1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/Endian.h" 25 #include <mutex> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 // Returns a string to construct an error message. 37 template <class ELFT> 38 std::string lld::toString(const InputSectionBase<ELFT> *Sec) { 39 // File can be absent if section is synthetic. 40 std::string FileName = 41 Sec->getFile() ? Sec->getFile()->getName() : "<internal>"; 42 return (FileName + ":(" + Sec->Name + ")").str(); 43 } 44 45 template <class ELFT> 46 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, 47 const typename ELFT::Shdr *Hdr) { 48 if (!File || Hdr->sh_type == SHT_NOBITS) 49 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 50 return check(File->getObj().getSectionContents(Hdr)); 51 } 52 53 template <class ELFT> 54 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 55 uintX_t Flags, uint32_t Type, 56 uintX_t Entsize, uint32_t Link, 57 uint32_t Info, uintX_t Addralign, 58 ArrayRef<uint8_t> Data, StringRef Name, 59 Kind SectionKind) 60 : InputSectionData(SectionKind, Name, Data, 61 !Config->GcSections || !(Flags & SHF_ALLOC)), 62 File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link), 63 Info(Info), Repl(this) { 64 NumRelocations = 0; 65 AreRelocsRela = false; 66 67 // The ELF spec states that a value of 0 means the section has 68 // no alignment constraits. 69 uint64_t V = std::max<uint64_t>(Addralign, 1); 70 if (!isPowerOf2_64(V)) 71 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 72 73 // We reject object files having insanely large alignments even though 74 // they are allowed by the spec. I think 4GB is a reasonable limitation. 75 // We might want to relax this in the future. 76 if (V > UINT32_MAX) 77 fatal(toString(File) + ": section sh_addralign is too large"); 78 Alignment = V; 79 80 // If it is not a mergeable section, overwrite the flag so that the flag 81 // is consistent with the class. This inconsistency could occur when 82 // string merging is disabled using -O0 flag. 83 if (!Config->Relocatable && !isa<MergeInputSection<ELFT>>(this)) 84 this->Flags &= ~(SHF_MERGE | SHF_STRINGS); 85 } 86 87 template <class ELFT> 88 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 89 const Elf_Shdr *Hdr, StringRef Name, 90 Kind SectionKind) 91 : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type, 92 Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, 93 Hdr->sh_addralign, getSectionContents(File, Hdr), Name, 94 SectionKind) { 95 this->Offset = Hdr->sh_offset; 96 } 97 98 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const { 99 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) 100 return S->getSize(); 101 102 if (auto *D = dyn_cast<InputSection<ELFT>>(this)) 103 if (D->getThunksSize() > 0) 104 return D->getThunkOff() + D->getThunksSize(); 105 106 return Data.size(); 107 } 108 109 template <class ELFT> 110 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const { 111 switch (kind()) { 112 case Regular: 113 return cast<InputSection<ELFT>>(this)->OutSecOff + Offset; 114 case Synthetic: 115 // For synthetic sections we treat offset -1 as the end of the section. 116 // The same approach is used for synthetic symbols (DefinedSynthetic). 117 return cast<InputSection<ELFT>>(this)->OutSecOff + 118 (Offset == uintX_t(-1) ? getSize() : Offset); 119 case EHFrame: 120 // The file crtbeginT.o has relocations pointing to the start of an empty 121 // .eh_frame that is known to be the first in the link. It does that to 122 // identify the start of the output .eh_frame. 