1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 using namespace llvm::sys;
39 
40 using namespace lld;
41 using namespace lld::elf;
42 
43 std::vector<InputSectionBase *> elf::InputSections;
44 
45 // Returns a string to construct an error message.
46 std::string lld::toString(const InputSectionBase *Sec) {
47   return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
48 }
49 
50 template <class ELFT>
51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
52                                             const typename ELFT::Shdr &Hdr) {
53   if (Hdr.sh_type == SHT_NOBITS)
54     return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
55   return check(File.getObj().getSectionContents(&Hdr));
56 }
57 
58 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
59                                    uint32_t Type, uint64_t Entsize,
60                                    uint32_t Link, uint32_t Info,
61                                    uint32_t Alignment, ArrayRef<uint8_t> Data,
62                                    StringRef Name, Kind SectionKind)
63     : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
64                   Link),
65       File(File), RawData(Data) {
66   // In order to reduce memory allocation, we assume that mergeable
67   // sections are smaller than 4 GiB, which is not an unreasonable
68   // assumption as of 2017.
69   if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX)
70     error(toString(this) + ": section too large");
71 
72   NumRelocations = 0;
73   AreRelocsRela = false;
74 
75   // The ELF spec states that a value of 0 means the section has
76   // no alignment constraits.
77   uint32_t V = std::max<uint32_t>(Alignment, 1);
78   if (!isPowerOf2_64(V))
79     fatal(toString(this) + ": sh_addralign is not a power of 2");
80   this->Alignment = V;
81 
82   // In ELF, each section can be compressed by zlib, and if compressed,
83   // section name may be mangled by appending "z" (e.g. ".zdebug_info").
84   // If that's the case, demangle section name so that we can handle a
85   // section as if it weren't compressed.
86   if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) {
87     if (!zlib::isAvailable())
88       error(toString(File) + ": contains a compressed section, " +
89             "but zlib is not available");
90     parseCompressedHeader();
91   }
92 }
93 
94 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
95 // SHF_GROUP is a marker that a section belongs to some comdat group.
96 // That flag doesn't make sense in an executable.
97 static uint64_t getFlags(uint64_t Flags) {
98   Flags &= ~(uint64_t)SHF_INFO_LINK;
99   if (!Config->Relocatable)
100     Flags &= ~(uint64_t)SHF_GROUP;
101   return Flags;
102 }
103 
104 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
105 // March 2017) fail to infer section types for sections starting with
106 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
107 // SHF_INIT_ARRAY. As a result, the following assembler directive
108 // creates ".init_array.100" with SHT_PROGBITS, for example.
109 //
110 //   .section .init_array.100, "aw"
111 //
112 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
113 // incorrect inputs as if they were correct from the beginning.
114 static uint64_t getType(uint64_t Type, StringRef Name) {
115   if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
116     return SHT_INIT_ARRAY;
117   if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
118     return SHT_FINI_ARRAY;
119   return Type;
120 }
121 
122 template <class ELFT>
123 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
124                                    const typename ELFT::Shdr &Hdr,
125                                    StringRef Name, Kind SectionKind)
126     : InputSectionBase(&File, getFlags(Hdr.sh_flags),
127                        getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
128                        Hdr.sh_info, Hdr.sh_addralign,
129                        getSectionContents(File, Hdr), Name, SectionKind) {
130   // We reject object files having insanely large alignments even though
131   // they are allowed by the spec. I think 4GB is a reasonable limitation.
132   // We might want to relax this in the future.
133   if (Hdr.sh_addralign > UINT32_MAX)
134     fatal(toString(&File) + ": section sh_addralign is too large");
135 }
136 
137 size_t InputSectionBase::getSize() const {
138   if (auto *S = dyn_cast<SyntheticSection>(this))
139     return S->getSize();
140   if (UncompressedSize >= 0)
141     return UncompressedSize;
142   return RawData.size();
143 }
144 
145 void InputSectionBase::uncompress() const {
146   size_t Size = UncompressedSize;
147   char *UncompressedBuf;
148   {
149     static std::mutex Mu;
150     std::lock_guard<std::mutex> Lock(Mu);
151     UncompressedBuf = BAlloc.Allocate<char>(Size);
152   }
153 
154   if (Error E = zlib::uncompress(toStringRef(RawData), UncompressedBuf, Size))
155     fatal(toString(this) +
156           ": uncompress failed: " + llvm::toString(std::move(E)));
157   RawData = makeArrayRef((uint8_t *)UncompressedBuf, Size);
158   UncompressedSize = -1;
159 }
160 
161 uint64_t InputSectionBase::getOffsetInFile() const {
162   const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
163   const uint8_t *SecStart = data().begin();
164   return SecStart - FileStart;
165 }
166 
167 uint64_t SectionBase::getOffset(uint64_t Offset) const {
168   switch (kind()) {
169   case Output: {
170     auto *OS = cast<OutputSection>(this);
171     // For output sections we treat offset -1 as the end of the section.
172     return Offset == uint64_t(-1) ? OS->Size : Offset;
173   }
174   case Regular:
175   case Synthetic:
176     return cast<InputSection>(this)->getOffset(Offset);
177   case EHFrame:
178     // The file crtbeginT.o has relocations pointing to the start of an empty
179     // .eh_frame that is known to be the first in the link. It does that to
180     // identify the start of the output .eh_frame.
