RISCV_PCREL_HI20 relocation"); 621 return nullptr; 622 } 623 624 // A TLS symbol's virtual address is relative to the TLS segment. Add a 625 // target-specific adjustment to produce a thread-pointer-relative offset. 626 static int64_t getTlsTpOffset(const Symbol &s) { 627 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 628 if (&s == ElfSym::tlsModuleBase) 629 return 0; 630 631 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 632 // while most others use Variant 1. At run time TP will be aligned to p_align. 633 634 // Variant 1. TP will be followed by an optional gap (which is the size of 2 635 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 636 // padding, then the static TLS blocks. The alignment padding is added so that 637 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 638 // 639 // Variant 2. Static TLS blocks, followed by alignment padding are placed 640 // before TP. The alignment padding is added so that (TP - padding - 641 // p_memsz) is congruent to p_vaddr modulo p_align. 642 PhdrEntry *tls = Out::tlsPhdr; 643 switch (config->emachine) { 644 // Variant 1. 645 case EM_ARM: 646 case EM_AARCH64: 647 return s.getVA(0) + config->wordsize * 2 + 648 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 649 case EM_MIPS: 650 case EM_PPC: 651 case EM_PPC64: 652 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 653 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 654 // data and 0xf000 of the program's TLS segment. 655 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 656 case EM_RISCV: 657 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 658 659 // Variant 2. 660 case EM_HEXAGON: 661 case EM_SPARCV9: 662 case EM_386: 663 case EM_X86_64: 664 return s.getVA(0) - tls->p_memsz - 665 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 666 default: 667 llvm_unreachable("unhandled Config->EMachine"); 668 } 669 } 670 671 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 672 int64_t a, uint64_t p, 673 const Symbol &sym, RelExpr expr) { 674 switch (expr) { 675 case R_ABS: 676 case R_DTPREL: 677 case R_RELAX_TLS_LD_TO_LE_ABS: 678 case R_RELAX_GOT_PC_NOPIC: 679 case R_RISCV_ADD: 680 return sym.getVA(a); 681 case R_ADDEND: 682 return a; 683 case R_ARM_SBREL: 684 return sym.getVA(a) - getARMStaticBase(sym); 685 case R_GOT: 686 case R_RELAX_TLS_GD_TO_IE_ABS: 687 return sym.getGotVA() + a; 688 case R_GOTONLY_PC: 689 return in.got->getVA() + a - p; 690 case R_GOTPLTONLY_PC: 691 return in.gotPlt->getVA() + a - p; 692 case R_GOTREL: 693 case R_PPC64_RELAX_TOC: 694 return sym.getVA(a) - in.got->getVA(); 695 case R_GOTPLTREL: 696 return sym.getVA(a) - in.gotPlt->getVA(); 697 case R_GOTPLT: 698 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 699 return sym.getGotVA() + a - in.gotPlt->getVA(); 700 case R_TLSLD_GOT_OFF: 701 case R_GOT_OFF: 702 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 703 return sym.getGotOffset() + a; 704 case R_AARCH64_GOT_PAGE_PC: 705 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 706 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 707 case R_GOT_PC: 708 case R_RELAX_TLS_GD_TO_IE: 709 return sym.getGotVA() + a - p; 710 case R_MIPS_GOTREL: 711 return sym.getVA(a) - in.mipsGot->getGp(file); 712 case R_MIPS_GOT_GP: 713 return in.mipsGot->getGp(file) + a; 714 case R_MIPS_GOT_GP_PC: { 715 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 716 // is _gp_disp symbol. In that case we should use the following 717 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 718 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 719 // microMIPS variants of these relocations use slightly different 720 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 721 // to correctly handle less-significant bit of the microMIPS symbol. 722 uint64_t v = in.mipsGot->getGp(file) + a - p; 723 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 724 v += 4; 725 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 726 v -= 1; 727 return v; 728 } 729 case R_MIPS_GOT_LOCAL_PAGE: 730 // If relocation against MIPS local symbol requires GOT entry, this entry 731 // should be initialized by 'page address'. This address is high 16-bits 732 // of sum the symbol's value and the addend. 733 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 734 in.mipsGot->getGp(file); 735 case R_MIPS_GOT_OFF: 736 case R_MIPS_GOT_OFF32: 737 // In case of MIPS if a GOT relocation has non-zero addend this addend 738 // should be applied to the GOT entry content not to the GOT entry offset. 