123 return Offset; 124 case Merge: 125 return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset); 126 } 127 llvm_unreachable("invalid section kind"); 128 } 129 130 // Uncompress section contents. Note that this function is called 131 // from parallel_for_each, so it must be thread-safe. 132 template <class ELFT> void InputSectionBase<ELFT>::uncompress() { 133 Decompressor Dec = check(Decompressor::create( 134 Name, toStringRef(Data), ELFT::TargetEndianness == llvm::support::little, 135 ELFT::Is64Bits)); 136 137 size_t Size = Dec.getDecompressedSize(); 138 char *OutputBuf; 139 { 140 static std::mutex Mu; 141 std::lock_guard<std::mutex> Lock(Mu); 142 OutputBuf = BAlloc.Allocate<char>(Size); 143 } 144 145 if (Error E = Dec.decompress({OutputBuf, Size})) 146 fatal(toString(this) + 147 ": decompress failed: " + llvm::toString(std::move(E))); 148 Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 149 } 150 151 template <class ELFT> 152 typename ELFT::uint 153 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const { 154 return getOffset(Sym.Value); 155 } 156 157 template <class ELFT> 158 InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const { 159 if ((Flags & SHF_LINK_ORDER) && Link != 0) 160 return getFile()->getSections()[Link]; 161 return nullptr; 162 } 163 164 // Returns a source location string. Used to construct an error message. 165 template <class ELFT> 166 std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) { 167 // First check if we can get desired values from debugging information. 168 std::string LineInfo = File->getLineInfo(this, Offset); 169 if (!LineInfo.empty()) 170 return LineInfo; 171 172 // File->SourceFile contains STT_FILE symbol that contains a 173 // source file name. If it's missing, we use an object file name. 174 std::string SrcFile = File->SourceFile; 175 if (SrcFile.empty()) 176 SrcFile = toString(File); 177 178 // Find a function symbol that encloses a given location. 179 for (SymbolBody *B : File->getSymbols()) 180 if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B)) 181 if (D->Section == this && D->Type == STT_FUNC) 182 if (D->Value <= Offset && Offset < D->Value + D->Size) 183 return SrcFile + ":(function " + toString(*D) + ")"; 184 185 // If there's no symbol, print out the offset in the section. 186 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 187 } 188 189 template <class ELFT> 190 InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {} 191 192 template <class ELFT> 193 InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type, 194 uintX_t Addralign, ArrayRef<uint8_t> Data, 195 StringRef Name, Kind K) 196 : InputSectionBase<ELFT>(nullptr, Flags, Type, 197 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign, 198 Data, Name, K) {} 199 200 template <class ELFT> 201 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F, 202 const Elf_Shdr *Header, StringRef Name) 203 : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {} 204 205 template <class ELFT> 206 bool InputSection<ELFT>::classof(const InputSectionData *S) { 207 return S->kind() == Base::Regular || S->kind() == Base::Synthetic; 208 } 209 210 template <class ELFT> 211 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() { 212 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 213 ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections(); 214 return Sections[this->Info]; 215 } 216 217 template <class ELFT> void InputSection<ELFT>::addThunk(const Thunk<ELFT> *T) { 218 Thunks.push_back(T); 219 } 220 221 template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const { 222 return this->Data.size(); 223 } 224 225 template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const { 226 uint64_t Total = 0; 227 for (const Thunk<ELFT> *T : Thunks) 228 Total += T->size(); 229 return Total; 230 } 231 232 // This is used for -r. We can't use memcpy to copy relocations because we need 233 // to update symbol table offset and section index for each relocation. So we 234 // copy relocations one by one. 235 template <class ELFT> 236 template <class RelTy> 237 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 238 InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection(); 239 240 // Loop is slow and have complexity O(N*M), where N - amount of 241 // relocations and M - amount of symbols in symbol table. 242 // That happens because getSymbolIndex(...) call below performs 243 // simple linear search. 