1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "InputFiles.h" 14 #include "LinkerScript.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Object/Decompressor.h" 24 #include "llvm/Support/Compiler.h" 25 #include "llvm/Support/Compression.h" 26 #include "llvm/Support/Endian.h" 27 #include "llvm/Support/Path.h" 28 #include "llvm/Support/Threading.h" 29 #include "llvm/Support/xxhash.h" 30 #include <mutex> 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::support; 36 using namespace llvm::support::endian; 37 using namespace llvm::sys; 38 39 using namespace lld; 40 using namespace lld::elf; 41 42 std::vector<InputSectionBase *> elf::InputSections; 43 44 // Returns a string to construct an error message. 45 std::string lld::toString(const InputSectionBase *Sec) { 46 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 47 } 48 49 DenseMap<SectionBase *, int> elf::buildSectionOrder() { 50 DenseMap<SectionBase *, int> SectionOrder; 51 if (Config->SymbolOrderingFile.empty()) 52 return SectionOrder; 53 54 // Build a map from symbols to their priorities. Symbols that didn't 55 // appear in the symbol ordering file have the lowest priority 0. 56 // All explicitly mentioned symbols have negative (higher) priorities. 57 DenseMap<StringRef, int> SymbolOrder; 58 int Priority = -Config->SymbolOrderingFile.size(); 59 for (StringRef S : Config->SymbolOrderingFile) 60 SymbolOrder.insert({S, Priority++}); 61 62 // Build a map from sections to their priorities. 63 for (InputFile *File : ObjectFiles) { 64 for (Symbol *Sym : File->getSymbols()) { 65 auto *D = dyn_cast<Defined>(Sym); 66 if (!D || !D->Section) 67 continue; 68 int &Priority = SectionOrder[D->Section]; 69 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 70 } 71 } 72 return SectionOrder; 73 } 74 75 template <class ELFT> 76 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 77 const typename ELFT::Shdr *Hdr) { 78 if (!File || Hdr->sh_type == SHT_NOBITS) 79 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 80 return check(File->getObj().getSectionContents(Hdr)); 81 } 82 83 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 84 uint32_t Type, uint64_t Entsize, 85 uint32_t Link, uint32_t Info, 86 uint32_t Alignment, ArrayRef<uint8_t> Data, 87 StringRef Name, Kind SectionKind) 88 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 89 Link), 90 File(File), Data(Data), Repl(this) { 91 NumRelocations = 0; 92 AreRelocsRela = false; 93 94 // The ELF spec states that a value of 0 means the section has 95 // no alignment constraits. 96 uint32_t V = std::max<uint64_t>(Alignment, 1); 97 if (!isPowerOf2_64(V)) 98 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 99 this->Alignment = V; 100 } 101 102 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 103 // SHF_GROUP is a marker that a section belongs to some comdat group. 104 // That flag doesn't make sense in an executable. 105 static uint64_t getFlags(uint64_t Flags) { 106 Flags &= ~(uint64_t)SHF_INFO_LINK; 107 if (!Config->Relocatable) 108 Flags &= ~(uint64_t)SHF_GROUP; 109 return Flags; 110 } 111 112 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 113 // March 2017) fail to infer section types for sections starting with 114 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 115 // SHF_INIT_ARRAY. As a result, the following assembler directive 116 // creates ".init_array.100" with SHT_PROGBITS, for example. 117 // 118 // .section .init_array.100, "aw" 119 // 120 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 121 // incorrect inputs as if they were correct from the beginning. 122 static uint64_t getType(uint64_t Type, StringRef Name) { 123 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 124 return SHT_INIT_ARRAY; 125 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 126 return SHT_FINI_ARRAY; 127 return Type; 128 } 129 130 template <class ELFT> 131 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 132 const typename ELFT::Shdr *Hdr, 133 StringRef Name, Kind SectionKind) 134 : InputSectionBase(File, getFlags(Hdr->sh_flags), 135 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 136 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 137 getSectionContents(File, Hdr), Name, SectionKind) { 138 // We reject object files having insanely large alignments even though 139 // they are allowed by the spec. I think 4GB is a reasonable limitation. 140 // We might want to relax this in the future. 