1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 numRelocations = 0; 74 areRelocsRela = false; 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraints. 78 uint32_t v = std::max<uint32_t>(alignment, 1); 79 if (!isPowerOf2_64(v)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->alignment = v; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(file) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 switch (config->ekind) { 92 case ELF32LEKind: 93 parseCompressedHeader<ELF32LE>(); 94 break; 95 case ELF32BEKind: 96 parseCompressedHeader<ELF32BE>(); 97 break; 98 case ELF64LEKind: 99 parseCompressedHeader<ELF64LE>(); 100 break; 101 case ELF64BEKind: 102 parseCompressedHeader<ELF64BE>(); 103 break; 104 default: 105 llvm_unreachable("unknown ELFT"); 106 } 107 } 108 } 109 110 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 111 // SHF_GROUP is a marker that a section belongs to some comdat group. 112 // That flag doesn't make sense in an executable. 113 static uint64_t getFlags(uint64_t flags) { 114 flags &= ~(uint64_t)SHF_INFO_LINK; 115 if (!config->relocatable) 116 flags &= ~(uint64_t)SHF_GROUP; 117 return flags; 118 } 119 120 template <class ELFT> 121 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 122 const typename ELFT::Shdr &hdr, 123 StringRef name, Kind sectionKind) 124 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 125 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 126 hdr.sh_addralign, getSectionContents(file, hdr), name, 127 sectionKind) { 128 // We reject object files having insanely large alignments even though 129 // they are allowed by the spec. I think 4GB is a reasonable limitation. 130 // We might want to relax this in the future. 131 if (hdr.sh_addralign > UINT32_MAX) 132 fatal(toString(&file) + ": section sh_addralign is too large"); 133 } 134 135 size_t InputSectionBase::getSize() const { 136 if (auto *s = dyn_cast<SyntheticSection>(this)) 137 return s->getSize(); 138 if (uncompressedSize >= 0) 139 return uncompressedSize; 140 return rawData.size() - bytesDropped; 141 } 142 143 void InputSectionBase::uncompress() const { 144 size_t size = uncompressedSize; 145 char *uncompressedBuf; 146 { 147 static std::mutex mu; 148 std::lock_guard<std::mutex> lock(mu); 149 uncompressedBuf = bAlloc.Allocate<char>(size); 150 } 151 152 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 153 fatal(toString(this) + 154 ": uncompress failed: " + llvm::toString(std::move(e))); 155 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 156 uncompressedSize = -1; 157 } 158 159 uint64_t InputSectionBase::getOffsetInFile() const { 160 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); 161 const uint8_t *secStart = data().begin(); 162 return secStart - fileStart; 163 } 164 165 uint64_t SectionBase::getOffset(uint64_t offset) const { 166 switch (kind()) { 167 case Output: { 168 auto *os = cast<OutputSection>(this); 169 // For output sections we treat offset -1 as the end of the section. 170 return offset == uint64_t(-1) ? os->size : offset; 171 } 172 case Regular: 173 case Synthetic: 174 return cast<InputSection>(this)->getOffset(offset); 175 case EHFrame: 176 // The file crtbeginT.o has relocations pointing to the start of an empty 177 // .eh_frame that is known to be the first in the link. It does that to 178 // identify the start of the output .eh_frame. 179 return offset; 180 case Merge: 181 const MergeInputSection *ms = cast<MergeInputSection>(this); 182 if (InputSection *isec = ms->getParent()) 183 return isec->getOffset(ms->getParentOffset(offset)); 184 return ms->getParentOffset(offset); 185 } 186 llvm_unreachable("invalid section kind"); 187 } 188 189 uint64_t SectionBase::getVA(uint64_t offset) const { 190 const OutputSection *out = getOutputSection(); 191 return (out ? out->addr : 0) + getOffset(offset); 192 } 193 194 OutputSection *SectionBase::getOutputSection() { 195 InputSection *sec; 196 if (auto *isec = dyn_cast<InputSection>(this)) 197 sec = isec; 198 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 199 sec = ms->getParent(); 200 else if (auto *eh = dyn_cast<EhInputSection>(this)) 201 sec = eh->getParent(); 202 else 203 return cast<OutputSection>(this); 204 return sec ? sec->getParent() : nullptr; 205 } 206 207 // When a section is compressed, `rawData` consists with a header followed 208 // by zlib-compressed data. This function parses a header to initialize 209 // `uncompressedSize` member and remove the header from `rawData`. 