244 for (const RelTy &Rel : Rels) { 245 uint32_t Type = Rel.getType(Config->Mips64EL); 246 SymbolBody &Body = this->File->getRelocTargetSym(Rel); 247 248 Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf); 249 Buf += sizeof(RelTy); 250 251 if (Config->Rela) 252 P->r_addend = getAddend<ELFT>(Rel); 253 P->r_offset = RelocatedSection->getOffset(Rel.r_offset); 254 P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type, 255 Config->Mips64EL); 256 } 257 } 258 259 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 260 uint32_t P) { 261 switch (Type) { 262 case R_ARM_THM_JUMP11: 263 return P + 2; 264 case R_ARM_CALL: 265 case R_ARM_JUMP24: 266 case R_ARM_PC24: 267 case R_ARM_PLT32: 268 case R_ARM_PREL31: 269 case R_ARM_THM_JUMP19: 270 case R_ARM_THM_JUMP24: 271 return P + 4; 272 case R_ARM_THM_CALL: 273 // We don't want an interworking BLX to ARM 274 return P + 5; 275 default: 276 return A; 277 } 278 } 279 280 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 281 uint64_t P) { 282 switch (Type) { 283 case R_AARCH64_CALL26: 284 case R_AARCH64_CONDBR19: 285 case R_AARCH64_JUMP26: 286 case R_AARCH64_TSTBR14: 287 return P + 4; 288 default: 289 return A; 290 } 291 } 292 293 template <class ELFT> 294 static typename ELFT::uint 295 getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P, 296 const SymbolBody &Body, RelExpr Expr) { 297 switch (Expr) { 298 case R_HINT: 299 case R_TLSDESC_CALL: 300 llvm_unreachable("cannot relocate hint relocs"); 301 case R_TLSLD: 302 return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize(); 303 case R_TLSLD_PC: 304 return In<ELFT>::Got->getTlsIndexVA() + A - P; 305 case R_THUNK_ABS: 306 return Body.getThunkVA<ELFT>() + A; 307 case R_THUNK_PC: 308 case R_THUNK_PLT_PC: 309 return Body.getThunkVA<ELFT>() + A - P; 310 case R_PPC_TOC: 311 return getPPC64TocBase() + A; 312 case R_TLSGD: 313 return In<ELFT>::Got->getGlobalDynOffset(Body) + A - 314 In<ELFT>::Got->getSize(); 315 case R_TLSGD_PC: 316 return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 317 case R_TLSDESC: 318 return In<ELFT>::Got->getGlobalDynAddr(Body) + A; 319 case R_TLSDESC_PAGE: 320 return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) - 321 getAArch64Page(P); 322 case R_PLT: 323 return Body.getPltVA<ELFT>() + A; 324 case R_PLT_PC: 325 case R_PPC_PLT_OPD: 326 return Body.getPltVA<ELFT>() + A - P; 327 case R_SIZE: 328 return Body.getSize<ELFT>() + A; 329 case R_GOTREL: 330 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA(); 331 case R_GOTREL_FROM_END: 332 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() - 333 In<ELFT>::Got->getSize(); 334 case R_RELAX_TLS_GD_TO_IE_END: 335 case R_GOT_FROM_END: 336 return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize(); 337 case R_RELAX_TLS_GD_TO_IE_ABS: 338 case R_GOT: 339 return Body.getGotVA<ELFT>() + A; 340 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 341 case R_GOT_PAGE_PC: 342 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 343 case R_RELAX_TLS_GD_TO_IE: 344 case R_GOT_PC: 345 return Body.getGotVA<ELFT>() + A - P; 346 case R_GOTONLY_PC: 347 return In<ELFT>::Got->getVA() + A - P; 348 case R_GOTONLY_PC_FROM_END: 349 return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize(); 350 case R_RELAX_TLS_LD_TO_LE: 351 case R_RELAX_TLS_IE_TO_LE: 352 case R_RELAX_TLS_GD_TO_LE: 353 case R_TLS: 354 // A weak undefined TLS symbol resolves to the base of the TLS 355 // block, i.e. gets a value of zero. If we pass --gc-sections to 356 // lld and .tbss is not referenced, it gets reclaimed and we don't 357 // create a TLS program header. Therefore, we resolve this 358 // statically to zero. 359 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 360 Body.symbol()->isWeak()) 361 return 0; 362 if (Target->TcbSize) 363 return Body.getVA<ELFT>(A) + 364 alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align); 365 return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz; 366 case R_RELAX_TLS_GD_TO_LE_NEG: 367 case R_NEG_TLS: 368 return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 369 case R_ABS: 370 case R_RELAX_GOT_PC_NOPIC: 371 return Body.getVA<ELFT>(A); 372 case R_GOT_OFF: 373 return Body.getGotOffset<ELFT>() + A; 374 case R_MIPS_GOT_LOCAL_PAGE: 375 // If relocation against MIPS local symbol requires GOT entry, this entry 376 // should be initialized by 'page address'. This address is high 16-bits 377 // of sum the symbol's value and the addend. 