141 if (Hdr->sh_addralign > UINT32_MAX) 142 fatal(toString(File) + ": section sh_addralign is too large"); 143 } 144 145 size_t InputSectionBase::getSize() const { 146 if (auto *S = dyn_cast<SyntheticSection>(this)) 147 return S->getSize(); 148 149 return Data.size(); 150 } 151 152 uint64_t InputSectionBase::getOffsetInFile() const { 153 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 154 const uint8_t *SecStart = Data.begin(); 155 return SecStart - FileStart; 156 } 157 158 uint64_t SectionBase::getOffset(uint64_t Offset) const { 159 switch (kind()) { 160 case Output: { 161 auto *OS = cast<OutputSection>(this); 162 // For output sections we treat offset -1 as the end of the section. 163 return Offset == uint64_t(-1) ? OS->Size : Offset; 164 } 165 case Regular: 166 return cast<InputSection>(this)->OutSecOff + Offset; 167 case Synthetic: { 168 auto *IS = cast<InputSection>(this); 169 // For synthetic sections we treat offset -1 as the end of the section. 170 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 171 } 172 case EHFrame: 173 // The file crtbeginT.o has relocations pointing to the start of an empty 174 // .eh_frame that is known to be the first in the link. It does that to 175 // identify the start of the output .eh_frame. 176 return Offset; 177 case Merge: 178 const MergeInputSection *MS = cast<MergeInputSection>(this); 179 if (InputSection *IS = MS->getParent()) 180 return IS->OutSecOff + MS->getOffset(Offset); 181 return MS->getOffset(Offset); 182 } 183 llvm_unreachable("invalid section kind"); 184 } 185 186 OutputSection *SectionBase::getOutputSection() { 187 InputSection *Sec; 188 if (auto *IS = dyn_cast<InputSection>(this)) 189 Sec = cast<InputSection>(IS->Repl); 190 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 191 Sec = MS->getParent(); 192 else if (auto *EH = dyn_cast<EhInputSection>(this)) 193 Sec = EH->getParent(); 194 else 195 return cast<OutputSection>(this); 196 return Sec ? Sec->getParent() : nullptr; 197 } 198 199 // Uncompress section contents if required. Note that this function 200 // is called from parallelForEach, so it must be thread-safe. 201 void InputSectionBase::maybeUncompress() { 202 if (UncompressBuf || !Decompressor::isCompressedELFSection(Flags, Name)) 203 return; 204 205 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 206 Config->IsLE, Config->Is64)); 207 208 size_t Size = Dec.getDecompressedSize(); 209 UncompressBuf.reset(new char[Size]()); 210 if (Error E = Dec.decompress({UncompressBuf.get(), Size})) 211 fatal(toString(this) + 212 ": decompress failed: " + llvm::toString(std::move(E))); 213 214 this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); 215 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 216 } 217 218 InputSection *InputSectionBase::getLinkOrderDep() const { 219 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 220 InputSectionBase *L = File->getSections()[Link]; 221 if (auto *IS = dyn_cast<InputSection>(L)) 222 return IS; 223 error("a section with SHF_LINK_ORDER should not refer a non-regular " 224 "section: " + 225 toString(L)); 226 } 227 return nullptr; 228 } 229 230 // Returns a source location string. Used to construct an error message. 231 template <class ELFT> 232 std::string InputSectionBase::getLocation(uint64_t Offset) { 233 // We don't have file for synthetic sections. 234 if (getFile<ELFT>() == nullptr) 235 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 236 .str(); 237 238 // First check if we can get desired values from debugging information. 239 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 240 if (!LineInfo.empty()) 241 return LineInfo; 242 243 // File->SourceFile contains STT_FILE symbol that contains a 244 // source file name. If it's missing, we use an object file name. 245 std::string SrcFile = getFile<ELFT>()->SourceFile; 246 if (SrcFile.empty()) 247 SrcFile = toString(File); 248 249 // Find a function symbol that encloses a given location. 250 for (Symbol *B : File->getSymbols()) 251 if (auto *D = dyn_cast<Defined>(B)) 252 if (D->Section == this && D->Type == STT_FUNC) 253 if (D->Value <= Offset && Offset < D->Value + D->Size) 254 return SrcFile + ":(function " + toString(*D) + ")"; 255 256 // If there's no symbol, print out the offset in the section. 257 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 258 } 259 260 // Concatenates arguments to construct a string representing an error location. 261 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 262 std::string Filename = path::filename(Path); 263 std::string Lineno = ":" + std::to_string(Line); 264 if (Filename == Path) 265 return Filename + Lineno; 266 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 267 } 268 269 // This function is intended to be used for constructing an error message. 