210 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 211 // Old-style header 212 if (name.startswith(".zdebug")) { 213 if (!toStringRef(rawData).startswith("ZLIB")) { 214 error(toString(this) + ": corrupted compressed section header"); 215 return; 216 } 217 rawData = rawData.slice(4); 218 219 if (rawData.size() < 8) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 224 uncompressedSize = read64be(rawData.data()); 225 rawData = rawData.slice(8); 226 227 // Restore the original section name. 228 // (e.g. ".zdebug_info" -> ".debug_info") 229 name = saver.save("." + name.substr(2)); 230 return; 231 } 232 233 assert(flags & SHF_COMPRESSED); 234 flags &= ~(uint64_t)SHF_COMPRESSED; 235 236 // New-style header 237 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 238 error(toString(this) + ": corrupted compressed section"); 239 return; 240 } 241 242 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 243 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 244 error(toString(this) + ": unsupported compression type"); 245 return; 246 } 247 248 uncompressedSize = hdr->ch_size; 249 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 250 rawData = rawData.slice(sizeof(*hdr)); 251 } 252 253 InputSection *InputSectionBase::getLinkOrderDep() const { 254 assert(flags & SHF_LINK_ORDER); 255 if (!link) 256 return nullptr; 257 return cast<InputSection>(file->getSections()[link]); 258 } 259 260 // Find a function symbol that encloses a given location. 261 template <class ELFT> 262 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 263 for (Symbol *b : file->getSymbols()) 264 if (Defined *d = dyn_cast<Defined>(b)) 265 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 266 offset < d->value + d->size) 267 return d; 268 return nullptr; 269 } 270 271 // Returns a source location string. Used to construct an error message. 272 template <class ELFT> 273 std::string InputSectionBase::getLocation(uint64_t offset) { 274 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); 275 276 // We don't have file for synthetic sections. 277 if (getFile<ELFT>() == nullptr) 278 return (config->outputFile + ":(" + secAndOffset + ")") 279 .str(); 280 281 // First check if we can get desired values from debugging information. 282 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) 283 return info->FileName + ":" + std::to_string(info->Line) + ":(" + 284 secAndOffset + ")"; 285 286 // File->sourceFile contains STT_FILE symbol that contains a 287 // source file name. If it's missing, we use an object file name. 288 std::string srcFile = std::string(getFile<ELFT>()->sourceFile); 289 if (srcFile.empty()) 290 srcFile = toString(file); 291 292 if (Defined *d = getEnclosingFunction<ELFT>(offset)) 293 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; 294 295 // If there's no symbol, print out the offset in the section. 296 return (srcFile + ":(" + secAndOffset + ")"); 297 } 298 299 // This function is intended to be used for constructing an error message. 300 // The returned message looks like this: 301 // 302 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 303 // 304 // Returns an empty string if there's no way to get line info. 305 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 306 return file->getSrcMsg(sym, *this, offset); 307 } 308 309 // Returns a filename string along with an optional section name. This 310 // function is intended to be used for constructing an error 311 // message. The returned message looks like this: 312 // 313 // path/to/foo.o:(function bar) 314 // 315 // or 316 // 317 // path/to/foo.o:(function bar) in archive path/to/bar.a 318 std::string InputSectionBase::getObjMsg(uint64_t off) { 319 std::string filename = std::string(file->getName()); 320 321 std::string archive; 322 if (!file->archiveName.empty()) 323 archive = " in archive " + file->archiveName; 324 325 // Find a symbol that encloses a given location. 326 for (Symbol *b : file->getSymbols()) 327 if (auto *d = dyn_cast<Defined>(b)) 328 if (d->section == this && d->value <= off && off < d->value + d->size) 329 return filename + ":(" + toString(*d) + ")" + archive; 330 331 // If there's no symbol, print out the offset in the section. 332 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 333 .str(); 334 } 335 336 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 337 338 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 339 uint32_t alignment, ArrayRef<uint8_t> data, 340 StringRef name, Kind k) 341 : InputSectionBase(f, flags, type, 342 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 343 name, k) {} 344 345 template <class ELFT> 346 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 347 StringRef name) 348 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 349 350 bool InputSection::classof(const SectionBase *s) { 351 return s->kind() == SectionBase::Regular || 352 s->kind() == SectionBase::Synthetic; 353 } 354 355 OutputSection *InputSection::getParent() const { 356 return cast_or_null<OutputSection>(parent); 357 } 358 359 // Copy SHT_GROUP section contents. Used only for the -r option. 360 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 361 // ELFT::Word is the 32-bit integral type in the target endianness. 