1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "OutputSections.h" 16 #include "Target.h" 17 18 #include "llvm/Support/Endian.h" 19 20 using namespace llvm; 21 using namespace llvm::ELF; 22 using namespace llvm::object; 23 using namespace llvm::support::endian; 24 25 using namespace lld; 26 using namespace lld::elf; 27 28 template <class ELFT> 29 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 30 const Elf_Shdr *Header, 31 Kind SectionKind) 32 : Header(Header), File(File), SectionKind(SectionKind), Repl(this) { 33 // The garbage collector sets sections' Live bits. 34 // If GC is disabled, all sections are considered live by default. 35 Live = !Config->GcSections; 36 37 // The ELF spec states that a value of 0 means the section has 38 // no alignment constraits. 39 Align = std::max<uintX_t>(Header->sh_addralign, 1); 40 } 41 42 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const { 43 if (auto *D = dyn_cast<InputSection<ELFT>>(this)) 44 if (D->getThunksSize() > 0) 45 return D->getThunkOff() + D->getThunksSize(); 46 return Header->sh_size; 47 } 48 49 template <class ELFT> StringRef InputSectionBase<ELFT>::getSectionName() const { 50 return check(File->getObj().getSectionName(this->Header)); 51 } 52 53 template <class ELFT> 54 ArrayRef<uint8_t> InputSectionBase<ELFT>::getSectionData() const { 55 return check(this->File->getObj().getSectionContents(this->Header)); 56 } 57 58 template <class ELFT> 59 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) { 60 switch (SectionKind) { 61 case Regular: 62 return cast<InputSection<ELFT>>(this)->OutSecOff + Offset; 63 case EHFrame: 64 return cast<EhInputSection<ELFT>>(this)->getOffset(Offset); 65 case Merge: 66 return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset); 67 case MipsReginfo: 68 case MipsOptions: 69 // MIPS .reginfo and .MIPS.options sections are consumed by the linker, 70 // and the linker produces a single output section. It is possible that 71 // input files contain section symbol points to the corresponding input 72 // section. Redirect it to the produced output section. 73 if (Offset != 0) 74 fatal("Unsupported reference to the middle of '" + getSectionName() + 75 "' section"); 76 return this->OutSec->getVA(); 77 } 78 llvm_unreachable("invalid section kind"); 79 } 80 81 template <class ELFT> 82 typename ELFT::uint 83 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) { 84 return getOffset(Sym.Value); 85 } 86 87 template <class ELFT> 88 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F, 89 const Elf_Shdr *Header) 90 : InputSectionBase<ELFT>(F, Header, Base::Regular) {} 91 92 template <class ELFT> 93 bool InputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 94 return S->SectionKind == Base::Regular; 95 } 96 97 template <class ELFT> 98 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() { 99 assert(this->Header->sh_type == SHT_RELA || this->Header->sh_type == SHT_REL); 100 ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections(); 101 return Sections[this->Header->sh_info]; 102 } 103 104 template <class ELFT> void InputSection<ELFT>::addThunk(SymbolBody &Body) { 105 Body.ThunkIndex = Thunks.size(); 106 Thunks.push_back(&Body); 107 } 108 109 template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const { 110 return this->Header->sh_size; 111 } 112 113 template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const { 114 return Thunks.size() * Target->ThunkSize; 115 } 116 117 // This is used for -r. We can't use memcpy to copy relocations because we need 118 // to update symbol table offset and section index for each relocation. So we 119 // copy relocations one by one. 120 template <class ELFT> 121 template <class RelTy> 122 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 123 InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection(); 