1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "InputFiles.h" 14 #include "LinkerScript.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "SymbolTable.h" 18 #include "Symbols.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "lld/Common/ErrorHandler.h" 23 #include "lld/Common/Memory.h" 24 #include "llvm/Support/Compiler.h" 25 #include "llvm/Support/Compression.h" 26 #include "llvm/Support/Endian.h" 27 #include "llvm/Support/Threading.h" 28 #include "llvm/Support/xxhash.h" 29 #include <algorithm> 30 #include <mutex> 31 #include <set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 41 using namespace lld; 42 using namespace lld::elf; 43 44 std::vector<InputSectionBase *> elf::InputSections; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *Sec) { 48 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File, 53 const typename ELFT::Shdr &Hdr) { 54 if (Hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size); 56 return check(File.getObj().getSectionContents(&Hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 60 uint32_t Type, uint64_t Entsize, 61 uint32_t Link, uint32_t Info, 62 uint32_t Alignment, ArrayRef<uint8_t> Data, 63 StringRef Name, Kind SectionKind) 64 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 65 Link), 66 File(File), RawData(Data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 NumRelocations = 0; 74 AreRelocsRela = false; 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraits. 78 uint32_t V = std::max<uint64_t>(Alignment, 1); 79 if (!isPowerOf2_64(V)) 80 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 81 this->Alignment = V; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(File) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 parseCompressedHeader(); 92 } 93 } 94 95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 96 // SHF_GROUP is a marker that a section belongs to some comdat group. 97 // That flag doesn't make sense in an executable. 98 static uint64_t getFlags(uint64_t Flags) { 99 Flags &= ~(uint64_t)SHF_INFO_LINK; 100 if (!Config->Relocatable) 101 Flags &= ~(uint64_t)SHF_GROUP; 102 return Flags; 103 } 104 105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 106 // March 2017) fail to infer section types for sections starting with 107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 108 // SHF_INIT_ARRAY. As a result, the following assembler directive 109 // creates ".init_array.100" with SHT_PROGBITS, for example. 110 // 111 // .section .init_array.100, "aw" 112 // 113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 114 // incorrect inputs as if they were correct from the beginning. 115 static uint64_t getType(uint64_t Type, StringRef Name) { 116 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 117 return SHT_INIT_ARRAY; 118 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 119 return SHT_FINI_ARRAY; 120 return Type; 121 } 122 123 template <class ELFT> 124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File, 125 const typename ELFT::Shdr &Hdr, 126 StringRef Name, Kind SectionKind) 127 : InputSectionBase(&File, getFlags(Hdr.sh_flags), 128 getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link, 129 Hdr.sh_info, Hdr.sh_addralign, 130 getSectionContents(File, Hdr), Name, SectionKind) { 131 // We reject object files having insanely large alignments even though 132 // they are allowed by the spec. I think 4GB is a reasonable limitation. 133 // We might want to relax this in the future. 134 if (Hdr.sh_addralign > UINT32_MAX) 135 fatal(toString(&File) + ": section sh_addralign is too large"); 136 } 137 138 size_t InputSectionBase::getSize() const { 139 if (auto *S = dyn_cast<SyntheticSection>(this)) 140 return S->getSize(); 141 if (UncompressedSize >= 0) 142 return UncompressedSize; 143 return RawData.size(); 144 } 145 146 void InputSectionBase::uncompress() const { 147 size_t Size = UncompressedSize; 148 UncompressedBuf.reset(new char[Size]); 149 150 if (Error E = 151 zlib::uncompress(toStringRef(RawData), UncompressedBuf.get(), Size)) 152 fatal(toString(this) + 153 ": uncompress failed: " + llvm::toString(std::move(E))); 154 RawData = makeArrayRef((uint8_t *)UncompressedBuf.get(), Size); 155 } 156 157 uint64_t InputSectionBase::getOffsetInFile() const { 158 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 159 const uint8_t *SecStart = data().begin(); 160 return SecStart - FileStart; 161 } 162 163 uint64_t SectionBase::getOffset(uint64_t Offset) const { 164 switch (kind()) { 165 case Output: { 166 auto *OS = cast<OutputSection>(this); 167 // For output sections we treat offset -1 as the end of the section. 168 return Offset == uint64_t(-1) ? OS->Size : Offset; 169 } 170 case Regular: 171 case Synthetic: 172 return cast<InputSection>(this)->getOffset(Offset); 173 case EHFrame: 174 // The file crtbeginT.o has relocations pointing to the start of an empty 175 // .eh_frame that is known to be the first in the link. It does that to 176 // identify the start of the output .eh_frame. 177 return Offset; 178 case Merge: 179 const MergeInputSection *MS = cast<MergeInputSection>(this); 180 if (InputSection *IS = MS->getParent()) 181 return IS->getOffset(MS->getParentOffset(Offset)); 182 return MS->getParentOffset(Offset); 183 } 184 llvm_unreachable("invalid section kind"); 185 } 186 187 uint64_t SectionBase::getVA(uint64_t Offset) const { 188 const OutputSection *Out = getOutputSection(); 189 return (Out ? Out->Addr : 0) + getOffset(Offset); 190 } 191 192 OutputSection *SectionBase::getOutputSection() { 193 InputSection *Sec; 194 if (auto *IS = dyn_cast<InputSection>(this)) 195 Sec = IS; 196 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 197 Sec = MS->getParent(); 198 else if (auto *EH = dyn_cast<EhInputSection>(this)) 199 Sec = EH->getParent(); 200 else 201 return cast<OutputSection>(this); 202 return Sec ? Sec->getParent() : nullptr; 203 } 204 205 // When a section is compressed, `RawData` consists with a header followed 206 // by zlib-compressed data. This function parses a header to initialize 207 // `UncompressedSize` member and remove the header from `RawData`. 