1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "InputFiles.h" 12 #include "OutputSections.h" 13 #include "Relocations.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "llvm/Support/Compiler.h" 20 #include "llvm/Support/Compression.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/xxhash.h" 23 #include <algorithm> 24 #include <mutex> 25 #include <vector> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 using namespace llvm::sys; 33 using namespace lld; 34 using namespace lld::elf; 35 36 SmallVector<InputSectionBase *, 0> elf::inputSections; 37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 38 39 // Returns a string to construct an error message. 40 std::string lld::toString(const InputSectionBase *sec) { 41 return (toString(sec->file) + ":(" + sec->name + ")").str(); 42 } 43 44 template <class ELFT> 45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 46 const typename ELFT::Shdr &hdr) { 47 if (hdr.sh_type == SHT_NOBITS) 48 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 49 return check(file.getObj().getSectionContents(hdr)); 50 } 51 52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 53 uint32_t type, uint64_t entsize, 54 uint32_t link, uint32_t info, 55 uint32_t alignment, ArrayRef<uint8_t> data, 56 StringRef name, Kind sectionKind) 57 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 58 link), 59 file(file), rawData(data) { 60 // In order to reduce memory allocation, we assume that mergeable 61 // sections are smaller than 4 GiB, which is not an unreasonable 62 // assumption as of 2017. 63 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 64 error(toString(this) + ": section too large"); 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraints. 68 uint32_t v = std::max<uint32_t>(alignment, 1); 69 if (!isPowerOf2_64(v)) 70 fatal(toString(this) + ": sh_addralign is not a power of 2"); 71 this->alignment = v; 72 73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no 74 // longer supported. 75 if (flags & SHF_COMPRESSED) 76 invokeELFT(parseCompressedHeader); 77 } 78 79 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 80 // SHF_GROUP is a marker that a section belongs to some comdat group. 81 // That flag doesn't make sense in an executable. 82 static uint64_t getFlags(uint64_t flags) { 83 flags &= ~(uint64_t)SHF_INFO_LINK; 84 if (!config->relocatable) 85 flags &= ~(uint64_t)SHF_GROUP; 86 return flags; 87 } 88 89 template <class ELFT> 90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 91 const typename ELFT::Shdr &hdr, 92 StringRef name, Kind sectionKind) 93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 95 hdr.sh_addralign, getSectionContents(file, hdr), name, 96 sectionKind) { 97 // We reject object files having insanely large alignments even though 98 // they are allowed by the spec. I think 4GB is a reasonable limitation. 99 // We might want to relax this in the future. 100 if (hdr.sh_addralign > UINT32_MAX) 101 fatal(toString(&file) + ": section sh_addralign is too large"); 102 } 103 104 size_t InputSectionBase::getSize() const { 105 if (auto *s = dyn_cast<SyntheticSection>(this)) 106 return s->getSize(); 107 if (uncompressedSize >= 0) 108 return uncompressedSize; 109 return rawData.size() - bytesDropped; 110 } 111 112 void InputSectionBase::uncompress() const { 113 size_t size = uncompressedSize; 114 char *uncompressedBuf; 115 { 116 static std::mutex mu; 117 std::lock_guard<std::mutex> lock(mu); 118 uncompressedBuf = bAlloc().Allocate<char>(size); 119 } 120 121 if (Error e = compression::zlib::uncompress(toStringRef(rawData), 122 uncompressedBuf, size)) 123 fatal(toString(this) + 124 ": uncompress failed: " + llvm::toString(std::move(e))); 125 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 126 uncompressedSize = -1; 127 } 128 129 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 130 if (relSecIdx == 0) 131 return {}; 132 RelsOrRelas<ELFT> ret; 133 typename ELFT::Shdr shdr = 134 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 135 if (shdr.sh_type == SHT_REL) { 136 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 137 file->mb.getBufferStart() + shdr.sh_offset), 138 shdr.sh_size / sizeof(typename ELFT::Rel)); 139 } else { 140 assert(shdr.sh_type == SHT_RELA); 141 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 142 file->mb.getBufferStart() + shdr.sh_offset), 143 shdr.sh_size / sizeof(typename ELFT::Rela)); 144 } 145 return ret; 146 } 147 148 uint64_t SectionBase::getOffset(uint64_t offset) const { 149 switch (kind()) { 150 case Output: { 151 auto *os = cast<OutputSection>(this); 152 // For output sections we treat offset -1 as the end of the section. 153 return offset == uint64_t(-1) ? os->size : offset; 154 } 155 case Regular: 156 case Synthetic: 157 return cast<InputSection>(this)->outSecOff + offset; 158 case EHFrame: { 159 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC 160 // crtbeginT.o may reference the start of an empty .eh_frame to identify the 161 // start of the output .eh_frame. Just return offset. 162 // 163 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be 164 // discarded due to GC/ICF. We should compute the output section offset. 165 const EhInputSection *es = cast<EhInputSection>(this); 166 if (!es->rawData.empty()) 167 if (InputSection *isec = es->getParent()) 168 return isec->outSecOff + es->getParentOffset(offset); 169 return offset; 170 } 171 case Merge: 172 const MergeInputSection *ms = cast<MergeInputSection>(this); 173 if (InputSection *isec = ms->getParent()) 174 return isec->outSecOff + ms->getParentOffset(offset); 175 return ms->getParentOffset(offset); 176 } 177 llvm_unreachable("invalid section kind"); 178 } 179 180 uint64_t SectionBase::getVA(uint64_t offset) const { 181 const OutputSection *out = getOutputSection(); 182 return (out ? out->addr : 0) + getOffset(offset); 183 } 184 185 OutputSection *SectionBase::getOutputSection() { 186 InputSection *sec; 187 if (auto *isec = dyn_cast<InputSection>(this)) 188 sec = isec; 189 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 190 sec = ms->getParent(); 191 else if (auto *eh = dyn_cast<EhInputSection>(this)) 192 sec = eh->getParent(); 193 else 194 return cast<OutputSection>(this); 195 return sec ? sec->getParent() : nullptr; 196 } 197 198 // When a section is compressed, `rawData` consists with a header followed 199 // by zlib-compressed data. This function parses a header to initialize 200 // `uncompressedSize` member and remove the header from `rawData`. 