1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <vector> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 using namespace llvm::sys; 33 using namespace lld; 34 using namespace lld::elf; 35 36 SmallVector<InputSectionBase *, 0> elf::inputSections; 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t alignment, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 58 link), 59 file(file), rawData(data) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(alignment, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->alignment = v; 72 73 // In ELF, each section can be compressed by zlib, and if compressed, 74 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 75 // If that's the case, demangle section name so that we can handle a 76 // section as if it weren't compressed. 77 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 78 if (!zlib::isAvailable()) 79 error(toString(file) + ": contains a compressed section, " + 80 "but zlib is not available"); 81 invokeELFT(parseCompressedHeader); 82 } 83 } 84 85 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 86 // SHF_GROUP is a marker that a section belongs to some comdat group. 87 // That flag doesn't make sense in an executable. 88 static uint64_t getFlags(uint64_t flags) { 89 flags &= ~(uint64_t)SHF_INFO_LINK; 90 if (!config->relocatable) 91 flags &= ~(uint64_t)SHF_GROUP; 92 return flags; 93 } 94 95 template <class ELFT> 96 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 97 const typename ELFT::Shdr &hdr, 98 StringRef name, Kind sectionKind) 99 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 100 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 101 hdr.sh_addralign, getSectionContents(file, hdr), name, 102 sectionKind) { 103 // We reject object files having insanely large alignments even though 104 // they are allowed by the spec. I think 4GB is a reasonable limitation. 105 // We might want to relax this in the future. 106 if (hdr.sh_addralign > UINT32_MAX) 107 fatal(toString(&file) + ": section sh_addralign is too large"); 108 } 109 110 size_t InputSectionBase::getSize() const { 111 if (auto *s = dyn_cast<SyntheticSection>(this)) 112 return s->getSize(); 113 if (uncompressedSize >= 0) 114 return uncompressedSize; 115 return rawData.size() - bytesDropped; 116 } 117 118 void InputSectionBase::uncompress() const { 119 size_t size = uncompressedSize; 120 char *uncompressedBuf; 121 { 122 static std::mutex mu; 123 std::lock_guard<std::mutex> lock(mu); 124 uncompressedBuf = bAlloc().Allocate<char>(size); 125 } 126 127 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 128 fatal(toString(this) + 129 ": uncompress failed: " + llvm::toString(std::move(e))); 130 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 131 uncompressedSize = -1; 132 } 133 134 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 135 if (relSecIdx == 0) 136 return {}; 137 RelsOrRelas<ELFT> ret; 138 typename ELFT::Shdr shdr = 139 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 140 if (shdr.sh_type == SHT_REL) { 141 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 142 file->mb.getBufferStart() + shdr.sh_offset), 143 shdr.sh_size / sizeof(typename ELFT::Rel)); 144 } else { 145 assert(shdr.sh_type == SHT_RELA); 146 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 147 file->mb.getBufferStart() + shdr.sh_offset), 148 shdr.sh_size / sizeof(typename ELFT::Rela)); 149 } 150 return ret; 151 } 152 153 uint64_t SectionBase::getOffset(uint64_t offset) const { 154 switch (kind()) { 155 case Output: { 156 auto *os = cast<OutputSection>(this); 157 // For output sections we treat offset -1 as the end of the section. 158 return offset == uint64_t(-1) ? os->size : offset; 159 } 160 case Regular: 161 case Synthetic: 162 return cast<InputSection>(this)->outSecOff + offset; 163 case EHFrame: 164 // The file crtbeginT.o has relocations pointing to the start of an empty 165 // .eh_frame that is known to be the first in the link. It does that to 166 // identify the start of the output .eh_frame. 167 return offset; 168 case Merge: 169 const MergeInputSection *ms = cast<MergeInputSection>(this); 170 if (InputSection *isec = ms->getParent()) 171 return isec->outSecOff + ms->getParentOffset(offset); 172 return ms->getParentOffset(offset); 173 } 174 llvm_unreachable("invalid section kind"); 175 } 176 177 uint64_t SectionBase::getVA(uint64_t offset) const { 178 const OutputSection *out = getOutputSection(); 179 return (out ? out->addr : 0) + getOffset(offset); 180 } 181 182 OutputSection *SectionBase::getOutputSection() { 183 InputSection *sec; 184 if (auto *isec = dyn_cast<InputSection>(this)) 185 sec = isec; 186 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 187 sec = ms->getParent(); 188 else if (auto *eh = dyn_cast<EhInputSection>(this)) 189 sec = eh->getParent(); 190 else 191 return cast<OutputSection>(this); 192 return sec ? sec->getParent() : nullptr; 193 } 194 195 // When a section is compressed, `rawData` consists with a header followed 196 // by zlib-compressed data. This function parses a header to initialize 197 // `uncompressedSize` member and remove the header from `rawData`. 198 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 199 // Old-style header 200 if (!(flags & SHF_COMPRESSED)) { 201 assert(name.startswith(".zdebug")); 202 if (!toStringRef(rawData).startswith("ZLIB")) { 203 error(toString(this) + ": corrupted compressed section header"); 204 return; 205 } 206 rawData = rawData.slice(4); 207 208 if (rawData.size() < 8) { 209 error(toString(this) + ": corrupted compressed section header"); 210 return; 211 } 212 213 uncompressedSize = read64be(rawData.data()); 214 rawData = rawData.slice(8); 215 216 // Restore the original section name. 217 // (e.g. ".zdebug_info" -> ".debug_info") 218 name = saver().save("." + name.substr(2)); 219 return; 220 } 221 222 flags &= ~(uint64_t)SHF_COMPRESSED; 223 224 // New-style header 225 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 226 error(toString(this) + ": corrupted compressed section"); 227 return; 228 } 229 230 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 231 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 232 error(toString(this) + ": unsupported compression type"); 233 return; 234 } 235 236 uncompressedSize = hdr->ch_size; 237 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 238 rawData = rawData.slice(sizeof(*hdr)); 239 } 240 241 InputSection *InputSectionBase::getLinkOrderDep() const { 242 assert(flags & SHF_LINK_ORDER); 243 if (!link) 244 return nullptr; 245 return cast<InputSection>(file->getSections()[link]); 246 } 247 248 // Find a function symbol that encloses a given location. 