208 void InputSectionBase::parseCompressedHeader() { 209 typedef typename ELF64LE::Chdr Chdr64; 210 typedef typename ELF32LE::Chdr Chdr32; 211 212 // Old-style header 213 if (Name.startswith(".zdebug")) { 214 if (!toStringRef(RawData).startswith("ZLIB")) { 215 error(toString(this) + ": corrupted compressed section header"); 216 return; 217 } 218 RawData = RawData.slice(4); 219 220 if (RawData.size() < 8) { 221 error(toString(this) + ": corrupted compressed section header"); 222 return; 223 } 224 225 UncompressedSize = read64be(RawData.data()); 226 RawData = RawData.slice(8); 227 228 // Restore the original section name. 229 // (e.g. ".zdebug_info" -> ".debug_info") 230 Name = Saver.save("." + Name.substr(2)); 231 return; 232 } 233 234 assert(Flags & SHF_COMPRESSED); 235 Flags &= ~(uint64_t)SHF_COMPRESSED; 236 237 // New-style 64-bit header 238 if (Config->Is64) { 239 if (RawData.size() < sizeof(Chdr64)) { 240 error(toString(this) + ": corrupted compressed section"); 241 return; 242 } 243 244 auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data()); 245 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 246 error(toString(this) + ": unsupported compression type"); 247 return; 248 } 249 250 UncompressedSize = Hdr->ch_size; 251 RawData = RawData.slice(sizeof(*Hdr)); 252 return; 253 } 254 255 // New-style 32-bit header 256 if (RawData.size() < sizeof(Chdr32)) { 257 error(toString(this) + ": corrupted compressed section"); 258 return; 259 } 260 261 auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data()); 262 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 263 error(toString(this) + ": unsupported compression type"); 264 return; 265 } 266 267 UncompressedSize = Hdr->ch_size; 268 RawData = RawData.slice(sizeof(*Hdr)); 269 } 270 271 InputSection *InputSectionBase::getLinkOrderDep() const { 272 assert(Link); 273 assert(Flags & SHF_LINK_ORDER); 274 return cast<InputSection>(File->getSections()[Link]); 275 } 276 277 // Find a function symbol that encloses a given location. 278 template <class ELFT> 279 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) { 280 for (Symbol *B : File->getSymbols()) 281 if (Defined *D = dyn_cast<Defined>(B)) 282 if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset && 283 Offset < D->Value + D->Size) 284 return D; 285 return nullptr; 286 } 287 288 // Returns a source location string. Used to construct an error message. 289 template <class ELFT> 290 std::string InputSectionBase::getLocation(uint64_t Offset) { 291 // We don't have file for synthetic sections. 292 if (getFile<ELFT>() == nullptr) 293 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 294 .str(); 295 296 // First check if we can get desired values from debugging information. 297 if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset)) 298 return Info->FileName + ":" + std::to_string(Info->Line); 299 300 // File->SourceFile contains STT_FILE symbol that contains a 301 // source file name. If it's missing, we use an object file name. 302 std::string SrcFile = getFile<ELFT>()->SourceFile; 303 if (SrcFile.empty()) 304 SrcFile = toString(File); 305 306 if (Defined *D = getEnclosingFunction<ELFT>(Offset)) 307 return SrcFile + ":(function " + toString(*D) + ")"; 308 309 // If there's no symbol, print out the offset in the section. 310 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 311 } 312 313 // This function is intended to be used for constructing an error message. 314 // The returned message looks like this: 315 // 316 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 317 // 318 // Returns an empty string if there's no way to get line info. 319 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 320 return File->getSrcMsg(Sym, *this, Offset); 321 } 322 323 // Returns a filename string along with an optional section name. This 324 // function is intended to be used for constructing an error 325 // message. The returned message looks like this: 326 // 327 // path/to/foo.o:(function bar) 328 // 329 // or 330 // 331 // path/to/foo.o:(function bar) in archive path/to/bar.a 332 std::string InputSectionBase::getObjMsg(uint64_t Off) { 333 std::string Filename = File->getName(); 334 335 std::string Archive; 336 if (!File->ArchiveName.empty()) 337 Archive = " in archive " + File->ArchiveName; 338 339 // Find a symbol that encloses a given location. 340 for (Symbol *B : File->getSymbols()) 341 if (auto *D = dyn_cast<Defined>(B)) 342 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 343 return Filename + ":(" + toString(*D) + ")" + Archive; 344 345 // If there's no symbol, print out the offset in the section. 346 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 347 .str(); 348 } 349 350 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 351 352 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type, 353 uint32_t Alignment, ArrayRef<uint8_t> Data, 354 StringRef Name, Kind K) 355 : InputSectionBase(F, Flags, Type, 356 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 357 Name, K) {} 358 359 template <class ELFT> 360 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header, 361 StringRef Name) 362 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 363 364 bool InputSection::classof(const SectionBase *S) { 365 return S->kind() == SectionBase::Regular || 366 S->kind() == SectionBase::Synthetic; 367 } 368 369 OutputSection *InputSection::getParent() const { 370 return cast_or_null<OutputSection>(Parent); 371 } 372 373 // Copy SHT_GROUP section contents. Used only for the -r option. 