362 using u32 = typename ELFT::Word; 363 ArrayRef<u32> from = getDataAs<u32>(); 364 auto *to = reinterpret_cast<u32 *>(buf); 365 366 // The first entry is not a section number but a flag. 367 *to++ = from[0]; 368 369 // Adjust section numbers because section numbers in an input object files are 370 // different in the output. We also need to handle combined or discarded 371 // members. 372 ArrayRef<InputSectionBase *> sections = file->getSections(); 373 std::unordered_set<uint32_t> seen; 374 for (uint32_t idx : from.slice(1)) { 375 OutputSection *osec = sections[idx]->getOutputSection(); 376 if (osec && seen.insert(osec->sectionIndex).second) 377 *to++ = osec->sectionIndex; 378 } 379 } 380 381 InputSectionBase *InputSection::getRelocatedSection() const { 382 if (!file || (type != SHT_RELA && type != SHT_REL)) 383 return nullptr; 384 ArrayRef<InputSectionBase *> sections = file->getSections(); 385 return sections[info]; 386 } 387 388 // This is used for -r and --emit-relocs. We can't use memcpy to copy 389 // relocations because we need to update symbol table offset and section index 390 // for each relocation. So we copy relocations one by one. 391 template <class ELFT, class RelTy> 392 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 393 InputSectionBase *sec = getRelocatedSection(); 394 395 for (const RelTy &rel : rels) { 396 RelType type = rel.getType(config->isMips64EL); 397 const ObjFile<ELFT> *file = getFile<ELFT>(); 398 Symbol &sym = file->getRelocTargetSym(rel); 399 400 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 401 buf += sizeof(RelTy); 402 403 if (RelTy::IsRela) 404 p->r_addend = getAddend<ELFT>(rel); 405 406 // Output section VA is zero for -r, so r_offset is an offset within the 407 // section, but for --emit-relocs it is a virtual address. 408 p->r_offset = sec->getVA(rel.r_offset); 409 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 410 config->isMips64EL); 411 412 if (sym.type == STT_SECTION) { 413 // We combine multiple section symbols into only one per 414 // section. This means we have to update the addend. That is 415 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 416 // section data. We do that by adding to the Relocation vector. 417 418 // .eh_frame is horribly special and can reference discarded sections. To 419 // avoid having to parse and recreate .eh_frame, we just replace any 420 // relocation in it pointing to discarded sections with R_*_NONE, which 421 // hopefully creates a frame that is ignored at runtime. Also, don't warn 422 // on .gcc_except_table and debug sections. 423 // 424 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 425 auto *d = dyn_cast<Defined>(&sym); 426 if (!d) { 427 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 428 sec->name != ".gcc_except_table" && sec->name != ".got2" && 429 sec->name != ".toc") { 430 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 431 Elf_Shdr_Impl<ELFT> sec = 432 CHECK(file->getObj().sections(), file)[secIdx]; 433 warn("relocation refers to a discarded section: " + 434 CHECK(file->getObj().getSectionName(sec), file) + 435 "\n>>> referenced by " + getObjMsg(p->r_offset)); 436 } 437 p->setSymbolAndType(0, 0, false); 438 continue; 439 } 440 SectionBase *section = d->section->repl; 441 if (!section->isLive()) { 442 p->setSymbolAndType(0, 0, false); 443 continue; 444 } 445 446 int64_t addend = getAddend<ELFT>(rel); 447 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 448 if (!RelTy::IsRela) 449 addend = target->getImplicitAddend(bufLoc, type); 450 451 if (config->emachine == EM_MIPS && 452 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 453 // Some MIPS relocations depend on "gp" value. By default, 454 // this value has 0x7ff0 offset from a .got section. But 455 // relocatable files produced by a compiler or a linker 456 // might redefine this default value and we must use it 457 // for a calculation of the relocation result. When we 458 // generate EXE or DSO it's trivial. Generating a relocatable 459 // output is more difficult case because the linker does 460 // not calculate relocations in this mode and loses 461 // individual "gp" values used by each input object file. 462 // As a workaround we add the "gp" value to the relocation 463 // addend and save it back to the file. 464 addend += sec->getFile<ELFT>()->mipsGp0; 465 } 466 467 if (RelTy::IsRela) 468 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 469 else if (config->relocatable && type != target->noneRel) 470 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 471 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 472 p->r_addend >= 0x8000) { 473 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 474 // indicates that r30 is relative to the input section .got2 475 // (r_addend>=0x8000), after linking, r30 should be relative to the output 476 // section .got2 . To compensate for the shift, adjust r_addend by 477 // ppc32Got2OutSecOff. 