124 125 for (const RelTy &Rel : Rels) { 126 uint32_t Type = Rel.getType(Config->Mips64EL); 127 SymbolBody &Body = this->File->getRelocTargetSym(Rel); 128 129 RelTy *P = reinterpret_cast<RelTy *>(Buf); 130 Buf += sizeof(RelTy); 131 132 P->r_offset = RelocatedSection->getOffset(Rel.r_offset); 133 P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL); 134 } 135 } 136 137 // Page(Expr) is the page address of the expression Expr, defined 138 // as (Expr & ~0xFFF). (This applies even if the machine page size 139 // supported by the platform has a different value.) 140 static uint64_t getAArch64Page(uint64_t Expr) { 141 return Expr & (~static_cast<uint64_t>(0xFFF)); 142 } 143 144 template <class ELFT> 145 static typename ELFT::uint 146 getSymVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P, 147 const SymbolBody &Body, uint8_t *BufLoc, 148 const elf::ObjectFile<ELFT> &File, RelExpr Expr) { 149 typedef typename ELFT::uint uintX_t; 150 151 switch (Expr) { 152 case R_HINT: 153 llvm_unreachable("cannot relocate hint relocs"); 154 case R_TLSLD: 155 return Out<ELFT>::Got->getTlsIndexOff() + A - 156 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 157 case R_TLSLD_PC: 158 return Out<ELFT>::Got->getTlsIndexVA() + A - P; 159 case R_THUNK: 160 return Body.getThunkVA<ELFT>(); 161 case R_PPC_TOC: 162 return getPPC64TocBase() + A; 163 case R_TLSGD: 164 return Out<ELFT>::Got->getGlobalDynOffset(Body) + A - 165 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 166 case R_TLSGD_PC: 167 return Out<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 168 case R_TLSDESC: 169 return Out<ELFT>::Got->getGlobalDynAddr(Body) + A; 170 case R_TLSDESC_PAGE: 171 return getAArch64Page(Out<ELFT>::Got->getGlobalDynAddr(Body) + A) - 172 getAArch64Page(P); 173 case R_PLT: 174 return Body.getPltVA<ELFT>() + A; 175 case R_PLT_PC: 176 case R_PPC_PLT_OPD: 177 return Body.getPltVA<ELFT>() + A - P; 178 case R_SIZE: 179 return Body.getSize<ELFT>() + A; 180 case R_GOTREL: 181 return Body.getVA<ELFT>(A) - Out<ELFT>::Got->getVA(); 182 case R_RELAX_TLS_GD_TO_IE_END: 183 case R_GOT_FROM_END: 184 return Body.getGotOffset<ELFT>() + A - 185 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 186 case R_RELAX_TLS_GD_TO_IE_ABS: 187 case R_GOT: 188 return Body.getGotVA<ELFT>() + A; 189 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 190 case R_GOT_PAGE_PC: 191 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 192 case R_RELAX_TLS_GD_TO_IE: 193 case R_GOT_PC: 194 return Body.getGotVA<ELFT>() + A - P; 195 case R_GOTONLY_PC: 196 return Out<ELFT>::Got->getVA() + A - P; 197 case R_RELAX_TLS_LD_TO_LE: 198 case R_RELAX_TLS_IE_TO_LE: 199 case R_RELAX_TLS_GD_TO_LE: 200 case R_TLS: 201 if (Target->TcbSize) 202 return Body.getVA<ELFT>(A) + 203 alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align); 204 return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz; 205 case R_RELAX_TLS_GD_TO_LE_NEG: 206 case R_NEG_TLS: 207 return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 208 case R_ABS: 209 case R_RELAX_GOT_PC_NOPIC: 210 return Body.getVA<ELFT>(A); 211 case R_GOT_OFF: 212 return Body.getGotOffset<ELFT>() + A; 213 case R_MIPS_GOT_LOCAL_PAGE: 214 // If relocation against MIPS local symbol requires GOT entry, this entry 215 // should be initialized by 'page address'. This address is high 16-bits 216 // of sum the symbol's value and the addend. 