374 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 375 // ELFT::Word is the 32-bit integral type in the target endianness. 376 typedef typename ELFT::Word u32; 377 ArrayRef<u32> From = getDataAs<u32>(); 378 auto *To = reinterpret_cast<u32 *>(Buf); 379 380 // The first entry is not a section number but a flag. 381 *To++ = From[0]; 382 383 // Adjust section numbers because section numbers in an input object 384 // files are different in the output. 385 ArrayRef<InputSectionBase *> Sections = File->getSections(); 386 for (uint32_t Idx : From.slice(1)) 387 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 388 } 389 390 InputSectionBase *InputSection::getRelocatedSection() const { 391 if (!File || (Type != SHT_RELA && Type != SHT_REL)) 392 return nullptr; 393 ArrayRef<InputSectionBase *> Sections = File->getSections(); 394 return Sections[Info]; 395 } 396 397 // This is used for -r and --emit-relocs. We can't use memcpy to copy 398 // relocations because we need to update symbol table offset and section index 399 // for each relocation. So we copy relocations one by one. 400 template <class ELFT, class RelTy> 401 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 402 InputSectionBase *Sec = getRelocatedSection(); 403 404 for (const RelTy &Rel : Rels) { 405 RelType Type = Rel.getType(Config->IsMips64EL); 406 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 407 408 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 409 Buf += sizeof(RelTy); 410 411 if (RelTy::IsRela) 412 P->r_addend = getAddend<ELFT>(Rel); 413 414 // Output section VA is zero for -r, so r_offset is an offset within the 415 // section, but for --emit-relocs it is an virtual address. 416 P->r_offset = Sec->getVA(Rel.r_offset); 417 P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type, 418 Config->IsMips64EL); 419 420 if (Sym.Type == STT_SECTION) { 421 // We combine multiple section symbols into only one per 422 // section. This means we have to update the addend. That is 423 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 424 // section data. We do that by adding to the Relocation vector. 425 426 // .eh_frame is horribly special and can reference discarded sections. To 427 // avoid having to parse and recreate .eh_frame, we just replace any 428 // relocation in it pointing to discarded sections with R_*_NONE, which 429 // hopefully creates a frame that is ignored at runtime. 430 auto *D = dyn_cast<Defined>(&Sym); 431 if (!D) { 432 error("STT_SECTION symbol should be defined"); 433 continue; 434 } 435 SectionBase *Section = D->Section->Repl; 436 if (!Section->Live) { 437 P->setSymbolAndType(0, 0, false); 438 continue; 439 } 440 441 int64_t Addend = getAddend<ELFT>(Rel); 442 const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset; 443 if (!RelTy::IsRela) 444 Addend = Target->getImplicitAddend(BufLoc, Type); 445 446 if (Config->EMachine == EM_MIPS && Config->Relocatable && 447 Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) { 448 // Some MIPS relocations depend on "gp" value. By default, 449 // this value has 0x7ff0 offset from a .got section. But 450 // relocatable files produced by a complier or a linker 451 // might redefine this default value and we must use it 452 // for a calculation of the relocation result. When we 453 // generate EXE or DSO it's trivial. Generating a relocatable 454 // output is more difficult case because the linker does 455 // not calculate relocations in this mode and loses 456 // individual "gp" values used by each input object file. 457 // As a workaround we add the "gp" value to the relocation 458 // addend and save it back to the file. 459 Addend += Sec->getFile<ELFT>()->MipsGp0; 460 } 461 462 if (RelTy::IsRela) 463 P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr; 464 else if (Config->Relocatable) 465 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym}); 466 } 467 } 468 } 469 470 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 471 // references specially. The general rule is that the value of the symbol in 472 // this context is the address of the place P. A further special case is that 473 // branch relocations to an undefined weak reference resolve to the next 474 // instruction. 475 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 476 uint32_t P) { 477 switch (Type) { 478 // Unresolved branch relocations to weak references resolve to next 479 // instruction, this will be either 2 or 4 bytes on from P. 480 case R_ARM_THM_JUMP11: 481 return P + 2 + A; 482 case R_ARM_CALL: 483 case R_ARM_JUMP24: 484 case R_ARM_PC24: 485 case R_ARM_PLT32: 486 case R_ARM_PREL31: 487 case R_ARM_THM_JUMP19: 488 case R_ARM_THM_JUMP24: 489 return P + 4 + A; 490 case R_ARM_THM_CALL: 491 // We don't want an interworking BLX to ARM 492 return P + 5 + A; 493 // Unresolved non branch pc-relative relocations 494 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 495 // targets a weak-reference. 496 case R_ARM_MOVW_PREL_NC: 497 case R_ARM_MOVT_PREL: 498 case R_ARM_REL32: 499 case R_ARM_THM_MOVW_PREL_NC: 500 case R_ARM_THM_MOVT_PREL: 501 return P + A; 502 } 503 llvm_unreachable("ARM pc-relative relocation expected\n"); 504 } 505 506 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 507 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 508 uint64_t P) { 509 switch (Type) { 510 // Unresolved branch relocations to weak references resolve to next 511 // instruction, this is 4 bytes on from P. 512 case R_AARCH64_CALL26: 513 case R_AARCH64_CONDBR19: 514 case R_AARCH64_JUMP26: 515 case R_AARCH64_TSTBR14: 516 return P + 4 + A; 517 // Unresolved non branch pc-relative relocations 518 case R_AARCH64_PREL16: 519 case R_AARCH64_PREL32: 520 case R_AARCH64_PREL64: 521 case R_AARCH64_ADR_PREL_LO21: 522 case R_AARCH64_LD_PREL_LO19: 523 return P + A; 524 } 525 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 526 } 527 528 // ARM SBREL relocations are of the form S + A - B where B is the static base 529 // The ARM ABI defines base to be "addressing origin of the output segment 530 // defining the symbol S". We defined the "addressing origin"/static base to be 531 // the base of the PT_LOAD segment containing the Sym. 532 // The procedure call standard only defines a Read Write Position Independent 533 // RWPI variant so in practice we should expect the static base to be the base 534 // of the RW segment. 