1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/Threading.h" 28 #include "llvm/Support/xxhash.h" 29 #include <mutex> 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::support; 35 using namespace llvm::support::endian; 36 using namespace llvm::sys; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 std::vector<InputSectionBase *> elf::InputSections; 42 43 // Returns a string to construct an error message. 44 std::string lld::toString(const InputSectionBase *Sec) { 45 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 46 } 47 48 DenseMap<SectionBase *, int> elf::buildSectionOrder() { 49 DenseMap<SectionBase *, int> SectionOrder; 50 if (Config->SymbolOrderingFile.empty()) 51 return SectionOrder; 52 53 // Build a map from symbols to their priorities. Symbols that didn't 54 // appear in the symbol ordering file have the lowest priority 0. 55 // All explicitly mentioned symbols have negative (higher) priorities. 56 DenseMap<StringRef, int> SymbolOrder; 57 int Priority = -Config->SymbolOrderingFile.size(); 58 for (StringRef S : Config->SymbolOrderingFile) 59 SymbolOrder.insert({S, Priority++}); 60 61 // Build a map from sections to their priorities. 62 for (InputFile *File : ObjectFiles) { 63 for (SymbolBody *Body : File->getSymbols()) { 64 auto *D = dyn_cast<DefinedRegular>(Body); 65 if (!D || !D->Section) 66 continue; 67 int &Priority = SectionOrder[D->Section]; 68 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 69 } 70 } 71 return SectionOrder; 72 } 73 74 template <class ELFT> 75 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 76 const typename ELFT::Shdr *Hdr) { 77 if (!File || Hdr->sh_type == SHT_NOBITS) 78 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 79 return check(File->getObj().getSectionContents(Hdr)); 80 } 81 82 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 83 uint32_t Type, uint64_t Entsize, 84 uint32_t Link, uint32_t Info, 85 uint32_t Alignment, ArrayRef<uint8_t> Data, 86 StringRef Name, Kind SectionKind) 87 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 88 Link), 89 File(File), Data(Data), Repl(this) { 90 Assigned = false; 91 NumRelocations = 0; 92 AreRelocsRela = false; 93 94 // The ELF spec states that a value of 0 means the section has 95 // no alignment constraits. 96 uint32_t V = std::max<uint64_t>(Alignment, 1); 97 if (!isPowerOf2_64(V)) 98 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 99 this->Alignment = V; 100 } 101 102 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 103 // SHF_GROUP is a marker that a section belongs to some comdat group. 104 // That flag doesn't make sense in an executable. 105 static uint64_t getFlags(uint64_t Flags) { 106 Flags &= ~(uint64_t)SHF_INFO_LINK; 107 if (!Config->Relocatable) 108 Flags &= ~(uint64_t)SHF_GROUP; 109 return Flags; 110 } 111 112 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 113 // March 2017) fail to infer section types for sections starting with 114 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 115 // SHF_INIT_ARRAY. As a result, the following assembler directive 116 // creates ".init_array.100" with SHT_PROGBITS, for example. 117 // 118 // .section .init_array.100, "aw" 119 // 120 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 121 // incorrect inputs as if they were correct from the beginning. 122 static uint64_t getType(uint64_t Type, StringRef Name) { 123 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 124 return SHT_INIT_ARRAY; 125 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 126 return SHT_FINI_ARRAY; 127 return Type; 128 } 129 130 template <class ELFT> 131 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 132 const typename ELFT::Shdr *Hdr, 133 StringRef Name, Kind SectionKind) 134 : InputSectionBase(File, getFlags(Hdr->sh_flags), 135 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 136 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 137 getSectionContents(File, Hdr), Name, SectionKind) { 138 // We reject object files having insanely large alignments even though 139 // they are allowed by the spec. I think 4GB is a reasonable limitation. 140 // We might want to relax this in the future. 141 if (Hdr->sh_addralign > UINT32_MAX) 142 fatal(toString(File) + ": section sh_addralign is too large"); 143 } 144 145 size_t InputSectionBase::getSize() const { 146 if (auto *S = dyn_cast<SyntheticSection>(this)) 147 return S->getSize(); 148 149 return Data.size(); 150 } 151 152 uint64_t InputSectionBase::getOffsetInFile() const { 153 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 154 const uint8_t *SecStart = Data.begin(); 155 return SecStart - FileStart; 156 } 157 158 uint64_t SectionBase::getOffset(uint64_t Offset) const { 159 switch (kind()) { 160 case Output: { 161 auto *OS = cast<OutputSection>(this); 162 // For output sections we treat offset -1 as the end of the section. 