201 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 202 flags &= ~(uint64_t)SHF_COMPRESSED; 203 204 // New-style header 205 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 206 error(toString(this) + ": corrupted compressed section"); 207 return; 208 } 209 210 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 211 if (hdr->ch_type == ELFCOMPRESS_ZLIB) { 212 if (!compression::zlib::isAvailable()) 213 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is " 214 "not built with zlib support"); 215 } else { 216 error(toString(this) + ": unsupported compression type (" + 217 Twine(hdr->ch_type) + ")"); 218 return; 219 } 220 221 uncompressedSize = hdr->ch_size; 222 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 223 rawData = rawData.slice(sizeof(*hdr)); 224 } 225 226 InputSection *InputSectionBase::getLinkOrderDep() const { 227 assert(flags & SHF_LINK_ORDER); 228 if (!link) 229 return nullptr; 230 return cast<InputSection>(file->getSections()[link]); 231 } 232 233 // Find a function symbol that encloses a given location. 234 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 235 for (Symbol *b : file->getSymbols()) 236 if (Defined *d = dyn_cast<Defined>(b)) 237 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 238 offset < d->value + d->size) 239 return d; 240 return nullptr; 241 } 242 243 // Returns an object file location string. Used to construct an error message. 244 std::string InputSectionBase::getLocation(uint64_t offset) { 245 std::string secAndOffset = 246 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 247 248 // We don't have file for synthetic sections. 249 if (file == nullptr) 250 return (config->outputFile + ":(" + secAndOffset).str(); 251 252 std::string filename = toString(file); 253 if (Defined *d = getEnclosingFunction(offset)) 254 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 255 256 return filename + ":(" + secAndOffset; 257 } 258 259 // This function is intended to be used for constructing an error message. 260 // The returned message looks like this: 261 // 262 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 263 // 264 // Returns an empty string if there's no way to get line info. 265 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 266 return file->getSrcMsg(sym, *this, offset); 267 } 268 269 // Returns a filename string along with an optional section name. This 270 // function is intended to be used for constructing an error 271 // message. The returned message looks like this: 272 // 273 // path/to/foo.o:(function bar) 274 // 275 // or 276 // 277 // path/to/foo.o:(function bar) in archive path/to/bar.a 278 std::string InputSectionBase::getObjMsg(uint64_t off) { 279 std::string filename = std::string(file->getName()); 280 281 std::string archive; 282 if (!file->archiveName.empty()) 283 archive = (" in archive " + file->archiveName).str(); 284 285 // Find a symbol that encloses a given location. getObjMsg may be called 286 // before ObjFile::initializeLocalSymbols where local symbols are initialized. 287 for (Symbol *b : file->getSymbols()) 288 if (auto *d = dyn_cast_or_null<Defined>(b)) 289 if (d->section == this && d->value <= off && off < d->value + d->size) 290 return filename + ":(" + toString(*d) + ")" + archive; 291 292 // If there's no symbol, print out the offset in the section. 293 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 294 .str(); 295 } 296 297 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 298 299 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 300 uint32_t alignment, ArrayRef<uint8_t> data, 301 StringRef name, Kind k) 302 : InputSectionBase(f, flags, type, 303 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 304 name, k) {} 305 306 template <class ELFT> 307 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 308 StringRef name) 309 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 310 311 // Copy SHT_GROUP section contents. Used only for the -r option. 312 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 313 // ELFT::Word is the 32-bit integral type in the target endianness. 314 using u32 = typename ELFT::Word; 315 ArrayRef<u32> from = getDataAs<u32>(); 316 auto *to = reinterpret_cast<u32 *>(buf); 317 318 // The first entry is not a section number but a flag. 319 *to++ = from[0]; 320 321 // Adjust section numbers because section numbers in an input object files are 322 // different in the output. We also need to handle combined or discarded 323 // members. 324 ArrayRef<InputSectionBase *> sections = file->getSections(); 325 DenseSet<uint32_t> seen; 326 for (uint32_t idx : from.slice(1)) { 327 OutputSection *osec = sections[idx]->getOutputSection(); 328 if (osec && seen.insert(osec->sectionIndex).second) 329 *to++ = osec->sectionIndex; 330 } 331 } 332 333 InputSectionBase *InputSection::getRelocatedSection() const { 334 if (!file || (type != SHT_RELA && type != SHT_REL)) 335 return nullptr; 336 ArrayRef<InputSectionBase *> sections = file->getSections(); 337 return sections[info]; 338 } 339 340 // This is used for -r and --emit-relocs. We can't use memcpy to copy 341 // relocations because we need to update symbol table offset and section index 342 // for each relocation. So we copy relocations one by one. 343 template <class ELFT, class RelTy> 344 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 345 const TargetInfo &target = *elf::target; 346 InputSectionBase *sec = getRelocatedSection(); 347 (void)sec->data(); // uncompress if needed 348 349 for (const RelTy &rel : rels) { 350 RelType type = rel.getType(config->isMips64EL); 351 const ObjFile<ELFT> *file = getFile<ELFT>(); 352 Symbol &sym = file->getRelocTargetSym(rel); 353 354 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 355 buf += sizeof(RelTy); 356 357 if (RelTy::IsRela) 358 p->r_addend = getAddend<ELFT>(rel); 359 360 // Output section VA is zero for -r, so r_offset is an offset within the 361 // section, but for --emit-relocs it is a virtual address. 362 p->r_offset = sec->getVA(rel.r_offset); 363 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 364 config->isMips64EL); 365 366 if (sym.type == STT_SECTION) { 367 // We combine multiple section symbols into only one per 368 // section. This means we have to update the addend. That is 369 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 370 // section data. We do that by adding to the Relocation vector. 371 372 // .eh_frame is horribly special and can reference discarded sections. To 373 // avoid having to parse and recreate .eh_frame, we just replace any 374 // relocation in it pointing to discarded sections with R_*_NONE, which 375 // hopefully creates a frame that is ignored at runtime. Also, don't warn 376 // on .gcc_except_table and debug sections. 