270 // The returned message looks like this: 271 // 272 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 273 // 274 // Returns an empty string if there's no way to get line info. 275 template <class ELFT> 276 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 277 // Synthetic sections don't have input files. 278 ObjFile<ELFT> *File = getFile<ELFT>(); 279 if (!File) 280 return ""; 281 282 // In DWARF, functions and variables are stored to different places. 283 // First, lookup a function for a given offset. 284 if (Optional<DILineInfo> Info = File->getDILineInfo(this, Offset)) 285 return createFileLineMsg(Info->FileName, Info->Line); 286 287 // If it failed, lookup again as a variable. 288 if (Optional<std::pair<std::string, unsigned>> FileLine = 289 File->getVariableLoc(Sym.getName())) 290 return createFileLineMsg(FileLine->first, FileLine->second); 291 292 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 293 return File->SourceFile; 294 } 295 296 // Returns a filename string along with an optional section name. This 297 // function is intended to be used for constructing an error 298 // message. The returned message looks like this: 299 // 300 // path/to/foo.o:(function bar) 301 // 302 // or 303 // 304 // path/to/foo.o:(function bar) in archive path/to/bar.a 305 std::string InputSectionBase::getObjMsg(uint64_t Off) { 306 // Synthetic sections don't have input files. 307 if (!File) 308 return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str(); 309 std::string Filename = File->getName(); 310 311 std::string Archive; 312 if (!File->ArchiveName.empty()) 313 Archive = (" in archive " + File->ArchiveName).str(); 314 315 // Find a symbol that encloses a given location. 316 for (Symbol *B : File->getSymbols()) 317 if (auto *D = dyn_cast<Defined>(B)) 318 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 319 return Filename + ":(" + toString(*D) + ")" + Archive; 320 321 // If there's no symbol, print out the offset in the section. 322 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 323 .str(); 324 } 325 326 InputSectionBase InputSectionBase::Discarded; 327 328 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 329 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 330 : InputSectionBase(nullptr, Flags, Type, 331 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 332 Name, K) {} 333 334 template <class ELFT> 335 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 336 StringRef Name) 337 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 338 339 bool InputSection::classof(const SectionBase *S) { 340 return S->kind() == SectionBase::Regular || 341 S->kind() == SectionBase::Synthetic; 342 } 343 344 OutputSection *InputSection::getParent() const { 345 return cast_or_null<OutputSection>(Parent); 346 } 347 348 // Copy SHT_GROUP section contents. Used only for the -r option. 349 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 350 // ELFT::Word is the 32-bit integral type in the target endianness. 351 typedef typename ELFT::Word u32; 352 ArrayRef<u32> From = getDataAs<u32>(); 353 auto *To = reinterpret_cast<u32 *>(Buf); 354 355 // The first entry is not a section number but a flag. 356 *To++ = From[0]; 357 358 // Adjust section numbers because section numbers in an input object 359 // files are different in the output. 360 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 361 for (uint32_t Idx : From.slice(1)) 362 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 363 } 364 365 InputSectionBase *InputSection::getRelocatedSection() { 366 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 367 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 368 return Sections[this->Info]; 369 } 370 371 // This is used for -r and --emit-relocs. We can't use memcpy to copy 372 // relocations because we need to update symbol table offset and section index 373 // for each relocation. So we copy relocations one by one. 374 template <class ELFT, class RelTy> 375 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 376 InputSectionBase *Sec = getRelocatedSection(); 377 378 for (const RelTy &Rel : Rels) { 379 RelType Type = Rel.getType(Config->IsMips64EL); 380 Symbol &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 381 382 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 383 Buf += sizeof(RelTy); 384 385 if (Config->IsRela) 386 P->r_addend = getAddend<ELFT>(Rel); 387 388 // Output section VA is zero for -r, so r_offset is an offset within the 389 // section, but for --emit-relocs it is an virtual address. 390 P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset); 391 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type, 392 Config->IsMips64EL); 393 394 if (Sym.Type == STT_SECTION) { 395 // We combine multiple section symbols into only one per 396 // section. This means we have to update the addend. That is 397 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 398 // section data. We do that by adding to the Relocation vector. 