181     return Offset;
182   case Merge:
183     const MergeInputSection *MS = cast<MergeInputSection>(this);
184     if (InputSection *IS = MS->getParent())
185       return IS->getOffset(MS->getParentOffset(Offset));
186     return MS->getParentOffset(Offset);
187   }
188   llvm_unreachable("invalid section kind");
189 }
190 
191 uint64_t SectionBase::getVA(uint64_t Offset) const {
192   const OutputSection *Out = getOutputSection();
193   return (Out ? Out->Addr : 0) + getOffset(Offset);
194 }
195 
196 OutputSection *SectionBase::getOutputSection() {
197   InputSection *Sec;
198   if (auto *IS = dyn_cast<InputSection>(this))
199     Sec = IS;
200   else if (auto *MS = dyn_cast<MergeInputSection>(this))
201     Sec = MS->getParent();
202   else if (auto *EH = dyn_cast<EhInputSection>(this))
203     Sec = EH->getParent();
204   else
205     return cast<OutputSection>(this);
206   return Sec ? Sec->getParent() : nullptr;
207 }
208 
209 // When a section is compressed, `RawData` consists with a header followed
210 // by zlib-compressed data. This function parses a header to initialize
211 // `UncompressedSize` member and remove the header from `RawData`.
212 void InputSectionBase::parseCompressedHeader() {
213   using Chdr64 = typename ELF64LE::Chdr;
214   using Chdr32 = typename ELF32LE::Chdr;
215 
216   // Old-style header
217   if (Name.startswith(".zdebug")) {
218     if (!toStringRef(RawData).startswith("ZLIB")) {
219       error(toString(this) + ": corrupted compressed section header");
220       return;
221     }
222     RawData = RawData.slice(4);
223 
224     if (RawData.size() < 8) {
225       error(toString(this) + ": corrupted compressed section header");
226       return;
227     }
228 
229     UncompressedSize = read64be(RawData.data());
230     RawData = RawData.slice(8);
231 
232     // Restore the original section name.
233     // (e.g. ".zdebug_info" -> ".debug_info")
234     Name = Saver.save("." + Name.substr(2));
235     return;
236   }
237 
238   assert(Flags & SHF_COMPRESSED);
239   Flags &= ~(uint64_t)SHF_COMPRESSED;
240 
241   // New-style 64-bit header
242   if (Config->Is64) {
243     if (RawData.size() < sizeof(Chdr64)) {
244       error(toString(this) + ": corrupted compressed section");
245       return;
246     }
247 
248     auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data());
249     if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
250       error(toString(this) + ": unsupported compression type");
251       return;
252     }
253 
254     UncompressedSize = Hdr->ch_size;
255     Alignment = std::max<uint32_t>(Hdr->ch_addralign, 1);
256     RawData = RawData.slice(sizeof(*Hdr));
257     return;
258   }
259 
260   // New-style 32-bit header
261   if (RawData.size() < sizeof(Chdr32)) {
262     error(toString(this) + ": corrupted compressed section");
263     return;
264   }
265 
266   auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data());
267   if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
268     error(toString(this) + ": unsupported compression type");
269     return;
270   }
271 
272   UncompressedSize = Hdr->ch_size;
273   Alignment = std::max<uint32_t>(Hdr->ch_addralign, 1);
274   RawData = RawData.slice(sizeof(*Hdr));
275 }
276 
277 InputSection *InputSectionBase::getLinkOrderDep() const {
278   assert(Link);
279   assert(Flags & SHF_LINK_ORDER);
280   return cast<InputSection>(File->getSections()[Link]);
281 }
282 
283 // Find a function symbol that encloses a given location.
284 template <class ELFT>
285 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
286   for (Symbol *B : File->getSymbols())
287     if (Defined *D = dyn_cast<Defined>(B))
288       if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
289           Offset < D->Value + D->Size)
290         return D;
291   return nullptr;
292 }
293 
294 // Returns a source location string. Used to construct an error message.
295 template <class ELFT>
296 std::string InputSectionBase::getLocation(uint64_t Offset) {
297   std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str();
298 
299   // We don't have file for synthetic sections.
300   if (getFile<ELFT>() == nullptr)
301     return (Config->OutputFile + ":(" + SecAndOffset + ")")
302         .str();
303 
304   // First check if we can get desired values from debugging information.
305   if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
306     return Info->FileName + ":" + std::to_string(Info->Line) + ":(" +
307            SecAndOffset + ")";
308 
309   // File->SourceFile contains STT_FILE symbol that contains a
310   // source file name. If it's missing, we use an object file name.
311   std::string SrcFile = getFile<ELFT>()->SourceFile;
312   if (SrcFile.empty())
313     SrcFile = toString(File);
314 
315   if (Defined *D = getEnclosingFunction<ELFT>(Offset))
316     return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")";
317 
318   // If there's no symbol, print out the offset in the section.
319   return (SrcFile + ":(" + SecAndOffset + ")");
320 }
321 
322 // This function is intended to be used for constructing an error message.
323 // The returned message looks like this:
324 //
325 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
326 //
327 //  Returns an empty string if there's no way to get line info.
328 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
329   return File->getSrcMsg(Sym, *this, Offset);
330 }
331 
332 // Returns a filename string along with an optional section name. This
333 // function is intended to be used for constructing an error
334 // message. The returned message looks like this:
335 //
336 //   path/to/foo.o:(function bar)
337 //
338 // or
339 //
340 //   path/to/foo.o:(function bar) in archive path/to/bar.a
341 std::string InputSectionBase::getObjMsg(uint64_t Off) {
342   std::string Filename = File->getName();
343 
344   std::string Archive;
345   if (!File->ArchiveName.empty())
346     Archive = " in archive " + File->ArchiveName;
347 
348   // Find a symbol that encloses a given location.
349   for (Symbol *B : File->getSymbols())
350     if (auto *D = dyn_cast<Defined>(B))
351       if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
352         return Filename + ":(" + toString(*D) + ")" + Archive;
353 
354   // If there's no symbol, print out the offset in the section.
355   return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
356       .str();
357 }
358 
359 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
360 
361 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
362                            uint32_t Alignment, ArrayRef<uint8_t> Data,
363                            StringRef Name, Kind K)
364     : InputSectionBase(F, Flags, Type,
365                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
366                        Name, K) {}
367 
368 template <class ELFT>
369 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
370                            StringRef Name)
371     : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
372 
373 bool InputSection::classof(const SectionBase *S) {
374   return S->kind() == SectionBase::Regular ||
375          S->kind() == SectionBase::Synthetic;
376 }
377 
378 OutputSection *InputSection::getParent() const {
379   return cast_or_null<OutputSection>(Parent);
380 }
381 
382 // Copy SHT_GROUP section contents. Used only for the -r option.
