1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/CommonLinkerContext.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Threading.h" 26 #include "llvm/Support/xxhash.h" 27 #include <algorithm> 28 #include <mutex> 29 #include <set> 30 #include <vector> 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::support; 36 using namespace llvm::support::endian; 37 using namespace llvm::sys; 38 using namespace lld; 39 using namespace lld::elf; 40 41 SmallVector<InputSectionBase *, 0> elf::inputSections; 42 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 43 44 // Returns a string to construct an error message. 45 std::string lld::toString(const InputSectionBase *sec) { 46 return (toString(sec->file) + ":(" + sec->name + ")").str(); 47 } 48 49 template <class ELFT> 50 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 51 const typename ELFT::Shdr &hdr) { 52 if (hdr.sh_type == SHT_NOBITS) 53 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 54 return check(file.getObj().getSectionContents(hdr)); 55 } 56 57 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 58 uint32_t type, uint64_t entsize, 59 uint32_t link, uint32_t info, 60 uint32_t alignment, ArrayRef<uint8_t> data, 61 StringRef name, Kind sectionKind) 62 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 63 link), 64 file(file), rawData(data) { 65 // In order to reduce memory allocation, we assume that mergeable 66 // sections are smaller than 4 GiB, which is not an unreasonable 67 // assumption as of 2017. 68 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 69 error(toString(this) + ": section too large"); 70 71 // The ELF spec states that a value of 0 means the section has 72 // no alignment constraints. 73 uint32_t v = std::max<uint32_t>(alignment, 1); 74 if (!isPowerOf2_64(v)) 75 fatal(toString(this) + ": sh_addralign is not a power of 2"); 76 this->alignment = v; 77 78 // In ELF, each section can be compressed by zlib, and if compressed, 79 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 80 // If that's the case, demangle section name so that we can handle a 81 // section as if it weren't compressed. 82 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 83 if (!zlib::isAvailable()) 84 error(toString(file) + ": contains a compressed section, " + 85 "but zlib is not available"); 86 switch (config->ekind) { 87 case ELF32LEKind: 88 parseCompressedHeader<ELF32LE>(); 89 break; 90 case ELF32BEKind: 91 parseCompressedHeader<ELF32BE>(); 92 break; 93 case ELF64LEKind: 94 parseCompressedHeader<ELF64LE>(); 95 break; 96 case ELF64BEKind: 97 parseCompressedHeader<ELF64BE>(); 98 break; 99 default: 100 llvm_unreachable("unknown ELFT"); 101 } 102 } 103 } 104 105 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 106 // SHF_GROUP is a marker that a section belongs to some comdat group. 107 // That flag doesn't make sense in an executable. 108 static uint64_t getFlags(uint64_t flags) { 109 flags &= ~(uint64_t)SHF_INFO_LINK; 110 if (!config->relocatable) 111 flags &= ~(uint64_t)SHF_GROUP; 112 return flags; 113 } 114 115 template <class ELFT> 116 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 117 const typename ELFT::Shdr &hdr, 118 StringRef name, Kind sectionKind) 119 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 120 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 121 hdr.sh_addralign, getSectionContents(file, hdr), name, 122 sectionKind) { 123 // We reject object files having insanely large alignments even though 124 // they are allowed by the spec. I think 4GB is a reasonable limitation. 125 // We might want to relax this in the future. 126 if (hdr.sh_addralign > UINT32_MAX) 127 fatal(toString(&file) + ": section sh_addralign is too large"); 128 } 129 130 size_t InputSectionBase::getSize() const { 131 if (auto *s = dyn_cast<SyntheticSection>(this)) 132 return s->getSize(); 133 if (uncompressedSize >= 0) 134 return uncompressedSize; 135 return rawData.size() - bytesDropped; 136 } 137 138 void InputSectionBase::uncompress() const { 139 size_t size = uncompressedSize; 140 char *uncompressedBuf; 141 { 142 static std::mutex mu; 143 std::lock_guard<std::mutex> lock(mu); 144 uncompressedBuf = bAlloc().Allocate<char>(size); 145 } 146 147 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 148 fatal(toString(this) + 149 ": uncompress failed: " + llvm::toString(std::move(e))); 150 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 151 uncompressedSize = -1; 152 } 153 154 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 155 if (relSecIdx == 0) 156 return {}; 157 RelsOrRelas<ELFT> ret; 158 typename ELFT::Shdr shdr = 159 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 160 if (shdr.sh_type == SHT_REL) { 161 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 162 file->mb.getBufferStart() + shdr.sh_offset), 163 shdr.sh_size / sizeof(typename ELFT::Rel)); 164 } else { 165 assert(shdr.sh_type == SHT_RELA); 166 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 167 file->mb.getBufferStart() + shdr.sh_offset), 168 shdr.sh_size / sizeof(typename ELFT::Rela)); 169 } 170 return ret; 171 } 172 173 uint64_t SectionBase::getOffset(uint64_t offset) const { 174 switch (kind()) { 175 case Output: { 176 auto *os = cast<OutputSection>(this); 177 // For output sections we treat offset -1 as the end of the section. 178 return offset == uint64_t(-1) ? os->size : offset; 179 } 180 case Regular: 181 case Synthetic: 182 return cast<InputSection>(this)->outSecOff + offset; 183 case EHFrame: 184 // The file crtbeginT.o has relocations pointing to the start of an empty 185 // .eh_frame that is known to be the first in the link. It does that to 186 // identify the start of the output .eh_frame. 187 return offset; 188 case Merge: 189 const MergeInputSection *ms = cast<MergeInputSection>(this); 190 if (InputSection *isec = ms->getParent()) 191 return isec->outSecOff + ms->getParentOffset(offset); 192 return ms->getParentOffset(offset); 193 } 194 llvm_unreachable("invalid section kind"); 195 } 196 197 uint64_t SectionBase::getVA(uint64_t offset) const { 198 const OutputSection *out = getOutputSection(); 199 return (out ? out->addr : 0) + getOffset(offset); 200 } 201 202 OutputSection *SectionBase::getOutputSection() { 203 InputSection *sec; 204 if (auto *isec = dyn_cast<InputSection>(this)) 205 sec = isec; 206 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 207 sec = ms->getParent(); 208 else if (auto *eh = dyn_cast<EhInputSection>(this)) 209 sec = eh->getParent(); 210 else 211 return cast<OutputSection>(this); 212 return sec ? sec->getParent() : nullptr; 213 } 214 215 // When a section is compressed, `rawData` consists with a header followed 216 // by zlib-compressed data. This function parses a header to initialize 217 // `uncompressedSize` member and remove the header from `rawData`. 218 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 219 // Old-style header 220 if (!