163 return Offset == uint64_t(-1) ? OS->Size : Offset; 164 } 165 case Regular: 166 return cast<InputSection>(this)->OutSecOff + Offset; 167 case Synthetic: { 168 auto *IS = cast<InputSection>(this); 169 // For synthetic sections we treat offset -1 as the end of the section. 170 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 171 } 172 case EHFrame: 173 // The file crtbeginT.o has relocations pointing to the start of an empty 174 // .eh_frame that is known to be the first in the link. It does that to 175 // identify the start of the output .eh_frame. 176 return Offset; 177 case Merge: 178 const MergeInputSection *MS = cast<MergeInputSection>(this); 179 if (InputSection *IS = MS->getParent()) 180 return IS->OutSecOff + MS->getOffset(Offset); 181 return MS->getOffset(Offset); 182 } 183 llvm_unreachable("invalid section kind"); 184 } 185 186 OutputSection *SectionBase::getOutputSection() { 187 InputSection *Sec; 188 if (auto *IS = dyn_cast<InputSection>(this)) 189 Sec = cast<InputSection>(IS->Repl); 190 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 191 Sec = MS->getParent(); 192 else if (auto *EH = dyn_cast<EhInputSection>(this)) 193 Sec = EH->getParent(); 194 else 195 return cast<OutputSection>(this); 196 return Sec ? Sec->getParent() : nullptr; 197 } 198 199 // Uncompress section contents if required. Note that this function 200 // is called from parallelForEach, so it must be thread-safe. 201 void InputSectionBase::maybeUncompress() { 202 if (UncompressBuf || !Decompressor::isCompressedELFSection(Flags, Name)) 203 return; 204 205 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 206 Config->IsLE, Config->Is64)); 207 208 size_t Size = Dec.getDecompressedSize(); 209 UncompressBuf.reset(new char[Size]()); 210 if (Error E = Dec.decompress({UncompressBuf.get(), Size})) 211 fatal(toString(this) + 212 ": decompress failed: " + llvm::toString(std::move(E))); 213 214 this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); 215 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 216 } 217 218 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 219 return getOffset(Sym.Value); 220 } 221 222 InputSection *InputSectionBase::getLinkOrderDep() const { 223 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 224 InputSectionBase *L = File->getSections()[Link]; 225 if (auto *IS = dyn_cast<InputSection>(L)) 226 return IS; 227 error("a section with SHF_LINK_ORDER should not refer a non-regular " 228 "section: " + 229 toString(L)); 230 } 231 return nullptr; 232 } 233 234 // Returns a source location string. Used to construct an error message. 235 template <class ELFT> 236 std::string InputSectionBase::getLocation(uint64_t Offset) { 237 // We don't have file for synthetic sections. 238 if (getFile<ELFT>() == nullptr) 239 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 240 .str(); 241 242 // First check if we can get desired values from debugging information. 243 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 244 if (!LineInfo.empty()) 245 return LineInfo; 246 247 // File->SourceFile contains STT_FILE symbol that contains a 248 // source file name. If it's missing, we use an object file name. 249 std::string SrcFile = getFile<ELFT>()->SourceFile; 250 if (SrcFile.empty()) 251 SrcFile = toString(File); 252 253 // Find a function symbol that encloses a given location. 254 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 255 if (auto *D = dyn_cast<DefinedRegular>(B)) 256 if (D->Section == this && D->Type == STT_FUNC) 257 if (D->Value <= Offset && Offset < D->Value + D->Size) 258 return SrcFile + ":(function " + toString(*D) + ")"; 259 260 // If there's no symbol, print out the offset in the section. 261 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 262 } 263 264 // Returns a source location string. This function is intended to be 265 // used for constructing an error message. The returned message looks 266 // like this: 267 // 268 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 269 // 270 // Returns an empty string if there's no way to get line info. 271 template <class ELFT> std::string InputSectionBase::getSrcMsg(uint64_t Offset) { 272 // Synthetic sections don't have input files. 