249 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 250 for (Symbol *b : file->getSymbols()) 251 if (Defined *d = dyn_cast<Defined>(b)) 252 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 253 offset < d->value + d->size) 254 return d; 255 return nullptr; 256 } 257 258 // Returns an object file location string. Used to construct an error message. 259 std::string InputSectionBase::getLocation(uint64_t offset) { 260 std::string secAndOffset = 261 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 262 263 // We don't have file for synthetic sections. 264 if (file == nullptr) 265 return (config->outputFile + ":(" + secAndOffset).str(); 266 267 std::string filename = toString(file); 268 if (Defined *d = getEnclosingFunction(offset)) 269 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 270 271 return filename + ":(" + secAndOffset; 272 } 273 274 // This function is intended to be used for constructing an error message. 275 // The returned message looks like this: 276 // 277 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 278 // 279 // Returns an empty string if there's no way to get line info. 280 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 281 return file->getSrcMsg(sym, *this, offset); 282 } 283 284 // Returns a filename string along with an optional section name. This 285 // function is intended to be used for constructing an error 286 // message. The returned message looks like this: 287 // 288 // path/to/foo.o:(function bar) 289 // 290 // or 291 // 292 // path/to/foo.o:(function bar) in archive path/to/bar.a 293 std::string InputSectionBase::getObjMsg(uint64_t off) { 294 std::string filename = std::string(file->getName()); 295 296 std::string archive; 297 if (!file->archiveName.empty()) 298 archive = (" in archive " + file->archiveName).str(); 299 300 // Find a symbol that encloses a given location. 301 for (Symbol *b : file->getSymbols()) 302 if (auto *d = dyn_cast<Defined>(b)) 303 if (d->section == this && d->value <= off && off < d->value + d->size) 304 return filename + ":(" + toString(*d) + ")" + archive; 305 306 // If there's no symbol, print out the offset in the section. 307 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 308 .str(); 309 } 310 311 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 312 313 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 314 uint32_t alignment, ArrayRef<uint8_t> data, 315 StringRef name, Kind k) 316 : InputSectionBase(f, flags, type, 317 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 318 name, k) {} 319 320 template <class ELFT> 321 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 322 StringRef name) 323 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 324 325 bool InputSection::classof(const SectionBase *s) { 326 return s->kind() == SectionBase::Regular || 327 s->kind() == SectionBase::Synthetic; 328 } 329 330 OutputSection *InputSection::getParent() const { 331 return cast_or_null<OutputSection>(parent); 332 } 333 334 // Copy SHT_GROUP section contents. Used only for the -r option. 335 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 336 // ELFT::Word is the 32-bit integral type in the target endianness. 337 using u32 = typename ELFT::Word; 338 ArrayRef<u32> from = getDataAs<u32>(); 339 auto *to = reinterpret_cast<u32 *>(buf); 340 341 // The first entry is not a section number but a flag. 342 *to++ = from[0]; 343 344 // Adjust section numbers because section numbers in an input object files are 345 // different in the output. We also need to handle combined or discarded 346 // members. 347 ArrayRef<InputSectionBase *> sections = file->getSections(); 348 DenseSet<uint32_t> seen; 349 for (uint32_t idx : from.slice(1)) { 350 OutputSection *osec = sections[idx]->getOutputSection(); 351 if (osec && seen.insert(osec->sectionIndex).second) 352 *to++ = osec->sectionIndex; 353 } 354 } 355 356 InputSectionBase *InputSection::getRelocatedSection() const { 357 if (!file || (type != SHT_RELA && type != SHT_REL)) 358 return nullptr; 359 ArrayRef<InputSectionBase *> sections = file->getSections(); 360 return sections[info]; 361 } 362 363 // This is used for -r and --emit-relocs. We can't use memcpy to copy 364 // relocations because we need to update symbol table offset and section index 365 // for each relocation. So we copy relocations one by one. 366 template <class ELFT, class RelTy> 367 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 368 const TargetInfo &target = *elf::target; 369 InputSectionBase *sec = getRelocatedSection(); 370 371 for (const RelTy &rel : rels) { 372 RelType type = rel.getType(config->isMips64EL); 373 const ObjFile<ELFT> *file = getFile<ELFT>(); 374 Symbol &sym = file->getRelocTargetSym(rel); 375 376 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 377 buf += sizeof(RelTy); 378 379 if (RelTy::IsRela) 380 p->r_addend = getAddend<ELFT>(rel); 381 382 // Output section VA is zero for -r, so r_offset is an offset within the 383 // section, but for --emit-relocs it is a virtual address. 384 p->r_offset = sec->getVA(rel.r_offset); 385 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 386 config->isMips64EL); 387 388 if (sym.type == STT_SECTION) { 389 // We combine multiple section symbols into only one per 390 // section. This means we have to update the addend. That is 391 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 392 // section data. We do that by adding to the Relocation vector. 393 394 // .eh_frame is horribly special and can reference discarded sections. To 395 // avoid having to parse and recreate .eh_frame, we just replace any 396 // relocation in it pointing to discarded sections with R_*_NONE, which 397 // hopefully creates a frame that is ignored at runtime. Also, don't warn 398 // on .gcc_except_table and debug sections. 