478 p->r_addend += sec->file->ppc32Got2OutSecOff; 479 } 480 } 481 } 482 483 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 484 // references specially. The general rule is that the value of the symbol in 485 // this context is the address of the place P. A further special case is that 486 // branch relocations to an undefined weak reference resolve to the next 487 // instruction. 488 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 489 uint32_t p) { 490 switch (type) { 491 // Unresolved branch relocations to weak references resolve to next 492 // instruction, this will be either 2 or 4 bytes on from P. 493 case R_ARM_THM_JUMP11: 494 return p + 2 + a; 495 case R_ARM_CALL: 496 case R_ARM_JUMP24: 497 case R_ARM_PC24: 498 case R_ARM_PLT32: 499 case R_ARM_PREL31: 500 case R_ARM_THM_JUMP19: 501 case R_ARM_THM_JUMP24: 502 return p + 4 + a; 503 case R_ARM_THM_CALL: 504 // We don't want an interworking BLX to ARM 505 return p + 5 + a; 506 // Unresolved non branch pc-relative relocations 507 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 508 // targets a weak-reference. 509 case R_ARM_MOVW_PREL_NC: 510 case R_ARM_MOVT_PREL: 511 case R_ARM_REL32: 512 case R_ARM_THM_ALU_PREL_11_0: 513 case R_ARM_THM_MOVW_PREL_NC: 514 case R_ARM_THM_MOVT_PREL: 515 case R_ARM_THM_PC12: 516 return p + a; 517 // p + a is unrepresentable as negative immediates can't be encoded. 518 case R_ARM_THM_PC8: 519 return p; 520 } 521 llvm_unreachable("ARM pc-relative relocation expected\n"); 522 } 523 524 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 525 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 526 switch (type) { 527 // Unresolved branch relocations to weak references resolve to next 528 // instruction, this is 4 bytes on from P. 529 case R_AARCH64_CALL26: 530 case R_AARCH64_CONDBR19: 531 case R_AARCH64_JUMP26: 532 case R_AARCH64_TSTBR14: 533 return p + 4; 534 // Unresolved non branch pc-relative relocations 535 case R_AARCH64_PREL16: 536 case R_AARCH64_PREL32: 537 case R_AARCH64_PREL64: 538 case R_AARCH64_ADR_PREL_LO21: 539 case R_AARCH64_LD_PREL_LO19: 540 case R_AARCH64_PLT32: 541 return p; 542 } 543 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 544 } 545 546 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 547 switch (type) { 548 case R_RISCV_BRANCH: 549 case R_RISCV_JAL: 550 case R_RISCV_CALL: 551 case R_RISCV_CALL_PLT: 552 case R_RISCV_RVC_BRANCH: 553 case R_RISCV_RVC_JUMP: 554 return p; 555 default: 556 return 0; 557 } 558 } 559 560 // ARM SBREL relocations are of the form S + A - B where B is the static base 561 // The ARM ABI defines base to be "addressing origin of the output segment 562 // defining the symbol S". We defined the "addressing origin"/static base to be 563 // the base of the PT_LOAD segment containing the Sym. 564 // The procedure call standard only defines a Read Write Position Independent 565 // RWPI variant so in practice we should expect the static base to be the base 566 // of the RW segment. 567 static uint64_t getARMStaticBase(const Symbol &sym) { 568 OutputSection *os = sym.getOutputSection(); 569 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 570 fatal("SBREL relocation to " + sym.getName() + " without static base"); 571 return os->ptLoad->firstSec->addr; 572 } 573 574 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 575 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 576 // is calculated using PCREL_HI20's symbol. 577 // 578 // This function returns the R_RISCV_PCREL_HI20 relocation from 579 // R_RISCV_PCREL_LO12's symbol and addend. 580 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 581 const Defined *d = cast<Defined>(sym); 582 if (!d->section) { 583 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 584 sym->getName()); 585 return nullptr; 586 } 587 InputSection *isec = cast<InputSection>(d->section); 588 589 if (addend != 0) 590 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 591 isec->getObjMsg(d->value) + " is ignored"); 592 593 // Relocations are sorted by offset, so we can use std::equal_range to do 594 // binary search. 595 Relocation r; 596 r.offset = d->value; 597 auto range = 598 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 599 [](const Relocation &lhs, const Relocation &rhs) { 600 return lhs.offset < rhs.offset; 601 }); 602 603 for (auto it = range.first; it != range.second; ++it) 604 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 605 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 606 return &*it; 607 608 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 609 " without an associated R_RISCV_PCREL_HI20 relocation"); 610 return nullptr; 611 } 612 613 // A TLS symbol's virtual address is relative to the TLS segment. Add a 614 // target-specific adjustment to produce a thread-pointer-relative offset. 