273 ObjFile<ELFT> *File = getFile<ELFT>(); 274 if (!File) 275 return ""; 276 277 Optional<DILineInfo> Info = File->getDILineInfo(this, Offset); 278 279 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 280 if (!Info) 281 return File->SourceFile; 282 283 std::string Path = Info->FileName; 284 std::string Filename = path::filename(Path); 285 std::string Lineno = ":" + std::to_string(Info->Line); 286 if (Filename == Path) 287 return Filename + Lineno; 288 return Filename + Lineno + " (" + Path + Lineno + ")"; 289 } 290 291 // Returns a filename string along with an optional section name. This 292 // function is intended to be used for constructing an error 293 // message. The returned message looks like this: 294 // 295 // path/to/foo.o:(function bar) 296 // 297 // or 298 // 299 // path/to/foo.o:(function bar) in archive path/to/bar.a 300 template <class ELFT> std::string InputSectionBase::getObjMsg(uint64_t Off) { 301 // Synthetic sections don't have input files. 302 ObjFile<ELFT> *File = getFile<ELFT>(); 303 if (!File) 304 return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str(); 305 std::string Filename = File->getName(); 306 307 std::string Archive; 308 if (!File->ArchiveName.empty()) 309 Archive = (" in archive " + File->ArchiveName).str(); 310 311 // Find a symbol that encloses a given location. 312 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 313 if (auto *D = dyn_cast<DefinedRegular>(B)) 314 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 315 return Filename + ":(" + toString(*D) + ")" + Archive; 316 317 // If there's no symbol, print out the offset in the section. 318 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 319 .str(); 320 } 321 322 InputSectionBase InputSectionBase::Discarded; 323 324 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 325 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 326 : InputSectionBase(nullptr, Flags, Type, 327 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 328 Name, K) {} 329 330 template <class ELFT> 331 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 332 StringRef Name) 333 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 334 335 bool InputSection::classof(const SectionBase *S) { 336 return S->kind() == SectionBase::Regular || 337 S->kind() == SectionBase::Synthetic; 338 } 339 340 OutputSection *InputSection::getParent() const { 341 return cast_or_null<OutputSection>(Parent); 342 } 343 344 // Copy SHT_GROUP section contents. Used only for the -r option. 345 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 346 // ELFT::Word is the 32-bit integral type in the target endianness. 347 typedef typename ELFT::Word u32; 348 ArrayRef<u32> From = getDataAs<u32>(); 349 auto *To = reinterpret_cast<u32 *>(Buf); 350 351 // The first entry is not a section number but a flag. 352 *To++ = From[0]; 353 354 // Adjust section numbers because section numbers in an input object 355 // files are different in the output. 356 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 357 for (uint32_t Idx : From.slice(1)) 358 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 359 } 360 361 InputSectionBase *InputSection::getRelocatedSection() { 362 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 363 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 364 return Sections[this->Info]; 365 } 366 367 // This is used for -r and --emit-relocs. We can't use memcpy to copy 368 // relocations because we need to update symbol table offset and section index 369 // for each relocation. So we copy relocations one by one. 370 template <class ELFT, class RelTy> 371 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 372 InputSectionBase *Sec = getRelocatedSection(); 373 374 for (const RelTy &Rel : Rels) { 375 RelType Type = Rel.getType(Config->IsMips64EL); 376 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 377 378 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 379 Buf += sizeof(RelTy); 380 381 if (Config->IsRela) 382 P->r_addend = getAddend<ELFT>(Rel); 383 384 // Output section VA is zero for -r, so r_offset is an offset within the 385 // section, but for --emit-relocs it is an virtual address. 386 P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset); 387 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type, 388 Config->IsMips64EL); 389 390 if (Body.Type == STT_SECTION) { 391 // We combine multiple section symbols into only one per 392 // section. This means we have to update the addend. That is 393 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 394 // section data. We do that by adding to the Relocation vector. 