(flags & SHF_COMPRESSED)) { 221 assert(name.startswith(".zdebug")); 222 if (!toStringRef(rawData).startswith("ZLIB")) { 223 error(toString(this) + ": corrupted compressed section header"); 224 return; 225 } 226 rawData = rawData.slice(4); 227 228 if (rawData.size() < 8) { 229 error(toString(this) + ": corrupted compressed section header"); 230 return; 231 } 232 233 uncompressedSize = read64be(rawData.data()); 234 rawData = rawData.slice(8); 235 236 // Restore the original section name. 237 // (e.g. ".zdebug_info" -> ".debug_info") 238 name = saver().save("." + name.substr(2)); 239 return; 240 } 241 242 flags &= ~(uint64_t)SHF_COMPRESSED; 243 244 // New-style header 245 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 246 error(toString(this) + ": corrupted compressed section"); 247 return; 248 } 249 250 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 251 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 252 error(toString(this) + ": unsupported compression type"); 253 return; 254 } 255 256 uncompressedSize = hdr->ch_size; 257 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 258 rawData = rawData.slice(sizeof(*hdr)); 259 } 260 261 InputSection *InputSectionBase::getLinkOrderDep() const { 262 assert(flags & SHF_LINK_ORDER); 263 if (!link) 264 return nullptr; 265 return cast<InputSection>(file->getSections()[link]); 266 } 267 268 // Find a function symbol that encloses a given location. 269 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 270 for (Symbol *b : file->getSymbols()) 271 if (Defined *d = dyn_cast<Defined>(b)) 272 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 273 offset < d->value + d->size) 274 return d; 275 return nullptr; 276 } 277 278 // Returns an object file location string. Used to construct an error message. 279 std::string InputSectionBase::getLocation(uint64_t offset) { 280 std::string secAndOffset = 281 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 282 283 // We don't have file for synthetic sections. 284 if (file == nullptr) 285 return (config->outputFile + ":(" + secAndOffset).str(); 286 287 std::string filename = toString(file); 288 if (Defined *d = getEnclosingFunction(offset)) 289 return filename + ":(function " + toString(*d) + ": " + secAndOffset; 290 291 return filename + ":(" + secAndOffset; 292 } 293 294 // This function is intended to be used for constructing an error message. 295 // The returned message looks like this: 296 // 297 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 298 // 299 // Returns an empty string if there's no way to get line info. 300 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 301 return file->getSrcMsg(sym, *this, offset); 302 } 303 304 // Returns a filename string along with an optional section name. This 305 // function is intended to be used for constructing an error 306 // message. The returned message looks like this: 307 // 308 // path/to/foo.o:(function bar) 309 // 310 // or 311 // 312 // path/to/foo.o:(function bar) in archive path/to/bar.a 313 std::string InputSectionBase::getObjMsg(uint64_t off) { 314 std::string filename = std::string(file->getName()); 315 316 std::string archive; 317 if (!file->archiveName.empty()) 318 archive = (" in archive " + file->archiveName).str(); 319 320 // Find a symbol that encloses a given location. 321 for (Symbol *b : file->getSymbols()) 322 if (auto *d = dyn_cast<Defined>(b)) 323 if (d->section == this && d->value <= off && off < d->value + d->size) 324 return filename + ":(" + toString(*d) + ")" + archive; 325 326 // If there's no symbol, print out the offset in the section. 327 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 328 .str(); 329 } 330 331 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 332 333 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 334 uint32_t alignment, ArrayRef<uint8_t> data, 335 StringRef name, Kind k) 336 : InputSectionBase(f, flags, type, 337 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 338 name, k) {} 339 340 template <class ELFT> 341 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 342 StringRef name) 343 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 344 345 bool InputSection::classof(const SectionBase *s) { 346 return s->kind() == SectionBase::Regular || 347 s->kind() == SectionBase::Synthetic; 348 } 349 350 OutputSection *InputSection::getParent() const { 351 return cast_or_null<OutputSection>(parent); 352 } 353 354 // Copy SHT_GROUP section contents. Used only for the -r option. 355 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 356 // ELFT::Word is the 32-bit integral type in the target endianness. 357 using u32 = typename ELFT::Word; 358 ArrayRef<u32> from = getDataAs<u32>(); 359 auto *to = reinterpret_cast<u32 *>(buf); 360 361 // The first entry is not a section number but a flag. 362 *to++ = from[0]; 363 364 // Adjust section numbers because section numbers in an input object files are 365 // different in the output. We also need to handle combined or discarded 366 // members. 367 ArrayRef<InputSectionBase *> sections = file->getSections(); 368 DenseSet<uint32_t> seen; 369 for (uint32_t idx : from.slice(1)) { 370 OutputSection *osec = sections[idx]->getOutputSection(); 371 if (osec && seen.insert(osec->sectionIndex).second) 372 *to++ = osec->sectionIndex; 373 } 374 } 375 376 InputSectionBase *InputSection::getRelocatedSection() const { 377 if (!file || (type != SHT_RELA && type != SHT_REL)) 378 return nullptr; 379 ArrayRef<InputSectionBase *> sections = file->getSections(); 380 return sections[info]; 381 } 382 383 // This is used for -r and --emit-relocs. We can't use memcpy to copy 384 // relocations because we need to update symbol table offset and section index 385 // for each relocation. So we copy relocations one by one. 386 template <class ELFT, class RelTy> 387 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 388 const TargetInfo &target = *elf::target; 389 InputSectionBase *sec = getRelocatedSection(); 390 391 for (const RelTy &rel : rels) { 392 RelType type = rel.getType(config->isMips64EL); 393 const ObjFile<ELFT> *file = getFile<ELFT>(); 394 Symbol &sym = file->getRelocTargetSym(rel); 395 396 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 397 buf += sizeof(RelTy); 398 399 if (RelTy::IsRela) 400 p->r_addend = getAddend<ELFT>(rel); 401 402 // Output section VA is zero for -r, so r_offset is an offset within the 403 // section, but for --emit-relocs it is a virtual address. 404 p->r_offset = sec->getVA(rel.r_offset); 405 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 406 config->isMips64EL); 407 408 if (sym.type == STT_SECTION) { 409 // We combine multiple section symbols into only one per 410 // section. This means we have to update the addend. That is 411 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 412 // section data. We do that by adding to the Relocation vector. 