377 // 378 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 379 auto *d = dyn_cast<Defined>(&sym); 380 if (!d) { 381 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 382 sec->name != ".gcc_except_table" && sec->name != ".got2" && 383 sec->name != ".toc") { 384 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 385 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 386 warn("relocation refers to a discarded section: " + 387 CHECK(file->getObj().getSectionName(sec), file) + 388 "\n>>> referenced by " + getObjMsg(p->r_offset)); 389 } 390 p->setSymbolAndType(0, 0, false); 391 continue; 392 } 393 SectionBase *section = d->section; 394 if (!section->isLive()) { 395 p->setSymbolAndType(0, 0, false); 396 continue; 397 } 398 399 int64_t addend = getAddend<ELFT>(rel); 400 const uint8_t *bufLoc = sec->rawData.begin() + rel.r_offset; 401 if (!RelTy::IsRela) 402 addend = target.getImplicitAddend(bufLoc, type); 403 404 if (config->emachine == EM_MIPS && 405 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 406 // Some MIPS relocations depend on "gp" value. By default, 407 // this value has 0x7ff0 offset from a .got section. But 408 // relocatable files produced by a compiler or a linker 409 // might redefine this default value and we must use it 410 // for a calculation of the relocation result. When we 411 // generate EXE or DSO it's trivial. Generating a relocatable 412 // output is more difficult case because the linker does 413 // not calculate relocations in this mode and loses 414 // individual "gp" values used by each input object file. 415 // As a workaround we add the "gp" value to the relocation 416 // addend and save it back to the file. 417 addend += sec->getFile<ELFT>()->mipsGp0; 418 } 419 420 if (RelTy::IsRela) 421 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 422 else if (config->relocatable && type != target.noneRel) 423 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 424 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 425 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 426 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 427 // indicates that r30 is relative to the input section .got2 428 // (r_addend>=0x8000), after linking, r30 should be relative to the output 429 // section .got2 . To compensate for the shift, adjust r_addend by 430 // ppc32Got->outSecOff. 431 p->r_addend += sec->file->ppc32Got2->outSecOff; 432 } 433 } 434 } 435 436 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 437 // references specially. The general rule is that the value of the symbol in 438 // this context is the address of the place P. A further special case is that 439 // branch relocations to an undefined weak reference resolve to the next 440 // instruction. 441 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 442 uint32_t p) { 443 switch (type) { 444 // Unresolved branch relocations to weak references resolve to next 445 // instruction, this will be either 2 or 4 bytes on from P. 446 case R_ARM_THM_JUMP8: 447 case R_ARM_THM_JUMP11: 448 return p + 2 + a; 449 case R_ARM_CALL: 450 case R_ARM_JUMP24: 451 case R_ARM_PC24: 452 case R_ARM_PLT32: 453 case R_ARM_PREL31: 454 case R_ARM_THM_JUMP19: 455 case R_ARM_THM_JUMP24: 456 return p + 4 + a; 457 case R_ARM_THM_CALL: 458 // We don't want an interworking BLX to ARM 459 return p + 5 + a; 460 // Unresolved non branch pc-relative relocations 461 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 462 // targets a weak-reference. 463 case R_ARM_MOVW_PREL_NC: 464 case R_ARM_MOVT_PREL: 465 case R_ARM_REL32: 466 case R_ARM_THM_ALU_PREL_11_0: 467 case R_ARM_THM_MOVW_PREL_NC: 468 case R_ARM_THM_MOVT_PREL: 469 case R_ARM_THM_PC12: 470 return p + a; 471 // p + a is unrepresentable as negative immediates can't be encoded. 472 case R_ARM_THM_PC8: 473 return p; 474 } 475 llvm_unreachable("ARM pc-relative relocation expected\n"); 476 } 477 478 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 479 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 480 switch (type) { 481 // Unresolved branch relocations to weak references resolve to next 482 // instruction, this is 4 bytes on from P. 483 case R_AARCH64_CALL26: 484 case R_AARCH64_CONDBR19: 485 case R_AARCH64_JUMP26: 486 case R_AARCH64_TSTBR14: 487 return p + 4; 488 // Unresolved non branch pc-relative relocations 489 case R_AARCH64_PREL16: 490 case R_AARCH64_PREL32: 491 case R_AARCH64_PREL64: 492 case R_AARCH64_ADR_PREL_LO21: 493 case R_AARCH64_LD_PREL_LO19: 494 case R_AARCH64_PLT32: 495 return p; 496 } 497 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 498 } 499 500 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 501 switch (type) { 502 case R_RISCV_BRANCH: 503 case R_RISCV_JAL: 504 case R_RISCV_CALL: 505 case R_RISCV_CALL_PLT: 506 case R_RISCV_RVC_BRANCH: 507 case R_RISCV_RVC_JUMP: 508 return p; 509 default: 510 return 0; 511 } 512 } 513 514 // ARM SBREL relocations are of the form S + A - B where B is the static base 515 // The ARM ABI defines base to be "addressing origin of the output segment 516 // defining the symbol S". We defined the "addressing origin"/static base to be 517 // the base of the PT_LOAD segment containing the Sym. 518 // The procedure call standard only defines a Read Write Position Independent 519 // RWPI variant so in practice we should expect the static base to be the base 520 // of the RW segment. 521 static uint64_t getARMStaticBase(const Symbol &sym) { 522 OutputSection *os = sym.getOutputSection(); 523 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 524 fatal("SBREL relocation to " + sym.getName() + " without static base"); 525 return os->ptLoad->firstSec->addr; 526 } 527 528 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 529 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 530 // is calculated using PCREL_HI20's symbol. 531 // 532 // This function returns the R_RISCV_PCREL_HI20 relocation from 533 // R_RISCV_PCREL_LO12's symbol and addend. 534 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 535 const Defined *d = cast<Defined>(sym); 536 if (!d->section) { 537 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 538 sym->getName()); 539 return nullptr; 540 } 541 InputSection *isec = cast<InputSection>(d->section); 542 543 if (addend != 0) 544 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 545 isec->getObjMsg(d->value) + " is ignored"); 546 547 // Relocations are sorted by offset, so we can use std::equal_range to do 548 // binary search. 549 Relocation r; 550 r.offset = d->value; 551 auto range = 552 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 553 [](const Relocation &lhs, const Relocation &rhs) { 554 return lhs.offset < rhs.offset; 555 }); 556 557 for (auto it = range.first; it != range.second; ++it) 558 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 559 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 560 return &*it; 561 562 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " + 563 isec->getObjMsg(d->value) + 564 " without an associated R_RISCV_PCREL_HI20 relocation"); 565 return nullptr; 566 } 567 568 // A TLS symbol's virtual address is relative to the TLS segment. Add a 569 // target-specific adjustment to produce a thread-pointer-relative offset. 