217 return Out<ELFT>::Got->getMipsLocalPageOffset(Body.getVA<ELFT>(A)); 218 case R_MIPS_GOT_LOCAL: 219 // For non-local symbols GOT entries should contain their full 220 // addresses. But if such symbol cannot be preempted, we do not 221 // have to put them into the "global" part of GOT and use dynamic 222 // linker to determine their actual addresses. That is why we 223 // create GOT entries for them in the "local" part of GOT. 224 return Out<ELFT>::Got->getMipsLocalEntryOffset(Body.getVA<ELFT>(A)); 225 case R_PPC_OPD: { 226 uint64_t SymVA = Body.getVA<ELFT>(A); 227 // If we have an undefined weak symbol, we might get here with a symbol 228 // address of zero. That could overflow, but the code must be unreachable, 229 // so don't bother doing anything at all. 230 if (!SymVA) 231 return 0; 232 if (Out<ELF64BE>::Opd) { 233 // If this is a local call, and we currently have the address of a 234 // function-descriptor, get the underlying code address instead. 235 uint64_t OpdStart = Out<ELF64BE>::Opd->getVA(); 236 uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize(); 237 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 238 if (InOpd) 239 SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]); 240 } 241 return SymVA - P; 242 } 243 case R_PC: 244 case R_RELAX_GOT_PC: 245 return Body.getVA<ELFT>(A) - P; 246 case R_PLT_PAGE_PC: 247 case R_PAGE_PC: 248 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 249 } 250 llvm_unreachable("Invalid expression"); 251 } 252 253 // This function applies relocations to sections without SHF_ALLOC bit. 254 // Such sections are never mapped to memory at runtime. Debug sections are 255 // an example. Relocations in non-alloc sections are much easier to 256 // handle than in allocated sections because it will never need complex 257 // treatement such as GOT or PLT (because at runtime no one refers them). 258 // So, we handle relocations for non-alloc sections directly in this 259 // function as a performance optimization. 260 template <class ELFT> 261 template <class RelTy> 262 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 263 const unsigned Bits = sizeof(uintX_t) * 8; 264 for (const RelTy &Rel : Rels) { 265 uint32_t Type = Rel.getType(Config->Mips64EL); 266 uintX_t Offset = this->getOffset(Rel.r_offset); 267 uint8_t *BufLoc = Buf + Offset; 268 uintX_t Addend = getAddend<ELFT>(Rel); 269 if (!RelTy::IsRela) 270 Addend += Target->getImplicitAddend(BufLoc, Type); 271 272 SymbolBody &Sym = this->File->getRelocTargetSym(Rel); 273 if (Target->getRelExpr(Type, Sym) != R_ABS) { 274 error(this->getSectionName() + " has non-ABS reloc"); 275 return; 276 } 277 278 uintX_t AddrLoc = this->OutSec->getVA() + Offset; 279 uint64_t SymVA = SignExtend64<Bits>(getSymVA<ELFT>( 280 Type, Addend, AddrLoc, Sym, BufLoc, *this->File, R_ABS)); 281 Target->relocateOne(BufLoc, Type, SymVA); 282 } 283 } 284 285 template <class ELFT> 286 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) { 287 // scanReloc function in Writer.cpp constructs Relocations 288 // vector only for SHF_ALLOC'ed sections. For other sections, 289 // we handle relocations directly here. 290 auto *IS = dyn_cast<InputSection<ELFT>>(this); 291 if (IS && !(IS->Header->sh_flags & SHF_ALLOC)) { 292 for (const Elf_Shdr *RelSec : IS->RelocSections) { 293 if (RelSec->sh_type == SHT_RELA) 294 IS->relocateNonAlloc(Buf, IS->File->getObj().relas(RelSec)); 295 else 296 IS->relocateNonAlloc(Buf, IS->File->getObj().rels(RelSec)); 297 } 298 return; 299 } 300 301 const unsigned Bits = sizeof(uintX_t) * 8; 302 for (const Relocation &Rel : Relocations) { 303 uintX_t Offset = Rel.Offset; 304 uint8_t *BufLoc = Buf + Offset; 305 uint32_t Type = Rel.Type; 306 uintX_t A = Rel.Addend; 307 308 uintX_t AddrLoc = OutSec->getVA() + Offset; 309 RelExpr Expr = Rel.Expr; 310 uint64_t SymVA = SignExtend64<Bits>( 311 getSymVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, BufLoc, *File, Expr)); 312 313 switch (Expr) { 314 case R_RELAX_GOT_PC: 315 case R_RELAX_GOT_PC_NOPIC: 316 Target->relaxGot(BufLoc, SymVA); 317 break; 318 case R_RELAX_TLS_IE_TO_LE: 319 Target->relaxTlsIeToLe(BufLoc, Type, SymVA); 320 break; 321 case R_RELAX_TLS_LD_TO_LE: 322 Target->relaxTlsLdToLe(BufLoc, Type, SymVA); 