399 400 // .eh_frame is horribly special and can reference discarded sections. To 401 // avoid having to parse and recreate .eh_frame, we just replace any 402 // relocation in it pointing to discarded sections with R_*_NONE, which 403 // hopefully creates a frame that is ignored at runtime. 404 auto *D = dyn_cast<Defined>(&Sym); 405 if (!D) { 406 error("STT_SECTION symbol should be defined"); 407 continue; 408 } 409 SectionBase *Section = D->Section; 410 if (Section == &InputSection::Discarded) { 411 P->setSymbolAndType(0, 0, false); 412 continue; 413 } 414 415 if (Config->IsRela) { 416 P->r_addend = 417 Sym.getVA(getAddend<ELFT>(Rel)) - Section->getOutputSection()->Addr; 418 } else if (Config->Relocatable) { 419 const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset; 420 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, 421 Target->getImplicitAddend(BufLoc, Type), 422 &Sym}); 423 } 424 } 425 426 } 427 } 428 429 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 430 // references specially. The general rule is that the value of the symbol in 431 // this context is the address of the place P. A further special case is that 432 // branch relocations to an undefined weak reference resolve to the next 433 // instruction. 434 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 435 uint32_t P) { 436 switch (Type) { 437 // Unresolved branch relocations to weak references resolve to next 438 // instruction, this will be either 2 or 4 bytes on from P. 439 case R_ARM_THM_JUMP11: 440 return P + 2 + A; 441 case R_ARM_CALL: 442 case R_ARM_JUMP24: 443 case R_ARM_PC24: 444 case R_ARM_PLT32: 445 case R_ARM_PREL31: 446 case R_ARM_THM_JUMP19: 447 case R_ARM_THM_JUMP24: 448 return P + 4 + A; 449 case R_ARM_THM_CALL: 450 // We don't want an interworking BLX to ARM 451 return P + 5 + A; 452 // Unresolved non branch pc-relative relocations 453 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 454 // targets a weak-reference. 455 case R_ARM_MOVW_PREL_NC: 456 case R_ARM_MOVT_PREL: 457 case R_ARM_REL32: 458 case R_ARM_THM_MOVW_PREL_NC: 459 case R_ARM_THM_MOVT_PREL: 460 return P + A; 461 } 462 llvm_unreachable("ARM pc-relative relocation expected\n"); 463 } 464 465 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 466 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 467 uint64_t P) { 468 switch (Type) { 469 // Unresolved branch relocations to weak references resolve to next 470 // instruction, this is 4 bytes on from P. 471 case R_AARCH64_CALL26: 472 case R_AARCH64_CONDBR19: 473 case R_AARCH64_JUMP26: 474 case R_AARCH64_TSTBR14: 475 return P + 4 + A; 476 // Unresolved non branch pc-relative relocations 477 case R_AARCH64_PREL16: 478 case R_AARCH64_PREL32: 479 case R_AARCH64_PREL64: 480 case R_AARCH64_ADR_PREL_LO21: 481 case R_AARCH64_LD_PREL_LO19: 482 return P + A; 483 } 484 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 485 } 486 487 // ARM SBREL relocations are of the form S + A - B where B is the static base 488 // The ARM ABI defines base to be "addressing origin of the output segment 489 // defining the symbol S". We defined the "addressing origin"/static base to be 490 // the base of the PT_LOAD segment containing the Sym. 491 // The procedure call standard only defines a Read Write Position Independent 492 // RWPI variant so in practice we should expect the static base to be the base 493 // of the RW segment. 494 static uint64_t getARMStaticBase(const Symbol &Sym) { 495 OutputSection *OS = Sym.getOutputSection(); 496 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 497 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 498 return OS->PtLoad->FirstSec->Addr; 499 } 500 501 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P, 502 const Symbol &Sym, RelExpr Expr) { 503 switch (Expr) { 504 case R_INVALID: 505 return 0; 506 case R_ABS: 507 case R_RELAX_GOT_PC_NOPIC: 508 return Sym.getVA(A); 509 case R_ARM_SBREL: 510 return Sym.getVA(A) - getARMStaticBase(Sym); 511 case R_GOT: 512 case R_RELAX_TLS_GD_TO_IE_ABS: 513 return Sym.getGotVA() + A; 514 case R_GOTONLY_PC: 515 return InX::Got->getVA() + A - P; 516 case R_GOTONLY_PC_FROM_END: 517 return InX::Got->getVA() + A - P + InX::Got->getSize(); 518 case R_GOTREL: 519 return Sym.getVA(A) - InX::Got->getVA(); 520 case R_GOTREL_FROM_END: 521 return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 522 case R_GOT_FROM_END: 523 case R_RELAX_TLS_GD_TO_IE_END: 524 return Sym.getGotOffset() + A - InX::Got->getSize(); 525 case R_GOT_OFF: 526 return