413 414 // .eh_frame is horribly special and can reference discarded sections. To 415 // avoid having to parse and recreate .eh_frame, we just replace any 416 // relocation in it pointing to discarded sections with R_*_NONE, which 417 // hopefully creates a frame that is ignored at runtime. Also, don't warn 418 // on .gcc_except_table and debug sections. 419 // 420 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 421 auto *d = dyn_cast<Defined>(&sym); 422 if (!d) { 423 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 424 sec->name != ".gcc_except_table" && sec->name != ".got2" && 425 sec->name != ".toc") { 426 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 427 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 428 warn("relocation refers to a discarded section: " + 429 CHECK(file->getObj().getSectionName(sec), file) + 430 "\n>>> referenced by " + getObjMsg(p->r_offset)); 431 } 432 p->setSymbolAndType(0, 0, false); 433 continue; 434 } 435 SectionBase *section = d->section; 436 if (!section->isLive()) { 437 p->setSymbolAndType(0, 0, false); 438 continue; 439 } 440 441 int64_t addend = getAddend<ELFT>(rel); 442 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 443 if (!RelTy::IsRela) 444 addend = target.getImplicitAddend(bufLoc, type); 445 446 if (config->emachine == EM_MIPS && 447 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 448 // Some MIPS relocations depend on "gp" value. By default, 449 // this value has 0x7ff0 offset from a .got section. But 450 // relocatable files produced by a compiler or a linker 451 // might redefine this default value and we must use it 452 // for a calculation of the relocation result. When we 453 // generate EXE or DSO it's trivial. Generating a relocatable 454 // output is more difficult case because the linker does 455 // not calculate relocations in this mode and loses 456 // individual "gp" values used by each input object file. 457 // As a workaround we add the "gp" value to the relocation 458 // addend and save it back to the file. 459 addend += sec->getFile<ELFT>()->mipsGp0; 460 } 461 462 if (RelTy::IsRela) 463 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 464 else if (config->relocatable && type != target.noneRel) 465 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 466 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 467 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 468 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 469 // indicates that r30 is relative to the input section .got2 470 // (r_addend>=0x8000), after linking, r30 should be relative to the output 471 // section .got2 . To compensate for the shift, adjust r_addend by 472 // ppc32Got->outSecOff. 473 p->r_addend += sec->file->ppc32Got2->outSecOff; 474 } 475 } 476 } 477 478 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 479 // references specially. The general rule is that the value of the symbol in 480 // this context is the address of the place P. A further special case is that 481 // branch relocations to an undefined weak reference resolve to the next 482 // instruction. 483 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 484 uint32_t p) { 485 switch (type) { 486 // Unresolved branch relocations to weak references resolve to next 487 // instruction, this will be either 2 or 4 bytes on from P. 488 case R_ARM_THM_JUMP8: 489 case R_ARM_THM_JUMP11: 490 return p + 2 + a; 491 case R_ARM_CALL: 492 case R_ARM_JUMP24: 493 case R_ARM_PC24: 494 case R_ARM_PLT32: 495 case R_ARM_PREL31: 496 case R_ARM_THM_JUMP19: 497 case R_ARM_THM_JUMP24: 498 return p + 4 + a; 499 case R_ARM_THM_CALL: 500 // We don't want an interworking BLX to ARM 501 return p + 5 + a; 502 // Unresolved non branch pc-relative relocations 503 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 504 // targets a weak-reference. 505 case R_ARM_MOVW_PREL_NC: 506 case R_ARM_MOVT_PREL: 507 case R_ARM_REL32: 508 case R_ARM_THM_ALU_PREL_11_0: 509 case R_ARM_THM_MOVW_PREL_NC: 510 case R_ARM_THM_MOVT_PREL: 511 case R_ARM_THM_PC12: 512 return p + a; 513 // p + a is unrepresentable as negative immediates can't be encoded. 514 case R_ARM_THM_PC8: 515 return p; 516 } 517 llvm_unreachable("ARM pc-relative relocation expected\n"); 518 } 519 520 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 521 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 522 switch (type) { 523 // Unresolved branch relocations to weak references resolve to next 524 // instruction, this is 4 bytes on from P. 525 case R_AARCH64_CALL26: 526 case R_AARCH64_CONDBR19: 527 case R_AARCH64_JUMP26: 528 case R_AARCH64_TSTBR14: 529 return p + 4; 530 // Unresolved non branch pc-relative relocations 531 case R_AARCH64_PREL16: 532 case R_AARCH64_PREL32: 533 case R_AARCH64_PREL64: 534 case R_AARCH64_ADR_PREL_LO21: 535 case R_AARCH64_LD_PREL_LO19: 536 case R_AARCH64_PLT32: 537 return p; 538 } 539 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 540 } 541 542 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 543 switch (type) { 544 case R_RISCV_BRANCH: 545 case R_RISCV_JAL: 546 case R_RISCV_CALL: 547 case R_RISCV_CALL_PLT: 548 case R_RISCV_RVC_BRANCH: 549 case R_RISCV_RVC_JUMP: 550 return p; 551 default: 552 return 0; 553 } 554 } 555 556 // ARM SBREL relocations are of the form S + A - B where B is the static base 557 // The ARM ABI defines base to be "addressing origin of the output segment 558 // defining the symbol S". We defined the "addressing origin"/static base to be 559 // the base of the PT_LOAD segment containing the Sym. 560 // The procedure call standard only defines a Read Write Position Independent 561 // RWPI variant so in practice we should expect the static base to be the base 562 // of the RW segment. 563 static uint64_t getARMStaticBase(const Symbol &sym) { 564 OutputSection *os = sym.getOutputSection(); 565 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 566 fatal("SBREL relocation to " + sym.getName() + " without static base"); 567 return os->ptLoad->firstSec->addr; 568 } 569 570 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 571 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 572 // is calculated using PCREL_HI20's symbol. 573 // 574 // This function returns the R_RISCV_PCREL_HI20 relocation from 575 // R_RISCV_PCREL_LO12's symbol and addend. 576 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 577 const Defined *d = cast<Defined>(sym); 578 if (!d->section) { 579 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 580 sym->getName()); 581 return nullptr; 582 } 583 InputSection *isec = cast<InputSection>(d->section); 584 585 if (addend != 0) 586 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 587 isec->getObjMsg(d->value) + " is ignored"); 588 589 // Relocations are sorted by offset, so we can use std::equal_range to do 590 // binary search. 