399 // 400 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 401 auto *d = dyn_cast<Defined>(&sym); 402 if (!d) { 403 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 404 sec->name != ".gcc_except_table" && sec->name != ".got2" && 405 sec->name != ".toc") { 406 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 407 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 408 warn("relocation refers to a discarded section: " + 409 CHECK(file->getObj().getSectionName(sec), file) + 410 "\n>>> referenced by " + getObjMsg(p->r_offset)); 411 } 412 p->setSymbolAndType(0, 0, false); 413 continue; 414 } 415 SectionBase *section = d->section; 416 if (!section->isLive()) { 417 p->setSymbolAndType(0, 0, false); 418 continue; 419 } 420 421 int64_t addend = getAddend<ELFT>(rel); 422 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 423 if (!RelTy::IsRela) 424 addend = target.getImplicitAddend(bufLoc, type); 425 426 if (config->emachine == EM_MIPS && 427 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 428 // Some MIPS relocations depend on "gp" value. By default, 429 // this value has 0x7ff0 offset from a .got section. But 430 // relocatable files produced by a compiler or a linker 431 // might redefine this default value and we must use it 432 // for a calculation of the relocation result. When we 433 // generate EXE or DSO it's trivial. Generating a relocatable 434 // output is more difficult case because the linker does 435 // not calculate relocations in this mode and loses 436 // individual "gp" values used by each input object file. 437 // As a workaround we add the "gp" value to the relocation 438 // addend and save it back to the file. 439 addend += sec->getFile<ELFT>()->mipsGp0; 440 } 441 442 if (RelTy::IsRela) 443 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 444 else if (config->relocatable && type != target.noneRel) 445 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 446 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 447 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 448 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 449 // indicates that r30 is relative to the input section .got2 450 // (r_addend>=0x8000), after linking, r30 should be relative to the output 451 // section .got2 . To compensate for the shift, adjust r_addend by 452 // ppc32Got->outSecOff. 453 p->r_addend += sec->file->ppc32Got2->outSecOff; 454 } 455 } 456 } 457 458 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 459 // references specially. The general rule is that the value of the symbol in 460 // this context is the address of the place P. A further special case is that 461 // branch relocations to an undefined weak reference resolve to the next 462 // instruction. 463 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 464 uint32_t p) { 465 switch (type) { 466 // Unresolved branch relocations to weak references resolve to next 467 // instruction, this will be either 2 or 4 bytes on from P. 468 case R_ARM_THM_JUMP8: 469 case R_ARM_THM_JUMP11: 470 return p + 2 + a; 471 case R_ARM_CALL: 472 case R_ARM_JUMP24: 473 case R_ARM_PC24: 474 case R_ARM_PLT32: 475 case R_ARM_PREL31: 476 case R_ARM_THM_JUMP19: 477 case R_ARM_THM_JUMP24: 478 return p + 4 + a; 479 case R_ARM_THM_CALL: 480 // We don't want an interworking BLX to ARM 481 return p + 5 + a; 482 // Unresolved non branch pc-relative relocations 483 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 484 // targets a weak-reference. 485 case R_ARM_MOVW_PREL_NC: 486 case R_ARM_MOVT_PREL: 487 case R_ARM_REL32: 488 case R_ARM_THM_ALU_PREL_11_0: 489 case R_ARM_THM_MOVW_PREL_NC: 490 case R_ARM_THM_MOVT_PREL: 491 case R_ARM_THM_PC12: 492 return p + a; 493 // p + a is unrepresentable as negative immediates can't be encoded. 494 case R_ARM_THM_PC8: 495 return p; 496 } 497 llvm_unreachable("ARM pc-relative relocation expected\n"); 498 } 499 500 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 501 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 502 switch (type) { 503 // Unresolved branch relocations to weak references resolve to next 504 // instruction, this is 4 bytes on from P. 505 case R_AARCH64_CALL26: 506 case R_AARCH64_CONDBR19: 507 case R_AARCH64_JUMP26: 508 case R_AARCH64_TSTBR14: 509 return p + 4; 510 // Unresolved non branch pc-relative relocations 511 case R_AARCH64_PREL16: 512 case R_AARCH64_PREL32: 513 case R_AARCH64_PREL64: 514 case R_AARCH64_ADR_PREL_LO21: 515 case R_AARCH64_LD_PREL_LO19: 516 case R_AARCH64_PLT32: 517 return p; 518 } 519 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 520 } 521 522 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 523 switch (type) { 524 case R_RISCV_BRANCH: 525 case R_RISCV_JAL: 526 case R_RISCV_CALL: 527 case R_RISCV_CALL_PLT: 528 case R_RISCV_RVC_BRANCH: 529 case R_RISCV_RVC_JUMP: 530 return p; 531 default: 532 return 0; 533 } 534 } 535 536 // ARM SBREL relocations are of the form S + A - B where B is the static base 537 // The ARM ABI defines base to be "addressing origin of the output segment 538 // defining the symbol S". We defined the "addressing origin"/static base to be 539 // the base of the PT_LOAD segment containing the Sym. 540 // The procedure call standard only defines a Read Write Position Independent 541 // RWPI variant so in practice we should expect the static base to be the base 542 // of the RW segment. 543 static uint64_t getARMStaticBase(const Symbol &sym) { 544 OutputSection *os = sym.getOutputSection(); 545 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 546 fatal("SBREL relocation to " + sym.getName() + " without static base"); 547 return os->ptLoad->firstSec->addr; 548 } 549 550 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 551 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 552 // is calculated using PCREL_HI20's symbol. 553 // 554 // This function returns the R_RISCV_PCREL_HI20 relocation from 555 // R_RISCV_PCREL_LO12's symbol and addend. 556 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 557 const Defined *d = cast<Defined>(sym); 558 if (!d->section) { 559 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 560 sym->getName()); 561 return nullptr; 562 } 563 InputSection *isec = cast<InputSection>(d->section); 564 565 if (addend != 0) 566 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 567 isec->getObjMsg(d->value) + " is ignored"); 568 569 // Relocations are sorted by offset, so we can use std::equal_range to do 570 // binary search. 571 Relocation r; 572 r.offset = d->value; 573 auto range = 574 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 575 [](const Relocation &lhs, const Relocation &rhs) { 576 return lhs.offset < rhs.offset; 577 }); 578 579 for (auto it = range.first; it != range.second; ++it) 580 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 581 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 582 return &*it; 583 584 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 585 " without an associated R_RISCV_PCREL_HI20 relocation"); 586 return nullptr; 587 } 588 589 // A TLS symbol's virtual address is relative to the TLS segment. Add a 590 // target-specific adjustment to produce a thread-pointer-relative offset. 591 static int64_t getTlsTpOffset(const Symbol &s) { 592 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 593 if (&s == ElfSym::tlsModuleBase) 594 return 0; 595 596 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 597 // while most others use Variant 1. At run time TP will be aligned to p_align. 