395 396 // .eh_frame is horribly special and can reference discarded sections. To 397 // avoid having to parse and recreate .eh_frame, we just replace any 398 // relocation in it pointing to discarded sections with R_*_NONE, which 399 // hopefully creates a frame that is ignored at runtime. 400 SectionBase *Section = cast<DefinedRegular>(Body).Section; 401 if (Section == &InputSection::Discarded) { 402 P->setSymbolAndType(0, 0, false); 403 continue; 404 } 405 406 if (Config->IsRela) { 407 P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; 408 } else if (Config->Relocatable) { 409 const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset; 410 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, 411 Target->getImplicitAddend(BufLoc, Type), 412 &Body}); 413 } 414 } 415 416 } 417 } 418 419 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 420 // references specially. The general rule is that the value of the symbol in 421 // this context is the address of the place P. A further special case is that 422 // branch relocations to an undefined weak reference resolve to the next 423 // instruction. 424 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 425 uint32_t P) { 426 switch (Type) { 427 // Unresolved branch relocations to weak references resolve to next 428 // instruction, this will be either 2 or 4 bytes on from P. 429 case R_ARM_THM_JUMP11: 430 return P + 2 + A; 431 case R_ARM_CALL: 432 case R_ARM_JUMP24: 433 case R_ARM_PC24: 434 case R_ARM_PLT32: 435 case R_ARM_PREL31: 436 case R_ARM_THM_JUMP19: 437 case R_ARM_THM_JUMP24: 438 return P + 4 + A; 439 case R_ARM_THM_CALL: 440 // We don't want an interworking BLX to ARM 441 return P + 5 + A; 442 // Unresolved non branch pc-relative relocations 443 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 444 // targets a weak-reference. 445 case R_ARM_MOVW_PREL_NC: 446 case R_ARM_MOVT_PREL: 447 case R_ARM_REL32: 448 case R_ARM_THM_MOVW_PREL_NC: 449 case R_ARM_THM_MOVT_PREL: 450 return P + A; 451 } 452 llvm_unreachable("ARM pc-relative relocation expected\n"); 453 } 454 455 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 456 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 457 uint64_t P) { 458 switch (Type) { 459 // Unresolved branch relocations to weak references resolve to next 460 // instruction, this is 4 bytes on from P. 461 case R_AARCH64_CALL26: 462 case R_AARCH64_CONDBR19: 463 case R_AARCH64_JUMP26: 464 case R_AARCH64_TSTBR14: 465 return P + 4 + A; 466 // Unresolved non branch pc-relative relocations 467 case R_AARCH64_PREL16: 468 case R_AARCH64_PREL32: 469 case R_AARCH64_PREL64: 470 case R_AARCH64_ADR_PREL_LO21: 471 case R_AARCH64_LD_PREL_LO19: 472 return P + A; 473 } 474 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 475 } 476 477 // ARM SBREL relocations are of the form S + A - B where B is the static base 478 // The ARM ABI defines base to be "addressing origin of the output segment 479 // defining the symbol S". We defined the "addressing origin"/static base to be 480 // the base of the PT_LOAD segment containing the Body. 481 // The procedure call standard only defines a Read Write Position Independent 482 // RWPI variant so in practice we should expect the static base to be the base 483 // of the RW segment. 484 static uint64_t getARMStaticBase(const SymbolBody &Body) { 485 OutputSection *OS = Body.getOutputSection(); 486 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 487 fatal("SBREL relocation to " + Body.getName() + " without static base"); 488 return OS->PtLoad->FirstSec->Addr; 489 } 490 491 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P, 492 const SymbolBody &Body, RelExpr Expr) { 493 switch (Expr) { 494 case R_INVALID: 495 return 0; 496 case R_ABS: 497 case R_RELAX_GOT_PC_NOPIC: 498 return Body.getVA(A); 499 case R_ARM_SBREL: 500 return Body.getVA(A) - getARMStaticBase(Body); 501 case R_GOT: 502 case R_RELAX_TLS_GD_TO_IE_ABS: 503 return Body.getGotVA() + A; 504 case R_GOTONLY_PC: 505 return InX::Got->getVA() + A - P; 506 case R_GOTONLY_PC_FROM_END: 507 return InX::Got->getVA() + A - P + InX::Got->getSize(); 508 case R_GOTREL: 509 return Body.getVA(A) - InX::Got->getVA(); 510 case R_GOTREL_FROM_END: 511 return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 512 case R_GOT_FROM_END: 513 case R_RELAX_TLS_GD_TO_IE_END: 514 return Body.getGotOffset() + A - InX::Got->getSize(); 515 case