378 return In<ELFT>::MipsGot->getVA() + 379 In<ELFT>::MipsGot->getPageEntryOffset(Body, A) - 380 In<ELFT>::MipsGot->getGp(); 381 case R_MIPS_GOT_OFF: 382 case R_MIPS_GOT_OFF32: 383 // In case of MIPS if a GOT relocation has non-zero addend this addend 384 // should be applied to the GOT entry content not to the GOT entry offset. 385 // That is why we use separate expression type. 386 return In<ELFT>::MipsGot->getVA() + 387 In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) - 388 In<ELFT>::MipsGot->getGp(); 389 case R_MIPS_GOTREL: 390 return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp(); 391 case R_MIPS_TLSGD: 392 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 393 In<ELFT>::MipsGot->getGlobalDynOffset(Body) - 394 In<ELFT>::MipsGot->getGp(); 395 case R_MIPS_TLSLD: 396 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 397 In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp(); 398 case R_PPC_OPD: { 399 uint64_t SymVA = Body.getVA<ELFT>(A); 400 // If we have an undefined weak symbol, we might get here with a symbol 401 // address of zero. That could overflow, but the code must be unreachable, 402 // so don't bother doing anything at all. 403 if (!SymVA) 404 return 0; 405 if (Out<ELF64BE>::Opd) { 406 // If this is a local call, and we currently have the address of a 407 // function-descriptor, get the underlying code address instead. 408 uint64_t OpdStart = Out<ELF64BE>::Opd->Addr; 409 uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size; 410 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 411 if (InOpd) 412 SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]); 413 } 414 return SymVA - P; 415 } 416 case R_PC: 417 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 418 // On ARM and AArch64 a branch to an undefined weak resolves to the 419 // next instruction, otherwise the place. 420 if (Config->EMachine == EM_ARM) 421 return getARMUndefinedRelativeWeakVA(Type, A, P); 422 if (Config->EMachine == EM_AARCH64) 423 return getAArch64UndefinedRelativeWeakVA(Type, A, P); 424 } 425 case R_RELAX_GOT_PC: 426 return Body.getVA<ELFT>(A) - P; 427 case R_PLT_PAGE_PC: 428 case R_PAGE_PC: 429 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 430 return getAArch64Page(A); 431 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 432 } 433 llvm_unreachable("Invalid expression"); 434 } 435 436 // This function applies relocations to sections without SHF_ALLOC bit. 437 // Such sections are never mapped to memory at runtime. Debug sections are 438 // an example. Relocations in non-alloc sections are much easier to 439 // handle than in allocated sections because it will never need complex 440 // treatement such as GOT or PLT (because at runtime no one refers them). 441 // So, we handle relocations for non-alloc sections directly in this 442 // function as a performance optimization. 443 template <class ELFT> 444 template <class RelTy> 445 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 446 for (const RelTy &Rel : Rels) { 447 uint32_t Type = Rel.getType(Config->Mips64EL); 448 uintX_t Offset = this->getOffset(Rel.r_offset); 449 uint8_t *BufLoc = Buf + Offset; 450 uintX_t Addend = getAddend<ELFT>(Rel); 451 if (!RelTy::IsRela) 452 Addend += Target->getImplicitAddend(BufLoc, Type); 453 454 SymbolBody &Sym = this->File->getRelocTargetSym(Rel); 455 if (Target->getRelExpr(Type, Sym) != R_ABS) { 456 error(this->getLocation(Offset) + ": has non-ABS reloc"); 457 return; 458 } 459 460 