739 // That is why we use separate expression type. 740 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 741 in.mipsGot->getGp(file); 742 case R_MIPS_TLSGD: 743 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 744 in.mipsGot->getGp(file); 745 case R_MIPS_TLSLD: 746 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 747 in.mipsGot->getGp(file); 748 case R_AARCH64_PAGE_PC: { 749 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 750 return getAArch64Page(val) - getAArch64Page(p); 751 } 752 case R_RISCV_PC_INDIRECT: { 753 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 754 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 755 *hiRel->sym, hiRel->expr); 756 return 0; 757 } 758 case R_PC: 759 case R_ARM_PCA: { 760 uint64_t dest; 761 if (expr == R_ARM_PCA) 762 // Some PC relative ARM (Thumb) relocations align down the place. 763 p = p & 0xfffffffc; 764 if (sym.isUndefWeak()) { 765 // On ARM and AArch64 a branch to an undefined weak resolves to the 766 // next instruction, otherwise the place. 767 if (config->emachine == EM_ARM) 768 dest = getARMUndefinedRelativeWeakVA(type, a, p); 769 else if (config->emachine == EM_AARCH64) 770 dest = getAArch64UndefinedRelativeWeakVA(type, a, p); 771 else if (config->emachine == EM_PPC) 772 dest = p; 773 else 774 dest = sym.getVA(a); 775 } else { 776 dest = sym.getVA(a); 777 } 778 return dest - p; 779 } 780 case R_PLT: 781 return sym.getPltVA() + a; 782 case R_PLT_PC: 783 case R_PPC64_CALL_PLT: 784 return sym.getPltVA() + a - p; 785 case R_PPC32_PLTREL: 786 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 787 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 788 // target VA computation. 789 return sym.getPltVA() - p; 790 case R_PPC64_CALL: { 791 uint64_t symVA = sym.getVA(a); 792 // If we have an undefined weak symbol, we might get here with a symbol 793 // address of zero. That could overflow, but the code must be unreachable, 794 // so don't bother doing anything at all. 795 if (!symVA) 796 return 0; 797 798 // PPC64 V2 ABI describes two entry points to a function. The global entry 799 // point is used for calls where the caller and callee (may) have different 800 // TOC base pointers and r2 needs to be modified to hold the TOC base for 801 // the callee. For local calls the caller and callee share the same 802 // TOC base and so the TOC pointer initialization code should be skipped by 803 // branching to the local entry point. 804 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 805 } 806 case R_PPC64_TOCBASE: 807 return getPPC64TocBase() + a; 808 case R_RELAX_GOT_PC: 809 return sym.getVA(a) - p; 810 case R_RELAX_TLS_GD_TO_LE: 811 case R_RELAX_TLS_IE_TO_LE: 812 case R_RELAX_TLS_LD_TO_LE: 813 case R_TLS: 814 // It is not very clear what to return if the symbol is undefined. With 815 // --noinhibit-exec, even a non-weak undefined reference may reach here. 816 // Just return A, which matches R_ABS, and the behavior of some dynamic 817 // loaders. 818 if (sym.isUndefined() || sym.isLazy()) 819 return a; 820 return getTlsTpOffset(sym) + a; 821 case R_RELAX_TLS_GD_TO_LE_NEG: 822 case R_NEG_TLS: 823 if (sym.isUndefined()) 824 return a; 825 return -getTlsTpOffset(sym) + a; 826 case R_SIZE: 827 return sym.getSize() + a; 828 case R_TLSDESC: 829 return in.got->getGlobalDynAddr(sym) + a; 830 case R_TLSDESC_PC: 831 return in.got->getGlobalDynAddr(sym) + a - p; 832 case R_AARCH64_TLSDESC_PAGE: 833 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 834 getAArch64Page(p); 835 case R_TLSGD_GOT: 836 return in.got->getGlobalDynOffset(sym) + a; 837 case R_TLSGD_GOTPLT: 838 return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA(); 839 case R_TLSGD_PC: 840 return in.got->getGlobalDynAddr(sym) + a - p; 841 case R_TLSLD_GOTPLT: 842 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 843 case R_TLSLD_GOT: 844 return in.got->getTlsIndexOff() + a; 845 case R_TLSLD_PC: 846 return in.got->getTlsIndexVA() + a - p; 847 default: 848 llvm_unreachable("invalid expression"); 849 } 850 } 851 852 // This function applies relocations to sections without SHF_ALLOC bit. 853 // Such sections are never mapped to memory at runtime. Debug sections are 854 // an example. Relocations in non-alloc sections are much easier to 855 // handle than in allocated sections because it will never need complex 856 // treatment such as GOT or PLT (because at runtime no one refers them). 