598 599 // Variant 1. TP will be followed by an optional gap (which is the size of 2 600 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 601 // padding, then the static TLS blocks. The alignment padding is added so that 602 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 603 // 604 // Variant 2. Static TLS blocks, followed by alignment padding are placed 605 // before TP. The alignment padding is added so that (TP - padding - 606 // p_memsz) is congruent to p_vaddr modulo p_align. 607 PhdrEntry *tls = Out::tlsPhdr; 608 switch (config->emachine) { 609 // Variant 1. 610 case EM_ARM: 611 case EM_AARCH64: 612 return s.getVA(0) + config->wordsize * 2 + 613 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 614 case EM_MIPS: 615 case EM_PPC: 616 case EM_PPC64: 617 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 618 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 619 // data and 0xf000 of the program's TLS segment. 620 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 621 case EM_RISCV: 622 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 623 624 // Variant 2. 625 case EM_HEXAGON: 626 case EM_SPARCV9: 627 case EM_386: 628 case EM_X86_64: 629 return s.getVA(0) - tls->p_memsz - 630 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 631 default: 632 llvm_unreachable("unhandled Config->EMachine"); 633 } 634 } 635 636 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 637 int64_t a, uint64_t p, 638 const Symbol &sym, RelExpr expr) { 639 switch (expr) { 640 case R_ABS: 641 case R_DTPREL: 642 case R_RELAX_TLS_LD_TO_LE_ABS: 643 case R_RELAX_GOT_PC_NOPIC: 644 case R_RISCV_ADD: 645 return sym.getVA(a); 646 case R_ADDEND: 647 return a; 648 case R_ARM_SBREL: 649 return sym.getVA(a) - getARMStaticBase(sym); 650 case R_GOT: 651 case R_RELAX_TLS_GD_TO_IE_ABS: 652 return sym.getGotVA() + a; 653 case R_GOTONLY_PC: 654 return in.got->getVA() + a - p; 655 case R_GOTPLTONLY_PC: 656 return in.gotPlt->getVA() + a - p; 657 case R_GOTREL: 658 case R_PPC64_RELAX_TOC: 659 return sym.getVA(a) - in.got->getVA(); 660 case R_GOTPLTREL: 661 return sym.getVA(a) - in.gotPlt->getVA(); 662 case R_GOTPLT: 663 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 664 return sym.getGotVA() + a - in.gotPlt->getVA(); 665 case R_TLSLD_GOT_OFF: 666 case R_GOT_OFF: 667 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 668 return sym.getGotOffset() + a; 669 case R_AARCH64_GOT_PAGE_PC: 670 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 671 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 672 case R_AARCH64_GOT_PAGE: 673 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 674 case R_GOT_PC: 675 case R_RELAX_TLS_GD_TO_IE: 676 return sym.getGotVA() + a - p; 677 case R_MIPS_GOTREL: 678 return sym.getVA(a) - in.mipsGot->getGp(file); 679 case R_MIPS_GOT_GP: 680 return in.mipsGot->getGp(file) + a; 681 case R_MIPS_GOT_GP_PC: { 682 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 683 // is _gp_disp symbol. In that case we should use the following 684 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 685 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 686 // microMIPS variants of these relocations use slightly different 687 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 688 // to correctly handle less-significant bit of the microMIPS symbol. 689 uint64_t v = in.mipsGot->getGp(file) + a - p; 690 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 691 v += 4; 692 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 693 v -= 1; 694 return v; 695 } 696 case R_MIPS_GOT_LOCAL_PAGE: 697 // If relocation against MIPS local symbol requires GOT entry, this entry 698 // should be initialized by 'page address'. This address is high 16-bits 699 // of sum the symbol's value and the addend. 700 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 701 in.mipsGot->getGp(file); 702 case R_MIPS_GOT_OFF: 703 case R_MIPS_GOT_OFF32: 704 // In case of MIPS if a GOT relocation has non-zero addend this addend 705 // should be applied to the GOT entry content not to the GOT entry offset. 706 // That is why we use separate expression type. 707 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 708 in.mipsGot->getGp(file); 709 case R_MIPS_TLSGD: 710 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 711 in.mipsGot->getGp(file); 712 case R_MIPS_TLSLD: 713 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 714 in.mipsGot->getGp(file); 715 case R_AARCH64_PAGE_PC: { 716 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 717 return getAArch64Page(val) - getAArch64Page(p); 718 } 719 case R_RISCV_PC_INDIRECT: { 720 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 721 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 722 *hiRel->sym, hiRel->expr); 723 return 0; 724 } 725 case R_PC: 726 case R_ARM_PCA: { 727 uint64_t dest; 728 if (expr == R_ARM_PCA) 729 // Some PC relative ARM (Thumb) relocations align down the place. 730 p = p & 0xfffffffc; 731 if (sym.isUndefWeak()) { 732 // On ARM and AArch64 a branch to an undefined weak resolves to the next 733 // instruction, otherwise the place. On RISCV, resolve an undefined weak 734 // to the same instruction to cause an infinite loop (making the user 735 // aware of the issue) while ensuring no overflow. 736 if (config->emachine == EM_ARM) 737 dest = getARMUndefinedRelativeWeakVA(type, a, p); 738 else if (config->emachine == EM_AARCH64) 739 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 740 else if (config->emachine == EM_PPC) 741 dest = p; 742 else if (config->emachine == EM_RISCV) 743 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 744 else 745 dest = sym.getVA(a); 746 } else { 747 dest = sym.getVA(a); 748 } 749 return dest - p; 750 } 751 case R_PLT: 752 return sym.getPltVA() + a; 753 case R_PLT_PC: 754 case R_PPC64_CALL_PLT: 755 return sym.getPltVA() + a - p; 756 case R_PLT_GOTPLT: 757 return sym.getPltVA() + a - in.gotPlt->getVA(); 758 case R_PPC32_PLTREL: 759 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 760 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 761 // target VA computation. 762 return sym.getPltVA() - p; 763 case R_PPC64_CALL: { 764 uint64_t symVA = sym.getVA(a); 765 // If we have an undefined weak symbol, we might get here with a symbol 766 // address of zero. That could overflow, but the code must be unreachable, 767 // so don't bother doing anything at all. 768 if (!symVA) 769 return 0; 770 771 // PPC64 V2 ABI describes two entry points to a function. The global entry 772 // point is used for calls where the caller and callee (may) have different 773 // TOC base pointers and r2 needs to be modified to hold the TOC base for 774 // the callee. For local calls the caller and callee share the same 775 // TOC base and so the TOC pointer initialization code should be skipped by 776 // branching to the local entry point. 