591 Relocation r; 592 r.offset = d->value; 593 auto range = 594 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 595 [](const Relocation &lhs, const Relocation &rhs) { 596 return lhs.offset < rhs.offset; 597 }); 598 599 for (auto it = range.first; it != range.second; ++it) 600 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 601 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 602 return &*it; 603 604 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 605 " without an associated R_RISCV_PCREL_HI20 relocation"); 606 return nullptr; 607 } 608 609 // A TLS symbol's virtual address is relative to the TLS segment. Add a 610 // target-specific adjustment to produce a thread-pointer-relative offset. 611 static int64_t getTlsTpOffset(const Symbol &s) { 612 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 613 if (&s == ElfSym::tlsModuleBase) 614 return 0; 615 616 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 617 // while most others use Variant 1. At run time TP will be aligned to p_align. 618 619 // Variant 1. TP will be followed by an optional gap (which is the size of 2 620 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 621 // padding, then the static TLS blocks. The alignment padding is added so that 622 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 623 // 624 // Variant 2. Static TLS blocks, followed by alignment padding are placed 625 // before TP. The alignment padding is added so that (TP - padding - 626 // p_memsz) is congruent to p_vaddr modulo p_align. 627 PhdrEntry *tls = Out::tlsPhdr; 628 switch (config->emachine) { 629 // Variant 1. 630 case EM_ARM: 631 case EM_AARCH64: 632 return s.getVA(0) + config->wordsize * 2 + 633 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 634 case EM_MIPS: 635 case EM_PPC: 636 case EM_PPC64: 637 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 638 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 639 // data and 0xf000 of the program's TLS segment. 640 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 641 case EM_RISCV: 642 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 643 644 // Variant 2. 645 case EM_HEXAGON: 646 case EM_SPARCV9: 647 case EM_386: 648 case EM_X86_64: 649 return s.getVA(0) - tls->p_memsz - 650 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 651 default: 652 llvm_unreachable("unhandled Config->EMachine"); 653 } 654 } 655 656 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 657 int64_t a, uint64_t p, 658 const Symbol &sym, RelExpr expr) { 659 switch (expr) { 660 case R_ABS: 661 case R_DTPREL: 662 case R_RELAX_TLS_LD_TO_LE_ABS: 663 case R_RELAX_GOT_PC_NOPIC: 664 case R_RISCV_ADD: 665 return sym.getVA(a); 666 case R_ADDEND: 667 return a; 668 case R_ARM_SBREL: 669 return sym.getVA(a) - getARMStaticBase(sym); 670 case R_GOT: 671 case R_RELAX_TLS_GD_TO_IE_ABS: 672 return sym.getGotVA() + a; 673 case R_GOTONLY_PC: 674 return in.got->getVA() + a - p; 675 case R_GOTPLTONLY_PC: 676 return in.gotPlt->getVA() + a - p; 677 case R_GOTREL: 678 case R_PPC64_RELAX_TOC: 679 return sym.getVA(a) - in.got->getVA(); 680 case R_GOTPLTREL: 681 return sym.getVA(a) - in.gotPlt->getVA(); 682 case R_GOTPLT: 683 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 684 return sym.getGotVA() + a - in.gotPlt->getVA(); 685 case R_TLSLD_GOT_OFF: 686 case R_GOT_OFF: 687 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 688 return sym.getGotOffset() + a; 689 case R_AARCH64_GOT_PAGE_PC: 690 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 691 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 692 case R_AARCH64_GOT_PAGE: 693 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 694 case R_GOT_PC: 695 case R_RELAX_TLS_GD_TO_IE: 696 return sym.getGotVA() + a - p; 697 case R_MIPS_GOTREL: 698 return sym.getVA(a) - in.mipsGot->getGp(file); 699 case R_MIPS_GOT_GP: 700 return in.mipsGot->getGp(file) + a; 701 case R_MIPS_GOT_GP_PC: { 702 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 703 // is _gp_disp symbol. In that case we should use the following 704 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 705 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 706 // microMIPS variants of these relocations use slightly different 707 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 708 // to correctly handle less-significant bit of the microMIPS symbol. 709 uint64_t v = in.mipsGot->getGp(file) + a - p; 710 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 711 v += 4; 712 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 713 v -= 1; 714 return v; 715 } 716 case R_MIPS_GOT_LOCAL_PAGE: 717 // If relocation against MIPS local symbol requires GOT entry, this entry 718 // should be initialized by 'page address'. This address is high 16-bits 719 // of sum the symbol's value and the addend. 720 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 721 in.mipsGot->getGp(file); 722 case R_MIPS_GOT_OFF: 723 case R_MIPS_GOT_OFF32: 724 // In case of MIPS if a GOT relocation has non-zero addend this addend 725 // should be applied to the GOT entry content not to the GOT entry offset. 726 // That is why we use separate expression type. 727 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 728 in.mipsGot->getGp(file); 729 case R_MIPS_TLSGD: 730 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 731 in.mipsGot->getGp(file); 732 case R_MIPS_TLSLD: 733 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 734 in.mipsGot->getGp(file); 735 case R_AARCH64_PAGE_PC: { 736 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 737 return getAArch64Page(val) - getAArch64Page(p); 738 } 739 case R_RISCV_PC_INDIRECT: { 740 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 741 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 742 *hiRel->sym, hiRel->expr); 743 return 0; 744 } 745 case R_PC: 746 case R_ARM_PCA: { 747 uint64_t dest; 748 if (expr == R_ARM_PCA) 749 // Some PC relative ARM (Thumb) relocations align down the place. 750 p = p & 0xfffffffc; 751 if (sym.isUndefWeak()) { 752 // On ARM and AArch64 a branch to an undefined weak resolves to the next 753 // instruction, otherwise the place. On RISCV, resolve an undefined weak 754 // to the same instruction to cause an infinite loop (making the user 755 // aware of the issue) while ensuring no overflow. 756 if (config->emachine == EM_ARM) 757 dest = getARMUndefinedRelativeWeakVA(type, a, p); 758 else if (config->emachine == EM_AARCH64) 759 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 760 else if (config->emachine == EM_PPC) 761 dest = p; 762 else if (config->emachine == EM_RISCV) 763 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 764 else 765 dest = sym.getVA(a); 766 } else { 767 dest = sym.getVA(a); 768 } 769 return dest - p; 770 } 771 case R_PLT: 772 return sym.getPltVA() + a; 773 case R_PLT_PC: 774 case R_PPC64_CALL_PLT: 775 return sym.getPltVA() + a - p; 776 case R_PLT_GOTPLT: 777 return sym.getPltVA() + a - in.gotPlt->getVA(); 778 case R_PPC32_PLTREL: 779 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 780 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 781 // target VA computation. 