535 static uint64_t getARMStaticBase(const Symbol &Sym) { 536 OutputSection *OS = Sym.getOutputSection(); 537 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 538 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 539 return OS->PtLoad->FirstSec->Addr; 540 } 541 542 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 543 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 544 // is calculated using PCREL_HI20's symbol. 545 // 546 // This function returns the R_RISCV_PCREL_HI20 relocation from 547 // R_RISCV_PCREL_LO12's symbol and addend. 548 Relocation *lld::elf::getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) { 549 const Defined *D = cast<Defined>(Sym); 550 InputSection *IS = cast<InputSection>(D->Section); 551 552 if (Addend != 0) 553 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 554 IS->getObjMsg(D->Value) + " is ignored"); 555 556 // Relocations are sorted by offset, so we can use std::equal_range to do 557 // binary search. 558 auto Range = std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), 559 D->Value, RelocationOffsetComparator{}); 560 for (auto It = std::get<0>(Range); It != std::get<1>(Range); ++It) 561 if (isRelExprOneOf<R_PC>(It->Expr)) 562 return &*It; 563 564 error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) + 565 " without an associated R_RISCV_PCREL_HI20 relocation"); 566 return nullptr; 567 } 568 569 // A TLS symbol's virtual address is relative to the TLS segment. Add a 570 // target-specific adjustment to produce a thread-pointer-relative offset. 571 static int64_t getTlsTpOffset() { 572 switch (Config->EMachine) { 573 case EM_ARM: 574 case EM_AARCH64: 575 // Variant 1. The thread pointer points to a TCB with a fixed 2-word size, 576 // followed by a variable amount of alignment padding, followed by the TLS 577 // segment. 578 return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align); 579 case EM_386: 580 case EM_X86_64: 581 // Variant 2. The TLS segment is located just before the thread pointer. 582 return -Out::TlsPhdr->p_memsz; 583 case EM_PPC64: 584 // The thread pointer points to a fixed offset from the start of the 585 // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit 586 // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the 587 // program's TLS segment. 588 return -0x7000; 589 default: 590 llvm_unreachable("unhandled Config->EMachine"); 591 } 592 } 593 594 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A, 595 uint64_t P, const Symbol &Sym, RelExpr Expr) { 596 switch (Expr) { 597 case R_INVALID: 598 return 0; 599 case R_ABS: 600 case R_RELAX_TLS_LD_TO_LE_ABS: 601 case R_RELAX_GOT_PC_NOPIC: 602 return Sym.getVA(A); 603 case R_ADDEND: 604 return A; 605 case R_ARM_SBREL: 606 return Sym.getVA(A) - getARMStaticBase(Sym); 607 case R_GOT: 608 case R_RELAX_TLS_GD_TO_IE_ABS: 609 return Sym.getGotVA() + A; 610 case R_GOTONLY_PC: 611 return In.Got->getVA() + A - P; 612 case R_GOTONLY_PC_FROM_END: 613 return In.Got->getVA() + A - P + In.Got->getSize(); 614 case R_GOTREL: 615 return Sym.getVA(A) - In.Got->getVA(); 616 case R_GOTREL_FROM_END: 617 return Sym.getVA(A) - In.Got->getVA() - In.Got->getSize(); 618 case R_GOT_FROM_END: 619 case R_RELAX_TLS_GD_TO_IE_END: 620 return Sym.getGotOffset() + A - In.Got->getSize(); 621 case R_TLSLD_GOT_OFF: 622 case R_GOT_OFF: 623 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 624 return Sym.getGotOffset() + A; 625 case R_GOT_PAGE_PC: 626 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 627 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 628 case R_GOT_PC: 629 case R_RELAX_TLS_GD_TO_IE: 630 return Sym.getGotVA() + A - P; 631 case R_HEXAGON_GOT: 632 return Sym.getGotVA() - In.GotPlt->getVA(); 633 case R_MIPS_GOTREL: 634 return Sym.getVA(A) - In.MipsGot->getGp(File); 635 case R_MIPS_GOT_GP: 636 return In.MipsGot->getGp(File) + A; 637 case R_MIPS_GOT_GP_PC: { 638 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 639 // is _gp_disp symbol. In that case we should use the following 640 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 641 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 642 // microMIPS variants of these relocations use slightly different 643 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 644 // to correctly handle less-sugnificant bit of the microMIPS symbol. 645 uint64_t V = In.MipsGot->getGp(File) + A - P; 646 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 647 V += 4; 648 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 649 V -= 1; 650 return V; 651 } 652 case R_MIPS_GOT_LOCAL_PAGE: 653 // If relocation against MIPS local symbol requires GOT entry, this entry 654 // should be initialized by 'page address'. This address is high 16-bits 655 // of sum the symbol's value and the addend. 656 return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) - 657 In.MipsGot->getGp(File); 658 case R_MIPS_GOT_OFF: 659 case R_MIPS_GOT_OFF32: 660 // In case of MIPS if a GOT relocation has non-zero addend this addend 661 // should be applied to the GOT entry content not to the GOT entry offset. 