383 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
384   // ELFT::Word is the 32-bit integral type in the target endianness.
385   using u32 = typename ELFT::Word;
386   ArrayRef<u32> From = getDataAs<u32>();
387   auto *To = reinterpret_cast<u32 *>(Buf);
388 
389   // The first entry is not a section number but a flag.
390   *To++ = From[0];
391 
392   // Adjust section numbers because section numbers in an input object
393   // files are different in the output.
394   ArrayRef<InputSectionBase *> Sections = File->getSections();
395   for (uint32_t Idx : From.slice(1))
396     *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
397 }
398 
399 InputSectionBase *InputSection::getRelocatedSection() const {
400   if (!File || (Type != SHT_RELA && Type != SHT_REL))
401     return nullptr;
402   ArrayRef<InputSectionBase *> Sections = File->getSections();
403   return Sections[Info];
404 }
405 
406 // This is used for -r and --emit-relocs. We can't use memcpy to copy
407 // relocations because we need to update symbol table offset and section index
408 // for each relocation. So we copy relocations one by one.
409 template <class ELFT, class RelTy>
410 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
411   InputSectionBase *Sec = getRelocatedSection();
412 
413   for (const RelTy &Rel : Rels) {
414     RelType Type = Rel.getType(Config->IsMips64EL);
415     const ObjFile<ELFT> *File = getFile<ELFT>();
416     Symbol &Sym = File->getRelocTargetSym(Rel);
417 
418     auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
419     Buf += sizeof(RelTy);
420 
421     if (RelTy::IsRela)
422       P->r_addend = getAddend<ELFT>(Rel);
423 
424     // Output section VA is zero for -r, so r_offset is an offset within the
425     // section, but for --emit-relocs it is an virtual address.
426     P->r_offset = Sec->getVA(Rel.r_offset);
427     P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type,
428                         Config->IsMips64EL);
429 
430     if (Sym.Type == STT_SECTION) {
431       // We combine multiple section symbols into only one per
432       // section. This means we have to update the addend. That is
433       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
434       // section data. We do that by adding to the Relocation vector.
435 
436       // .eh_frame is horribly special and can reference discarded sections. To
437       // avoid having to parse and recreate .eh_frame, we just replace any
438       // relocation in it pointing to discarded sections with R_*_NONE, which
439       // hopefully creates a frame that is ignored at runtime. Also, don't warn
440       // on .gcc_except_table and debug sections.
441       //
442       // See the comment in maybeReportUndefined for PPC64 .toc .
443       auto *D = dyn_cast<Defined>(&Sym);
444       if (!D) {
445         if (!Sec->Name.startswith(".debug") &&
446             !Sec->Name.startswith(".zdebug") && Sec->Name != ".eh_frame" &&
447             Sec->Name != ".gcc_except_table" && Sec->Name != ".toc") {
448           uint32_t SecIdx = cast<Undefined>(Sym).DiscardedSecIdx;
449           Elf_Shdr_Impl<ELFT> Sec =
450               CHECK(File->getObj().sections(), File)[SecIdx];
451           warn("relocation refers to a discarded section: " +
452                CHECK(File->getObj().getSectionName(&Sec), File) +
453                "\n>>> referenced by " + getObjMsg(P->r_offset));
454         }
455         P->setSymbolAndType(0, 0, false);
456         continue;
457       }
458       SectionBase *Section = D->Section->Repl;
459       if (!Section->isLive()) {
460         P->setSymbolAndType(0, 0, false);
461         continue;
462       }
463 
464       int64_t Addend = getAddend<ELFT>(Rel);
465       const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset;
466       if (!RelTy::IsRela)
467         Addend = Target->getImplicitAddend(BufLoc, Type);
468 
469       if (Config->EMachine == EM_MIPS && Config->Relocatable &&
470           Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
471         // Some MIPS relocations depend on "gp" value. By default,
472         // this value has 0x7ff0 offset from a .got section. But
473         // relocatable files produced by a complier or a linker
474         // might redefine this default value and we must use it
475         // for a calculation of the relocation result. When we
476         // generate EXE or DSO it's trivial. Generating a relocatable
477         // output is more difficult case because the linker does
478         // not calculate relocations in this mode and loses
479         // individual "gp" values used by each input object file.
480         // As a workaround we add the "gp" value to the relocation
481         // addend and save it back to the file.
482         Addend += Sec->getFile<ELFT>()->MipsGp0;
483       }
484 
485       if (RelTy::IsRela)
486         P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
487       else if (Config->Relocatable && Type != Target->NoneRel)
488         Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
489     }
490   }
491 }
492 
493 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
494 // references specially. The general rule is that the value of the symbol in
495 // this context is the address of the place P. A further special case is that
496 // branch relocations to an undefined weak reference resolve to the next
497 // instruction.
498 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
499                                               uint32_t P) {
500   switch (Type) {
501   // Unresolved branch relocations to weak references resolve to next
502   // instruction, this will be either 2 or 4 bytes on from P.
503   case R_ARM_THM_JUMP11:
504     return P + 2 + A;
505   case R_ARM_CALL:
506   case R_ARM_JUMP24:
507   case R_ARM_PC24:
508   case R_ARM_PLT32:
509   case R_ARM_PREL31:
510   case R_ARM_THM_JUMP19:
511   case R_ARM_THM_JUMP24:
512     return P + 4 + A;
513   case R_ARM_THM_CALL:
514     // We don't want an interworking BLX to ARM
515     return P + 5 + A;
516   // Unresolved non branch pc-relative relocations
517   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
518   // targets a weak-reference.