615 static int64_t getTlsTpOffset(const Symbol &s) { 616 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 617 if (&s == ElfSym::tlsModuleBase) 618 return 0; 619 620 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 621 // while most others use Variant 1. At run time TP will be aligned to p_align. 622 623 // Variant 1. TP will be followed by an optional gap (which is the size of 2 624 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 625 // padding, then the static TLS blocks. The alignment padding is added so that 626 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 627 // 628 // Variant 2. Static TLS blocks, followed by alignment padding are placed 629 // before TP. The alignment padding is added so that (TP - padding - 630 // p_memsz) is congruent to p_vaddr modulo p_align. 631 PhdrEntry *tls = Out::tlsPhdr; 632 switch (config->emachine) { 633 // Variant 1. 634 case EM_ARM: 635 case EM_AARCH64: 636 return s.getVA(0) + config->wordsize * 2 + 637 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 638 case EM_MIPS: 639 case EM_PPC: 640 case EM_PPC64: 641 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 642 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 643 // data and 0xf000 of the program's TLS segment. 644 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 645 case EM_RISCV: 646 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 647 648 // Variant 2. 649 case EM_HEXAGON: 650 case EM_SPARCV9: 651 case EM_386: 652 case EM_X86_64: 653 return s.getVA(0) - tls->p_memsz - 654 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 655 default: 656 llvm_unreachable("unhandled Config->EMachine"); 657 } 658 } 659 660 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 661 int64_t a, uint64_t p, 662 const Symbol &sym, RelExpr expr) { 663 switch (expr) { 664 case R_ABS: 665 case R_DTPREL: 666 case R_RELAX_TLS_LD_TO_LE_ABS: 667 case R_RELAX_GOT_PC_NOPIC: 668 case R_RISCV_ADD: 669 return sym.getVA(a); 670 case R_ADDEND: 671 return a; 672 case R_ARM_SBREL: 673 return sym.getVA(a) - getARMStaticBase(sym); 674 case R_GOT: 675 case R_RELAX_TLS_GD_TO_IE_ABS: 676 return sym.getGotVA() + a; 677 case R_GOTONLY_PC: 678 return in.got->getVA() + a - p; 679 case R_GOTPLTONLY_PC: 680 return in.gotPlt->getVA() + a - p; 681 case R_GOTREL: 682 case R_PPC64_RELAX_TOC: 683 return sym.getVA(a) - in.got->getVA(); 684 case R_GOTPLTREL: 685 return sym.getVA(a) - in.gotPlt->getVA(); 686 case R_GOTPLT: 687 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 688 return sym.getGotVA() + a - in.gotPlt->getVA(); 689 case R_TLSLD_GOT_OFF: 690 case R_GOT_OFF: 691 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 692 return sym.getGotOffset() + a; 693 case R_AARCH64_GOT_PAGE_PC: 694 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 695 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 696 case R_AARCH64_GOT_PAGE: 697 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 698 case R_GOT_PC: 699 case R_RELAX_TLS_GD_TO_IE: 700 return sym.getGotVA() + a - p; 701 case R_MIPS_GOTREL: 702 return sym.getVA(a) - in.mipsGot->getGp(file); 703 case R_MIPS_GOT_GP: 704 return in.mipsGot->getGp(file) + a; 705 case R_MIPS_GOT_GP_PC: { 706 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 707 // is _gp_disp symbol. In that case we should use the following 708 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 709 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 710 // microMIPS variants of these relocations use slightly different 711 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 712 // to correctly handle less-significant bit of the microMIPS symbol. 713 uint64_t v = in.mipsGot->getGp(file) + a - p; 714 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 715 v += 4; 716 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 717 v -= 1; 718 return v; 719 } 720 case R_MIPS_GOT_LOCAL_PAGE: 721 // If relocation against MIPS local symbol requires GOT entry, this entry 722 // should be initialized by 'page address'. This address is high 16-bits 723 // of sum the symbol's value and the addend. 724 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 725 in.mipsGot->getGp(file); 726 case R_MIPS_GOT_OFF: 727 case R_MIPS_GOT_OFF32: 728 // In case of MIPS if a GOT relocation has non-zero addend this addend 729 // should be applied to the GOT entry content not to the GOT entry offset. 730 // That is why we use separate expression type. 731 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 732 in.mipsGot->getGp(file); 733 case R_MIPS_TLSGD: 734 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 735 in.mipsGot->getGp(file); 736 case R_MIPS_TLSLD: 737 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 738 in.mipsGot->getGp(file); 739 case R_AARCH64_PAGE_PC: { 740 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 741 return getAArch64Page(val) - getAArch64Page(p); 742 } 743 case R_RISCV_PC_INDIRECT: { 744 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 745 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 746 *hiRel->sym, hiRel->expr); 747 return 0; 748 } 749 case R_PC: 750 case R_ARM_PCA: { 751 uint64_t dest; 752 if (expr == R_ARM_PCA) 753 // Some PC relative ARM (Thumb) relocations align down the place. 