662 // That is why we use separate expression type. 663 return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) - 664 In.MipsGot->getGp(File); 665 case R_MIPS_TLSGD: 666 return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) - 667 In.MipsGot->getGp(File); 668 case R_MIPS_TLSLD: 669 return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) - 670 In.MipsGot->getGp(File); 671 case R_PAGE_PC: 672 case R_PLT_PAGE_PC: { 673 uint64_t Dest; 674 if (Sym.isUndefWeak()) 675 Dest = getAArch64Page(A); 676 else 677 Dest = getAArch64Page(Sym.getVA(A)); 678 return Dest - getAArch64Page(P); 679 } 680 case R_RISCV_PC_INDIRECT: { 681 const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A); 682 if (!HiRel) 683 return 0; 684 return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(), 685 *HiRel->Sym, HiRel->Expr); 686 } 687 case R_PC: { 688 uint64_t Dest; 689 if (Sym.isUndefWeak()) { 690 // On ARM and AArch64 a branch to an undefined weak resolves to the 691 // next instruction, otherwise the place. 692 if (Config->EMachine == EM_ARM) 693 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 694 else if (Config->EMachine == EM_AARCH64) 695 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 696 else 697 Dest = Sym.getVA(A); 698 } else { 699 Dest = Sym.getVA(A); 700 } 701 return Dest - P; 702 } 703 case R_PLT: 704 return Sym.getPltVA() + A; 705 case R_PLT_PC: 706 case R_PPC_CALL_PLT: 707 return Sym.getPltVA() + A - P; 708 case R_PPC_CALL: { 709 uint64_t SymVA = Sym.getVA(A); 710 // If we have an undefined weak symbol, we might get here with a symbol 711 // address of zero. That could overflow, but the code must be unreachable, 712 // so don't bother doing anything at all. 713 if (!SymVA) 714 return 0; 715 716 // PPC64 V2 ABI describes two entry points to a function. The global entry 717 // point is used for calls where the caller and callee (may) have different 718 // TOC base pointers and r2 needs to be modified to hold the TOC base for 719 // the callee. For local calls the caller and callee share the same 720 // TOC base and so the TOC pointer initialization code should be skipped by 721 // branching to the local entry point. 722 return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther); 723 } 724 case R_PPC_TOC: 725 return getPPC64TocBase() + A; 726 case R_RELAX_GOT_PC: 727 return Sym.getVA(A) - P; 728 case R_RELAX_TLS_GD_TO_LE: 729 case R_RELAX_TLS_IE_TO_LE: 730 case R_RELAX_TLS_LD_TO_LE: 731 case R_TLS: 732 // A weak undefined TLS symbol resolves to the base of the TLS 733 // block, i.e. gets a value of zero. If we pass --gc-sections to 734 // lld and .tbss is not referenced, it gets reclaimed and we don't 735 // create a TLS program header. Therefore, we resolve this 736 // statically to zero. 737 if (Sym.isTls() && Sym.isUndefWeak()) 738 return 0; 739 return Sym.getVA(A) + getTlsTpOffset(); 740 case R_RELAX_TLS_GD_TO_LE_NEG: 741 case R_NEG_TLS: 742 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 743 case R_SIZE: 744 return Sym.getSize() + A; 745 case R_TLSDESC: 746 return In.Got->getGlobalDynAddr(Sym) + A; 747 case R_TLSDESC_PAGE: 748 return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) - 749 getAArch64Page(P); 750 case R_TLSGD_GOT: 751 return In.Got->getGlobalDynOffset(Sym) + A; 752 case R_TLSGD_GOT_FROM_END: 753 return In.Got->getGlobalDynOffset(Sym) + A - In.Got->getSize(); 754 case R_TLSGD_PC: 755 return In.Got->getGlobalDynAddr(Sym) + A - P; 756 case R_TLSLD_GOT_FROM_END: 757 return In.Got->getTlsIndexOff() + A - In.Got->getSize(); 758 case R_TLSLD_GOT: 759 return In.Got->getTlsIndexOff() + A; 760 case R_TLSLD_PC: 761 return In.Got->getTlsIndexVA() + A - P; 762 default: 763 llvm_unreachable("invalid expression"); 764 } 765 } 766 767 // This function applies relocations to sections without SHF_ALLOC bit. 768 // Such sections are never mapped to memory at runtime. Debug sections are 769 // an example. Relocations in non-alloc sections are much easier to 770 // handle than in allocated sections because it will never need complex 771 // treatement such as GOT or PLT (because at runtime no one refers them). 772 // So, we handle relocations for non-alloc sections directly in this 773 // function as a performance optimization. 774 template <class ELFT, class RelTy> 775 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 776 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 777 778 for (const RelTy &Rel : Rels) { 779 RelType Type = Rel.getType(Config->IsMips64EL); 780 781 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 782 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 783 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 784 // need to keep this bug-compatible code for a while. 785 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 786 continue; 787 788 uint64_t Offset = getOffset(Rel.r_offset); 789 uint8_t *BufLoc = Buf + Offset; 790 int64_t Addend = getAddend<ELFT>(Rel); 791 if (!RelTy::IsRela) 792 Addend += Target->getImplicitAddend(BufLoc, Type); 793 794 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 795 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 796 if (Expr == R_NONE) 797 continue; 798 799 if (Expr != R_ABS) { 800 std::string Msg = getLocation<ELFT>(Offset) + 801 ": has non-ABS relocation " + toString(Type) + 802 " against symbol '" + toString(Sym) + "'"; 803 if (Expr != R_PC) { 804 error(Msg); 805 return; 806 } 807 808 // If the control reaches here, we found a PC-relative relocation in a 809 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 810 // at runtime, the notion of PC-relative doesn't make sense here. So, 811 // this is a usage error. However, GNU linkers historically accept such 812 // relocations without any errors and relocate them as if they were at 813 // address 0. For bug-compatibilty, we accept them with warnings. We 814 // know Steel Bank Common Lisp as of 2018 have this bug. 815 warn(Msg); 816 Target->relocateOne(BufLoc, Type, 817 SignExtend64<Bits>(Sym.getVA(Addend - Offset))); 818 continue; 819 } 820 821 if (Sym.isTls() && !Out::TlsPhdr) 822 Target->relocateOne(BufLoc, Type, 0); 823 else 824 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 825 } 826 } 827 828 // This is used when '-r' is given. 