777 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 778 } 779 case R_PPC64_TOCBASE: 780 return getPPC64TocBase() + a; 781 case R_RELAX_GOT_PC: 782 case R_PPC64_RELAX_GOT_PC: 783 return sym.getVA(a) - p; 784 case R_RELAX_TLS_GD_TO_LE: 785 case R_RELAX_TLS_IE_TO_LE: 786 case R_RELAX_TLS_LD_TO_LE: 787 case R_TPREL: 788 // It is not very clear what to return if the symbol is undefined. With 789 // --noinhibit-exec, even a non-weak undefined reference may reach here. 790 // Just return A, which matches R_ABS, and the behavior of some dynamic 791 // loaders. 792 if (sym.isUndefined()) 793 return a; 794 return getTlsTpOffset(sym) + a; 795 case R_RELAX_TLS_GD_TO_LE_NEG: 796 case R_TPREL_NEG: 797 if (sym.isUndefined()) 798 return a; 799 return -getTlsTpOffset(sym) + a; 800 case R_SIZE: 801 return sym.getSize() + a; 802 case R_TLSDESC: 803 return in.got->getTlsDescAddr(sym) + a; 804 case R_TLSDESC_PC: 805 return in.got->getTlsDescAddr(sym) + a - p; 806 case R_TLSDESC_GOTPLT: 807 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 808 case R_AARCH64_TLSDESC_PAGE: 809 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 810 case R_TLSGD_GOT: 811 return in.got->getGlobalDynOffset(sym) + a; 812 case R_TLSGD_GOTPLT: 813 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 814 case R_TLSGD_PC: 815 return in.got->getGlobalDynAddr(sym) + a - p; 816 case R_TLSLD_GOTPLT: 817 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 818 case R_TLSLD_GOT: 819 return in.got->getTlsIndexOff() + a; 820 case R_TLSLD_PC: 821 return in.got->getTlsIndexVA() + a - p; 822 default: 823 llvm_unreachable("invalid expression"); 824 } 825 } 826 827 // This function applies relocations to sections without SHF_ALLOC bit. 828 // Such sections are never mapped to memory at runtime. Debug sections are 829 // an example. Relocations in non-alloc sections are much easier to 830 // handle than in allocated sections because it will never need complex 831 // treatment such as GOT or PLT (because at runtime no one refers them). 832 // So, we handle relocations for non-alloc sections directly in this 833 // function as a performance optimization. 834 template <class ELFT, class RelTy> 835 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 836 const unsigned bits = sizeof(typename ELFT::uint) * 8; 837 const TargetInfo &target = *elf::target; 838 const bool isDebug = isDebugSection(*this); 839 const bool isDebugLocOrRanges = 840 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 841 const bool isDebugLine = isDebug && name == ".debug_line"; 842 Optional<uint64_t> tombstone; 843 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 844 if (patAndValue.first.match(this->name)) { 845 tombstone = patAndValue.second; 846 break; 847 } 848 849 for (const RelTy &rel : rels) { 850 RelType type = rel.getType(config->isMips64EL); 851 852 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 853 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 854 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 855 // need to keep this bug-compatible code for a while. 856 if (config->emachine == EM_386 && type == R_386_GOTPC) 857 continue; 858 859 uint64_t offset = rel.r_offset; 860 uint8_t *bufLoc = buf + offset; 861 int64_t addend = getAddend<ELFT>(rel); 862 if (!RelTy::IsRela) 863 addend += target.getImplicitAddend(bufLoc, type); 864 865 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 866 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 867 if (expr == R_NONE) 868 continue; 869 870 if (tombstone || 871 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 872 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 873 // folded section symbols) to a tombstone value. Resolving to addend is 874 // unsatisfactory because the result address range may collide with a 875 // valid range of low address, or leave multiple CUs claiming ownership of 876 // the same range of code, which may confuse consumers. 877 // 878 // To address the problems, we use -1 as a tombstone value for most 879 // .debug_* sections. We have to ignore the addend because we don't want 880 // to resolve an address attribute (which may have a non-zero addend) to 881 // -1+addend (wrap around to a low address). 882 // 883 // R_DTPREL type relocations represent an offset into the dynamic thread 884 // vector. The computed value is st_value plus a non-negative offset. 885 // Negative values are invalid, so -1 can be used as the tombstone value. 886 // 887 // If the referenced symbol is discarded (made Undefined), or the 888 // section defining the referenced symbol is garbage collected, 889 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 890 // case. However, resolving a relocation in .debug_line to -1 would stop 891 // debugger users from setting breakpoints on the folded-in function, so 892 // exclude .debug_line. 893 // 894 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 895 // (base address selection entry), use 1 (which is used by GNU ld for 896 // .debug_ranges). 897 // 898 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 899 // value. Enable -1 in a future release. 900 auto *ds = dyn_cast<Defined>(&sym); 901 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 902 // If -z dead-reloc-in-nonalloc= is specified, respect it. 903 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 904 : (isDebugLocOrRanges ? 1 : 0); 905 target.relocateNoSym(bufLoc, type, value); 906 continue; 907 } 908 } 909 910 // For a relocatable link, only tombstone values are applied. 911 if (config->relocatable) 912 continue; 913 914 if (expr == R_SIZE) { 915 target.relocateNoSym(bufLoc, type, 916 SignExtend64<bits>(sym.getSize() + addend)); 917 continue; 918 } 919 920 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 921 // sections. 922 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 923 expr == R_RISCV_ADD) { 924 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 925 continue; 926 } 927 928 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 929 toString(type) + " against symbol '" + toString(sym) + 930 "'"; 931 if (expr != R_PC && expr != R_ARM_PCA) { 932 error(msg); 933 return; 934 } 935 936 // If the control reaches here, we found a PC-relative relocation in a 937 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 938 // at runtime, the notion of PC-relative doesn't make sense here. So, 939 // this is a usage error. However, GNU linkers historically accept such 940 // relocations without any errors and relocate them as if they were at 941 // address 0. For bug-compatibilty, we accept them with warnings. We 942 // know Steel Bank Common Lisp as of 2018 have this bug. 943 warn(msg); 944 target.relocateNoSym( 945 bufLoc, type, 946 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 947 } 948 } 949 950 // This is used when '-r' is given. 