323 break; 324 case R_RELAX_TLS_GD_TO_LE: 325 case R_RELAX_TLS_GD_TO_LE_NEG: 326 Target->relaxTlsGdToLe(BufLoc, Type, SymVA); 327 break; 328 case R_RELAX_TLS_GD_TO_IE: 329 case R_RELAX_TLS_GD_TO_IE_ABS: 330 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 331 case R_RELAX_TLS_GD_TO_IE_END: 332 Target->relaxTlsGdToIe(BufLoc, Type, SymVA); 333 break; 334 case R_PPC_PLT_OPD: 335 // Patch a nop (0x60000000) to a ld. 336 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 337 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 338 // fallthrough 339 default: 340 Target->relocateOne(BufLoc, Type, SymVA); 341 break; 342 } 343 } 344 } 345 346 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) { 347 if (this->Header->sh_type == SHT_NOBITS) 348 return; 349 ELFFile<ELFT> &EObj = this->File->getObj(); 350 351 // If -r is given, then an InputSection may be a relocation section. 352 if (this->Header->sh_type == SHT_RELA) { 353 copyRelocations(Buf + OutSecOff, EObj.relas(this->Header)); 354 return; 355 } 356 if (this->Header->sh_type == SHT_REL) { 357 copyRelocations(Buf + OutSecOff, EObj.rels(this->Header)); 358 return; 359 } 360 361 // Copy section contents from source object file to output file. 362 ArrayRef<uint8_t> Data = this->getSectionData(); 363 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 364 365 // Iterate over all relocation sections that apply to this section. 366 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 367 this->relocate(Buf, BufEnd); 368 369 // The section might have a data/code generated by the linker and need 370 // to be written after the section. Usually these are thunks - small piece 371 // of code used to jump between "incompatible" functions like PIC and non-PIC 372 // or if the jump target too far and its address does not fit to the short 373 // jump istruction. 374 if (!Thunks.empty()) { 375 Buf += OutSecOff + getThunkOff(); 376 for (const SymbolBody *S : Thunks) { 377 Target->writeThunk(Buf, S->getVA<ELFT>()); 378 Buf += Target->ThunkSize; 379 } 380 } 381 } 382 383 template <class ELFT> 384 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) { 385 this->Align = std::max(this->Align, Other->Align); 386 Other->Repl = this->Repl; 387 Other->Live = false; 388 } 389 390 template <class ELFT> 391 SplitInputSection<ELFT>::SplitInputSection( 392 elf::ObjectFile<ELFT> *File, const Elf_Shdr *Header, 393 typename InputSectionBase<ELFT>::Kind SectionKind) 394 : InputSectionBase<ELFT>(File, Header, SectionKind) {} 395 396 template <class ELFT> 397 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 398 const Elf_Shdr *Header) 399 : SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::EHFrame) { 400 // Mark .eh_frame sections as live by default because there are 401 // usually no relocations that point to .eh_frames. Otherwise, 402 // the garbage collector would drop all .eh_frame sections. 403 this->Live = true; 404 } 405 406 template <class ELFT> 407 bool EhInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 408 return S->SectionKind == InputSectionBase<ELFT>::EHFrame; 409 } 410 411 // .eh_frame is a sequence of CIE or FDE records. 412 // This function splits an input section into records and returns them. 413 template <class ELFT> 414 void EhInputSection<ELFT>::split() { 415 ArrayRef<uint8_t> Data = this->getSectionData(); 416 for (size_t Off = 0, End = Data.size(); Off != End;) { 417 size_t Size = readEhRecordSize<ELFT>(Data.slice(Off)); 418 this->Pieces.emplace_back(Off, Data.slice(Off, Size)); 419 // The empty record is the end marker. 