uintX_t AddrLoc = this->OutSec->Addr + Offset; 461 uint64_t SymVA = 0; 462 if (!Sym.isTls() || Out<ELFT>::TlsPhdr) 463 SymVA = SignExtend64<sizeof(uintX_t) * 8>( 464 getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS)); 465 Target->relocateOne(BufLoc, Type, SymVA); 466 } 467 } 468 469 template <class ELFT> 470 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) { 471 // scanReloc function in Writer.cpp constructs Relocations 472 // vector only for SHF_ALLOC'ed sections. For other sections, 473 // we handle relocations directly here. 474 auto *IS = dyn_cast<InputSection<ELFT>>(this); 475 if (IS && !(IS->Flags & SHF_ALLOC)) { 476 if (IS->AreRelocsRela) 477 IS->relocateNonAlloc(Buf, IS->relas()); 478 else 479 IS->relocateNonAlloc(Buf, IS->rels()); 480 return; 481 } 482 483 const unsigned Bits = sizeof(uintX_t) * 8; 484 for (const Relocation &Rel : Relocations) { 485 uintX_t Offset = getOffset(Rel.Offset); 486 uint8_t *BufLoc = Buf + Offset; 487 uint32_t Type = Rel.Type; 488 uintX_t A = Rel.Addend; 489 490 uintX_t AddrLoc = OutSec->Addr + Offset; 491 RelExpr Expr = Rel.Expr; 492 uint64_t TargetVA = SignExtend64<Bits>( 493 getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr)); 494 495 switch (Expr) { 496 case R_RELAX_GOT_PC: 497 case R_RELAX_GOT_PC_NOPIC: 498 Target->relaxGot(BufLoc, TargetVA); 499 break; 500 case R_RELAX_TLS_IE_TO_LE: 501 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 502 break; 503 case R_RELAX_TLS_LD_TO_LE: 504 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 505 break; 506 case R_RELAX_TLS_GD_TO_LE: 507 case R_RELAX_TLS_GD_TO_LE_NEG: 508 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 509 break; 510 case R_RELAX_TLS_GD_TO_IE: 511 case R_RELAX_TLS_GD_TO_IE_ABS: 512 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 513 case R_RELAX_TLS_GD_TO_IE_END: 514 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 515 break; 516 case R_PPC_PLT_OPD: 517 // Patch a nop (0x60000000) to a ld. 518 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 519 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 520 // fallthrough 521 default: 522 Target->relocateOne(BufLoc, Type, TargetVA); 523 break; 524 } 525 } 526 } 527 528 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) { 529 if (this->Type == SHT_NOBITS) 530 return; 531 532 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) { 533 S->writeTo(Buf + OutSecOff); 534 return; 535 } 536 537 // If -r is given, then an InputSection may be a relocation section. 538 if (this->Type == SHT_RELA) { 539 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>()); 540 return; 541 } 542 if (this->Type == SHT_REL) { 543 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>()); 544 return; 545 } 546 547 // Copy section contents from source object file to output file. 548 ArrayRef<uint8_t> Data = this->Data; 549 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 550 551 // Iterate over all relocation sections that apply to this section. 552 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 553 this->relocate(Buf, BufEnd); 554 555 // The section might have a data/code generated by the linker and need 556 // to be written after the section. Usually these are thunks - small piece 557 // of code used to jump between "incompatible" functions like PIC and non-PIC 558 // or if the jump target too far and its address does not fit to the short 559 // jump istruction. 560 if (!Thunks.empty()) { 561 Buf += OutSecOff + getThunkOff(); 562 for (const Thunk<ELFT> *T : Thunks) { 563 T->writeTo(Buf); 564 Buf += T->size(); 565 } 566 } 567 } 568 569 template <class ELFT> 570 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) { 571 this->Alignment = std::max(this->Alignment, Other->Alignment); 572 Other->Repl = this->Repl; 573 Other->Live = false; 574 } 575 576 template <class ELFT> 577 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 578 const Elf_Shdr *Header, StringRef Name) 579 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) { 580 // Mark .eh_frame sections as live by default because there are 581 // usually no relocations that point to .eh_frames. Otherwise, 582 // the garbage collector would drop all .eh_frame sections. 