857 // So, we handle relocations for non-alloc sections directly in this 858 // function as a performance optimization. 859 template <class ELFT, class RelTy> 860 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 861 const unsigned bits = sizeof(typename ELFT::uint) * 8; 862 const bool isDebug = isDebugSection(*this); 863 const bool isDebugLocOrRanges = 864 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 865 const bool isDebugLine = isDebug && name == ".debug_line"; 866 Optional<uint64_t> tombstone; 867 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 868 if (patAndValue.first.match(this->name)) { 869 tombstone = patAndValue.second; 870 break; 871 } 872 873 for (const RelTy &rel : rels) { 874 RelType type = rel.getType(config->isMips64EL); 875 876 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 877 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 878 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 879 // need to keep this bug-compatible code for a while. 880 if (config->emachine == EM_386 && type == R_386_GOTPC) 881 continue; 882 883 uint64_t offset = getOffset(rel.r_offset); 884 uint8_t *bufLoc = buf + offset; 885 int64_t addend = getAddend<ELFT>(rel); 886 if (!RelTy::IsRela) 887 addend += target->getImplicitAddend(bufLoc, type); 888 889 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 890 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 891 if (expr == R_NONE) 892 continue; 893 894 if (expr == R_SIZE) { 895 target->relocateNoSym(bufLoc, type, 896 SignExtend64<bits>(sym.getSize() + addend)); 897 continue; 898 } 899 900 if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) { 901 std::string msg = getLocation<ELFT>(offset) + 902 ": has non-ABS relocation " + toString(type) + 903 " against symbol '" + toString(sym) + "'"; 904 if (expr != R_PC && expr != R_ARM_PCA) { 905 error(msg); 906 return; 907 } 908 909 // If the control reaches here, we found a PC-relative relocation in a 910 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 911 // at runtime, the notion of PC-relative doesn't make sense here. So, 912 // this is a usage error. However, GNU linkers historically accept such 913 // relocations without any errors and relocate them as if they were at 914 // address 0. For bug-compatibilty, we accept them with warnings. We 915 // know Steel Bank Common Lisp as of 2018 have this bug. 916 warn(msg); 917 target->relocateNoSym(bufLoc, type, 918 SignExtend64<bits>(sym.getVA(addend - offset))); 919 continue; 920 } 921 922 if (tombstone || 923 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 924 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 925 // folded section symbols) to a tombstone value. Resolving to addend is 926 // unsatisfactory because the result address range may collide with a 927 // valid range of low address, or leave multiple CUs claiming ownership of 928 // the same range of code, which may confuse consumers. 929 // 930 // To address the problems, we use -1 as a tombstone value for most 931 // .debug_* sections. We have to ignore the addend because we don't want 932 // to resolve an address attribute (which may have a non-zero addend) to 933 // -1+addend (wrap around to a low address). 934 // 935 // R_DTPREL type relocations represent an offset into the dynamic thread 936 // vector. The computed value is st_value plus a non-negative offset. 937 // Negative values are invalid, so -1 can be used as the tombstone value. 938 // 939 // If the referenced symbol is discarded (made Undefined), or the 940 // section defining the referenced symbol is garbage collected, 941 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 942 // catches the ICF folded case. However, resolving a relocation in 943 // .debug_line to -1 would stop debugger users from setting breakpoints on 944 // the folded-in function, so exclude .debug_line. 945 // 946 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 947 // (base address selection entry), so -2 is used. 948 auto *ds = dyn_cast<Defined>(&sym); 949 if (!sym.getOutputSection() || 950 (ds && ds->section->repl != ds->section && !isDebugLine)) { 951 // If -z dead-reloc-in-nonalloc= is specified, respect it. 952 const uint64_t value = 953 tombstone ? SignExtend64<bits>(*tombstone) 954 : (isDebugLocOrRanges ? UINT64_MAX - 1 : UINT64_MAX); 955 target->relocateNoSym(bufLoc, type, value); 956 continue; 957 } 958 } 959 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 960 } 961 } 962 963 // This is used when '-r' is given. 