519   case R_ARM_MOVW_PREL_NC:
520   case R_ARM_MOVT_PREL:
521   case R_ARM_REL32:
522   case R_ARM_THM_MOVW_PREL_NC:
523   case R_ARM_THM_MOVT_PREL:
524     return P + A;
525   }
526   llvm_unreachable("ARM pc-relative relocation expected\n");
527 }
528 
529 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
530 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
531                                                   uint64_t P) {
532   switch (Type) {
533   // Unresolved branch relocations to weak references resolve to next
534   // instruction, this is 4 bytes on from P.
535   case R_AARCH64_CALL26:
536   case R_AARCH64_CONDBR19:
537   case R_AARCH64_JUMP26:
538   case R_AARCH64_TSTBR14:
539     return P + 4 + A;
540   // Unresolved non branch pc-relative relocations
541   case R_AARCH64_PREL16:
542   case R_AARCH64_PREL32:
543   case R_AARCH64_PREL64:
544   case R_AARCH64_ADR_PREL_LO21:
545   case R_AARCH64_LD_PREL_LO19:
546     return P + A;
547   }
548   llvm_unreachable("AArch64 pc-relative relocation expected\n");
549 }
550 
551 // ARM SBREL relocations are of the form S + A - B where B is the static base
552 // The ARM ABI defines base to be "addressing origin of the output segment
553 // defining the symbol S". We defined the "addressing origin"/static base to be
554 // the base of the PT_LOAD segment containing the Sym.
555 // The procedure call standard only defines a Read Write Position Independent
556 // RWPI variant so in practice we should expect the static base to be the base
557 // of the RW segment.
558 static uint64_t getARMStaticBase(const Symbol &Sym) {
559   OutputSection *OS = Sym.getOutputSection();
560   if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
561     fatal("SBREL relocation to " + Sym.getName() + " without static base");
562   return OS->PtLoad->FirstSec->Addr;
563 }
564 
565 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
566 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
567 // is calculated using PCREL_HI20's symbol.
568 //
569 // This function returns the R_RISCV_PCREL_HI20 relocation from
570 // R_RISCV_PCREL_LO12's symbol and addend.
571 static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) {
572   const Defined *D = cast<Defined>(Sym);
573   InputSection *IS = cast<InputSection>(D->Section);
574 
575   if (Addend != 0)
576     warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
577          IS->getObjMsg(D->Value) + " is ignored");
578 
579   // Relocations are sorted by offset, so we can use std::equal_range to do
580   // binary search.
581   Relocation R;
582   R.Offset = D->Value;
583   auto Range =
584       std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), R,
585                        [](const Relocation &LHS, const Relocation &RHS) {
586                          return LHS.Offset < RHS.Offset;
587                        });
588 
589   for (auto It = Range.first; It != Range.second; ++It)
590     if (It->Expr == R_PC)
591       return &*It;
592 
593   error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) +
594         " without an associated R_RISCV_PCREL_HI20 relocation");
595   return nullptr;
596 }
597 
598 // A TLS symbol's virtual address is relative to the TLS segment. Add a
599 // target-specific adjustment to produce a thread-pointer-relative offset.
600 static int64_t getTlsTpOffset(const Symbol &S) {
601   // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
602   if (&S == ElfSym::TlsModuleBase)
603     return 0;
604 
605   switch (Config->EMachine) {
606   case EM_ARM:
607   case EM_AARCH64:
608     // Variant 1. The thread pointer points to a TCB with a fixed 2-word size,
609     // followed by a variable amount of alignment padding, followed by the TLS
610     // segment.
611     return S.getVA(0) + alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align);
612   case EM_386:
613   case EM_X86_64:
614     // Variant 2. The TLS segment is located just before the thread pointer.
615     return S.getVA(0) - alignTo(Out::TlsPhdr->p_memsz, Out::TlsPhdr->p_align);
616   case EM_PPC:
617   case EM_PPC64:
618     // The thread pointer points to a fixed offset from the start of the
619     // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit
620     // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the
621     // program's TLS segment.
622     return S.getVA(0) - 0x7000;
623   default:
624     llvm_unreachable("unhandled Config->EMachine");
625   }
626 }
627 
628 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
629                                  uint64_t P, const Symbol &Sym, RelExpr Expr) {
630   switch (Expr) {
631   case R_ABS:
632   case R_DTPREL:
633   case R_RELAX_TLS_LD_TO_LE_ABS:
634   case R_RELAX_GOT_PC_NOPIC:
635   case R_RISCV_ADD:
636     return Sym.getVA(A);
637   case R_ADDEND:
638     return A;
639   case R_ARM_SBREL:
640     return Sym.getVA(A) - getARMStaticBase(Sym);
641   case R_GOT:
642   case R_RELAX_TLS_GD_TO_IE_ABS:
643     return Sym.getGotVA() + A;
644   case R_GOTONLY_PC:
645     return In.Got->getVA() + A - P;
646   case R_GOTPLTONLY_PC:
647     return In.GotPlt->getVA() + A - P;
648   case R_GOTREL:
649   case R_PPC64_RELAX_TOC:
650     return Sym.getVA(A) - In.Got->getVA();
651   case R_GOTPLTREL:
652     return Sym.getVA(A) - In.GotPlt->getVA();
653   case R_GOTPLT:
654   case R_RELAX_TLS_GD_TO_IE_GOTPLT:
655     return Sym.getGotVA() + A - In.GotPlt->getVA();
656   case R_TLSLD_GOT_OFF:
657   case R_GOT_OFF:
658   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
659     return Sym.getGotOffset() + A;
660   case R_AARCH64_GOT_PAGE_PC:
661   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
662     return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
663   case R_GOT_PC:
664   case R_RELAX_TLS_GD_TO_IE:
665     return Sym.getGotVA() + A - P;
666   case R_HEXAGON_GOT:
667     return Sym.getGotVA() - In.GotPlt->getVA();
668   case R_MIPS_GOTREL:
669     return Sym.getVA(A) - In.MipsGot->getGp(File);
670   case R_MIPS_GOT_GP:
671     return In.MipsGot->getGp(File) + A;
672   case R_MIPS_GOT_GP_PC: {
673     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
674     // is _gp_disp symbol. In that case we should use the following
675     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
676     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
677     // microMIPS variants of these relocations use slightly different
678     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
679     // to correctly handle less-sugnificant bit of the microMIPS symbol.