570 static int64_t getTlsTpOffset(const Symbol &s) { 571 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 572 if (&s == ElfSym::tlsModuleBase) 573 return 0; 574 575 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 576 // while most others use Variant 1. At run time TP will be aligned to p_align. 577 578 // Variant 1. TP will be followed by an optional gap (which is the size of 2 579 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 580 // padding, then the static TLS blocks. The alignment padding is added so that 581 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 582 // 583 // Variant 2. Static TLS blocks, followed by alignment padding are placed 584 // before TP. The alignment padding is added so that (TP - padding - 585 // p_memsz) is congruent to p_vaddr modulo p_align. 586 PhdrEntry *tls = Out::tlsPhdr; 587 switch (config->emachine) { 588 // Variant 1. 589 case EM_ARM: 590 case EM_AARCH64: 591 return s.getVA(0) + config->wordsize * 2 + 592 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 593 case EM_MIPS: 594 case EM_PPC: 595 case EM_PPC64: 596 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 597 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 598 // data and 0xf000 of the program's TLS segment. 599 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 600 case EM_RISCV: 601 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 602 603 // Variant 2. 604 case EM_HEXAGON: 605 case EM_SPARCV9: 606 case EM_386: 607 case EM_X86_64: 608 return s.getVA(0) - tls->p_memsz - 609 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 610 default: 611 llvm_unreachable("unhandled Config->EMachine"); 612 } 613 } 614 615 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 616 int64_t a, uint64_t p, 617 const Symbol &sym, RelExpr expr) { 618 switch (expr) { 619 case R_ABS: 620 case R_DTPREL: 621 case R_RELAX_TLS_LD_TO_LE_ABS: 622 case R_RELAX_GOT_PC_NOPIC: 623 case R_RISCV_ADD: 624 return sym.getVA(a); 625 case R_ADDEND: 626 return a; 627 case R_RELAX_HINT: 628 return 0; 629 case R_ARM_SBREL: 630 return sym.getVA(a) - getARMStaticBase(sym); 631 case R_GOT: 632 case R_RELAX_TLS_GD_TO_IE_ABS: 633 return sym.getGotVA() + a; 634 case R_GOTONLY_PC: 635 return in.got->getVA() + a - p; 636 case R_GOTPLTONLY_PC: 637 return in.gotPlt->getVA() + a - p; 638 case R_GOTREL: 639 case R_PPC64_RELAX_TOC: 640 return sym.getVA(a) - in.got->getVA(); 641 case R_GOTPLTREL: 642 return sym.getVA(a) - in.gotPlt->getVA(); 643 case R_GOTPLT: 644 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 645 return sym.getGotVA() + a - in.gotPlt->getVA(); 646 case R_TLSLD_GOT_OFF: 647 case R_GOT_OFF: 648 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 649 return sym.getGotOffset() + a; 650 case R_AARCH64_GOT_PAGE_PC: 651 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 652 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 653 case R_AARCH64_GOT_PAGE: 654 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 655 case R_GOT_PC: 656 case R_RELAX_TLS_GD_TO_IE: 657 return sym.getGotVA() + a - p; 658 case R_MIPS_GOTREL: 659 return sym.getVA(a) - in.mipsGot->getGp(file); 660 case R_MIPS_GOT_GP: 661 return in.mipsGot->getGp(file) + a; 662 case R_MIPS_GOT_GP_PC: { 663 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 664 // is _gp_disp symbol. In that case we should use the following 665 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 666 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 667 // microMIPS variants of these relocations use slightly different 668 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 669 // to correctly handle less-significant bit of the microMIPS symbol. 670 uint64_t v = in.mipsGot->getGp(file) + a - p; 671 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 672 v += 4; 673 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 674 v -= 1; 675 return v; 676 } 677 case R_MIPS_GOT_LOCAL_PAGE: 678 // If relocation against MIPS local symbol requires GOT entry, this entry 679 // should be initialized by 'page address'. This address is high 16-bits 680 // of sum the symbol's value and the addend. 681 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 682 in.mipsGot->getGp(file); 683 case R_MIPS_GOT_OFF: 684 case R_MIPS_GOT_OFF32: 685 // In case of MIPS if a GOT relocation has non-zero addend this addend 686 // should be applied to the GOT entry content not to the GOT entry offset. 687 // That is why we use separate expression type. 688 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 689 in.mipsGot->getGp(file); 690 case R_MIPS_TLSGD: 691 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 692 in.mipsGot->getGp(file); 693 case R_MIPS_TLSLD: 694 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 695 in.mipsGot->getGp(file); 696 case R_AARCH64_PAGE_PC: { 697 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 698 return getAArch64Page(val) - getAArch64Page(p); 699 } 700 case R_RISCV_PC_INDIRECT: { 701 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 702 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 703 *hiRel->sym, hiRel->expr); 704 return 0; 705 } 706 case R_PC: 707 case R_ARM_PCA: { 708 uint64_t dest; 709 if (expr == R_ARM_PCA) 710 // Some PC relative ARM (Thumb) relocations align down the place. 711 p = p & 0xfffffffc; 712 if (sym.isUndefined()) { 713 // On ARM and AArch64 a branch to an undefined weak resolves to the next 714 // instruction, otherwise the place. On RISCV, resolve an undefined weak 715 // to the same instruction to cause an infinite loop (making the user 716 // aware of the issue) while ensuring no overflow. 717 // Note: if the symbol is hidden, its binding has been converted to local, 718 // so we just check isUndefined() here. 719 if (config->emachine == EM_ARM) 720 dest = getARMUndefinedRelativeWeakVA(type, a, p); 721 else if (config->emachine == EM_AARCH64) 722 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 723 else if (config->emachine == EM_PPC) 724 dest = p; 725 else if (config->emachine == EM_RISCV) 726 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 727 else 728 dest = sym.getVA(a); 729 } else { 730 dest = sym.getVA(a); 731 } 732 return dest - p; 733 } 734 case R_PLT: 735 return sym.getPltVA() + a; 736 case R_PLT_PC: 737 case R_PPC64_CALL_PLT: 738 return sym.getPltVA() + a - p; 739 case R_PLT_GOTPLT: 740 return sym.getPltVA() + a - in.gotPlt->getVA(); 741 case R_PPC32_PLTREL: 742 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 743 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 744 // target VA computation. 