964 // For REL targets, InputSection::copyRelocations() may store artificial 965 // relocations aimed to update addends. They are handled in relocateAlloc() 966 // for allocatable sections, and this function does the same for 967 // non-allocatable sections, such as sections with debug information. 968 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 969 const unsigned bits = config->is64 ? 64 : 32; 970 971 for (const Relocation &rel : sec->relocations) { 972 // InputSection::copyRelocations() adds only R_ABS relocations. 973 assert(rel.expr == R_ABS); 974 uint8_t *bufLoc = buf + rel.offset + sec->outSecOff; 975 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 976 target->relocate(bufLoc, rel, targetVA); 977 } 978 } 979 980 template <class ELFT> 981 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 982 if (flags & SHF_EXECINSTR) 983 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 984 985 if (flags & SHF_ALLOC) { 986 relocateAlloc(buf, bufEnd); 987 return; 988 } 989 990 auto *sec = cast<InputSection>(this); 991 if (config->relocatable) 992 relocateNonAllocForRelocatable(sec, buf); 993 else if (sec->areRelocsRela) 994 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 995 else 996 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 997 } 998 999 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1000 assert(flags & SHF_ALLOC); 1001 const unsigned bits = config->wordsize * 8; 1002 1003 for (const Relocation &rel : relocations) { 1004 if (rel.expr == R_NONE) 1005 continue; 1006 uint64_t offset = rel.offset; 1007 if (auto *sec = dyn_cast<InputSection>(this)) 1008 offset += sec->outSecOff; 1009 uint8_t *bufLoc = buf + offset; 1010 RelType type = rel.type; 1011 1012 uint64_t addrLoc = getOutputSection()->addr + offset; 1013 RelExpr expr = rel.expr; 1014 uint64_t targetVA = SignExtend64( 1015 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1016 bits); 1017 1018 switch (expr) { 1019 case R_RELAX_GOT_PC: 1020 case R_RELAX_GOT_PC_NOPIC: 1021 target->relaxGot(bufLoc, rel, targetVA); 1022 break; 1023 case R_PPC64_RELAX_TOC: 1024 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1025 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1026 // entry, there may be R_PPC64_TOC16_HA not paired with 1027 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1028 // opportunities but is safe. 1029 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1030 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1031 target->relocate(bufLoc, rel, targetVA); 1032 break; 1033 case R_RELAX_TLS_IE_TO_LE: 1034 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1035 break; 1036 case R_RELAX_TLS_LD_TO_LE: 1037 case R_RELAX_TLS_LD_TO_LE_ABS: 1038 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1039 break; 1040 case R_RELAX_TLS_GD_TO_LE: 1041 case R_RELAX_TLS_GD_TO_LE_NEG: 1042 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1043 break; 1044 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1045 case R_RELAX_TLS_GD_TO_IE: 1046 case R_RELAX_TLS_GD_TO_IE_ABS: 1047 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1048 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1049 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1050 break; 1051 case R_PPC64_CALL: 1052 // If this is a call to __tls_get_addr, it may be part of a TLS 1053 // sequence that has been relaxed and turned into a nop. In this 1054 // case, we don't want to handle it as a call. 1055 if (read32(bufLoc) == 0x60000000) // nop 1056 break; 1057 1058 // Patch a nop (0x60000000) to a ld. 1059 if (rel.sym->needsTocRestore) { 1060 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1061 // recursive calls even if the function is preemptible. This is not 1062 // wrong in the common case where the function is not preempted at 1063 // runtime. Just ignore. 1064 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1065 rel.sym->file != file) { 1066 // Use substr(6) to remove the "__plt_" prefix. 1067 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1068 lld::toString(*rel.sym).substr(6) + 1069 " lacks nop, can't restore toc"); 1070 break; 1071 } 1072 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1073 } 1074 target->relocate(bufLoc, rel, targetVA); 1075 break; 1076 default: 1077 target->relocate(bufLoc, rel, targetVA); 1078 break; 1079 } 1080 } 1081 1082 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1083 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1084 // insn. This is primarily used to relax and optimize jumps created with 1085 // basic block sections. 