951 // For REL targets, InputSection::copyRelocations() may store artificial 952 // relocations aimed to update addends. They are handled in relocateAlloc() 953 // for allocatable sections, and this function does the same for 954 // non-allocatable sections, such as sections with debug information. 955 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 956 const unsigned bits = config->is64 ? 64 : 32; 957 958 for (const Relocation &rel : sec->relocations) { 959 // InputSection::copyRelocations() adds only R_ABS relocations. 960 assert(rel.expr == R_ABS); 961 uint8_t *bufLoc = buf + rel.offset; 962 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 963 target->relocate(bufLoc, rel, targetVA); 964 } 965 } 966 967 template <class ELFT> 968 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 969 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 970 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 971 972 if (flags & SHF_ALLOC) { 973 relocateAlloc(buf, bufEnd); 974 return; 975 } 976 977 auto *sec = cast<InputSection>(this); 978 if (config->relocatable) 979 relocateNonAllocForRelocatable(sec, buf); 980 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 981 // locations with tombstone values. 982 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 983 if (rels.areRelocsRel()) 984 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 985 else 986 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 987 } 988 989 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 990 assert(flags & SHF_ALLOC); 991 const unsigned bits = config->wordsize * 8; 992 const TargetInfo &target = *elf::target; 993 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 994 AArch64Relaxer aarch64relaxer(relocations); 995 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 996 const Relocation &rel = relocations[i]; 997 if (rel.expr == R_NONE) 998 continue; 999 uint64_t offset = rel.offset; 1000 uint8_t *bufLoc = buf + offset; 1001 1002 uint64_t secAddr = getOutputSection()->addr; 1003 if (auto *sec = dyn_cast<InputSection>(this)) 1004 secAddr += sec->outSecOff; 1005 const uint64_t addrLoc = secAddr + offset; 1006 const uint64_t targetVA = 1007 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1008 *rel.sym, rel.expr), 1009 bits); 1010 switch (rel.expr) { 1011 case R_RELAX_GOT_PC: 1012 case R_RELAX_GOT_PC_NOPIC: 1013 target.relaxGot(bufLoc, rel, targetVA); 1014 break; 1015 case R_AARCH64_GOT_PAGE_PC: 1016 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1017 rel, relocations[i + 1], secAddr, buf)) { 1018 ++i; 1019 continue; 1020 } 1021 target.relocate(bufLoc, rel, targetVA); 1022 break; 1023 case R_AARCH64_PAGE_PC: 1024 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd( 1025 rel, relocations[i + 1], secAddr, buf)) { 1026 ++i; 1027 continue; 1028 } 1029 target.relocate(bufLoc, rel, targetVA); 1030 break; 1031 case R_PPC64_RELAX_GOT_PC: { 1032 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1033 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1034 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1035 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1036 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1037 // and only relax the other if the saved offset matches. 1038 if (rel.type == R_PPC64_GOT_PCREL34) 1039 lastPPCRelaxedRelocOff = offset; 1040 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1041 break; 1042 target.relaxGot(bufLoc, rel, targetVA); 1043 break; 1044 } 1045 case R_PPC64_RELAX_TOC: 1046 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1047 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1048 // entry, there may be R_PPC64_TOC16_HA not paired with 1049 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1050 // opportunities but is safe. 1051 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1052 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1053 target.relocate(bufLoc, rel, targetVA); 1054 break; 1055 case R_RELAX_TLS_IE_TO_LE: 1056 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1057 break; 1058 case R_RELAX_TLS_LD_TO_LE: 1059 case R_RELAX_TLS_LD_TO_LE_ABS: 1060 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1061 break; 1062 case R_RELAX_TLS_GD_TO_LE: 1063 case R_RELAX_TLS_GD_TO_LE_NEG: 1064 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1065 break; 1066 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1067 case R_RELAX_TLS_GD_TO_IE: 1068 case R_RELAX_TLS_GD_TO_IE_ABS: 1069 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1070 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1071 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1072 break; 1073 case R_PPC64_CALL: 1074 // If this is a call to __tls_get_addr, it may be part of a TLS 1075 // sequence that has been relaxed and turned into a nop. In this 1076 // case, we don't want to handle it as a call. 1077 if (read32(bufLoc) == 0x60000000) // nop 1078 break; 1079 1080 // Patch a nop (0x60000000) to a ld. 1081 if (rel.sym->needsTocRestore) { 1082 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1083 // recursive calls even if the function is preemptible. This is not 1084 // wrong in the common case where the function is not preempted at 1085 // runtime. Just ignore. 1086 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1087 rel.sym->file != file) { 1088 // Use substr(6) to remove the "__plt_" prefix. 1089 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1090 lld::toString(*rel.sym).substr(6) + 1091 " lacks nop, can't restore toc"); 1092 break; 1093 } 1094 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1095 } 1096 target.relocate(bufLoc, rel, targetVA); 1097 break; 1098 default: 1099 target.relocate(bufLoc, rel, targetVA); 1100 break; 1101 } 1102 } 1103 1104 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1105 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1106 // insn. This is primarily used to relax and optimize jumps created with 1107 // basic block sections. 1108 if (jumpInstrMod) { 1109 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1110 jumpInstrMod->size); 1111 } 1112 } 1113 1114 // For each function-defining prologue, find any calls to __morestack, 1115 // and replace them with calls to __morestack_non_split. 1116 static void switchMorestackCallsToMorestackNonSplit( 1117 DenseSet<Defined *> &prologues, 1118 SmallVector<Relocation *, 0> &morestackCalls) { 1119 1120 // If the target adjusted a function's prologue, all calls to 1121 // __morestack inside that function should be switched to 1122 // __morestack_non_split. 