782 return sym.getPltVA() - p; 783 case R_PPC64_CALL: { 784 uint64_t symVA = sym.getVA(a); 785 // If we have an undefined weak symbol, we might get here with a symbol 786 // address of zero. That could overflow, but the code must be unreachable, 787 // so don't bother doing anything at all. 788 if (!symVA) 789 return 0; 790 791 // PPC64 V2 ABI describes two entry points to a function. The global entry 792 // point is used for calls where the caller and callee (may) have different 793 // TOC base pointers and r2 needs to be modified to hold the TOC base for 794 // the callee. For local calls the caller and callee share the same 795 // TOC base and so the TOC pointer initialization code should be skipped by 796 // branching to the local entry point. 797 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 798 } 799 case R_PPC64_TOCBASE: 800 return getPPC64TocBase() + a; 801 case R_RELAX_GOT_PC: 802 case R_PPC64_RELAX_GOT_PC: 803 return sym.getVA(a) - p; 804 case R_RELAX_TLS_GD_TO_LE: 805 case R_RELAX_TLS_IE_TO_LE: 806 case R_RELAX_TLS_LD_TO_LE: 807 case R_TPREL: 808 // It is not very clear what to return if the symbol is undefined. With 809 // --noinhibit-exec, even a non-weak undefined reference may reach here. 810 // Just return A, which matches R_ABS, and the behavior of some dynamic 811 // loaders. 812 if (sym.isUndefined()) 813 return a; 814 return getTlsTpOffset(sym) + a; 815 case R_RELAX_TLS_GD_TO_LE_NEG: 816 case R_TPREL_NEG: 817 if (sym.isUndefined()) 818 return a; 819 return -getTlsTpOffset(sym) + a; 820 case R_SIZE: 821 return sym.getSize() + a; 822 case R_TLSDESC: 823 return in.got->getTlsDescAddr(sym) + a; 824 case R_TLSDESC_PC: 825 return in.got->getTlsDescAddr(sym) + a - p; 826 case R_TLSDESC_GOTPLT: 827 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA(); 828 case R_AARCH64_TLSDESC_PAGE: 829 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p); 830 case R_TLSGD_GOT: 831 return in.got->getGlobalDynOffset(sym) + a; 832 case R_TLSGD_GOTPLT: 833 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 834 case R_TLSGD_PC: 835 return in.got->getGlobalDynAddr(sym) + a - p; 836 case R_TLSLD_GOTPLT: 837 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 838 case R_TLSLD_GOT: 839 return in.got->getTlsIndexOff() + a; 840 case R_TLSLD_PC: 841 return in.got->getTlsIndexVA() + a - p; 842 default: 843 llvm_unreachable("invalid expression"); 844 } 845 } 846 847 // This function applies relocations to sections without SHF_ALLOC bit. 848 // Such sections are never mapped to memory at runtime. Debug sections are 849 // an example. Relocations in non-alloc sections are much easier to 850 // handle than in allocated sections because it will never need complex 851 // treatment such as GOT or PLT (because at runtime no one refers them). 852 // So, we handle relocations for non-alloc sections directly in this 853 // function as a performance optimization. 854 template <class ELFT, class RelTy> 855 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 856 const unsigned bits = sizeof(typename ELFT::uint) * 8; 857 const TargetInfo &target = *elf::target; 858 const bool isDebug = isDebugSection(*this); 859 const bool isDebugLocOrRanges = 860 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 861 const bool isDebugLine = isDebug && name == ".debug_line"; 862 Optional<uint64_t> tombstone; 863 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 864 if (patAndValue.first.match(this->name)) { 865 tombstone = patAndValue.second; 866 break; 867 } 868 869 for (const RelTy &rel : rels) { 870 RelType type = rel.getType(config->isMips64EL); 871 872 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 873 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 874 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 875 // need to keep this bug-compatible code for a while. 876 if (config->emachine == EM_386 && type == R_386_GOTPC) 877 continue; 878 879 uint64_t offset = rel.r_offset; 880 uint8_t *bufLoc = buf + offset; 881 int64_t addend = getAddend<ELFT>(rel); 882 if (!RelTy::IsRela) 883 addend += target.getImplicitAddend(bufLoc, type); 884 885 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 886 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 887 if (expr == R_NONE) 888 continue; 889 890 if (tombstone || 891 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 892 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 893 // folded section symbols) to a tombstone value. Resolving to addend is 894 // unsatisfactory because the result address range may collide with a 895 // valid range of low address, or leave multiple CUs claiming ownership of 896 // the same range of code, which may confuse consumers. 897 // 898 // To address the problems, we use -1 as a tombstone value for most 899 // .debug_* sections. We have to ignore the addend because we don't want 900 // to resolve an address attribute (which may have a non-zero addend) to 901 // -1+addend (wrap around to a low address). 902 // 903 // R_DTPREL type relocations represent an offset into the dynamic thread 904 // vector. The computed value is st_value plus a non-negative offset. 905 // Negative values are invalid, so -1 can be used as the tombstone value. 906 // 907 // If the referenced symbol is discarded (made Undefined), or the 908 // section defining the referenced symbol is garbage collected, 909 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 910 // case. However, resolving a relocation in .debug_line to -1 would stop 911 // debugger users from setting breakpoints on the folded-in function, so 912 // exclude .debug_line. 913 // 914 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 915 // (base address selection entry), use 1 (which is used by GNU ld for 916 // .debug_ranges). 917 // 918 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 919 // value. Enable -1 in a future release. 920 auto *ds = dyn_cast<Defined>(&sym); 921 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 922 // If -z dead-reloc-in-nonalloc= is specified, respect it. 923 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 924 : (isDebugLocOrRanges ? 1 : 0); 925 target.relocateNoSym(bufLoc, type, value); 926 continue; 927 } 928 } 929 930 // For a relocatable link, only tombstone values are applied. 931 if (config->relocatable) 932 continue; 933 934 if (expr == R_SIZE) { 935 target.relocateNoSym(bufLoc, type, 936 SignExtend64<bits>(sym.getSize() + addend)); 937 continue; 938 } 939 940 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 941 // sections. 