1086 if (auto *sec = dyn_cast<InputSection>(this)) { 1087 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1088 uint64_t offset = jumpMod.offset + sec->outSecOff; 1089 uint8_t *bufLoc = buf + offset; 1090 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1091 } 1092 } 1093 } 1094 1095 // For each function-defining prologue, find any calls to __morestack, 1096 // and replace them with calls to __morestack_non_split. 1097 static void switchMorestackCallsToMorestackNonSplit( 1098 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1099 1100 // If the target adjusted a function's prologue, all calls to 1101 // __morestack inside that function should be switched to 1102 // __morestack_non_split. 1103 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1104 if (!moreStackNonSplit) { 1105 error("Mixing split-stack objects requires a definition of " 1106 "__morestack_non_split"); 1107 return; 1108 } 1109 1110 // Sort both collections to compare addresses efficiently. 1111 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1112 return l->offset < r->offset; 1113 }); 1114 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1115 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1116 return l->value < r->value; 1117 }); 1118 1119 auto it = morestackCalls.begin(); 1120 for (Defined *f : functions) { 1121 // Find the first call to __morestack within the function. 1122 while (it != morestackCalls.end() && (*it)->offset < f->value) 1123 ++it; 1124 // Adjust all calls inside the function. 1125 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1126 (*it)->sym = moreStackNonSplit; 1127 ++it; 1128 } 1129 } 1130 } 1131 1132 static bool enclosingPrologueAttempted(uint64_t offset, 1133 const DenseSet<Defined *> &prologues) { 1134 for (Defined *f : prologues) 1135 if (f->value <= offset && offset < f->value + f->size) 1136 return true; 1137 return false; 1138 } 1139 1140 // If a function compiled for split stack calls a function not 1141 // compiled for split stack, then the caller needs its prologue 1142 // adjusted to ensure that the called function will have enough stack 1143 // available. Find those functions, and adjust their prologues. 1144 template <class ELFT> 1145 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1146 uint8_t *end) { 1147 if (!getFile<ELFT>()->splitStack) 1148 return; 1149 DenseSet<Defined *> prologues; 1150 std::vector<Relocation *> morestackCalls; 1151 1152 for (Relocation &rel : relocations) { 1153 // Local symbols can't possibly be cross-calls, and should have been 1154 // resolved long before this line. 1155 if (rel.sym->isLocal()) 1156 continue; 1157 1158 // Ignore calls into the split-stack api. 1159 if (rel.sym->getName().startswith("__morestack")) { 1160 if (rel.sym->getName().equals("__morestack")) 1161 morestackCalls.push_back(&rel); 1162 continue; 1163 } 1164 1165 // A relocation to non-function isn't relevant. Sometimes 1166 // __morestack is not marked as a function, so this check comes 1167 // after the name check. 1168 if (rel.sym->type != STT_FUNC) 1169 continue; 1170 1171 // If the callee's-file was compiled with split stack, nothing to do. In 1172 // this context, a "Defined" symbol is one "defined by the binary currently 1173 // being produced". So an "undefined" symbol might be provided by a shared 1174 // library. It is not possible to tell how such symbols were compiled, so be 1175 // conservative. 1176 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1177 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1178 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1179 continue; 1180 1181 if (enclosingPrologueAttempted(rel.offset, prologues)) 1182 continue; 1183 1184 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1185 prologues.insert(f); 1186 if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value), 1187 end, f->stOther)) 1188 continue; 1189 if (!getFile<ELFT>()->someNoSplitStack) 1190 error(lld::toString(this) + ": " + f->getName() + 1191 " (with -fsplit-stack) calls " + rel.sym->getName() + 1192 " (without -fsplit-stack), but couldn't adjust its prologue"); 1193 } 1194 } 1195 1196 if (target->needsMoreStackNonSplit) 1197 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1198 } 1199 1200 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1201 if (type == SHT_NOBITS) 1202 return; 1203 1204 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1205 s->writeTo(buf + outSecOff); 1206 return; 1207 } 1208 1209 // If -r or --emit-relocs is given, then an InputSection 1210 // may be a relocation section. 