1123 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1124 if (!moreStackNonSplit) { 1125 error("mixing split-stack objects requires a definition of " 1126 "__morestack_non_split"); 1127 return; 1128 } 1129 1130 // Sort both collections to compare addresses efficiently. 1131 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1132 return l->offset < r->offset; 1133 }); 1134 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1135 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1136 return l->value < r->value; 1137 }); 1138 1139 auto it = morestackCalls.begin(); 1140 for (Defined *f : functions) { 1141 // Find the first call to __morestack within the function. 1142 while (it != morestackCalls.end() && (*it)->offset < f->value) 1143 ++it; 1144 // Adjust all calls inside the function. 1145 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1146 (*it)->sym = moreStackNonSplit; 1147 ++it; 1148 } 1149 } 1150 } 1151 1152 static bool enclosingPrologueAttempted(uint64_t offset, 1153 const DenseSet<Defined *> &prologues) { 1154 for (Defined *f : prologues) 1155 if (f->value <= offset && offset < f->value + f->size) 1156 return true; 1157 return false; 1158 } 1159 1160 // If a function compiled for split stack calls a function not 1161 // compiled for split stack, then the caller needs its prologue 1162 // adjusted to ensure that the called function will have enough stack 1163 // available. Find those functions, and adjust their prologues. 1164 template <class ELFT> 1165 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1166 uint8_t *end) { 1167 DenseSet<Defined *> prologues; 1168 SmallVector<Relocation *, 0> morestackCalls; 1169 1170 for (Relocation &rel : relocations) { 1171 // Ignore calls into the split-stack api. 1172 if (rel.sym->getName().startswith("__morestack")) { 1173 if (rel.sym->getName().equals("__morestack")) 1174 morestackCalls.push_back(&rel); 1175 continue; 1176 } 1177 1178 // A relocation to non-function isn't relevant. Sometimes 1179 // __morestack is not marked as a function, so this check comes 1180 // after the name check. 1181 if (rel.sym->type != STT_FUNC) 1182 continue; 1183 1184 // If the callee's-file was compiled with split stack, nothing to do. In 1185 // this context, a "Defined" symbol is one "defined by the binary currently 1186 // being produced". So an "undefined" symbol might be provided by a shared 1187 // library. It is not possible to tell how such symbols were compiled, so be 1188 // conservative. 1189 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1190 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1191 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1192 continue; 1193 1194 if (enclosingPrologueAttempted(rel.offset, prologues)) 1195 continue; 1196 1197 if (Defined *f = getEnclosingFunction(rel.offset)) { 1198 prologues.insert(f); 1199 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1200 f->stOther)) 1201 continue; 1202 if (!getFile<ELFT>()->someNoSplitStack) 1203 error(lld::toString(this) + ": " + f->getName() + 1204 " (with -fsplit-stack) calls " + rel.sym->getName() + 1205 " (without -fsplit-stack), but couldn't adjust its prologue"); 1206 } 1207 } 1208 1209 if (target->needsMoreStackNonSplit) 1210 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1211 } 1212 1213 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1214 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1215 s->writeTo(buf); 1216 return; 1217 } 1218 1219 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1220 return; 1221 // If -r or --emit-relocs is given, then an InputSection 1222 // may be a relocation section. 1223 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1224 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1225 return; 1226 } 1227 if (LLVM_UNLIKELY(type == SHT_REL)) { 1228 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1229 return; 1230 } 1231 1232 // If -r is given, we may have a SHT_GROUP section. 1233 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1234 copyShtGroup<ELFT>(buf); 1235 return; 1236 } 1237 1238 // If this is a compressed section, uncompress section contents directly 1239 // to the buffer. 1240 if (uncompressedSize >= 0) { 1241 size_t size = uncompressedSize; 1242 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1243 fatal(toString(this) + 1244 ": uncompress failed: " + llvm::toString(std::move(e))); 1245 uint8_t *bufEnd = buf + size; 1246 relocate<ELFT>(buf, bufEnd); 1247 return; 1248 } 1249 1250 // Copy section contents from source object file to output file 1251 // and then apply relocations. 1252 memcpy(buf, rawData.data(), rawData.size()); 1253 relocate<ELFT>(buf, buf + rawData.size()); 1254 } 1255 1256 void InputSection::replace(InputSection *other) { 1257 alignment = std::max(alignment, other->alignment); 1258 1259 // When a section is replaced with another section that was allocated to 1260 // another partition, the replacement section (and its associated sections) 1261 // need to be placed in the main partition so that both partitions will be 1262 // able to access it. 1263 if (partition != other->partition) { 1264 partition = 1; 1265 for (InputSection *isec : dependentSections) 1266 isec->partition = 1; 1267 } 1268 1269 other->repl = repl; 1270 other->markDead(); 1271 } 1272 1273 template <class ELFT> 1274 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1275 const typename ELFT::Shdr &header, 1276 StringRef name) 1277 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1278 1279 SyntheticSection *EhInputSection::getParent() const { 1280 return cast_or_null<SyntheticSection>(parent); 1281 } 1282 1283 // Returns the index of the first relocation that points to a region between 1284 // Begin and Begin+Size. 1285 template <class IntTy, class RelTy> 1286 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1287 unsigned &relocI) { 1288 // Start search from RelocI for fast access. That works because the 1289 // relocations are sorted in .eh_frame. 1290 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1291 const RelTy &rel = rels[relocI]; 1292 if (rel.r_offset < begin) 1293 continue; 1294 1295 if (rel.r_offset < begin + size) 1296 return relocI; 1297 return -1; 1298 } 1299 return -1; 1300 } 1301 1302 // .eh_frame is a sequence of CIE or FDE records. 1303 // This function splits an input section into records and returns them. 1304 template <class ELFT> void EhInputSection::split() { 1305 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1306 // getReloc expects the relocations to be sorted by r_offset. See the comment 1307 // in scanRelocs. 