754 p = p & 0xfffffffc; 755 if (sym.isUndefWeak()) { 756 // On ARM and AArch64 a branch to an undefined weak resolves to the next 757 // instruction, otherwise the place. On RISCV, resolve an undefined weak 758 // to the same instruction to cause an infinite loop (making the user 759 // aware of the issue) while ensuring no overflow. 760 if (config->emachine == EM_ARM) 761 dest = getARMUndefinedRelativeWeakVA(type, a, p); 762 else if (config->emachine == EM_AARCH64) 763 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 764 else if (config->emachine == EM_PPC) 765 dest = p; 766 else if (config->emachine == EM_RISCV) 767 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 768 else 769 dest = sym.getVA(a); 770 } else { 771 dest = sym.getVA(a); 772 } 773 return dest - p; 774 } 775 case R_PLT: 776 return sym.getPltVA() + a; 777 case R_PLT_PC: 778 case R_PPC64_CALL_PLT: 779 return sym.getPltVA() + a - p; 780 case R_PLT_GOTPLT: 781 return sym.getPltVA() + a - in.gotPlt->getVA(); 782 case R_PPC32_PLTREL: 783 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 784 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 785 // target VA computation. 786 return sym.getPltVA() - p; 787 case R_PPC64_CALL: { 788 uint64_t symVA = sym.getVA(a); 789 // If we have an undefined weak symbol, we might get here with a symbol 790 // address of zero. That could overflow, but the code must be unreachable, 791 // so don't bother doing anything at all. 792 if (!symVA) 793 return 0; 794 795 // PPC64 V2 ABI describes two entry points to a function. The global entry 796 // point is used for calls where the caller and callee (may) have different 797 // TOC base pointers and r2 needs to be modified to hold the TOC base for 798 // the callee. For local calls the caller and callee share the same 799 // TOC base and so the TOC pointer initialization code should be skipped by 800 // branching to the local entry point. 801 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 802 } 803 case R_PPC64_TOCBASE: 804 return getPPC64TocBase() + a; 805 case R_RELAX_GOT_PC: 806 case R_PPC64_RELAX_GOT_PC: 807 return sym.getVA(a) - p; 808 case R_RELAX_TLS_GD_TO_LE: 809 case R_RELAX_TLS_IE_TO_LE: 810 case R_RELAX_TLS_LD_TO_LE: 811 case R_TPREL: 812 // It is not very clear what to return if the symbol is undefined. With 813 // --noinhibit-exec, even a non-weak undefined reference may reach here. 814 // Just return A, which matches R_ABS, and the behavior of some dynamic 815 // loaders. 816 if (sym.isUndefined() || sym.isLazy()) 817 return a; 818 return getTlsTpOffset(sym) + a; 819 case R_RELAX_TLS_GD_TO_LE_NEG: 820 case R_TPREL_NEG: 821 if (sym.isUndefined()) 822 return a; 823 return -getTlsTpOffset(sym) + a; 824 case R_SIZE: 825 return sym.getSize() + a; 826 case R_TLSDESC: 827 return in.got->getGlobalDynAddr(sym) + a; 828 case R_TLSDESC_PC: 829 return in.got->getGlobalDynAddr(sym) + a - p; 830 case R_AARCH64_TLSDESC_PAGE: 831 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 832 getAArch64Page(p); 833 case R_TLSGD_GOT: 834 return in.got->getGlobalDynOffset(sym) + a; 835 case R_TLSGD_GOTPLT: 836 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 837 case R_TLSGD_PC: 838 return in.got->getGlobalDynAddr(sym) + a - p; 839 case R_TLSLD_GOTPLT: 840 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 841 case R_TLSLD_GOT: 842 return in.got->getTlsIndexOff() + a; 843 case R_TLSLD_PC: 844 return in.got->getTlsIndexVA() + a - p; 845 default: 846 llvm_unreachable("invalid expression"); 847 } 848 } 849 850 // This function applies relocations to sections without SHF_ALLOC bit. 851 // Such sections are never mapped to memory at runtime. Debug sections are 852 // an example. Relocations in non-alloc sections are much easier to 853 // handle than in allocated sections because it will never need complex 854 // treatment such as GOT or PLT (because at runtime no one refers them). 855 // So, we handle relocations for non-alloc sections directly in this 856 // function as a performance optimization. 857 template <class ELFT, class RelTy> 858 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 859 const unsigned bits = sizeof(typename ELFT::uint) * 8; 860 const bool isDebug = isDebugSection(*this); 861 const bool isDebugLocOrRanges = 862 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 863 const bool isDebugLine = isDebug && name == ".debug_line"; 864 Optional<uint64_t> tombstone; 865 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 866 if (patAndValue.first.match(this->name)) { 867 tombstone = patAndValue.second; 868 break; 869 } 870 871 for (const RelTy &rel : rels) { 872 RelType type = rel.getType(config->isMips64EL); 873 874 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 875 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 876 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 877 // need to keep this bug-compatible code for a while. 