745 return sym.getPltVA() - p; 746 case R_PPC64_CALL: { 747 uint64_t symVA = sym.getVA(a); 748 // If we have an undefined weak symbol, we might get here with a symbol 749 // address of zero. That could overflow, but the code must be unreachable, 750 // so don't bother doing anything at all. 751 if (!symVA) 752 return 0; 753 754 // PPC64 V2 ABI describes two entry points to a function. The global entry 755 // point is used for calls where the caller and callee (may) have different 756 // TOC base pointers and r2 needs to be modified to hold the TOC base for 757 // the callee. For local calls the caller and callee share the same 758 // TOC base and so the TOC pointer initialization code should be skipped by 759 // branching to the local entry point. 760 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 761 } 762 case R_PPC64_TOCBASE: 763 return getPPC64TocBase() + a; 764 case R_RELAX_GOT_PC: 765 case R_PPC64_RELAX_GOT_PC: 766 return sym.getVA(a) - p; 767 case R_RELAX_TLS_GD_TO_LE: 768 case R_RELAX_TLS_IE_TO_LE: 769 case R_RELAX_TLS_LD_TO_LE: 770 case R_TPREL: 771 // It is not very clear what to return if the symbol is undefined. With 772 // --noinhibit-exec, even a non-weak undefined reference may reach here. 773 // Just return A, which matches R_ABS, and the behavior of some dynamic 774 // loaders. 775 if (sym.isUndefined()) 776 return a; 777 return getTlsTpOffset(sym) + a; 778 case R_RELAX_TLS_GD_TO_LE_NEG: 779 case R_TPREL_NEG: 780 if (sym.isUndefined()) 781 return a; 782 return -getTlsTpOffset(sym) + a; 783 case R_SIZE: 784 return sym.getSize() + a; 785 case R_TLSDESC: 786 return in.got->getTlsDescAddr(sym) + a; 787 case R_TLSDESC_PC: 788 return in.got->getTlsDescAddr(sym) + a - p; 789 case R_TLSDESC_GOTPLT: 790 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 791 case R_AARCH64_TLSDESC_PAGE: 792 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 793 case R_TLSGD_GOT: 794 return in.got->getGlobalDynOffset(sym) + a; 795 case R_TLSGD_GOTPLT: 796 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 797 case R_TLSGD_PC: 798 return in.got->getGlobalDynAddr(sym) + a - p; 799 case R_TLSLD_GOTPLT: 800 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 801 case R_TLSLD_GOT: 802 return in.got->getTlsIndexOff() + a; 803 case R_TLSLD_PC: 804 return in.got->getTlsIndexVA() + a - p; 805 default: 806 llvm_unreachable("invalid expression"); 807 } 808 } 809 810 // This function applies relocations to sections without SHF_ALLOC bit. 811 // Such sections are never mapped to memory at runtime. Debug sections are 812 // an example. Relocations in non-alloc sections are much easier to 813 // handle than in allocated sections because it will never need complex 814 // treatment such as GOT or PLT (because at runtime no one refers them). 815 // So, we handle relocations for non-alloc sections directly in this 816 // function as a performance optimization. 817 template <class ELFT, class RelTy> 818 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 819 const unsigned bits = sizeof(typename ELFT::uint) * 8; 820 const TargetInfo &target = *elf::target; 821 const bool isDebug = isDebugSection(*this); 822 const bool isDebugLocOrRanges = 823 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 824 const bool isDebugLine = isDebug && name == ".debug_line"; 825 Optional<uint64_t> tombstone; 826 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 827 if (patAndValue.first.match(this->name)) { 828 tombstone = patAndValue.second; 829 break; 830 } 831 832 for (const RelTy &rel : rels) { 833 RelType type = rel.getType(config->isMips64EL); 834 835 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 836 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 837 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 838 // need to keep this bug-compatible code for a while. 839 if (config->emachine == EM_386 && type == R_386_GOTPC) 840 continue; 841 842 uint64_t offset = rel.r_offset; 843 uint8_t *bufLoc = buf + offset; 844 int64_t addend = getAddend<ELFT>(rel); 845 if (!RelTy::IsRela) 846 addend += target.getImplicitAddend(bufLoc, type); 847 848 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 849 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 850 if (expr == R_NONE) 851 continue; 852 853 if (tombstone || 854 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 855 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 856 // folded section symbols) to a tombstone value. Resolving to addend is 857 // unsatisfactory because the result address range may collide with a 858 // valid range of low address, or leave multiple CUs claiming ownership of 859 // the same range of code, which may confuse consumers. 860 // 861 // To address the problems, we use -1 as a tombstone value for most 862 // .debug_* sections. We have to ignore the addend because we don't want 863 // to resolve an address attribute (which may have a non-zero addend) to 864 // -1+addend (wrap around to a low address). 865 // 866 // R_DTPREL type relocations represent an offset into the dynamic thread 867 // vector. The computed value is st_value plus a non-negative offset. 868 // Negative values are invalid, so -1 can be used as the tombstone value. 869 // 870 // If the referenced symbol is discarded (made Undefined), or the 871 // section defining the referenced symbol is garbage collected, 872 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 873 // case. However, resolving a relocation in .debug_line to -1 would stop 874 // debugger users from setting breakpoints on the folded-in function, so 875 // exclude .debug_line. 876 // 877 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 878 // (base address selection entry), use 1 (which is used by GNU ld for 879 // .debug_ranges). 880 // 881 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 882 // value. Enable -1 in a future release. 883 auto *ds = dyn_cast<Defined>(&sym); 884 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 885 // If -z dead-reloc-in-nonalloc= is specified, respect it. 886 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 887 : (isDebugLocOrRanges ? 1 : 0); 888 target.relocateNoSym(bufLoc, type, value); 889 continue; 890 } 891 } 892 893 // For a relocatable link, only tombstone values are applied. 894 if (config->relocatable) 895 continue; 896 897 if (expr == R_SIZE) { 898 target.relocateNoSym(bufLoc, type, 899 SignExtend64<bits>(sym.getSize() + addend)); 900 continue; 901 } 902 903 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 904 // sections. 