680     uint64_t V = In.MipsGot->getGp(File) + A - P;
681     if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
682       V += 4;
683     if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
684       V -= 1;
685     return V;
686   }
687   case R_MIPS_GOT_LOCAL_PAGE:
688     // If relocation against MIPS local symbol requires GOT entry, this entry
689     // should be initialized by 'page address'. This address is high 16-bits
690     // of sum the symbol's value and the addend.
691     return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) -
692            In.MipsGot->getGp(File);
693   case R_MIPS_GOT_OFF:
694   case R_MIPS_GOT_OFF32:
695     // In case of MIPS if a GOT relocation has non-zero addend this addend
696     // should be applied to the GOT entry content not to the GOT entry offset.
697     // That is why we use separate expression type.
698     return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) -
699            In.MipsGot->getGp(File);
700   case R_MIPS_TLSGD:
701     return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) -
702            In.MipsGot->getGp(File);
703   case R_MIPS_TLSLD:
704     return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) -
705            In.MipsGot->getGp(File);
706   case R_AARCH64_PAGE_PC: {
707     uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A);
708     return getAArch64Page(Val) - getAArch64Page(P);
709   }
710   case R_RISCV_PC_INDIRECT: {
711     if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A))
712       return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(),
713                               *HiRel->Sym, HiRel->Expr);
714     return 0;
715   }
716   case R_PC: {
717     uint64_t Dest;
718     if (Sym.isUndefWeak()) {
719       // On ARM and AArch64 a branch to an undefined weak resolves to the
720       // next instruction, otherwise the place.
721       if (Config->EMachine == EM_ARM)
722         Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
723       else if (Config->EMachine == EM_AARCH64)
724         Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
725       else if (Config->EMachine == EM_PPC)
726         Dest = P;
727       else
728         Dest = Sym.getVA(A);
729     } else {
730       Dest = Sym.getVA(A);
731     }
732     return Dest - P;
733   }
734   case R_PLT:
735     return Sym.getPltVA() + A;
736   case R_PLT_PC:
737   case R_PPC64_CALL_PLT:
738     return Sym.getPltVA() + A - P;
739   case R_PPC32_PLTREL:
740     // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
741     // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
742     // target VA compuation.
743     return Sym.getPltVA() - P;
744   case R_PPC64_CALL: {
745     uint64_t SymVA = Sym.getVA(A);
746     // If we have an undefined weak symbol, we might get here with a symbol
747     // address of zero. That could overflow, but the code must be unreachable,
748     // so don't bother doing anything at all.
749     if (!SymVA)
750       return 0;
751 
752     // PPC64 V2 ABI describes two entry points to a function. The global entry
753     // point is used for calls where the caller and callee (may) have different
754     // TOC base pointers and r2 needs to be modified to hold the TOC base for
755     // the callee. For local calls the caller and callee share the same
756     // TOC base and so the TOC pointer initialization code should be skipped by
757     // branching to the local entry point.
758     return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther);
759   }
760   case R_PPC64_TOCBASE:
761     return getPPC64TocBase() + A;
762   case R_RELAX_GOT_PC:
763     return Sym.getVA(A) - P;
764   case R_RELAX_TLS_GD_TO_LE:
765   case R_RELAX_TLS_IE_TO_LE:
766   case R_RELAX_TLS_LD_TO_LE:
767   case R_TLS:
768     // It is not very clear what to return if the symbol is undefined. With
769     // --noinhibit-exec, even a non-weak undefined reference may reach here.
770     // Just return A, which matches R_ABS, and the behavior of some dynamic
771     // loaders.
772     if (Sym.isUndefined())
773       return A;
774     return getTlsTpOffset(Sym) + A;
775   case R_RELAX_TLS_GD_TO_LE_NEG:
776   case R_NEG_TLS:
777     if (Sym.isUndefined())
778       return A;
779     return -getTlsTpOffset(Sym) + A;
780   case R_SIZE:
781     return Sym.getSize() + A;
782   case R_TLSDESC:
783     return In.Got->getGlobalDynAddr(Sym) + A;
784   case R_TLSDESC_PC:
785     return In.Got->getGlobalDynAddr(Sym) + A - P;
786   case R_AARCH64_TLSDESC_PAGE:
787     return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) -
788            getAArch64Page(P);
789   case R_TLSGD_GOT:
790     return In.Got->getGlobalDynOffset(Sym) + A;
791   case R_TLSGD_GOTPLT:
792     return In.Got->getVA() + In.Got->getGlobalDynOffset(Sym) + A - In.GotPlt->getVA();
793   case R_TLSGD_PC:
794     return In.Got->getGlobalDynAddr(Sym) + A - P;
795   case R_TLSLD_GOTPLT:
796     return In.Got->getVA() + In.Got->getTlsIndexOff() + A - In.GotPlt->getVA();
797   case R_TLSLD_GOT:
798     return In.Got->getTlsIndexOff() + A;
799   case R_TLSLD_PC:
800     return In.Got->getTlsIndexVA() + A - P;
801   default:
802     llvm_unreachable("invalid expression");
803   }
804 }
805 
806 // This function applies relocations to sections without SHF_ALLOC bit.
807 // Such sections are never mapped to memory at runtime. Debug sections are
808 // an example. Relocations in non-alloc sections are much easier to
809 // handle than in allocated sections because it will never need complex
810 // treatement such as GOT or PLT (because at runtime no one refers them).