R_GOT_OFF: 516 return Body.getGotOffset() + A; 517 case R_GOT_PAGE_PC: 518 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 519 return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); 520 case R_GOT_PC: 521 case R_RELAX_TLS_GD_TO_IE: 522 return Body.getGotVA() + A - P; 523 case R_HINT: 524 case R_NONE: 525 case R_TLSDESC_CALL: 526 llvm_unreachable("cannot relocate hint relocs"); 527 case R_MIPS_GOTREL: 528 return Body.getVA(A) - InX::MipsGot->getGp(); 529 case R_MIPS_GOT_GP: 530 return InX::MipsGot->getGp() + A; 531 case R_MIPS_GOT_GP_PC: { 532 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 533 // is _gp_disp symbol. In that case we should use the following 534 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 535 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 536 uint64_t V = InX::MipsGot->getGp() + A - P; 537 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 538 V += 4; 539 return V; 540 } 541 case R_MIPS_GOT_LOCAL_PAGE: 542 // If relocation against MIPS local symbol requires GOT entry, this entry 543 // should be initialized by 'page address'. This address is high 16-bits 544 // of sum the symbol's value and the addend. 545 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) - 546 InX::MipsGot->getGp(); 547 case R_MIPS_GOT_OFF: 548 case R_MIPS_GOT_OFF32: 549 // In case of MIPS if a GOT relocation has non-zero addend this addend 550 // should be applied to the GOT entry content not to the GOT entry offset. 551 // That is why we use separate expression type. 552 return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) - 553 InX::MipsGot->getGp(); 554 case R_MIPS_TLSGD: 555 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 556 InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp(); 557 case R_MIPS_TLSLD: 558 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 559 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 560 case R_PAGE_PC: 561 case R_PLT_PAGE_PC: { 562 uint64_t Dest; 563 if (Body.isUndefWeak()) 564 Dest = getAArch64Page(A); 565 else 566 Dest = getAArch64Page(Body.getVA(A)); 567 return Dest - getAArch64Page(P); 568 } 569 case R_PC: { 570 uint64_t Dest; 571 if (Body.isUndefWeak()) { 572 // On ARM and AArch64 a branch to an undefined weak resolves to the 573 // next instruction, otherwise the place. 574 if (Config->EMachine == EM_ARM) 575 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 576 else if (Config->EMachine == EM_AARCH64) 577 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 578 else 579 Dest = Body.getVA(A); 580 } else { 581 Dest = Body.getVA(A); 582 } 583 return Dest - P; 584 } 585 case R_PLT: 586 return Body.getPltVA() + A; 587 case R_PLT_PC: 588 case R_PPC_PLT_OPD: 589 return Body.getPltVA() + A - P; 590 case R_PPC_OPD: { 591 uint64_t SymVA = Body.getVA(A); 592 // If we have an undefined weak symbol, we might get here with a symbol 593 // address of zero. That could overflow, but the code must be unreachable, 594 // so don't bother doing anything at all. 595 if (!SymVA) 596 return 0; 597 if (Out::Opd) { 598 // If this is a local call, and we currently have the address of a 599 // function-descriptor, get the underlying code address instead. 600 uint64_t OpdStart = Out::Opd->Addr; 601 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 602 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 603 if (InOpd) 604 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 605 } 606 return SymVA - P; 607 } 608 case R_PPC_TOC: 609 return getPPC64TocBase() + A; 610 case R_RELAX_GOT_PC: 611 return Body.getVA(A) - P; 612 case R_RELAX_TLS_GD_TO_LE: 613 case R_RELAX_TLS_IE_TO_LE: 614 case R_RELAX_TLS_LD_TO_LE: 615 case R_TLS: 616 // A weak undefined TLS symbol resolves to the base of the TLS 617 // block, i.e. gets a value of zero. If we pass --gc-sections to 618 // lld and .tbss is not referenced, it gets reclaimed and we don't 619 // create a TLS program header. Therefore, we resolve this 620 // statically to zero. 621 if (Body.isTls() && Body.isUndefWeak()) 622 return 0; 623 if (Target->TcbSize) 624 return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 625 return Body.getVA(A) - Out::TlsPhdr->p_memsz; 626 case R_RELAX_TLS_GD_TO_LE_NEG: 627 case R_NEG_TLS: 628 return Out::TlsPhdr->p_memsz - Body.getVA(A); 629 case R_SIZE: 630 return A; // Body.getSize was already folded into the addend. 