1308 if (rels.areRelocsRel()) { 1309 SmallVector<typename ELFT::Rel, 0> storage; 1310 split<ELFT>(sortRels(rels.rels, storage)); 1311 } else { 1312 SmallVector<typename ELFT::Rela, 0> storage; 1313 split<ELFT>(sortRels(rels.relas, storage)); 1314 } 1315 } 1316 1317 template <class ELFT, class RelTy> 1318 void EhInputSection::split(ArrayRef<RelTy> rels) { 1319 ArrayRef<uint8_t> d = rawData; 1320 const char *msg = nullptr; 1321 unsigned relI = 0; 1322 while (!d.empty()) { 1323 if (d.size() < 4) { 1324 msg = "CIE/FDE too small"; 1325 break; 1326 } 1327 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1328 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1329 // but we do not support that format yet. 1330 if (size == UINT32_MAX) { 1331 msg = "CIE/FDE too large"; 1332 break; 1333 } 1334 size += 4; 1335 if (size > d.size()) { 1336 msg = "CIE/FDE ends past the end of the section"; 1337 break; 1338 } 1339 1340 uint64_t off = d.data() - rawData.data(); 1341 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1342 d = d.slice(size); 1343 } 1344 if (msg) 1345 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1346 getObjMsg(d.data() - rawData.data())); 1347 } 1348 1349 static size_t findNull(StringRef s, size_t entSize) { 1350 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1351 const char *b = s.begin() + i; 1352 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1353 return i; 1354 } 1355 llvm_unreachable(""); 1356 } 1357 1358 SyntheticSection *MergeInputSection::getParent() const { 1359 return cast_or_null<SyntheticSection>(parent); 1360 } 1361 1362 // Split SHF_STRINGS section. Such section is a sequence of 1363 // null-terminated strings. 1364 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1365 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1366 const char *p = s.data(), *end = s.data() + s.size(); 1367 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1368 fatal(toString(this) + ": string is not null terminated"); 1369 if (entSize == 1) { 1370 // Optimize the common case. 1371 do { 1372 size_t size = strlen(p) + 1; 1373 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1374 p += size; 1375 } while (p != end); 1376 } else { 1377 do { 1378 size_t size = findNull(StringRef(p, end - p), entSize) + entSize; 1379 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1380 p += size; 1381 } while (p != end); 1382 } 1383 } 1384 1385 // Split non-SHF_STRINGS section. Such section is a sequence of 1386 // fixed size records. 1387 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1388 size_t entSize) { 1389 size_t size = data.size(); 1390 assert((size % entSize) == 0); 1391 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1392 1393 pieces.resize_for_overwrite(size / entSize); 1394 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1395 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1396 } 1397 1398 template <class ELFT> 1399 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1400 const typename ELFT::Shdr &header, 1401 StringRef name) 1402 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1403 1404 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1405 uint64_t entsize, ArrayRef<uint8_t> data, 1406 StringRef name) 1407 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1408 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1409 1410 // This function is called after we obtain a complete list of input sections 1411 // that need to be linked. This is responsible to split section contents 1412 // into small chunks for further processing. 1413 // 1414 // Note that this function is called from parallelForEach. This must be 1415 // thread-safe (i.e. no memory allocation from the pools). 1416 void MergeInputSection::splitIntoPieces() { 1417 assert(pieces.empty()); 1418 1419 if (flags & SHF_STRINGS) 1420 splitStrings(toStringRef(data()), entsize); 1421 else 1422 splitNonStrings(data(), entsize); 1423 } 1424 1425 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1426 if (this->data().size() <= offset) 1427 fatal(toString(this) + ": offset is outside the section"); 1428 1429 // If Offset is not at beginning of a section piece, it is not in the map. 1430 // In that case we need to do a binary search of the original section piece vector. 1431 auto it = partition_point( 1432 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1433 return &it[-1]; 1434 } 1435 1436 // Returns the offset in an output section for a given input offset. 1437 // Because contents of a mergeable section is not contiguous in output, 1438 // it is not just an addition to a base output offset. 1439 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1440 // If Offset is not at beginning of a section piece, it is not in the map. 1441 // In that case we need to search from the original section piece vector. 1442 const SectionPiece &piece = *getSectionPiece(offset); 1443 uint64_t addend = offset - piece.inputOff; 1444 return piece.outputOff + addend; 1445 } 1446 1447 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1448 StringRef); 1449 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1450 StringRef); 1451 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1452 StringRef); 1453 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1454 StringRef); 1455 1456 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1457 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1458 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1459 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1460 1461 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1462 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1463 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1464 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1465 1466 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1467 const ELF32LE::Shdr &, StringRef); 1468 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1469 const ELF32BE::Shdr &, StringRef); 1470 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1471 const ELF64LE::Shdr &, StringRef); 1472 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1473 const ELF64BE::Shdr &, StringRef); 1474 1475 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1476 const ELF32LE::Shdr &, StringRef); 1477 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1478 const ELF32BE::Shdr &, StringRef); 1479 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1480 const ELF64LE::Shdr &, StringRef); 1481 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1482 const ELF64BE::Shdr &, StringRef); 1483 1484 template void EhInputSection::split<ELF32LE>(); 1485 template void EhInputSection::split<ELF32BE>(); 1486 template void EhInputSection::split<ELF64LE>(); 1487 template void EhInputSection::split<ELF64BE>(); 1488