811 // So, we handle relocations for non-alloc sections directly in this
812 // function as a performance optimization.
813 template <class ELFT, class RelTy>
814 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
815   const unsigned Bits = sizeof(typename ELFT::uint) * 8;
816 
817   for (const RelTy &Rel : Rels) {
818     RelType Type = Rel.getType(Config->IsMips64EL);
819 
820     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
821     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
822     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
823     // need to keep this bug-compatible code for a while.
824     if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
825       continue;
826 
827     uint64_t Offset = getOffset(Rel.r_offset);
828     uint8_t *BufLoc = Buf + Offset;
829     int64_t Addend = getAddend<ELFT>(Rel);
830     if (!RelTy::IsRela)
831       Addend += Target->getImplicitAddend(BufLoc, Type);
832 
833     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
834     RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
835     if (Expr == R_NONE)
836       continue;
837 
838     if (Expr != R_ABS && Expr != R_DTPREL) {
839       std::string Msg = getLocation<ELFT>(Offset) +
840                         ": has non-ABS relocation " + toString(Type) +
841                         " against symbol '" + toString(Sym) + "'";
842       if (Expr != R_PC) {
843         error(Msg);
844         return;
845       }
846 
847       // If the control reaches here, we found a PC-relative relocation in a
848       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
849       // at runtime, the notion of PC-relative doesn't make sense here. So,
850       // this is a usage error. However, GNU linkers historically accept such
851       // relocations without any errors and relocate them as if they were at
852       // address 0. For bug-compatibilty, we accept them with warnings. We
853       // know Steel Bank Common Lisp as of 2018 have this bug.
854       warn(Msg);
855       Target->relocateOne(BufLoc, Type,
856                           SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
857       continue;
858     }
859 
860     if (Sym.isTls() && !Out::TlsPhdr)
861       Target->relocateOne(BufLoc, Type, 0);
862     else
863       Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
864   }
865 }
866 
867 // This is used when '-r' is given.
868 // For REL targets, InputSection::copyRelocations() may store artificial
869 // relocations aimed to update addends. They are handled in relocateAlloc()
870 // for allocatable sections, and this function does the same for
871 // non-allocatable sections, such as sections with debug information.
872 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
873   const unsigned Bits = Config->Is64 ? 64 : 32;
874 
875   for (const Relocation &Rel : Sec->Relocations) {
876     // InputSection::copyRelocations() adds only R_ABS relocations.
877     assert(Rel.Expr == R_ABS);
878     uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
879     uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
880     Target->relocateOne(BufLoc, Rel.Type, TargetVA);
881   }
882 }
883 
884 template <class ELFT>
885 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
886   if (Flags & SHF_EXECINSTR)
887     adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
888 
889   if (Flags & SHF_ALLOC) {
890     relocateAlloc(Buf, BufEnd);
891     return;
892   }
893 
894   auto *Sec = cast<InputSection>(this);
895   if (Config->Relocatable)
896     relocateNonAllocForRelocatable(Sec, Buf);
897   else if (Sec->AreRelocsRela)
898     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
899   else
900     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
901 }
902 
903 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
904   assert(Flags & SHF_ALLOC);
905   const unsigned Bits = Config->Wordsize * 8;
906 
907   for (const Relocation &Rel : Relocations) {
908     uint64_t Offset = Rel.Offset;
909     if (auto *Sec = dyn_cast<InputSection>(this))
910       Offset += Sec->OutSecOff;
911     uint8_t *BufLoc = Buf + Offset;
912     RelType Type = Rel.Type;
913 
914     uint64_t AddrLoc = getOutputSection()->Addr + Offset;
915     RelExpr Expr = Rel.Expr;
916     uint64_t TargetVA = SignExtend64(
917         getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
918         Bits);
919 
920     switch (Expr) {
921     case R_RELAX_GOT_PC:
922     case R_RELAX_GOT_PC_NOPIC:
923       Target->relaxGot(BufLoc, Type, TargetVA);
924       break;
925     case R_PPC64_RELAX_TOC:
926       if (!tryRelaxPPC64TocIndirection(Type, Rel, BufLoc))
927         Target->relocateOne(BufLoc, Type, TargetVA);
928       break;
929     case R_RELAX_TLS_IE_TO_LE:
930       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
931       break;
932     case R_RELAX_TLS_LD_TO_LE:
933     case R_RELAX_TLS_LD_TO_LE_ABS:
934       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
935       break;
936     case R_RELAX_TLS_GD_TO_LE:
937     case R_RELAX_TLS_GD_TO_LE_NEG:
938       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
939       break;
940     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
941     case R_RELAX_TLS_GD_TO_IE:
942     case R_RELAX_TLS_GD_TO_IE_ABS:
943     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
944     case R_RELAX_TLS_GD_TO_IE_GOTPLT:
945       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
946       break;
947     case R_PPC64_CALL:
948       // If this is a call to __tls_get_addr, it may be part of a TLS
949       // sequence that has been relaxed and turned into a nop. In this
950       // case, we don't want to handle it as a call.
951       if (read32(BufLoc) == 0x60000000) // nop
952         break;
953 
954       // Patch a nop (0x60000000) to a ld.
955       if (Rel.Sym->NeedsTocRestore) {
956         if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
957           error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
958           break;
959         }
960         write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
961       }
962       Target->relocateOne(BufLoc, Type, TargetVA);
963       break;
964     default:
965       Target->relocateOne(BufLoc, Type, TargetVA);
966       break;
967     }
968   }
969 }
970 
971 // For each function-defining prologue, find any calls to __morestack,
972 // and replace them with calls to __morestack_non_split.
973 static void switchMorestackCallsToMorestackNonSplit(
974     DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
975 
976   // If the target adjusted a function's prologue, all calls to
977   // __morestack inside that function should be switched to
978   // __morestack_non_split.