631 case R_TLSDESC: 632 return InX::Got->getGlobalDynAddr(Body) + A; 633 case R_TLSDESC_PAGE: 634 return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) - 635 getAArch64Page(P); 636 case R_TLSGD: 637 return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize(); 638 case R_TLSGD_PC: 639 return InX::Got->getGlobalDynAddr(Body) + A - P; 640 case R_TLSLD: 641 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 642 case R_TLSLD_PC: 643 return InX::Got->getTlsIndexVA() + A - P; 644 } 645 llvm_unreachable("Invalid expression"); 646 } 647 648 // This function applies relocations to sections without SHF_ALLOC bit. 649 // Such sections are never mapped to memory at runtime. Debug sections are 650 // an example. Relocations in non-alloc sections are much easier to 651 // handle than in allocated sections because it will never need complex 652 // treatement such as GOT or PLT (because at runtime no one refers them). 653 // So, we handle relocations for non-alloc sections directly in this 654 // function as a performance optimization. 655 template <class ELFT, class RelTy> 656 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 657 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 658 659 for (const RelTy &Rel : Rels) { 660 RelType Type = Rel.getType(Config->IsMips64EL); 661 uint64_t Offset = getOffset(Rel.r_offset); 662 uint8_t *BufLoc = Buf + Offset; 663 int64_t Addend = getAddend<ELFT>(Rel); 664 if (!RelTy::IsRela) 665 Addend += Target->getImplicitAddend(BufLoc, Type); 666 667 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 668 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 669 if (Expr == R_NONE) 670 continue; 671 if (Expr != R_ABS) { 672 error(this->getLocation<ELFT>(Offset) + ": has non-ABS relocation " + 673 toString(Type) + " against symbol '" + toString(Sym) + "'"); 674 return; 675 } 676 677 if (Sym.isTls() && !Out::TlsPhdr) 678 Target->relocateOne(BufLoc, Type, 0); 679 else 680 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 681 } 682 } 683 684 template <class ELFT> 685 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 686 if (Flags & SHF_ALLOC) { 687 relocateAlloc(Buf, BufEnd); 688 return; 689 } 690 691 auto *Sec = cast<InputSection>(this); 692 if (Sec->AreRelocsRela) 693 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 694 else 695 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 696 } 697 698 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 699 assert(Flags & SHF_ALLOC); 700 const unsigned Bits = Config->Wordsize * 8; 701 702 for (const Relocation &Rel : Relocations) { 703 uint64_t Offset = getOffset(Rel.Offset); 704 uint8_t *BufLoc = Buf + Offset; 705 RelType Type = Rel.Type; 706 707 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 708 RelExpr Expr = Rel.Expr; 709 uint64_t TargetVA = SignExtend64( 710 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 711 712 switch (Expr) { 713 case R_RELAX_GOT_PC: 714 case R_RELAX_GOT_PC_NOPIC: 715 Target->relaxGot(BufLoc, TargetVA); 716 break; 717 case R_RELAX_TLS_IE_TO_LE: 718 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 719 break; 720 case R_RELAX_TLS_LD_TO_LE: 721 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 722 break; 723 case R_RELAX_TLS_GD_TO_LE: 724 case R_RELAX_TLS_GD_TO_LE_NEG: 725 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 726 break; 727 case R_RELAX_TLS_GD_TO_IE: 728 case R_RELAX_TLS_GD_TO_IE_ABS: 729 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 730 case R_RELAX_TLS_GD_TO_IE_END: 731 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 732 break; 733 case R_PPC_PLT_OPD: 734 // Patch a nop (0x60000000) to a ld. 735 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 736 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 737 LLVM_FALLTHROUGH; 738 default: 739 Target->relocateOne(BufLoc, Type, TargetVA); 740 break; 741 } 742 } 743 } 744 745 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 746 if (this->Type == SHT_NOBITS) 747 return; 748 749 if (auto *S = dyn_cast<SyntheticSection>(this)) { 750 S->writeTo(Buf + OutSecOff); 751 return; 752 } 753 754 // If -r or --emit-relocs is given, then an InputSection 755 // may be a relocation section. 756 if (this->Type == SHT_RELA) { 757 copyRelocations<ELFT>(Buf + OutSecOff, 758 this->template getDataAs<typename ELFT::Rela>()); 759 return; 760 } 761 if (this->Type == SHT_REL) { 762 copyRelocations<ELFT>(Buf + OutSecOff, 763 this->template getDataAs<typename ELFT::Rel>()); 764 return; 765 } 766 767 // If -r is given, we may have a SHT_GROUP section. 768 if (this->Type == SHT_GROUP) { 769 copyShtGroup<ELFT>(Buf + OutSecOff); 770 return; 771 } 772 773 // Copy section contents from source object file to output file 774 // and then apply relocations. 