942 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL || 943 expr == R_RISCV_ADD) { 944 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 945 continue; 946 } 947 948 std::string msg = getLocation(offset) + ": has non-ABS relocation " + 949 toString(type) + " against symbol '" + toString(sym) + 950 "'"; 951 if (expr != R_PC && expr != R_ARM_PCA) { 952 error(msg); 953 return; 954 } 955 956 // If the control reaches here, we found a PC-relative relocation in a 957 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 958 // at runtime, the notion of PC-relative doesn't make sense here. So, 959 // this is a usage error. However, GNU linkers historically accept such 960 // relocations without any errors and relocate them as if they were at 961 // address 0. For bug-compatibilty, we accept them with warnings. We 962 // know Steel Bank Common Lisp as of 2018 have this bug. 963 warn(msg); 964 target.relocateNoSym( 965 bufLoc, type, 966 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 967 } 968 } 969 970 // This is used when '-r' is given. 971 // For REL targets, InputSection::copyRelocations() may store artificial 972 // relocations aimed to update addends. They are handled in relocateAlloc() 973 // for allocatable sections, and this function does the same for 974 // non-allocatable sections, such as sections with debug information. 975 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 976 const unsigned bits = config->is64 ? 64 : 32; 977 978 for (const Relocation &rel : sec->relocations) { 979 // InputSection::copyRelocations() adds only R_ABS relocations. 980 assert(rel.expr == R_ABS); 981 uint8_t *bufLoc = buf + rel.offset; 982 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 983 target->relocate(bufLoc, rel, targetVA); 984 } 985 } 986 987 template <class ELFT> 988 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 989 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 990 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 991 992 if (flags & SHF_ALLOC) { 993 relocateAlloc(buf, bufEnd); 994 return; 995 } 996 997 auto *sec = cast<InputSection>(this); 998 if (config->relocatable) 999 relocateNonAllocForRelocatable(sec, buf); 1000 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable 1001 // locations with tombstone values. 1002 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1003 if (rels.areRelocsRel()) 1004 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1005 else 1006 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1007 } 1008 1009 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1010 assert(flags & SHF_ALLOC); 1011 const unsigned bits = config->wordsize * 8; 1012 const TargetInfo &target = *elf::target; 1013 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1014 AArch64Relaxer aarch64relaxer(relocations); 1015 for (size_t i = 0, size = relocations.size(); i != size; ++i) { 1016 const Relocation &rel = relocations[i]; 1017 if (rel.expr == R_NONE) 1018 continue; 1019 uint64_t offset = rel.offset; 1020 uint8_t *bufLoc = buf + offset; 1021 1022 uint64_t secAddr = getOutputSection()->addr; 1023 if (auto *sec = dyn_cast<InputSection>(this)) 1024 secAddr += sec->outSecOff; 1025 const uint64_t addrLoc = secAddr + offset; 1026 const uint64_t targetVA = 1027 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1028 *rel.sym, rel.expr), 1029 bits); 1030 switch (rel.expr) { 1031 case R_RELAX_GOT_PC: 1032 case R_RELAX_GOT_PC_NOPIC: 1033 target.relaxGot(bufLoc, rel, targetVA); 1034 break; 1035 case R_AARCH64_GOT_PAGE_PC: 1036 if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr( 1037 rel, relocations[i + 1], secAddr, buf)) { 1038 ++i; 1039 continue; 1040 } 1041 target.relocate(bufLoc, rel, targetVA); 1042 break; 1043 case R_PPC64_RELAX_GOT_PC: { 1044 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1045 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1046 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1047 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1048 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1049 // and only relax the other if the saved offset matches. 1050 if (rel.type == R_PPC64_GOT_PCREL34) 1051 lastPPCRelaxedRelocOff = offset; 1052 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1053 break; 1054 target.relaxGot(bufLoc, rel, targetVA); 1055 break; 1056 } 1057 case R_PPC64_RELAX_TOC: 1058 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1059 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1060 // entry, there may be R_PPC64_TOC16_HA not paired with 1061 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1062 // opportunities but is safe. 1063 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1064 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1065 target.relocate(bufLoc, rel, targetVA); 1066 break; 1067 case R_RELAX_TLS_IE_TO_LE: 1068 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1069 break; 1070 case R_RELAX_TLS_LD_TO_LE: 1071 case R_RELAX_TLS_LD_TO_LE_ABS: 1072 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1073 break; 1074 case R_RELAX_TLS_GD_TO_LE: 1075 case R_RELAX_TLS_GD_TO_LE_NEG: 1076 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1077 break; 1078 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1079 case R_RELAX_TLS_GD_TO_IE: 1080 case R_RELAX_TLS_GD_TO_IE_ABS: 1081 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1082 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1083 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1084 break; 1085 case R_PPC64_CALL: 1086 // If this is a call to __tls_get_addr, it may be part of a TLS 1087 // sequence that has been relaxed and turned into a nop. In this 1088 // case, we don't want to handle it as a call. 1089 if (read32(bufLoc) == 0x60000000) // nop 1090 break; 1091 1092 // Patch a nop (0x60000000) to a ld. 1093 if (rel.sym->needsTocRestore) { 1094 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1095 // recursive calls even if the function is preemptible. This is not 1096 // wrong in the common case where the function is not preempted at 1097 // runtime. Just ignore. 1098 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1099 rel.sym->file != file) { 1100 // Use substr(6) to remove the "__plt_" prefix. 1101 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1102 lld::toString(*rel.sym).substr(6) + 1103 " lacks nop, can't restore toc"); 1104 break; 1105 } 1106 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1107 } 1108 target.relocate(bufLoc, rel, targetVA); 1109 break; 1110 default: 1111 target.relocate(bufLoc, rel, targetVA); 1112 break; 1113 } 1114 } 1115 1116 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1117 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1118 // insn. This is primarily used to relax and optimize jumps created with 1119 // basic block sections. 1120 if (jumpInstrMod) { 1121 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1122 jumpInstrMod->size); 1123 } 1124 } 1125 1126 // For each function-defining prologue, find any calls to __morestack, 1127 // and replace them with calls to __morestack_non_split. 