878 if (config->emachine == EM_386 && type == R_386_GOTPC) 879 continue; 880 881 uint64_t offset = rel.r_offset; 882 uint8_t *bufLoc = buf + offset; 883 int64_t addend = getAddend<ELFT>(rel); 884 if (!RelTy::IsRela) 885 addend += target->getImplicitAddend(bufLoc, type); 886 887 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 888 RelExpr expr = target->getRelExpr(type, sym, bufLoc); 889 if (expr == R_NONE) 890 continue; 891 892 if (expr == R_SIZE) { 893 target->relocateNoSym(bufLoc, type, 894 SignExtend64<bits>(sym.getSize() + addend)); 895 continue; 896 } 897 898 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 899 // sections. 900 if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL && 901 expr != R_RISCV_ADD) { 902 std::string msg = getLocation<ELFT>(offset) + 903 ": has non-ABS relocation " + toString(type) + 904 " against symbol '" + toString(sym) + "'"; 905 if (expr != R_PC && expr != R_ARM_PCA) { 906 error(msg); 907 return; 908 } 909 910 // If the control reaches here, we found a PC-relative relocation in a 911 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 912 // at runtime, the notion of PC-relative doesn't make sense here. So, 913 // this is a usage error. However, GNU linkers historically accept such 914 // relocations without any errors and relocate them as if they were at 915 // address 0. For bug-compatibilty, we accept them with warnings. We 916 // know Steel Bank Common Lisp as of 2018 have this bug. 917 warn(msg); 918 target->relocateNoSym( 919 bufLoc, type, 920 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 921 continue; 922 } 923 924 if (tombstone || 925 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) { 926 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 927 // folded section symbols) to a tombstone value. Resolving to addend is 928 // unsatisfactory because the result address range may collide with a 929 // valid range of low address, or leave multiple CUs claiming ownership of 930 // the same range of code, which may confuse consumers. 931 // 932 // To address the problems, we use -1 as a tombstone value for most 933 // .debug_* sections. We have to ignore the addend because we don't want 934 // to resolve an address attribute (which may have a non-zero addend) to 935 // -1+addend (wrap around to a low address). 936 // 937 // R_DTPREL type relocations represent an offset into the dynamic thread 938 // vector. The computed value is st_value plus a non-negative offset. 939 // Negative values are invalid, so -1 can be used as the tombstone value. 940 // 941 // If the referenced symbol is discarded (made Undefined), or the 942 // section defining the referenced symbol is garbage collected, 943 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section` 944 // catches the ICF folded case. However, resolving a relocation in 945 // .debug_line to -1 would stop debugger users from setting breakpoints on 946 // the folded-in function, so exclude .debug_line. 947 // 948 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 949 // (base address selection entry), use 1 (which is used by GNU ld for 950 // .debug_ranges). 951 // 952 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 953 // value. Enable -1 in a future release. 954 auto *ds = dyn_cast<Defined>(&sym); 955 if (!sym.getOutputSection() || 956 (ds && ds->section->repl != ds->section && !isDebugLine)) { 957 // If -z dead-reloc-in-nonalloc= is specified, respect it. 958 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 959 : (isDebugLocOrRanges ? 1 : 0); 960 target->relocateNoSym(bufLoc, type, value); 961 continue; 962 } 963 } 964 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 965 } 966 } 967 968 // This is used when '-r' is given. 969 // For REL targets, InputSection::copyRelocations() may store artificial 970 // relocations aimed to update addends. They are handled in relocateAlloc() 971 // for allocatable sections, and this function does the same for 972 // non-allocatable sections, such as sections with debug information. 973 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 974 const unsigned bits = config->is64 ? 64 : 32; 975 976 for (const Relocation &rel : sec->relocations) { 977 // InputSection::copyRelocations() adds only R_ABS relocations. 