775 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 776 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 777 this->relocate<ELFT>(Buf, BufEnd); 778 } 779 780 void InputSection::replace(InputSection *Other) { 781 this->Alignment = std::max(this->Alignment, Other->Alignment); 782 Other->Repl = this->Repl; 783 Other->Live = false; 784 } 785 786 template <class ELFT> 787 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 788 const typename ELFT::Shdr *Header, 789 StringRef Name) 790 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 791 // Mark .eh_frame sections as live by default because there are 792 // usually no relocations that point to .eh_frames. Otherwise, 793 // the garbage collector would drop all .eh_frame sections. 794 this->Live = true; 795 } 796 797 SyntheticSection *EhInputSection::getParent() const { 798 return cast_or_null<SyntheticSection>(Parent); 799 } 800 801 // Returns the index of the first relocation that points to a region between 802 // Begin and Begin+Size. 803 template <class IntTy, class RelTy> 804 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 805 unsigned &RelocI) { 806 // Start search from RelocI for fast access. That works because the 807 // relocations are sorted in .eh_frame. 808 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 809 const RelTy &Rel = Rels[RelocI]; 810 if (Rel.r_offset < Begin) 811 continue; 812 813 if (Rel.r_offset < Begin + Size) 814 return RelocI; 815 return -1; 816 } 817 return -1; 818 } 819 820 // .eh_frame is a sequence of CIE or FDE records. 821 // This function splits an input section into records and returns them. 822 template <class ELFT> void EhInputSection::split() { 823 // Early exit if already split. 824 if (!this->Pieces.empty()) 825 return; 826 827 if (this->NumRelocations) { 828 if (this->AreRelocsRela) 829 split<ELFT>(this->relas<ELFT>()); 830 else 831 split<ELFT>(this->rels<ELFT>()); 832 return; 833 } 834 split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 835 } 836 837 template <class ELFT, class RelTy> 838 void EhInputSection::split(ArrayRef<RelTy> Rels) { 839 ArrayRef<uint8_t> Data = this->Data; 840 unsigned RelI = 0; 841 for (size_t Off = 0, End = Data.size(); Off != End;) { 842 size_t Size = readEhRecordSize<ELFT>(this, Off); 843 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 844 // The empty record is the end marker. 845 if (Size == 4) 846 break; 847 Off += Size; 848 } 849 } 850 851 static size_t findNull(StringRef S, size_t EntSize) { 852 // Optimize the common case. 853 if (EntSize == 1) 854 return S.find(0); 855 856 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 857 const char *B = S.begin() + I; 858 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 859 return I; 860 } 861 return StringRef::npos; 862 } 863 864 SyntheticSection *MergeInputSection::getParent() const { 865 return cast_or_null<SyntheticSection>(Parent); 866 } 867 868 // Split SHF_STRINGS section. Such section is a sequence of 869 // null-terminated strings. 870 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 871 size_t Off = 0; 872 bool IsAlloc = this->Flags & SHF_ALLOC; 873 StringRef S = toStringRef(Data); 874 875 while (!S.empty()) { 876 size_t End = findNull(S, EntSize); 877 if (End == StringRef::npos) 878 fatal(toString(this) + ": string is not null terminated"); 879 size_t Size = End + EntSize; 880 881 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 882 S = S.substr(Size); 883 Off += Size; 884 } 885 } 886 887 // Split non-SHF_STRINGS section. Such section is a sequence of 888 // fixed size records. 889 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 890 size_t EntSize) { 891 size_t Size = Data.size(); 892 assert((Size % EntSize) == 0); 893 bool IsAlloc = this->Flags & SHF_ALLOC; 894 895 for (size_t I = 0; I != Size; I += EntSize) 896 Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))), 897 !IsAlloc); 898 } 899 900 template <class ELFT> 901 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 902 const typename ELFT::Shdr *Header, 903 StringRef Name) 904 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) { 905 // In order to reduce memory allocation, we assume that mergeable 906 // sections are smaller than 4 GiB, which is not an unreasonable 907 // assumption as of 2017. 908 if (Data.size() > UINT32_MAX) 909 error(toString(this) + ": section too large"); 910 } 911 912 // This function is called after we obtain a complete list of input sections 913 // that need to be linked. This is responsible to split section contents 914 // into small chunks for further processing. 