1128 static void switchMorestackCallsToMorestackNonSplit( 1129 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1130 1131 // If the target adjusted a function's prologue, all calls to 1132 // __morestack inside that function should be switched to 1133 // __morestack_non_split. 1134 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1135 if (!moreStackNonSplit) { 1136 error("mixing split-stack objects requires a definition of " 1137 "__morestack_non_split"); 1138 return; 1139 } 1140 1141 // Sort both collections to compare addresses efficiently. 1142 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1143 return l->offset < r->offset; 1144 }); 1145 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1146 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1147 return l->value < r->value; 1148 }); 1149 1150 auto it = morestackCalls.begin(); 1151 for (Defined *f : functions) { 1152 // Find the first call to __morestack within the function. 1153 while (it != morestackCalls.end() && (*it)->offset < f->value) 1154 ++it; 1155 // Adjust all calls inside the function. 1156 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1157 (*it)->sym = moreStackNonSplit; 1158 ++it; 1159 } 1160 } 1161 } 1162 1163 static bool enclosingPrologueAttempted(uint64_t offset, 1164 const DenseSet<Defined *> &prologues) { 1165 for (Defined *f : prologues) 1166 if (f->value <= offset && offset < f->value + f->size) 1167 return true; 1168 return false; 1169 } 1170 1171 // If a function compiled for split stack calls a function not 1172 // compiled for split stack, then the caller needs its prologue 1173 // adjusted to ensure that the called function will have enough stack 1174 // available. Find those functions, and adjust their prologues. 1175 template <class ELFT> 1176 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1177 uint8_t *end) { 1178 DenseSet<Defined *> prologues; 1179 std::vector<Relocation *> morestackCalls; 1180 1181 for (Relocation &rel : relocations) { 1182 // Ignore calls into the split-stack api. 1183 if (rel.sym->getName().startswith("__morestack")) { 1184 if (rel.sym->getName().equals("__morestack")) 1185 morestackCalls.push_back(&rel); 1186 continue; 1187 } 1188 1189 // A relocation to non-function isn't relevant. Sometimes 1190 // __morestack is not marked as a function, so this check comes 1191 // after the name check. 1192 if (rel.sym->type != STT_FUNC) 1193 continue; 1194 1195 // If the callee's-file was compiled with split stack, nothing to do. In 1196 // this context, a "Defined" symbol is one "defined by the binary currently 1197 // being produced". So an "undefined" symbol might be provided by a shared 1198 // library. It is not possible to tell how such symbols were compiled, so be 1199 // conservative. 1200 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1201 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1202 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1203 continue; 1204 1205 if (enclosingPrologueAttempted(rel.offset, prologues)) 1206 continue; 1207 1208 if (Defined *f = getEnclosingFunction(rel.offset)) { 1209 prologues.insert(f); 1210 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1211 f->stOther)) 1212 continue; 1213 if (!getFile<ELFT>()->someNoSplitStack) 1214 error(lld::toString(this) + ": " + f->getName() + 1215 " (with -fsplit-stack) calls " + rel.sym->getName() + 1216 " (without -fsplit-stack), but couldn't adjust its prologue"); 1217 } 1218 } 1219 1220 if (target->needsMoreStackNonSplit) 1221 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1222 } 1223 1224 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1225 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1226 s->writeTo(buf); 1227 return; 1228 } 1229 1230 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1231 return; 1232 // If -r or --emit-relocs is given, then an InputSection 1233 // may be a relocation section. 1234 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1235 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1236 return; 1237 } 1238 if (LLVM_UNLIKELY(type == SHT_REL)) { 1239 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1240 return; 1241 } 1242 1243 // If -r is given, we may have a SHT_GROUP section. 1244 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1245 copyShtGroup<ELFT>(buf); 1246 return; 1247 } 1248 1249 // If this is a compressed section, uncompress section contents directly 1250 // to the buffer. 1251 if (uncompressedSize >= 0) { 1252 size_t size = uncompressedSize; 1253 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1254 fatal(toString(this) + 1255 ": uncompress failed: " + llvm::toString(std::move(e))); 1256 uint8_t *bufEnd = buf + size; 1257 relocate<ELFT>(buf, bufEnd); 1258 return; 1259 } 1260 1261 // Copy section contents from source object file to output file 1262 // and then apply relocations. 1263 memcpy(buf, rawData.data(), rawData.size()); 1264 relocate<ELFT>(buf, buf + rawData.size()); 1265 } 1266 1267 void InputSection::replace(InputSection *other) { 1268 alignment = std::max(alignment, other->alignment); 1269 1270 // When a section is replaced with another section that was allocated to 1271 // another partition, the replacement section (and its associated sections) 1272 // need to be placed in the main partition so that both partitions will be 1273 // able to access it. 1274 if (partition != other->partition) { 1275 partition = 1; 1276 for (InputSection *isec : dependentSections) 1277 isec->partition = 1; 1278 } 1279 1280 other->repl = repl; 1281 other->markDead(); 1282 } 1283 1284 template <class ELFT> 1285 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1286 const typename ELFT::Shdr &header, 1287 StringRef name) 1288 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1289 1290 SyntheticSection *EhInputSection::getParent() const { 1291 return cast_or_null<SyntheticSection>(parent); 1292 } 1293 1294 // Returns the index of the first relocation that points to a region between 1295 // Begin and Begin+Size. 1296 template <class IntTy, class RelTy> 1297 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1298 unsigned &relocI) { 1299 // Start search from RelocI for fast access. That works because the 1300 // relocations are sorted in .eh_frame. 1301 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1302 const RelTy &rel = rels[relocI]; 1303 if (rel.r_offset < begin) 1304 continue; 1305 1306 if (rel.r_offset < begin + size) 1307 return relocI; 1308 return -1; 1309 } 1310 return -1; 1311 } 1312 1313 // .eh_frame is a sequence of CIE or FDE records. 1314 // This function splits an input section into records and returns them. 1315 template <class ELFT> void EhInputSection::split() { 1316 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1317 // getReloc expects the relocations to be sorted by r_offset. See the comment 1318 // in scanRelocs. 