979   Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
980   if (!MoreStackNonSplit) {
981     error("Mixing split-stack objects requires a definition of "
982           "__morestack_non_split");
983     return;
984   }
985 
986   // Sort both collections to compare addresses efficiently.
987   llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) {
988     return L->Offset < R->Offset;
989   });
990   std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
991   llvm::sort(Functions, [](const Defined *L, const Defined *R) {
992     return L->Value < R->Value;
993   });
994 
995   auto It = MorestackCalls.begin();
996   for (Defined *F : Functions) {
997     // Find the first call to __morestack within the function.
998     while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
999       ++It;
1000     // Adjust all calls inside the function.
1001     while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
1002       (*It)->Sym = MoreStackNonSplit;
1003       ++It;
1004     }
1005   }
1006 }
1007 
1008 static bool enclosingPrologueAttempted(uint64_t Offset,
1009                                        const DenseSet<Defined *> &Prologues) {
1010   for (Defined *F : Prologues)
1011     if (F->Value <= Offset && Offset < F->Value + F->Size)
1012       return true;
1013   return false;
1014 }
1015 
1016 // If a function compiled for split stack calls a function not
1017 // compiled for split stack, then the caller needs its prologue
1018 // adjusted to ensure that the called function will have enough stack
1019 // available. Find those functions, and adjust their prologues.
1020 template <class ELFT>
1021 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
1022                                                          uint8_t *End) {
1023   if (!getFile<ELFT>()->SplitStack)
1024     return;
1025   DenseSet<Defined *> Prologues;
1026   std::vector<Relocation *> MorestackCalls;
1027 
1028   for (Relocation &Rel : Relocations) {
1029     // Local symbols can't possibly be cross-calls, and should have been
1030     // resolved long before this line.
1031     if (Rel.Sym->isLocal())
1032       continue;
1033 
1034     // Ignore calls into the split-stack api.
1035     if (Rel.Sym->getName().startswith("__morestack")) {
1036       if (Rel.Sym->getName().equals("__morestack"))
1037         MorestackCalls.push_back(&Rel);
1038       continue;
1039     }
1040 
1041     // A relocation to non-function isn't relevant. Sometimes
1042     // __morestack is not marked as a function, so this check comes
1043     // after the name check.
1044     if (Rel.Sym->Type != STT_FUNC)
1045       continue;
1046 
1047     // If the callee's-file was compiled with split stack, nothing to do.  In
1048     // this context, a "Defined" symbol is one "defined by the binary currently
1049     // being produced". So an "undefined" symbol might be provided by a shared
1050     // library. It is not possible to tell how such symbols were compiled, so be
1051     // conservative.
1052     if (Defined *D = dyn_cast<Defined>(Rel.Sym))
1053       if (InputSection *IS = cast_or_null<InputSection>(D->Section))
1054         if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack)
1055           continue;
1056 
1057     if (enclosingPrologueAttempted(Rel.Offset, Prologues))
1058       continue;
1059 
1060     if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
1061       Prologues.insert(F);
1062       if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value),
1063                                                    End, F->StOther))
1064         continue;
1065       if (!getFile<ELFT>()->SomeNoSplitStack)
1066         error(lld::toString(this) + ": " + F->getName() +
1067               " (with -fsplit-stack) calls " + Rel.Sym->getName() +
1068               " (without -fsplit-stack), but couldn't adjust its prologue");
1069     }
1070   }
1071 
1072   if (Target->NeedsMoreStackNonSplit)
1073     switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls);
1074 }
1075 
1076 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
1077   if (Type == SHT_NOBITS)
1078     return;
1079 
1080   if (auto *S = dyn_cast<SyntheticSection>(this)) {
1081     S->writeTo(Buf + OutSecOff);
1082     return;
1083   }
1084 
1085   // If -r or --emit-relocs is given, then an InputSection
1086   // may be a relocation section.
1087   if (Type == SHT_RELA) {
1088     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
1089     return;
1090   }
1091   if (Type == SHT_REL) {
1092     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
1093     return;
1094   }
1095 
1096   // If -r is given, we may have a SHT_GROUP section.
1097   if (Type == SHT_GROUP) {
1098     copyShtGroup<ELFT>(Buf + OutSecOff);
1099     return;
1100   }
1101 
1102   // If this is a compressed section, uncompress section contents directly
1103   // to the buffer.
1104   if (UncompressedSize >= 0) {
1105     size_t Size = UncompressedSize;
1106     if (Error E = zlib::uncompress(toStringRef(RawData),
1107                                    (char *)(Buf + OutSecOff), Size))
1108       fatal(toString(this) +
1109             ": uncompress failed: " + llvm::toString(std::move(E)));
1110     uint8_t *BufEnd = Buf + OutSecOff + Size;
1111     relocate<ELFT>(Buf, BufEnd);
1112     return;
1113   }
1114 
1115   // Copy section contents from source object file to output file
1116   // and then apply relocations.
1117   memcpy(Buf + OutSecOff, data().data(), data().size());
1118   uint8_t *BufEnd = Buf + OutSecOff + data().size();
1119   relocate<ELFT>(Buf, BufEnd);
1120 }
1121 
1122 void InputSection::replace(InputSection *Other) {
1123   Alignment = std::max(Alignment, Other->Alignment);
1124 
1125   // When a section is replaced with another section that was allocated to
1126   // another partition, the replacement section (and its associated sections)
1127   // need to be placed in the main partition so that both partitions will be
1128   // able to access it.
1129   if (Partition != Other->Partition) {
1130     Partition = 1;
1131     for (InputSection *IS : DependentSections)
1132       IS->Partition = 1;
1133   }
1134 
1135   Other->Repl = Repl;
1136   Other->markDead();
1137 }
1138 
1139 template <class ELFT>
1140 EhInputSection::EhInputSection(ObjFile<ELFT> &F,
1141                                const typename ELFT::Shdr &Header,
1142                                StringRef Name)
1143     : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
1144 
1145 SyntheticSection *EhInputSection::getParent() const {
1146   return cast_or_null<SyntheticSection>(Parent);
1147 }
1148 
1149 // Returns the index of the first relocation that points to a region between
1150 // Begin and Begin+Size.