Sym.getGotOffset() + A; 527 case R_GOT_PAGE_PC: 528 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 529 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 530 case R_GOT_PC: 531 case R_RELAX_TLS_GD_TO_IE: 532 return Sym.getGotVA() + A - P; 533 case R_HINT: 534 case R_NONE: 535 case R_TLSDESC_CALL: 536 llvm_unreachable("cannot relocate hint relocs"); 537 case R_MIPS_GOTREL: 538 return Sym.getVA(A) - InX::MipsGot->getGp(); 539 case R_MIPS_GOT_GP: 540 return InX::MipsGot->getGp() + A; 541 case R_MIPS_GOT_GP_PC: { 542 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 543 // is _gp_disp symbol. In that case we should use the following 544 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 545 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 546 // microMIPS variants of these relocations use slightly different 547 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 548 // to correctly handle less-sugnificant bit of the microMIPS symbol. 549 uint64_t V = InX::MipsGot->getGp() + A - P; 550 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 551 V += 4; 552 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 553 V -= 1; 554 return V; 555 } 556 case R_MIPS_GOT_LOCAL_PAGE: 557 // If relocation against MIPS local symbol requires GOT entry, this entry 558 // should be initialized by 'page address'. This address is high 16-bits 559 // of sum the symbol's value and the addend. 560 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Sym, A) - 561 InX::MipsGot->getGp(); 562 case R_MIPS_GOT_OFF: 563 case R_MIPS_GOT_OFF32: 564 // In case of MIPS if a GOT relocation has non-zero addend this addend 565 // should be applied to the GOT entry content not to the GOT entry offset. 566 // That is why we use separate expression type. 567 return InX::MipsGot->getVA() + InX::MipsGot->getSymEntryOffset(Sym, A) - 568 InX::MipsGot->getGp(); 569 case R_MIPS_TLSGD: 570 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 571 InX::MipsGot->getGlobalDynOffset(Sym) - InX::MipsGot->getGp(); 572 case R_MIPS_TLSLD: 573 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 574 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 575 case R_PAGE_PC: 576 case R_PLT_PAGE_PC: { 577 uint64_t Dest; 578 if (Sym.isUndefWeak()) 579 Dest = getAArch64Page(A); 580 else 581 Dest = getAArch64Page(Sym.getVA(A)); 582 return Dest - getAArch64Page(P); 583 } 584 case R_PC: { 585 uint64_t Dest; 586 if (Sym.isUndefWeak()) { 587 // On ARM and AArch64 a branch to an undefined weak resolves to the 588 // next instruction, otherwise the place. 589 if (Config->EMachine == EM_ARM) 590 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 591 else if (Config->EMachine == EM_AARCH64) 592 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 593 else 594 Dest = Sym.getVA(A); 595 } else { 596 Dest = Sym.getVA(A); 597 } 598 return Dest - P; 599 } 600 case R_PLT: 601 return Sym.getPltVA() + A; 602 case R_PLT_PC: 603 case R_PPC_PLT_OPD: 604 return Sym.getPltVA() + A - P; 605 case R_PPC_OPD: { 606 uint64_t SymVA = Sym.getVA(A); 607 // If we have an undefined weak symbol, we might get here with a symbol 608 // address of zero. That could overflow, but the code must be unreachable, 609 // so don't bother doing anything at all. 610 if (!SymVA) 611 return 0; 612 if (Out::Opd) { 613 // If this is a local call, and we currently have the address of a 614 // function-descriptor, get the underlying code address instead. 615 uint64_t OpdStart = Out::Opd->Addr; 616 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 617 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 618 if (InOpd) 619 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 620 } 621 return SymVA - P; 622 } 623 case R_PPC_TOC: 624 return getPPC64TocBase() + A; 625 case R_RELAX_GOT_PC: 626 return Sym.getVA(A) - P; 627 case R_RELAX_TLS_GD_TO_LE: 628 case R_RELAX_TLS_IE_TO_LE: 629 case R_RELAX_TLS_LD_TO_LE: 630 case R_TLS: 631 // A weak undefined TLS symbol resolves to the base of the TLS 632 // block, i.e. gets a value of zero. If we pass --gc-sections to 633 // lld and .tbss is not referenced, it gets reclaimed and we don't 634 // create a TLS program header. Therefore, we resolve this 635 // statically to zero. 636 if (Sym.isTls() && Sym.isUndefWeak()) 637 return 0; 638 if (Target->TcbSize) 639 return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 640 return Sym.getVA(A) - Out::TlsPhdr->p_memsz; 641 case R_RELAX_TLS_GD_TO_LE_NEG: 642 case R_NEG_TLS: 643 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 644 case R_SIZE: 645 return A; // Sym.getSize was already folded into the addend. 