1319 if (rels.areRelocsRel()) { 1320 SmallVector<typename ELFT::Rel, 0> storage; 1321 split<ELFT>(sortRels(rels.rels, storage)); 1322 } else { 1323 SmallVector<typename ELFT::Rela, 0> storage; 1324 split<ELFT>(sortRels(rels.relas, storage)); 1325 } 1326 } 1327 1328 template <class ELFT, class RelTy> 1329 void EhInputSection::split(ArrayRef<RelTy> rels) { 1330 ArrayRef<uint8_t> d = rawData; 1331 const char *msg = nullptr; 1332 unsigned relI = 0; 1333 while (!d.empty()) { 1334 if (d.size() < 4) { 1335 msg = "CIE/FDE too small"; 1336 break; 1337 } 1338 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data()); 1339 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, 1340 // but we do not support that format yet. 1341 if (size == UINT32_MAX) { 1342 msg = "CIE/FDE too large"; 1343 break; 1344 } 1345 size += 4; 1346 if (size > d.size()) { 1347 msg = "CIE/FDE ends past the end of the section"; 1348 break; 1349 } 1350 1351 uint64_t off = d.data() - rawData.data(); 1352 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1353 d = d.slice(size); 1354 } 1355 if (msg) 1356 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " + 1357 getObjMsg(d.data() - rawData.data())); 1358 } 1359 1360 static size_t findNull(StringRef s, size_t entSize) { 1361 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1362 const char *b = s.begin() + i; 1363 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1364 return i; 1365 } 1366 llvm_unreachable(""); 1367 } 1368 1369 SyntheticSection *MergeInputSection::getParent() const { 1370 return cast_or_null<SyntheticSection>(parent); 1371 } 1372 1373 // Split SHF_STRINGS section. Such section is a sequence of 1374 // null-terminated strings. 1375 void MergeInputSection::splitStrings(StringRef s, size_t entSize) { 1376 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1377 const char *p = s.data(), *end = s.data() + s.size(); 1378 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) 1379 fatal(toString(this) + ": string is not null terminated"); 1380 if (entSize == 1) { 1381 // Optimize the common case. 1382 do { 1383 size_t size = strlen(p) + 1; 1384 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1385 p += size; 1386 } while (p != end); 1387 } else { 1388 do { 1389 size_t size = findNull(StringRef(p, end - p), entSize) + entSize; 1390 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live); 1391 p += size; 1392 } while (p != end); 1393 } 1394 } 1395 1396 // Split non-SHF_STRINGS section. Such section is a sequence of 1397 // fixed size records. 1398 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1399 size_t entSize) { 1400 size_t size = data.size(); 1401 assert((size % entSize) == 0); 1402 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1403 1404 pieces.resize_for_overwrite(size / entSize); 1405 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1406 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1407 } 1408 1409 template <class ELFT> 1410 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1411 const typename ELFT::Shdr &header, 1412 StringRef name) 1413 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1414 1415 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1416 uint64_t entsize, ArrayRef<uint8_t> data, 1417 StringRef name) 1418 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1419 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1420 1421 // This function is called after we obtain a complete list of input sections 1422 // that need to be linked. This is responsible to split section contents 1423 // into small chunks for further processing. 1424 // 1425 // Note that this function is called from parallelForEach. This must be 1426 // thread-safe (i.e. no memory allocation from the pools). 1427 void MergeInputSection::splitIntoPieces() { 1428 assert(pieces.empty()); 1429 1430 if (flags & SHF_STRINGS) 1431 splitStrings(toStringRef(data()), entsize); 1432 else 1433 splitNonStrings(data(), entsize); 1434 } 1435 1436 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1437 if (this->data().size() <= offset) 1438 fatal(toString(this) + ": offset is outside the section"); 1439 1440 // If Offset is not at beginning of a section piece, it is not in the map. 1441 // In that case we need to do a binary search of the original section piece vector. 1442 auto it = partition_point( 1443 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1444 return &it[-1]; 1445 } 1446 1447 // Returns the offset in an output section for a given input offset. 1448 // Because contents of a mergeable section is not contiguous in output, 1449 // it is not just an addition to a base output offset. 1450 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1451 // If Offset is not at beginning of a section piece, it is not in the map. 1452 // In that case we need to search from the original section piece vector. 1453 const SectionPiece &piece = *getSectionPiece(offset); 1454 uint64_t addend = offset - piece.inputOff; 1455 return piece.outputOff + addend; 1456 } 1457 1458 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1459 StringRef); 1460 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1461 StringRef); 1462 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1463 StringRef); 1464 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1465 StringRef); 1466 1467 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1468 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1469 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1470 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1471 1472 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1473 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1474 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1475 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1476 1477 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1478 const ELF32LE::Shdr &, StringRef); 1479 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1480 const ELF32BE::Shdr &, StringRef); 1481 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1482 const ELF64LE::Shdr &, StringRef); 1483 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1484 const ELF64BE::Shdr &, StringRef); 1485 1486 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1487 const ELF32LE::Shdr &, StringRef); 1488 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1489 const ELF32BE::Shdr &, StringRef); 1490 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1491 const ELF64LE::Shdr &, StringRef); 1492 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1493 const ELF64BE::Shdr &, StringRef); 1494 1495 template void EhInputSection::split<ELF32LE>(); 1496 template void EhInputSection::split<ELF32BE>(); 1497 template void EhInputSection::split<ELF64LE>(); 1498 template void EhInputSection::split<ELF64BE>(); 1499