1211 if (type == SHT_RELA) { 1212 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1213 return; 1214 } 1215 if (type == SHT_REL) { 1216 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1217 return; 1218 } 1219 1220 // If -r is given, we may have a SHT_GROUP section. 1221 if (type == SHT_GROUP) { 1222 copyShtGroup<ELFT>(buf + outSecOff); 1223 return; 1224 } 1225 1226 // If this is a compressed section, uncompress section contents directly 1227 // to the buffer. 1228 if (uncompressedSize >= 0) { 1229 size_t size = uncompressedSize; 1230 if (Error e = zlib::uncompress(toStringRef(rawData), 1231 (char *)(buf + outSecOff), size)) 1232 fatal(toString(this) + 1233 ": uncompress failed: " + llvm::toString(std::move(e))); 1234 uint8_t *bufEnd = buf + outSecOff + size; 1235 relocate<ELFT>(buf, bufEnd); 1236 return; 1237 } 1238 1239 // Copy section contents from source object file to output file 1240 // and then apply relocations. 1241 memcpy(buf + outSecOff, data().data(), data().size()); 1242 uint8_t *bufEnd = buf + outSecOff + data().size(); 1243 relocate<ELFT>(buf, bufEnd); 1244 } 1245 1246 void InputSection::replace(InputSection *other) { 1247 alignment = std::max(alignment, other->alignment); 1248 1249 // When a section is replaced with another section that was allocated to 1250 // another partition, the replacement section (and its associated sections) 1251 // need to be placed in the main partition so that both partitions will be 1252 // able to access it. 1253 if (partition != other->partition) { 1254 partition = 1; 1255 for (InputSection *isec : dependentSections) 1256 isec->partition = 1; 1257 } 1258 1259 other->repl = repl; 1260 other->markDead(); 1261 } 1262 1263 template <class ELFT> 1264 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1265 const typename ELFT::Shdr &header, 1266 StringRef name) 1267 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1268 1269 SyntheticSection *EhInputSection::getParent() const { 1270 return cast_or_null<SyntheticSection>(parent); 1271 } 1272 1273 // Returns the index of the first relocation that points to a region between 1274 // Begin and Begin+Size. 1275 template <class IntTy, class RelTy> 1276 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1277 unsigned &relocI) { 1278 // Start search from RelocI for fast access. That works because the 1279 // relocations are sorted in .eh_frame. 1280 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1281 const RelTy &rel = rels[relocI]; 1282 if (rel.r_offset < begin) 1283 continue; 1284 1285 if (rel.r_offset < begin + size) 1286 return relocI; 1287 return -1; 1288 } 1289 return -1; 1290 } 1291 1292 // .eh_frame is a sequence of CIE or FDE records. 1293 // This function splits an input section into records and returns them. 1294 template <class ELFT> void EhInputSection::split() { 1295 if (areRelocsRela) 1296 split<ELFT>(relas<ELFT>()); 1297 else 1298 split<ELFT>(rels<ELFT>()); 1299 } 1300 1301 template <class ELFT, class RelTy> 1302 void EhInputSection::split(ArrayRef<RelTy> rels) { 1303 unsigned relI = 0; 1304 for (size_t off = 0, end = data().size(); off != end;) { 1305 size_t size = readEhRecordSize(this, off); 1306 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1307 // The empty record is the end marker. 1308 if (size == 4) 1309 break; 1310 off += size; 1311 } 1312 } 1313 1314 static size_t findNull(StringRef s, size_t entSize) { 1315 // Optimize the common case. 1316 if (entSize == 1) 1317 return s.find(0); 1318 1319 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1320 const char *b = s.begin() + i; 1321 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1322 return i; 1323 } 1324 return StringRef::npos; 1325 } 1326 1327 SyntheticSection *MergeInputSection::getParent() const { 1328 return cast_or_null<SyntheticSection>(parent); 1329 } 1330 1331 // Split SHF_STRINGS section. Such section is a sequence of 1332 // null-terminated strings. 1333 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1334 size_t off = 0; 1335 bool isAlloc = flags & SHF_ALLOC; 1336 StringRef s = toStringRef(data); 1337 1338 while (!s.empty()) { 1339 size_t end = findNull(s, entSize); 1340 if (end == StringRef::npos) 1341 fatal(toString(this) + ": string is not null terminated"); 1342 size_t size = end + entSize; 1343 1344 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1345 s = s.substr(size); 1346 off += size; 1347 } 1348 } 1349 1350 // Split non-SHF_STRINGS section. Such section is a sequence of 1351 // fixed size records. 