905 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 906 expr == R_RISCV_ADD) { 907 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 908 continue; 909 } 910 911 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 912 toString(type) + " against symbol '" + toString(sym) + 913 "'"; 914 if (expr != R_PC && expr != R_ARM_PCA) { 915 error(msg); 916 return; 917 } 918 919 // If the control reaches here, we found a PC-relative relocation in a 920 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 921 // at runtime, the notion of PC-relative doesn't make sense here. So, 922 // this is a usage error. However, GNU linkers historically accept such 923 // relocations without any errors and relocate them as if they were at 924 // address 0. For bug-compatibilty, we accept them with warnings. We 925 // know Steel Bank Common Lisp as of 2018 have this bug. 926 warn(msg); 927 target.relocateNoSym( 928 bufLoc, type, 929 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 930 } 931 } 932 933 // This is used when '-r' is given. 934 // For REL targets, InputSection::copyRelocations() may store artificial 935 // relocations aimed to update addends. They are handled in relocateAlloc() 936 // for allocatable sections, and this function does the same for 937 // non-allocatable sections, such as sections with debug information. 938 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 939 const unsigned bits = config->is64 ? 64 : 32; 940 941 for (const Relocation &rel : sec->relocations) { 942 // InputSection::copyRelocations() adds only R_ABS relocations. 943 assert(rel.expr == R_ABS); 944 uint8_t *bufLoc = buf + rel.offset; 945 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 946 target->relocate(bufLoc, rel, targetVA); 947 } 948 } 949 950 template <class ELFT> 951 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 952 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 953 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 954 955 if (flags & SHF_ALLOC) { 956 relocateAlloc(buf, bufEnd); 957 return; 958 } 959 960 auto *sec = cast<InputSection>(this); 961 if (config->relocatable) 962 relocateNonAllocForRelocatable(sec, buf); 963 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 964 // locations with tombstone values. 965 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 966 if (rels.areRelocsRel()) 967 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 968 else 969 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 970 } 971 972 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 973 assert(flags & SHF_ALLOC); 974 const unsigned bits = config->wordsize * 8; 975 const TargetInfo &target = *elf::target; 976 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 977 AArch64Relaxer aarch64relaxer(relocations); 978 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 979 const Relocation &rel = relocations[i]; 980 if (rel.expr == R_NONE) 981 continue; 982 uint64_t offset = rel.offset; 983 uint8_t *bufLoc = buf + offset; 984 985 uint64_t secAddr = getOutputSection()->addr; 986 if (auto *sec = dyn_cast<InputSection>(this)) 987 secAddr += sec->outSecOff; 988 const uint64_t addrLoc = secAddr + offset; 989 const uint64_t targetVA = 990 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 991 *rel.sym, rel.expr), 992 bits); 993 switch (rel.expr) { 994 case R_RELAX_HINT: 995 continue; 996 case R_RELAX_GOT_PC: 997 case R_RELAX_GOT_PC_NOPIC: 998 target.relaxGot(bufLoc, rel, targetVA); 999 break; 1000 case R_AARCH64_GOT_PAGE_PC: 1001 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1002 rel, relocations[i + 1], secAddr, buf)) { 1003 ++i; 1004 continue; 1005 } 1006 target.relocate(bufLoc, rel, targetVA); 1007 break; 1008 case R_AARCH64_PAGE_PC: 1009 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd( 1010 rel, relocations[i + 1], secAddr, buf)) { 1011 ++i; 1012 continue; 1013 } 1014 target.relocate(bufLoc, rel, targetVA); 1015 break; 1016 case R_PPC64_RELAX_GOT_PC: { 1017 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1018 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1019 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1020 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1021 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1022 // and only relax the other if the saved offset matches. 1023 if (rel.type == R_PPC64_GOT_PCREL34) 1024 lastPPCRelaxedRelocOff = offset; 1025 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1026 break; 1027 target.relaxGot(bufLoc, rel, targetVA); 1028 break; 1029 } 1030 case R_PPC64_RELAX_TOC: 1031 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1032 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1033 // entry, there may be R_PPC64_TOC16_HA not paired with 1034 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1035 // opportunities but is safe. 1036 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1037 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1038 target.relocate(bufLoc, rel, targetVA); 1039 break; 1040 case R_RELAX_TLS_IE_TO_LE: 1041 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1042 break; 1043 case R_RELAX_TLS_LD_TO_LE: 1044 case R_RELAX_TLS_LD_TO_LE_ABS: 1045 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1046 break; 1047 case R_RELAX_TLS_GD_TO_LE: 1048 case R_RELAX_TLS_GD_TO_LE_NEG: 1049 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1050 break; 1051 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1052 case R_RELAX_TLS_GD_TO_IE: 1053 case R_RELAX_TLS_GD_TO_IE_ABS: 1054 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1055 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1056 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1057 break; 1058 case R_PPC64_CALL: 1059 // If this is a call to __tls_get_addr, it may be part of a TLS 1060 // sequence that has been relaxed and turned into a nop. In this 1061 // case, we don't want to handle it as a call. 1062 if (read32(bufLoc) == 0x60000000) // nop 1063 break; 1064 1065 // Patch a nop (0x60000000) to a ld. 1066 if (rel.sym->needsTocRestore) { 1067 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1068 // recursive calls even if the function is preemptible. This is not 1069 // wrong in the common case where the function is not preempted at 1070 // runtime. Just ignore. 1071 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1072 rel.sym->file != file) { 1073 // Use substr(6) to remove the "__plt_" prefix. 1074 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1075 lld::toString(*rel.sym).substr(6) + 1076 " lacks nop, can't restore toc"); 1077 break; 1078 } 1079 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1080 } 1081 target.relocate(bufLoc, rel, targetVA); 1082 break; 1083 default: 1084 target.relocate(bufLoc, rel, targetVA); 1085 break; 1086 } 1087 } 1088 1089 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1090 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1091 // insn. This is primarily used to relax and optimize jumps created with 1092 // basic block sections. 1093 if (jumpInstrMod) { 1094 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1095 jumpInstrMod->size); 1096 } 1097 } 1098 1099 // For each function-defining prologue, find any calls to __morestack, 1100 // and replace them with calls to __morestack_non_split. 