583 this->Live = true; 584 } 585 586 template <class ELFT> 587 bool EhInputSection<ELFT>::classof(const InputSectionData *S) { 588 return S->kind() == InputSectionBase<ELFT>::EHFrame; 589 } 590 591 // Returns the index of the first relocation that points to a region between 592 // Begin and Begin+Size. 593 template <class IntTy, class RelTy> 594 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 595 unsigned &RelocI) { 596 // Start search from RelocI for fast access. That works because the 597 // relocations are sorted in .eh_frame. 598 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 599 const RelTy &Rel = Rels[RelocI]; 600 if (Rel.r_offset < Begin) 601 continue; 602 603 if (Rel.r_offset < Begin + Size) 604 return RelocI; 605 return -1; 606 } 607 return -1; 608 } 609 610 // .eh_frame is a sequence of CIE or FDE records. 611 // This function splits an input section into records and returns them. 612 template <class ELFT> void EhInputSection<ELFT>::split() { 613 // Early exit if already split. 614 if (!this->Pieces.empty()) 615 return; 616 617 if (this->NumRelocations) { 618 if (this->AreRelocsRela) 619 split(this->relas()); 620 else 621 split(this->rels()); 622 return; 623 } 624 split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 625 } 626 627 template <class ELFT> 628 template <class RelTy> 629 void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) { 630 ArrayRef<uint8_t> Data = this->Data; 631 unsigned RelI = 0; 632 for (size_t Off = 0, End = Data.size(); Off != End;) { 633 size_t Size = readEhRecordSize<ELFT>(this, Off); 634 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 635 // The empty record is the end marker. 636 if (Size == 4) 637 break; 638 Off += Size; 639 } 640 } 641 642 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 643 // Optimize the common case. 644 StringRef S((const char *)A.data(), A.size()); 645 if (EntSize == 1) 646 return S.find(0); 647 648 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 649 const char *B = S.begin() + I; 650 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 651 return I; 652 } 653 return StringRef::npos; 654 } 655 656 // Split SHF_STRINGS section. Such section is a sequence of 657 // null-terminated strings. 658 template <class ELFT> 659 void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data, 660 size_t EntSize) { 661 size_t Off = 0; 662 bool IsAlloc = this->Flags & SHF_ALLOC; 663 while (!Data.empty()) { 664 size_t End = findNull(Data, EntSize); 665 if (End == StringRef::npos) 666 fatal(toString(this) + ": string is not null terminated"); 667 size_t Size = End + EntSize; 668 Pieces.emplace_back(Off, !IsAlloc); 669 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 670 Data = Data.slice(Size); 671 Off += Size; 672 } 673 } 674 675 // Split non-SHF_STRINGS section. Such section is a sequence of 676 // fixed size records. 677 template <class ELFT> 678 void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data, 679 size_t EntSize) { 680 size_t Size = Data.size(); 681 assert((Size % EntSize) == 0); 682 bool IsAlloc = this->Flags & SHF_ALLOC; 683 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 684 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 685 Pieces.emplace_back(I, !IsAlloc); 686 } 687 } 688 689 template <class ELFT> 690 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 691 const Elf_Shdr *Header, 692 StringRef Name) 693 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {} 694 695 // This function is called after we obtain a complete list of input sections 696 // that need to be linked. This is responsible to split section contents 697 // into small chunks for further processing. 