646 case R_TLSDESC: 647 return InX::Got->getGlobalDynAddr(Sym) + A; 648 case R_TLSDESC_PAGE: 649 return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) - 650 getAArch64Page(P); 651 case R_TLSGD: 652 return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize(); 653 case R_TLSGD_PC: 654 return InX::Got->getGlobalDynAddr(Sym) + A - P; 655 case R_TLSLD: 656 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 657 case R_TLSLD_PC: 658 return InX::Got->getTlsIndexVA() + A - P; 659 } 660 llvm_unreachable("Invalid expression"); 661 } 662 663 // This function applies relocations to sections without SHF_ALLOC bit. 664 // Such sections are never mapped to memory at runtime. Debug sections are 665 // an example. Relocations in non-alloc sections are much easier to 666 // handle than in allocated sections because it will never need complex 667 // treatement such as GOT or PLT (because at runtime no one refers them). 668 // So, we handle relocations for non-alloc sections directly in this 669 // function as a performance optimization. 670 template <class ELFT, class RelTy> 671 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 672 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 673 674 for (const RelTy &Rel : Rels) { 675 RelType Type = Rel.getType(Config->IsMips64EL); 676 uint64_t Offset = getOffset(Rel.r_offset); 677 uint8_t *BufLoc = Buf + Offset; 678 int64_t Addend = getAddend<ELFT>(Rel); 679 if (!RelTy::IsRela) 680 Addend += Target->getImplicitAddend(BufLoc, Type); 681 682 Symbol &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 683 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 684 if (Expr == R_NONE) 685 continue; 686 if (Expr != R_ABS) { 687 // GCC 8.0 or earlier have a bug that it emits R_386_GOTPC relocations 688 // against _GLOBAL_OFFSET_TABLE for .debug_info. The bug seems to have 689 // been fixed in 2017: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630, 690 // but we need to keep this bug-compatible code for a while. 691 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 692 continue; 693 694 error(this->getLocation<ELFT>(Offset) + ": has non-ABS relocation " + 695 toString(Type) + " against symbol '" + toString(Sym) + "'"); 696 return; 697 } 698 699 if (Sym.isTls() && !Out::TlsPhdr) 700 Target->relocateOne(BufLoc, Type, 0); 701 else 702 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 703 } 704 } 705 706 template <class ELFT> 707 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 708 if (Flags & SHF_ALLOC) { 709 relocateAlloc(Buf, BufEnd); 710 return; 711 } 712 713 auto *Sec = cast<InputSection>(this); 714 if (Sec->AreRelocsRela) 715 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 716 else 717 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 718 } 719 720 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 721 assert(Flags & SHF_ALLOC); 722 const unsigned Bits = Config->Wordsize * 8; 723 724 for (const Relocation &Rel : Relocations) { 725 uint64_t Offset = getOffset(Rel.Offset); 726 uint8_t *BufLoc = Buf + Offset; 727 RelType Type = Rel.Type; 728 729 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 730 RelExpr Expr = Rel.Expr; 731 uint64_t TargetVA = SignExtend64( 732 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 733 734 switch (Expr) { 735 case R_RELAX_GOT_PC: 736 case R_RELAX_GOT_PC_NOPIC: 737 Target->relaxGot(BufLoc, TargetVA); 738 break; 739 case R_RELAX_TLS_IE_TO_LE: 740 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 741 break; 742 case R_RELAX_TLS_LD_TO_LE: 743 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 744 break; 745 case R_RELAX_TLS_GD_TO_LE: 746 case R_RELAX_TLS_GD_TO_LE_NEG: 747 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 748 break; 749 case R_RELAX_TLS_GD_TO_IE: 750 case R_RELAX_TLS_GD_TO_IE_ABS: 751 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 752 case R_RELAX_TLS_GD_TO_IE_END: 753 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 754 break; 755 case R_PPC_PLT_OPD: 756 // Patch a nop (0x60000000) to a ld. 757 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 758 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 759 LLVM_FALLTHROUGH; 760 default: 761 Target->relocateOne(BufLoc, Type, TargetVA); 762 break; 763 } 764 } 765 } 766 767 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 768 if (this->Type == SHT_NOBITS) 769 return; 770 771 if (auto *S = dyn_cast<SyntheticSection>(this)) { 772 S->writeTo(Buf + OutSecOff); 773 return; 774 } 775 776 // If -r or --emit-relocs is given, then an InputSection 777 // may be a relocation section. 778 if (this->Type == SHT_RELA) { 779 copyRelocations<ELFT>(Buf + OutSecOff, 780 this->template getDataAs<typename ELFT::Rela>()); 781 return; 782 } 783 if (this->Type == SHT_REL) { 784 copyRelocations<ELFT>(Buf + OutSecOff, 785 this->template getDataAs<typename ELFT::Rel>()); 786 return; 787 } 788 789 // If -r is given, we may have a SHT_GROUP section. 