1101 static void switchMorestackCallsToMorestackNonSplit( 1102 DenseSet<Defined *> &prologues, 1103 SmallVector<Relocation *, 0> &morestackCalls) { 1104 1105 // If the target adjusted a function's prologue, all calls to 1106 // __morestack inside that function should be switched to 1107 // __morestack_non_split. 1108 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1109 if (!moreStackNonSplit) { 1110 error("mixing split-stack objects requires a definition of " 1111 "__morestack_non_split"); 1112 return; 1113 } 1114 1115 // Sort both collections to compare addresses efficiently. 1116 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1117 return l->offset < r->offset; 1118 }); 1119 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1120 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1121 return l->value < r->value; 1122 }); 1123 1124 auto it = morestackCalls.begin(); 1125 for (Defined *f : functions) { 1126 // Find the first call to __morestack within the function. 1127 while (it != morestackCalls.end() && (*it)->offset < f->value) 1128 ++it; 1129 // Adjust all calls inside the function. 1130 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1131 (*it)->sym = moreStackNonSplit; 1132 ++it; 1133 } 1134 } 1135 } 1136 1137 static bool enclosingPrologueAttempted(uint64_t offset, 1138 const DenseSet<Defined *> &prologues) { 1139 for (Defined *f : prologues) 1140 if (f->value <= offset && offset < f->value + f->size) 1141 return true; 1142 return false; 1143 } 1144 1145 // If a function compiled for split stack calls a function not 1146 // compiled for split stack, then the caller needs its prologue 1147 // adjusted to ensure that the called function will have enough stack 1148 // available. Find those functions, and adjust their prologues. 1149 template <class ELFT> 1150 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1151 uint8_t *end) { 1152 DenseSet<Defined *> prologues; 1153 SmallVector<Relocation *, 0> morestackCalls; 1154 1155 for (Relocation &rel : relocations) { 1156 // Ignore calls into the split-stack api. 1157 if (rel.sym->getName().startswith("__morestack")) { 1158 if (rel.sym->getName().equals("__morestack")) 1159 morestackCalls.push_back(&rel); 1160 continue; 1161 } 1162 1163 // A relocation to non-function isn't relevant. Sometimes 1164 // __morestack is not marked as a function, so this check comes 1165 // after the name check. 1166 if (rel.sym->type != STT_FUNC) 1167 continue; 1168 1169 // If the callee's-file was compiled with split stack, nothing to do. In 1170 // this context, a "Defined" symbol is one "defined by the binary currently 1171 // being produced". So an "undefined" symbol might be provided by a shared 1172 // library. It is not possible to tell how such symbols were compiled, so be 1173 // conservative. 1174 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1175 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1176 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1177 continue; 1178 1179 if (enclosingPrologueAttempted(rel.offset, prologues)) 1180 continue; 1181 1182 if (Defined *f = getEnclosingFunction(rel.offset)) { 1183 prologues.insert(f); 1184 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1185 f->stOther)) 1186 continue; 1187 if (!getFile<ELFT>()->someNoSplitStack) 1188 error(lld::toString(this) + ": " + f->getName() + 1189 " (with -fsplit-stack) calls " + rel.sym->getName() + 1190 " (without -fsplit-stack), but couldn't adjust its prologue"); 1191 } 1192 } 1193 1194 if (target->needsMoreStackNonSplit) 1195 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1196 } 1197 1198 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1199 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1200 return; 1201 // If -r or --emit-relocs is given, then an InputSection 1202 // may be a relocation section. 1203 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1204 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1205 return; 1206 } 1207 if (LLVM_UNLIKELY(type == SHT_REL)) { 1208 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1209 return; 1210 } 1211 1212 // If -r is given, we may have a SHT_GROUP section. 1213 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1214 copyShtGroup<ELFT>(buf); 1215 return; 1216 } 1217 1218 // If this is a compressed section, uncompress section contents directly 1219 // to the buffer. 1220 if (uncompressedSize >= 0) { 1221 size_t size = uncompressedSize; 1222 if (Error e = compression::zlib::uncompress(toStringRef(rawData), 1223 (char *)buf, size)) 1224 fatal(toString(this) + 1225 ": uncompress failed: " + llvm::toString(std::move(e))); 1226 uint8_t *bufEnd = buf + size; 1227 relocate<ELFT>(buf, bufEnd); 1228 return; 1229 } 1230 1231 // Copy section contents from source object file to output file 1232 // and then apply relocations. 1233 memcpy(buf, rawData.data(), rawData.size()); 1234 relocate<ELFT>(buf, buf + rawData.size()); 1235 } 1236 1237 void InputSection::replace(InputSection *other) { 1238 alignment = std::max(alignment, other->alignment); 1239 1240 // When a section is replaced with another section that was allocated to 1241 // another partition, the replacement section (and its associated sections) 1242 // need to be placed in the main partition so that both partitions will be 1243 // able to access it. 1244 if (partition != other->partition) { 1245 partition = 1; 1246 for (InputSection *isec : dependentSections) 1247 isec->partition = 1; 1248 } 1249 1250 other->repl = repl; 1251 other->markDead(); 1252 } 1253 1254 template <class ELFT> 1255 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1256 const typename ELFT::Shdr &header, 1257 StringRef name) 1258 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1259 1260 SyntheticSection *EhInputSection::getParent() const { 1261 return cast_or_null<SyntheticSection>(parent); 1262 } 1263 1264 // Returns the index of the first relocation that points to a region between 1265 // Begin and Begin+Size. 1266 template <class IntTy, class RelTy> 1267 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1268 unsigned &relocI) { 1269 // Start search from RelocI for fast access. That works because the 1270 // relocations are sorted in .eh_frame. 1271 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1272 const RelTy &rel = rels[relocI]; 1273 if (rel.r_offset < begin) 1274 continue; 1275 1276 if (rel.r_offset < begin + size) 1277 return relocI; 1278 return -1; 1279 } 1280 return -1; 1281 } 1282 1283 // .eh_frame is a sequence of CIE or FDE records. 1284 // This function splits an input section into records and returns them. 1285 template <class ELFT> void EhInputSection::split() { 1286 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1287 // getReloc expects the relocations to be sorted by r_offset. See the comment 1288 // in scanRelocs. 