698 // 699 // Note that this function is called from parallel_for_each. This must be 700 // thread-safe (i.e. no memory allocation from the pools). 701 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 702 ArrayRef<uint8_t> Data = this->Data; 703 uintX_t EntSize = this->Entsize; 704 if (this->Flags & SHF_STRINGS) 705 splitStrings(Data, EntSize); 706 else 707 splitNonStrings(Data, EntSize); 708 709 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 710 for (uintX_t Off : LiveOffsets) 711 this->getSectionPiece(Off)->Live = true; 712 } 713 714 template <class ELFT> 715 bool MergeInputSection<ELFT>::classof(const InputSectionData *S) { 716 return S->kind() == InputSectionBase<ELFT>::Merge; 717 } 718 719 // Do binary search to get a section piece at a given input offset. 720 template <class ELFT> 721 SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 722 auto *This = static_cast<const MergeInputSection<ELFT> *>(this); 723 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 724 } 725 726 template <class It, class T, class Compare> 727 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 728 size_t Size = std::distance(First, Last); 729 assert(Size != 0); 730 while (Size != 1) { 731 size_t H = Size / 2; 732 const It MI = First + H; 733 Size -= H; 734 First = Comp(Value, *MI) ? First : First + H; 735 } 736 return Comp(Value, *First) ? First : First + 1; 737 } 738 739 template <class ELFT> 740 const SectionPiece * 741 MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const { 742 uintX_t Size = this->Data.size(); 743 if (Offset >= Size) 744 fatal(toString(this) + ": entry is past the end of the section"); 745 746 // Find the element this offset points to. 747 auto I = fastUpperBound( 748 Pieces.begin(), Pieces.end(), Offset, 749 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 750 --I; 751 return &*I; 752 } 753 754 // Returns the offset in an output section for a given input offset. 755 // Because contents of a mergeable section is not contiguous in output, 756 // it is not just an addition to a base output offset. 757 template <class ELFT> 758 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const { 759 // Initialize OffsetMap lazily. 760 std::call_once(InitOffsetMap, [&] { 761 OffsetMap.reserve(Pieces.size()); 762 for (const SectionPiece &Piece : Pieces) 763 OffsetMap[Piece.InputOff] = Piece.OutputOff; 764 }); 765 766 // Find a string starting at a given offset. 767 auto It = OffsetMap.find(Offset); 768 if (It != OffsetMap.end()) 769 return It->second; 770 771 if (!this->Live) 772 return 0; 773 774 // If Offset is not at beginning of a section piece, it is not in the map. 775 // In that case we need to search from the original section piece vector. 776 const SectionPiece &Piece = *this->getSectionPiece(Offset); 777 if (!Piece.Live) 778 return 0; 779 780 uintX_t Addend = Offset - Piece.InputOff; 781 return Piece.OutputOff + Addend; 782 } 783 784 template class elf::InputSectionBase<ELF32LE>; 785 template class elf::InputSectionBase<ELF32BE>; 786 template class elf::InputSectionBase<ELF64LE>; 787 template class elf::InputSectionBase<ELF64BE>; 788 789 template class elf::InputSection<ELF32LE>; 790 template class elf::InputSection<ELF32BE>; 791 template class elf::InputSection<ELF64LE>; 792 template class elf::InputSection<ELF64BE>; 793 794 template class elf::EhInputSection<ELF32LE>; 795 template class elf::EhInputSection<ELF32BE>; 796 template class elf::EhInputSection<ELF64LE>; 797 template class elf::EhInputSection<ELF64BE>; 798 799 template class elf::MergeInputSection<ELF32LE>; 800 template class elf::MergeInputSection<ELF32BE>; 801 template class elf::MergeInputSection<ELF64LE>; 802 template class elf::MergeInputSection<ELF64BE>; 803 804 template std::string lld::toString(const InputSectionBase<ELF32LE> *); 805 template std::string lld::toString(const InputSectionBase<ELF32BE> *); 806 template std::string lld::toString(const InputSectionBase<ELF64LE> *); 807 template std::string lld::toString(const InputSectionBase<ELF64BE> *); 808