829 // For REL targets, InputSection::copyRelocations() may store artificial 830 // relocations aimed to update addends. They are handled in relocateAlloc() 831 // for allocatable sections, and this function does the same for 832 // non-allocatable sections, such as sections with debug information. 833 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) { 834 const unsigned Bits = Config->Is64 ? 64 : 32; 835 836 for (const Relocation &Rel : Sec->Relocations) { 837 // InputSection::copyRelocations() adds only R_ABS relocations. 838 assert(Rel.Expr == R_ABS); 839 uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff; 840 uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits); 841 Target->relocateOne(BufLoc, Rel.Type, TargetVA); 842 } 843 } 844 845 template <class ELFT> 846 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 847 if (Flags & SHF_EXECINSTR) 848 adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd); 849 850 if (Flags & SHF_ALLOC) { 851 relocateAlloc(Buf, BufEnd); 852 return; 853 } 854 855 auto *Sec = cast<InputSection>(this); 856 if (Config->Relocatable) 857 relocateNonAllocForRelocatable(Sec, Buf); 858 else if (Sec->AreRelocsRela) 859 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 860 else 861 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 862 } 863 864 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 865 assert(Flags & SHF_ALLOC); 866 const unsigned Bits = Config->Wordsize * 8; 867 868 for (const Relocation &Rel : Relocations) { 869 uint64_t Offset = Rel.Offset; 870 if (auto *Sec = dyn_cast<InputSection>(this)) 871 Offset += Sec->OutSecOff; 872 uint8_t *BufLoc = Buf + Offset; 873 RelType Type = Rel.Type; 874 875 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 876 RelExpr Expr = Rel.Expr; 877 uint64_t TargetVA = SignExtend64( 878 getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), 879 Bits); 880 881 switch (Expr) { 882 case R_RELAX_GOT_PC: 883 case R_RELAX_GOT_PC_NOPIC: 884 Target->relaxGot(BufLoc, TargetVA); 885 break; 886 case R_RELAX_TLS_IE_TO_LE: 887 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 888 break; 889 case R_RELAX_TLS_LD_TO_LE: 890 case R_RELAX_TLS_LD_TO_LE_ABS: 891 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 892 break; 893 case R_RELAX_TLS_GD_TO_LE: 894 case R_RELAX_TLS_GD_TO_LE_NEG: 895 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 896 break; 897 case R_RELAX_TLS_GD_TO_IE: 898 case R_RELAX_TLS_GD_TO_IE_ABS: 899 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 900 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 901 case R_RELAX_TLS_GD_TO_IE_END: 902 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 903 break; 904 case R_PPC_CALL: 905 // If this is a call to __tls_get_addr, it may be part of a TLS 906 // sequence that has been relaxed and turned into a nop. In this 907 // case, we don't want to handle it as a call. 908 if (read32(BufLoc) == 0x60000000) // nop 909 break; 910 911 // Patch a nop (0x60000000) to a ld. 912 if (Rel.Sym->NeedsTocRestore) { 913 if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) { 914 error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc"); 915 break; 916 } 917 write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 918 } 919 Target->relocateOne(BufLoc, Type, TargetVA); 920 break; 921 default: 922 Target->relocateOne(BufLoc, Type, TargetVA); 923 break; 924 } 925 } 926 } 927 928 // For each function-defining prologue, find any calls to __morestack, 929 // and replace them with calls to __morestack_non_split. 930 static void switchMorestackCallsToMorestackNonSplit( 931 DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) { 932 933 // If the target adjusted a function's prologue, all calls to 934 // __morestack inside that function should be switched to 935 // __morestack_non_split. 936 Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split"); 937 if (!MoreStackNonSplit) { 938 error("Mixing split-stack objects requires a definition of " 939 "__morestack_non_split"); 940 return; 941 } 942 943 // Sort both collections to compare addresses efficiently. 944 llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) { 945 return L->Offset < R->Offset; 946 }); 947 std::vector<Defined *> Functions(Prologues.begin(), Prologues.end()); 948 llvm::sort(Functions, [](const Defined *L, const Defined *R) { 949 return L->Value < R->Value; 950 }); 951 952 auto It = MorestackCalls.begin(); 953 for (Defined *F : Functions) { 954 // Find the first call to __morestack within the function. 955 while (It != MorestackCalls.end() && (*It)->Offset < F->Value) 956 ++It; 957 // Adjust all calls inside the function. 958 while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) { 959 (*It)->Sym = MoreStackNonSplit; 960 ++It; 961 } 962 } 963 } 964 965 static bool enclosingPrologueAttempted(uint64_t Offset, 966 const DenseSet<Defined *> &Prologues) { 967 for (Defined *F : Prologues) 968 if (F->Value <= Offset && Offset < F->Value + F->Size) 969 return true; 970 return false; 971 } 972 973 // If a function compiled for split stack calls a function not 974 // compiled for split stack, then the caller needs its prologue 975 // adjusted to ensure that the called function will have enough stack 976 // available. Find those functions, and adjust their prologues. 