1289 if (rels.areRelocsRel()) { 1290 SmallVector<typename ELFT::Rel, 0> storage; 1291 split<ELFT>(sortRels(rels.rels, storage)); 1292 } else { 1293 SmallVector<typename ELFT::Rela, 0> storage; 1294 split<ELFT>(sortRels(rels.relas, storage)); 1295 } 1296 } 1297 1298 template <class ELFT, class RelTy> 1299 void EhInputSection::split(ArrayRef<RelTy> rels) { 1300 ArrayRef<uint8_t> d = rawData; 1301 const char *msg = nullptr; 1302 unsigned relI = 0; 1303 while (!d.empty()) { 1304 if (d.size() < 4) { 1305 msg = "CIE/FDE too small"; 1306 break; 1307 } 1308 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1309 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1310 // but we do not support that format yet. 1311 if (size == UINT32_MAX) { 1312 msg = "CIE/FDE too large"; 1313 break; 1314 } 1315 size += 4; 1316 if (size > d.size()) { 1317 msg = "CIE/FDE ends past the end of the section"; 1318 break; 1319 } 1320 1321 uint64_t off = d.data() - rawData.data(); 1322 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1323 d = d.slice(size); 1324 } 1325 if (msg) 1326 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1327 getObjMsg(d.data() - rawData.data())); 1328 } 1329 1330 // Return the offset in an output section for a given input offset. 1331 uint64_t EhInputSection::getParentOffset(uint64_t offset) const { 1332 const EhSectionPiece &piece = partition_point( 1333 pieces, [=](EhSectionPiece p) { return p.inputOff <= offset; })[-1]; 1334 if (piece.outputOff == -1) // invalid piece 1335 return offset - piece.inputOff; 1336 return piece.outputOff + (offset - piece.inputOff); 1337 } 1338 1339 static size_t findNull(StringRef s, size_t entSize) { 1340 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1341 const char *b = s.begin() + i; 1342 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1343 return i; 1344 } 1345 llvm_unreachable(""); 1346 } 1347 1348 SyntheticSection *MergeInputSection::getParent() const { 1349 return cast_or_null<SyntheticSection>(parent); 1350 } 1351 1352 // Split SHF_STRINGS section. Such section is a sequence of 1353 // null-terminated strings. 1354 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1355 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1356 const char *p = s.data(), *end = s.data() + s.size(); 1357 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1358 fatal(toString(this) + ": string is not null terminated"); 1359 if (entSize == 1) { 1360 // Optimize the common case. 1361 do { 1362 size_t size = strlen(p); 1363 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1364 p += size + 1; 1365 } while (p != end); 1366 } else { 1367 do { 1368 size_t size = findNull(StringRef(p, end - p), entSize); 1369 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1370 p += size + entSize; 1371 } while (p != end); 1372 } 1373 } 1374 1375 // Split non-SHF_STRINGS section. Such section is a sequence of 1376 // fixed size records. 1377 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1378 size_t entSize) { 1379 size_t size = data.size(); 1380 assert((size % entSize) == 0); 1381 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1382 1383 pieces.resize_for_overwrite(size / entSize); 1384 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1385 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1386 } 1387 1388 template <class ELFT> 1389 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1390 const typename ELFT::Shdr &header, 1391 StringRef name) 1392 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1393 1394 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1395 uint64_t entsize, ArrayRef<uint8_t> data, 1396 StringRef name) 1397 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1398 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1399 1400 // This function is called after we obtain a complete list of input sections 1401 // that need to be linked. This is responsible to split section contents 1402 // into small chunks for further processing. 1403 // 1404 // Note that this function is called from parallelForEach. This must be 1405 // thread-safe (i.e. no memory allocation from the pools). 1406 void MergeInputSection::splitIntoPieces() { 1407 assert(pieces.empty()); 1408 1409 if (flags & SHF_STRINGS) 1410 splitStrings(toStringRef(data()), entsize); 1411 else 1412 splitNonStrings(data(), entsize); 1413 } 1414 1415 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { 1416 if (rawData.size() <= offset) 1417 fatal(toString(this) + ": offset is outside the section"); 1418 return partition_point( 1419 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; 1420 } 1421 1422 // Return the offset in an output section for a given input offset. 1423 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1424 const SectionPiece &piece = getSectionPiece(offset); 1425 return piece.outputOff + (offset - piece.inputOff); 1426 } 1427 1428 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1429 StringRef); 1430 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1431 StringRef); 1432 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1433 StringRef); 1434 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1435 StringRef); 1436 1437 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1438 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1439 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1440 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1441 1442 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1443 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1444 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1445 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1446 1447 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1448 const ELF32LE::Shdr &, StringRef); 1449 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1450 const ELF32BE::Shdr &, StringRef); 1451 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1452 const ELF64LE::Shdr &, StringRef); 1453 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1454 const ELF64BE::Shdr &, StringRef); 1455 1456 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1457 const ELF32LE::Shdr &, StringRef); 1458 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1459 const ELF32BE::Shdr &, StringRef); 1460 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1461 const ELF64LE::Shdr &, StringRef); 1462 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1463 const ELF64BE::Shdr &, StringRef); 1464 1465 template void EhInputSection::split<ELF32LE>(); 1466 template void EhInputSection::split<ELF32BE>(); 1467 template void EhInputSection::split<ELF64LE>(); 1468 template void EhInputSection::split<ELF64BE>(); 1469