915 // 916 // Note that this function is called from parallelForEach. This must be 917 // thread-safe (i.e. no memory allocation from the pools). 918 void MergeInputSection::splitIntoPieces() { 919 assert(Pieces.empty()); 920 921 if (this->Flags & SHF_STRINGS) 922 splitStrings(Data, Entsize); 923 else 924 splitNonStrings(Data, Entsize); 925 926 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 927 for (uint64_t Off : LiveOffsets) 928 this->getSectionPiece(Off)->Live = true; 929 } 930 931 // Do binary search to get a section piece at a given input offset. 932 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 933 auto *This = static_cast<const MergeInputSection *>(this); 934 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 935 } 936 937 template <class It, class T, class Compare> 938 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 939 size_t Size = std::distance(First, Last); 940 assert(Size != 0); 941 while (Size != 1) { 942 size_t H = Size / 2; 943 const It MI = First + H; 944 Size -= H; 945 First = Comp(Value, *MI) ? First : First + H; 946 } 947 return Comp(Value, *First) ? First : First + 1; 948 } 949 950 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 951 if (Data.size() <= Offset) 952 fatal(toString(this) + ": entry is past the end of the section"); 953 954 // Find the element this offset points to. 955 auto I = fastUpperBound( 956 Pieces.begin(), Pieces.end(), Offset, 957 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 958 --I; 959 return &*I; 960 } 961 962 // Returns the offset in an output section for a given input offset. 963 // Because contents of a mergeable section is not contiguous in output, 964 // it is not just an addition to a base output offset. 965 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 966 if (!Live) 967 return 0; 968 969 const SectionPiece &Piece = *getSectionPiece(Offset); 970 if (!Piece.Live) 971 return 0; 972 uint64_t Addend = Offset - Piece.InputOff; 973 return Piece.OutputOff + Addend; 974 } 975 976 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 977 StringRef); 978 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 979 StringRef); 980 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 981 StringRef); 982 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 983 StringRef); 984 985 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 986 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 987 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 988 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 989 990 template std::string InputSectionBase::getSrcMsg<ELF32LE>(uint64_t); 991 template std::string InputSectionBase::getSrcMsg<ELF32BE>(uint64_t); 992 template std::string InputSectionBase::getSrcMsg<ELF64LE>(uint64_t); 993 template std::string InputSectionBase::getSrcMsg<ELF64BE>(uint64_t); 994 995 template std::string InputSectionBase::getObjMsg<ELF32LE>(uint64_t); 996 template std::string InputSectionBase::getObjMsg<ELF32BE>(uint64_t); 997 template std::string InputSectionBase::getObjMsg<ELF64LE>(uint64_t); 998 template std::string InputSectionBase::getObjMsg<ELF64BE>(uint64_t); 999 1000 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1001 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1002 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1003 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1004 1005 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1006 const ELF32LE::Shdr *, StringRef); 1007 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1008 const ELF32BE::Shdr *, StringRef); 1009 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1010 const ELF64LE::Shdr *, StringRef); 1011 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1012 const ELF64BE::Shdr *, StringRef); 1013 1014 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1015 const ELF32LE::Shdr *, StringRef); 1016 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1017 const ELF32BE::Shdr *, StringRef); 1018 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1019 const ELF64LE::Shdr *, StringRef); 1020 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1021 const ELF64BE::Shdr *, StringRef); 1022 1023 template void EhInputSection::split<ELF32LE>(); 1024 template void EhInputSection::split<ELF32BE>(); 1025 template void EhInputSection::split<ELF64LE>(); 1026 template void EhInputSection::split<ELF64BE>(); 1027