1352 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1353 size_t entSize) { 1354 size_t size = data.size(); 1355 assert((size % entSize) == 0); 1356 bool isAlloc = flags & SHF_ALLOC; 1357 1358 for (size_t i = 0; i != size; i += entSize) 1359 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1360 } 1361 1362 template <class ELFT> 1363 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1364 const typename ELFT::Shdr &header, 1365 StringRef name) 1366 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1367 1368 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1369 uint64_t entsize, ArrayRef<uint8_t> data, 1370 StringRef name) 1371 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1372 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1373 1374 // This function is called after we obtain a complete list of input sections 1375 // that need to be linked. This is responsible to split section contents 1376 // into small chunks for further processing. 1377 // 1378 // Note that this function is called from parallelForEach. This must be 1379 // thread-safe (i.e. no memory allocation from the pools). 1380 void MergeInputSection::splitIntoPieces() { 1381 assert(pieces.empty()); 1382 1383 if (flags & SHF_STRINGS) 1384 splitStrings(data(), entsize); 1385 else 1386 splitNonStrings(data(), entsize); 1387 } 1388 1389 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1390 if (this->data().size() <= offset) 1391 fatal(toString(this) + ": offset is outside the section"); 1392 1393 // If Offset is not at beginning of a section piece, it is not in the map. 1394 // In that case we need to do a binary search of the original section piece vector. 1395 auto it = partition_point( 1396 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1397 return &it[-1]; 1398 } 1399 1400 // Returns the offset in an output section for a given input offset. 1401 // Because contents of a mergeable section is not contiguous in output, 1402 // it is not just an addition to a base output offset. 1403 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1404 // If Offset is not at beginning of a section piece, it is not in the map. 1405 // In that case we need to search from the original section piece vector. 1406 const SectionPiece &piece = 1407 *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset)); 1408 uint64_t addend = offset - piece.inputOff; 1409 return piece.outputOff + addend; 1410 } 1411 1412 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1413 StringRef); 1414 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1415 StringRef); 1416 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1417 StringRef); 1418 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1419 StringRef); 1420 1421 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1422 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1423 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1424 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1425 1426 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1427 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1428 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1429 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1430 1431 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1432 const ELF32LE::Shdr &, StringRef); 1433 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1434 const ELF32BE::Shdr &, StringRef); 1435 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1436 const ELF64LE::Shdr &, StringRef); 1437 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1438 const ELF64BE::Shdr &, StringRef); 1439 1440 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1441 const ELF32LE::Shdr &, StringRef); 1442 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1443 const ELF32BE::Shdr &, StringRef); 1444 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1445 const ELF64LE::Shdr &, StringRef); 1446 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1447 const ELF64BE::Shdr &, StringRef); 1448 1449 template void EhInputSection::split<ELF32LE>(); 1450 template void EhInputSection::split<ELF32BE>(); 1451 template void EhInputSection::split<ELF64LE>(); 1452 template void EhInputSection::split<ELF64BE>(); 1453