977 template <class ELFT> 978 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf, 979 uint8_t *End) { 980 if (!getFile<ELFT>()->SplitStack) 981 return; 982 DenseSet<Defined *> Prologues; 983 std::vector<Relocation *> MorestackCalls; 984 985 for (Relocation &Rel : Relocations) { 986 // Local symbols can't possibly be cross-calls, and should have been 987 // resolved long before this line. 988 if (Rel.Sym->isLocal()) 989 continue; 990 991 // Ignore calls into the split-stack api. 992 if (Rel.Sym->getName().startswith("__morestack")) { 993 if (Rel.Sym->getName().equals("__morestack")) 994 MorestackCalls.push_back(&Rel); 995 continue; 996 } 997 998 // A relocation to non-function isn't relevant. Sometimes 999 // __morestack is not marked as a function, so this check comes 1000 // after the name check. 1001 if (Rel.Sym->Type != STT_FUNC) 1002 continue; 1003 1004 // If the callee's-file was compiled with split stack, nothing to do. In 1005 // this context, a "Defined" symbol is one "defined by the binary currently 1006 // being produced". So an "undefined" symbol might be provided by a shared 1007 // library. It is not possible to tell how such symbols were compiled, so be 1008 // conservative. 1009 if (Defined *D = dyn_cast<Defined>(Rel.Sym)) 1010 if (InputSection *IS = cast_or_null<InputSection>(D->Section)) 1011 if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack) 1012 continue; 1013 1014 if (enclosingPrologueAttempted(Rel.Offset, Prologues)) 1015 continue; 1016 1017 if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) { 1018 Prologues.insert(F); 1019 if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value), 1020 End, F->StOther)) 1021 continue; 1022 if (!getFile<ELFT>()->SomeNoSplitStack) 1023 error(lld::toString(this) + ": " + F->getName() + 1024 " (with -fsplit-stack) calls " + Rel.Sym->getName() + 1025 " (without -fsplit-stack), but couldn't adjust its prologue"); 1026 } 1027 } 1028 1029 if (Target->NeedsMoreStackNonSplit) 1030 switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls); 1031 } 1032 1033 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 1034 if (Type == SHT_NOBITS) 1035 return; 1036 1037 if (auto *S = dyn_cast<SyntheticSection>(this)) { 1038 S->writeTo(Buf + OutSecOff); 1039 return; 1040 } 1041 1042 // If -r or --emit-relocs is given, then an InputSection 1043 // may be a relocation section. 1044 if (Type == SHT_RELA) { 1045 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>()); 1046 return; 1047 } 1048 if (Type == SHT_REL) { 1049 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>()); 1050 return; 1051 } 1052 1053 // If -r is given, we may have a SHT_GROUP section. 1054 if (Type == SHT_GROUP) { 1055 copyShtGroup<ELFT>(Buf + OutSecOff); 1056 return; 1057 } 1058 1059 // If this is a compressed section, uncompress section contents directly 1060 // to the buffer. 1061 if (UncompressedSize >= 0 && !UncompressedBuf) { 1062 size_t Size = UncompressedSize; 1063 if (Error E = zlib::uncompress(toStringRef(RawData), 1064 (char *)(Buf + OutSecOff), Size)) 1065 fatal(toString(this) + 1066 ": uncompress failed: " + llvm::toString(std::move(E))); 1067 uint8_t *BufEnd = Buf + OutSecOff + Size; 1068 relocate<ELFT>(Buf, BufEnd); 1069 return; 1070 } 1071 1072 // Copy section contents from source object file to output file 1073 // and then apply relocations. 1074 memcpy(Buf + OutSecOff, data().data(), data().size()); 1075 uint8_t *BufEnd = Buf + OutSecOff + data().size(); 1076 relocate<ELFT>(Buf, BufEnd); 1077 } 1078 1079 void InputSection::replace(InputSection *Other) { 1080 Alignment = std::max(Alignment, Other->Alignment); 1081 Other->Repl = Repl; 1082 Other->Live = false; 1083 } 1084 1085 template <class ELFT> 1086 EhInputSection::EhInputSection(ObjFile<ELFT> &F, 1087 const typename ELFT::Shdr &Header, 1088 StringRef Name) 1089 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 1090 1091 SyntheticSection *EhInputSection::getParent() const { 1092 return cast_or_null<SyntheticSection>(Parent); 1093 } 1094 1095 // Returns the index of the first relocation that points to a region between 1096 // Begin and Begin+Size. 1097 template <class IntTy, class RelTy> 1098 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 1099 unsigned &RelocI) { 1100 // Start search from RelocI for fast access. That works because the 1101 // relocations are sorted in .eh_frame. 1102 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 1103 const RelTy &Rel = Rels[RelocI]; 1104 if (Rel.r_offset < Begin) 1105 continue; 1106 1107 if (Rel.r_offset < Begin + Size) 1108 return RelocI; 1109 return -1; 1110 } 1111 return -1; 1112 } 1113 1114 // .eh_frame is a sequence of CIE or FDE records. 1115 // This function splits an input section into records and returns them. 1116 template <class ELFT> void EhInputSection::split() { 1117 if (AreRelocsRela) 1118 split<ELFT>(relas<ELFT>()); 1119 else 1120 split<ELFT>(rels<ELFT>()); 1121 } 1122 1123 template <class ELFT, class RelTy> 1124 void EhInputSection::split(ArrayRef<RelTy> Rels) { 1125 unsigned RelI = 0; 1126 for (size_t Off = 0, End = data().size(); Off != End;) { 1127 size_t Size = readEhRecordSize(this, Off); 1128 Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 1129 // The empty record is the end marker. 1130 if (Size == 4) 1131 break; 1132 Off += Size; 1133 } 1134 } 1135 1136 static size_t findNull(StringRef S, size_t EntSize) { 1137 // Optimize the common case. 1138 if (EntSize == 1) 1139 return S.find(0); 1140 1141 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 1142 const char *B = S.begin() + I; 1143 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 1144 return I; 1145 } 1146 return StringRef::npos; 1147 } 1148 1149 SyntheticSection *MergeInputSection::getParent() const { 1150 return cast_or_null<SyntheticSection>(Parent); 1151 } 1152 1153 // Split SHF_STRINGS section. Such section is a sequence of 1154 // null-terminated strings. 