420 if (Size == 4) 421 break; 422 Off += Size; 423 } 424 } 425 426 template <class ELFT> 427 typename ELFT::uint EhInputSection<ELFT>::getOffset(uintX_t Offset) { 428 // The file crtbeginT.o has relocations pointing to the start of an empty 429 // .eh_frame that is known to be the first in the link. It does that to 430 // identify the start of the output .eh_frame. Handle this special case. 431 if (this->getSectionHdr()->sh_size == 0) 432 return Offset; 433 SectionPiece *Piece = this->getSectionPiece(Offset); 434 if (Piece->OutputOff == size_t(-1)) 435 return -1; // Not in the output 436 437 uintX_t Addend = Offset - Piece->InputOff; 438 return Piece->OutputOff + Addend; 439 } 440 441 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 442 // Optimize the common case. 443 StringRef S((const char *)A.data(), A.size()); 444 if (EntSize == 1) 445 return S.find(0); 446 447 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 448 const char *B = S.begin() + I; 449 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 450 return I; 451 } 452 return StringRef::npos; 453 } 454 455 // Split SHF_STRINGS section. Such section is a sequence of 456 // null-terminated strings. 457 static std::vector<SectionPiece> splitStrings(ArrayRef<uint8_t> Data, 458 size_t EntSize) { 459 std::vector<SectionPiece> V; 460 size_t Off = 0; 461 while (!Data.empty()) { 462 size_t End = findNull(Data, EntSize); 463 if (End == StringRef::npos) 464 fatal("string is not null terminated"); 465 size_t Size = End + EntSize; 466 V.emplace_back(Off, Data.slice(0, Size)); 467 Data = Data.slice(Size); 468 Off += Size; 469 } 470 return V; 471 } 472 473 // Split non-SHF_STRINGS section. Such section is a sequence of 474 // fixed size records. 475 static std::vector<SectionPiece> splitNonStrings(ArrayRef<uint8_t> Data, 476 size_t EntSize) { 477 std::vector<SectionPiece> V; 478 size_t Size = Data.size(); 479 assert((Size % EntSize) == 0); 480 for (unsigned I = 0, N = Size; I != N; I += EntSize) 481 V.emplace_back(I, Data.slice(I, EntSize)); 482 return V; 483 } 484 485 template <class ELFT> 486 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 487 const Elf_Shdr *Header) 488 : SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::Merge) {} 489 490 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 491 ArrayRef<uint8_t> Data = this->getSectionData(); 492 uintX_t EntSize = this->Header->sh_entsize; 493 if (this->Header->sh_flags & SHF_STRINGS) 494 this->Pieces = splitStrings(Data, EntSize); 495 else 496 this->Pieces = splitNonStrings(Data, EntSize); 497 498 if (Config->GcSections) 499 for (uintX_t Off : LiveOffsets) 500 this->getSectionPiece(Off)->Live = true; 501 } 502 503 template <class ELFT> 504 bool MergeInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 505 return S->SectionKind == InputSectionBase<ELFT>::Merge; 506 } 507 508 // Do binary search to get a section piece at a given input offset. 509 template <class ELFT> 510 SectionPiece *SplitInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 511 ArrayRef<uint8_t> D = this->getSectionData(); 512 StringRef Data((const char *)D.data(), D.size()); 513 uintX_t Size = Data.size(); 514 if (Offset >= Size) 515 fatal("entry is past the end of the section"); 516 517 // Find the element this offset points to. 518 auto I = std::upper_bound( 519 Pieces.begin(), Pieces.end(), Offset, 520 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 521 --I; 522 return &*I; 523 } 524 525 // Returns the offset in an output section for a given input offset. 526 // Because contents of a mergeable section is not contiguous in output, 527 // it is not just an addition to a base output offset. 528 template <class ELFT> 529 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) { 530 auto It = OffsetMap.find(Offset); 531 if (It != OffsetMap.end()) 532 return It->second; 533 534 // If Offset is not at beginning of a section piece, it is not in the map. 535 // In that case we need to search from the original section piece vector. 