790 if (this->Type == SHT_GROUP) { 791 copyShtGroup<ELFT>(Buf + OutSecOff); 792 return; 793 } 794 795 // Copy section contents from source object file to output file 796 // and then apply relocations. 797 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 798 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 799 this->relocate<ELFT>(Buf, BufEnd); 800 } 801 802 void InputSection::replace(InputSection *Other) { 803 this->Alignment = std::max(this->Alignment, Other->Alignment); 804 Other->Repl = this->Repl; 805 Other->Live = false; 806 } 807 808 template <class ELFT> 809 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 810 const typename ELFT::Shdr *Header, 811 StringRef Name) 812 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 813 814 SyntheticSection *EhInputSection::getParent() const { 815 return cast_or_null<SyntheticSection>(Parent); 816 } 817 818 // Returns the index of the first relocation that points to a region between 819 // Begin and Begin+Size. 820 template <class IntTy, class RelTy> 821 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 822 unsigned &RelocI) { 823 // Start search from RelocI for fast access. That works because the 824 // relocations are sorted in .eh_frame. 825 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 826 const RelTy &Rel = Rels[RelocI]; 827 if (Rel.r_offset < Begin) 828 continue; 829 830 if (Rel.r_offset < Begin + Size) 831 return RelocI; 832 return -1; 833 } 834 return -1; 835 } 836 837 // .eh_frame is a sequence of CIE or FDE records. 838 // This function splits an input section into records and returns them. 839 template <class ELFT> void EhInputSection::split() { 840 // Early exit if already split. 841 if (!this->Pieces.empty()) 842 return; 843 844 if (this->AreRelocsRela) 845 split<ELFT>(this->relas<ELFT>()); 846 else 847 split<ELFT>(this->rels<ELFT>()); 848 } 849 850 template <class ELFT, class RelTy> 851 void EhInputSection::split(ArrayRef<RelTy> Rels) { 852 ArrayRef<uint8_t> Data = this->Data; 853 unsigned RelI = 0; 854 for (size_t Off = 0, End = Data.size(); Off != End;) { 855 size_t Size = readEhRecordSize(this, Off); 856 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 857 // The empty record is the end marker. 858 if (Size == 4) 859 break; 860 Off += Size; 861 } 862 } 863 864 static size_t findNull(StringRef S, size_t EntSize) { 865 // Optimize the common case. 866 if (EntSize == 1) 867 return S.find(0); 868 869 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 870 const char *B = S.begin() + I; 871 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 872 return I; 873 } 874 return StringRef::npos; 875 } 876 877 SyntheticSection *MergeInputSection::getParent() const { 878 return cast_or_null<SyntheticSection>(Parent); 879 } 880 881 // Split SHF_STRINGS section. Such section is a sequence of 882 // null-terminated strings. 883 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 884 size_t Off = 0; 885 bool IsAlloc = this->Flags & SHF_ALLOC; 886 StringRef S = toStringRef(Data); 887 888 while (!S.empty()) { 889 size_t End = findNull(S, EntSize); 890 if (End == StringRef::npos) 891 fatal(toString(this) + ": string is not null terminated"); 892 size_t Size = End + EntSize; 893 894 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 895 S = S.substr(Size); 896 Off += Size; 897 } 898 } 899 900 // Split non-SHF_STRINGS section. Such section is a sequence of 901 // fixed size records. 902 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 903 size_t EntSize) { 904 size_t Size = Data.size(); 905 assert((Size % EntSize) == 0); 906 bool IsAlloc = this->Flags & SHF_ALLOC; 907 908 for (size_t I = 0; I != Size; I += EntSize) 909 Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))), 910 !IsAlloc); 911 } 912 913 template <class ELFT> 914 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 915 const typename ELFT::Shdr *Header, 916 StringRef Name) 917 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) { 918 // In order to reduce memory allocation, we assume that mergeable 919 // sections are smaller than 4 GiB, which is not an unreasonable 920 // assumption as of 2017. 921 if (Data.size() > UINT32_MAX) 922 error(toString(this) + ": section too large"); 923 } 924 925 // This function is called after we obtain a complete list of input sections 926 // that need to be linked. This is responsible to split section contents 927 // into small chunks for further processing. 