1155 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 1156 size_t Off = 0; 1157 bool IsAlloc = Flags & SHF_ALLOC; 1158 StringRef S = toStringRef(Data); 1159 1160 while (!S.empty()) { 1161 size_t End = findNull(S, EntSize); 1162 if (End == StringRef::npos) 1163 fatal(toString(this) + ": string is not null terminated"); 1164 size_t Size = End + EntSize; 1165 1166 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 1167 S = S.substr(Size); 1168 Off += Size; 1169 } 1170 } 1171 1172 // Split non-SHF_STRINGS section. Such section is a sequence of 1173 // fixed size records. 1174 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 1175 size_t EntSize) { 1176 size_t Size = Data.size(); 1177 assert((Size % EntSize) == 0); 1178 bool IsAlloc = Flags & SHF_ALLOC; 1179 1180 for (size_t I = 0; I != Size; I += EntSize) 1181 Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc); 1182 } 1183 1184 template <class ELFT> 1185 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F, 1186 const typename ELFT::Shdr &Header, 1187 StringRef Name) 1188 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 1189 1190 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type, 1191 uint64_t Entsize, ArrayRef<uint8_t> Data, 1192 StringRef Name) 1193 : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0, 1194 /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {} 1195 1196 // This function is called after we obtain a complete list of input sections 1197 // that need to be linked. This is responsible to split section contents 1198 // into small chunks for further processing. 1199 // 1200 // Note that this function is called from parallelForEach. This must be 1201 // thread-safe (i.e. no memory allocation from the pools). 1202 void MergeInputSection::splitIntoPieces() { 1203 assert(Pieces.empty()); 1204 1205 if (Flags & SHF_STRINGS) 1206 splitStrings(data(), Entsize); 1207 else 1208 splitNonStrings(data(), Entsize); 1209 1210 OffsetMap.reserve(Pieces.size()); 1211 for (size_t I = 0, E = Pieces.size(); I != E; ++I) 1212 OffsetMap[Pieces[I].InputOff] = I; 1213 } 1214 1215 template <class It, class T, class Compare> 1216 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 1217 size_t Size = std::distance(First, Last); 1218 assert(Size != 0); 1219 while (Size != 1) { 1220 size_t H = Size / 2; 1221 const It MI = First + H; 1222 Size -= H; 1223 First = Comp(Value, *MI) ? First : First + H; 1224 } 1225 return Comp(Value, *First) ? First : First + 1; 1226 } 1227 1228 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 1229 if (this->data().size() <= Offset) 1230 fatal(toString(this) + ": offset is outside the section"); 1231 1232 // Find a piece starting at a given offset. 1233 auto It = OffsetMap.find(Offset); 1234 if (It != OffsetMap.end()) 1235 return &Pieces[It->second]; 1236 1237 // If Offset is not at beginning of a section piece, it is not in the map. 1238 // In that case we need to do a binary search of the original section piece vector. 1239 auto I = fastUpperBound( 1240 Pieces.begin(), Pieces.end(), Offset, 1241 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 1242 --I; 1243 return &*I; 1244 } 1245 1246 // Returns the offset in an output section for a given input offset. 1247 // Because contents of a mergeable section is not contiguous in output, 1248 // it is not just an addition to a base output offset. 1249 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const { 1250 // If Offset is not at beginning of a section piece, it is not in the map. 1251 // In that case we need to search from the original section piece vector. 1252 const SectionPiece &Piece = 1253 *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset)); 1254 uint64_t Addend = Offset - Piece.InputOff; 1255 return Piece.OutputOff + Addend; 1256 } 1257 1258 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1259 StringRef); 1260 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1261 StringRef); 1262 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1263 StringRef); 1264 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1265 StringRef); 1266 1267 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1268 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1269 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1270 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1271 1272 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1273 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1274 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1275 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1276 1277 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1278 const ELF32LE::Shdr &, StringRef); 1279 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1280 const ELF32BE::Shdr &, StringRef); 1281 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1282 const ELF64LE::Shdr &, StringRef); 1283 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1284 const ELF64BE::Shdr &, StringRef); 1285 1286 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1287 const ELF32LE::Shdr &, StringRef); 1288 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1289 const ELF32BE::Shdr &, StringRef); 1290 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1291 const ELF64LE::Shdr &, StringRef); 1292 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1293 const ELF64BE::Shdr &, StringRef); 1294 1295 template void EhInputSection::split<ELF32LE>(); 1296 template void EhInputSection::split<ELF32BE>(); 1297 template void EhInputSection::split<ELF64LE>(); 1298 template void EhInputSection::split<ELF64BE>(); 1299