1151 template <class IntTy, class RelTy>
1152 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
1153                          unsigned &RelocI) {
1154   // Start search from RelocI for fast access. That works because the
1155   // relocations are sorted in .eh_frame.
1156   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
1157     const RelTy &Rel = Rels[RelocI];
1158     if (Rel.r_offset < Begin)
1159       continue;
1160 
1161     if (Rel.r_offset < Begin + Size)
1162       return RelocI;
1163     return -1;
1164   }
1165   return -1;
1166 }
1167 
1168 // .eh_frame is a sequence of CIE or FDE records.
1169 // This function splits an input section into records and returns them.
1170 template <class ELFT> void EhInputSection::split() {
1171   if (AreRelocsRela)
1172     split<ELFT>(relas<ELFT>());
1173   else
1174     split<ELFT>(rels<ELFT>());
1175 }
1176 
1177 template <class ELFT, class RelTy>
1178 void EhInputSection::split(ArrayRef<RelTy> Rels) {
1179   unsigned RelI = 0;
1180   for (size_t Off = 0, End = data().size(); Off != End;) {
1181     size_t Size = readEhRecordSize(this, Off);
1182     Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1183     // The empty record is the end marker.
1184     if (Size == 4)
1185       break;
1186     Off += Size;
1187   }
1188 }
1189 
1190 static size_t findNull(StringRef S, size_t EntSize) {
1191   // Optimize the common case.
1192   if (EntSize == 1)
1193     return S.find(0);
1194 
1195   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1196     const char *B = S.begin() + I;
1197     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1198       return I;
1199   }
1200   return StringRef::npos;
1201 }
1202 
1203 SyntheticSection *MergeInputSection::getParent() const {
1204   return cast_or_null<SyntheticSection>(Parent);
1205 }
1206 
1207 // Split SHF_STRINGS section. Such section is a sequence of
1208 // null-terminated strings.
1209 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1210   size_t Off = 0;
1211   bool IsAlloc = Flags & SHF_ALLOC;
1212   StringRef S = toStringRef(Data);
1213 
1214   while (!S.empty()) {
1215     size_t End = findNull(S, EntSize);
1216     if (End == StringRef::npos)
1217       fatal(toString(this) + ": string is not null terminated");
1218     size_t Size = End + EntSize;
1219 
1220     Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1221     S = S.substr(Size);
1222     Off += Size;
1223   }
1224 }
1225 
1226 // Split non-SHF_STRINGS section. Such section is a sequence of
1227 // fixed size records.
1228 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1229                                         size_t EntSize) {
1230   size_t Size = Data.size();
1231   assert((Size % EntSize) == 0);
1232   bool IsAlloc = Flags & SHF_ALLOC;
1233 
1234   for (size_t I = 0; I != Size; I += EntSize)
1235     Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1236 }
1237 
1238 template <class ELFT>
1239 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1240                                      const typename ELFT::Shdr &Header,
1241                                      StringRef Name)
1242     : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1243 
1244 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1245                                      uint64_t Entsize, ArrayRef<uint8_t> Data,
1246                                      StringRef Name)
1247     : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1248                        /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1249 
1250 // This function is called after we obtain a complete list of input sections
1251 // that need to be linked. This is responsible to split section contents
1252 // into small chunks for further processing.
1253 //
1254 // Note that this function is called from parallelForEach. This must be
1255 // thread-safe (i.e. no memory allocation from the pools).
1256 void MergeInputSection::splitIntoPieces() {
1257   assert(Pieces.empty());
1258 
1259   if (Flags & SHF_STRINGS)
1260     splitStrings(data(), Entsize);
1261   else
1262     splitNonStrings(data(), Entsize);
1263 }
1264 
1265 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1266   if (this->data().size() <= Offset)
1267     fatal(toString(this) + ": offset is outside the section");
1268 
1269   // If Offset is not at beginning of a section piece, it is not in the map.
1270   // In that case we need to  do a binary search of the original section piece vector.
1271   auto It = llvm::bsearch(Pieces,
1272                           [=](SectionPiece P) { return Offset < P.InputOff; });
1273   return &It[-1];
1274 }
1275 
1276 // Returns the offset in an output section for a given input offset.
1277 // Because contents of a mergeable section is not contiguous in output,
1278 // it is not just an addition to a base output offset.
1279 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1280   // If Offset is not at beginning of a section piece, it is not in the map.
1281   // In that case we need to search from the original section piece vector.
1282   const SectionPiece &Piece =
1283       *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset));
1284   uint64_t Addend = Offset - Piece.InputOff;
1285   return Piece.OutputOff + Addend;
1286 }
1287 
1288 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1289                                     StringRef);
1290 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1291                                     StringRef);
1292 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1293                                     StringRef);
1294 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1295                                     StringRef);
1296 
1297 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1298 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1299 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1300 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1301 
1302 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1303 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1304 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1305 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1306 
1307 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1308                                               const ELF32LE::Shdr &, StringRef);
1309 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1310                                               const ELF32BE::Shdr &, StringRef);
1311 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1312                                               const ELF64LE::Shdr &, StringRef);
1313 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1314                                               const ELF64BE::Shdr &, StringRef);
1315 
1316 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1317                                         const ELF32LE::Shdr &, StringRef);
1318 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1319                                         const ELF32BE::Shdr &, StringRef);
1320 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1321                                         const ELF64LE::Shdr &, StringRef);
1322 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1323                                         const ELF64BE::Shdr &, StringRef);
1324 
1325 template void EhInputSection::split<ELF32LE>();
1326 template void EhInputSection::split<ELF32BE>();
1327 template void EhInputSection::split<ELF64LE>();
1328 template void EhInputSection::split<ELF64BE>();
1329