928 // 929 // Note that this function is called from parallelForEach. This must be 930 // thread-safe (i.e. no memory allocation from the pools). 931 void MergeInputSection::splitIntoPieces() { 932 assert(Pieces.empty()); 933 934 if (this->Flags & SHF_STRINGS) 935 splitStrings(Data, Entsize); 936 else 937 splitNonStrings(Data, Entsize); 938 939 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 940 for (uint64_t Off : LiveOffsets) 941 this->getSectionPiece(Off)->Live = true; 942 } 943 944 // Do binary search to get a section piece at a given input offset. 945 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 946 auto *This = static_cast<const MergeInputSection *>(this); 947 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 948 } 949 950 template <class It, class T, class Compare> 951 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 952 size_t Size = std::distance(First, Last); 953 assert(Size != 0); 954 while (Size != 1) { 955 size_t H = Size / 2; 956 const It MI = First + H; 957 Size -= H; 958 First = Comp(Value, *MI) ? First : First + H; 959 } 960 return Comp(Value, *First) ? First : First + 1; 961 } 962 963 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 964 if (Data.size() <= Offset) 965 fatal(toString(this) + ": entry is past the end of the section"); 966 967 // Find the element this offset points to. 968 auto I = fastUpperBound( 969 Pieces.begin(), Pieces.end(), Offset, 970 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 971 --I; 972 return &*I; 973 } 974 975 // Returns the offset in an output section for a given input offset. 976 // Because contents of a mergeable section is not contiguous in output, 977 // it is not just an addition to a base output offset. 978 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 979 if (!Live) 980 return 0; 981 982 // Initialize OffsetMap lazily. 983 llvm::call_once(InitOffsetMap, [&] { 984 OffsetMap.reserve(Pieces.size()); 985 for (size_t I = 0; I < Pieces.size(); ++I) 986 OffsetMap[Pieces[I].InputOff] = I; 987 }); 988 989 // Find a string starting at a given offset. 990 auto It = OffsetMap.find(Offset); 991 if (It != OffsetMap.end()) 992 return Pieces[It->second].OutputOff; 993 994 // If Offset is not at beginning of a section piece, it is not in the map. 995 // In that case we need to search from the original section piece vector. 996 const SectionPiece &Piece = *this->getSectionPiece(Offset); 997 if (!Piece.Live) 998 return 0; 999 1000 uint64_t Addend = Offset - Piece.InputOff; 1001 return Piece.OutputOff + Addend; 1002 } 1003 1004 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 1005 StringRef); 1006 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 1007 StringRef); 1008 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 1009 StringRef); 1010 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 1011 StringRef); 1012 1013 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1014 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1015 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1016 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1017 1018 template std::string InputSectionBase::getSrcMsg<ELF32LE>(const Symbol &, 1019 uint64_t); 1020 template std::string InputSectionBase::getSrcMsg<ELF32BE>(const Symbol &, 1021 uint64_t); 1022 template std::string InputSectionBase::getSrcMsg<ELF64LE>(const Symbol &, 1023 uint64_t); 1024 template std::string InputSectionBase::getSrcMsg<ELF64BE>(const Symbol &, 1025 uint64_t); 1026 1027 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1028 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1029 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1030 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1031 1032 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1033 const ELF32LE::Shdr *, StringRef); 1034 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1035 const ELF32BE::Shdr *, StringRef); 1036 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1037 const ELF64LE::Shdr *, StringRef); 1038 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1039 const ELF64BE::Shdr *, StringRef); 1040 1041 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1042 const ELF32LE::Shdr *, StringRef); 1043 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1044 const ELF32BE::Shdr *, StringRef); 1045 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1046 const ELF64LE::Shdr *, StringRef); 1047 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1048 const ELF64BE::Shdr *, StringRef); 1049 1050 template void EhInputSection::split<ELF32LE>(); 1051 template void EhInputSection::split<ELF32BE>(); 1052 template void EhInputSection::split<ELF64LE>(); 1053 template void EhInputSection::split<ELF64BE>(); 1054