536 SectionPiece &Piece = *this->getSectionPiece(Offset); 537 assert(Piece.Live); 538 uintX_t Addend = Offset - Piece.InputOff; 539 return Piece.OutputOff + Addend; 540 } 541 542 // Create a map from input offsets to output offsets for all section pieces. 543 // It is called after finalize(). 544 template <class ELFT> void MergeInputSection<ELFT>::finalizePieces() { 545 OffsetMap.grow(this->Pieces.size()); 546 for (SectionPiece &Piece : this->Pieces) { 547 if (!Piece.Live) 548 continue; 549 if (Piece.OutputOff == size_t(-1)) { 550 // Offsets of tail-merged strings are computed lazily. 551 auto *OutSec = static_cast<MergeOutputSection<ELFT> *>(this->OutSec); 552 ArrayRef<uint8_t> D = Piece.data(); 553 StringRef S((const char *)D.data(), D.size()); 554 Piece.OutputOff = OutSec->getOffset(S); 555 } 556 OffsetMap[Piece.InputOff] = Piece.OutputOff; 557 } 558 } 559 560 template <class ELFT> 561 MipsReginfoInputSection<ELFT>::MipsReginfoInputSection(elf::ObjectFile<ELFT> *F, 562 const Elf_Shdr *Hdr) 563 : InputSectionBase<ELFT>(F, Hdr, InputSectionBase<ELFT>::MipsReginfo) { 564 // Initialize this->Reginfo. 565 ArrayRef<uint8_t> D = this->getSectionData(); 566 if (D.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) { 567 error("invalid size of .reginfo section"); 568 return; 569 } 570 Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(D.data()); 571 } 572 573 template <class ELFT> 574 bool MipsReginfoInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 575 return S->SectionKind == InputSectionBase<ELFT>::MipsReginfo; 576 } 577 578 template <class ELFT> 579 MipsOptionsInputSection<ELFT>::MipsOptionsInputSection(elf::ObjectFile<ELFT> *F, 580 const Elf_Shdr *Hdr) 581 : InputSectionBase<ELFT>(F, Hdr, InputSectionBase<ELFT>::MipsOptions) { 582 // Find ODK_REGINFO option in the section's content. 583 ArrayRef<uint8_t> D = this->getSectionData(); 584 while (!D.empty()) { 585 if (D.size() < sizeof(Elf_Mips_Options<ELFT>)) { 586 error("invalid size of .MIPS.options section"); 587 break; 588 } 589 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(D.data()); 590 if (O->kind == ODK_REGINFO) { 591 Reginfo = &O->getRegInfo(); 592 break; 593 } 594 D = D.slice(O->size); 595 } 596 } 597 598 template <class ELFT> 599 bool MipsOptionsInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 600 return S->SectionKind == InputSectionBase<ELFT>::MipsOptions; 601 } 602 603 template class elf::InputSectionBase<ELF32LE>; 604 template class elf::InputSectionBase<ELF32BE>; 605 template class elf::InputSectionBase<ELF64LE>; 606 template class elf::InputSectionBase<ELF64BE>; 607 608 template class elf::InputSection<ELF32LE>; 609 template class elf::InputSection<ELF32BE>; 610 template class elf::InputSection<ELF64LE>; 611 template class elf::InputSection<ELF64BE>; 612 613 template class elf::SplitInputSection<ELF32LE>; 614 template class elf::SplitInputSection<ELF32BE>; 615 template class elf::SplitInputSection<ELF64LE>; 616 template class elf::SplitInputSection<ELF64BE>; 617 618 template class elf::EhInputSection<ELF32LE>; 619 template class elf::EhInputSection<ELF32BE>; 620 template class elf::EhInputSection<ELF64LE>; 621 template class elf::EhInputSection<ELF64BE>; 622 623 template class elf::MergeInputSection<ELF32LE>; 624 template class elf::MergeInputSection<ELF32BE>; 625 template class elf::MergeInputSection<ELF64LE>; 626 template class elf::MergeInputSection<ELF64BE>; 627 628 template class elf::MipsReginfoInputSection<ELF32LE>; 629 template class elf::MipsReginfoInputSection<ELF32BE>; 630 template class elf::MipsReginfoInputSection<ELF64LE>; 631 template class elf::MipsReginfoInputSection<ELF64BE>; 632 633 template class elf::MipsOptionsInputSection<ELF32LE>; 634 template class elf::MipsOptionsInputSection<ELF32BE>; 635 template class elf::MipsOptionsInputSection<ELF64LE>; 636 template class elf::MipsOptionsInputSection<ELF64BE>; 637