978 assert(rel.expr == R_ABS); 979 uint8_t *bufLoc = buf + rel.offset; 980 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 981 target->relocate(bufLoc, rel, targetVA); 982 } 983 } 984 985 template <class ELFT> 986 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 987 if (flags & SHF_EXECINSTR) 988 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 989 990 if (flags & SHF_ALLOC) { 991 relocateAlloc(buf, bufEnd); 992 return; 993 } 994 995 auto *sec = cast<InputSection>(this); 996 if (config->relocatable) 997 relocateNonAllocForRelocatable(sec, buf); 998 else if (sec->areRelocsRela) 999 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); 1000 else 1001 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); 1002 } 1003 1004 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1005 assert(flags & SHF_ALLOC); 1006 const unsigned bits = config->wordsize * 8; 1007 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1008 1009 for (const Relocation &rel : relocations) { 1010 if (rel.expr == R_NONE) 1011 continue; 1012 uint64_t offset = rel.offset; 1013 uint8_t *bufLoc = buf + offset; 1014 RelType type = rel.type; 1015 1016 uint64_t addrLoc = getOutputSection()->addr + offset; 1017 if (auto *sec = dyn_cast<InputSection>(this)) 1018 addrLoc += sec->outSecOff; 1019 RelExpr expr = rel.expr; 1020 uint64_t targetVA = SignExtend64( 1021 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), 1022 bits); 1023 1024 switch (expr) { 1025 case R_RELAX_GOT_PC: 1026 case R_RELAX_GOT_PC_NOPIC: 1027 target->relaxGot(bufLoc, rel, targetVA); 1028 break; 1029 case R_PPC64_RELAX_GOT_PC: { 1030 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1031 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1032 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1033 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1034 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1035 // and only relax the other if the saved offset matches. 1036 if (type == R_PPC64_GOT_PCREL34) 1037 lastPPCRelaxedRelocOff = offset; 1038 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1039 break; 1040 target->relaxGot(bufLoc, rel, targetVA); 1041 break; 1042 } 1043 case R_PPC64_RELAX_TOC: 1044 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1045 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1046 // entry, there may be R_PPC64_TOC16_HA not paired with 1047 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1048 // opportunities but is safe. 1049 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1050 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1051 target->relocate(bufLoc, rel, targetVA); 1052 break; 1053 case R_RELAX_TLS_IE_TO_LE: 1054 target->relaxTlsIeToLe(bufLoc, rel, targetVA); 1055 break; 1056 case R_RELAX_TLS_LD_TO_LE: 1057 case R_RELAX_TLS_LD_TO_LE_ABS: 1058 target->relaxTlsLdToLe(bufLoc, rel, targetVA); 1059 break; 1060 case R_RELAX_TLS_GD_TO_LE: 1061 case R_RELAX_TLS_GD_TO_LE_NEG: 1062 target->relaxTlsGdToLe(bufLoc, rel, targetVA); 1063 break; 1064 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1065 case R_RELAX_TLS_GD_TO_IE: 1066 case R_RELAX_TLS_GD_TO_IE_ABS: 1067 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1068 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1069 target->relaxTlsGdToIe(bufLoc, rel, targetVA); 1070 break; 1071 case R_PPC64_CALL: 1072 // If this is a call to __tls_get_addr, it may be part of a TLS 1073 // sequence that has been relaxed and turned into a nop. In this 1074 // case, we don't want to handle it as a call. 1075 if (read32(bufLoc) == 0x60000000) // nop 1076 break; 1077 1078 // Patch a nop (0x60000000) to a ld. 1079 if (rel.sym->needsTocRestore) { 1080 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1081 // recursive calls even if the function is preemptible. This is not 1082 // wrong in the common case where the function is not preempted at 1083 // runtime. Just ignore. 1084 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1085 rel.sym->file != file) { 1086 // Use substr(6) to remove the "__plt_" prefix. 1087 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1088 lld::toString(*rel.sym).substr(6) + 1089 " lacks nop, can't restore toc"); 1090 break; 1091 } 1092 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1093 } 1094 target->relocate(bufLoc, rel, targetVA); 1095 break; 1096 default: 1097 target->relocate(bufLoc, rel, targetVA); 1098 break; 1099 } 1100 } 1101 1102 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1103 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1104 // insn. This is primarily used to relax and optimize jumps created with 1105 // basic block sections. 1106 if (isa<InputSection>(this)) { 1107 for (const JumpInstrMod &jumpMod : jumpInstrMods) { 1108 uint64_t offset = jumpMod.offset; 1109 uint8_t *bufLoc = buf + offset; 1110 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size); 1111 } 1112 } 1113 } 1114 1115 // For each function-defining prologue, find any calls to __morestack, 1116 // and replace them with calls to __morestack_non_split. 1117 static void switchMorestackCallsToMorestackNonSplit( 1118 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1119 1120 // If the target adjusted a function's prologue, all calls to 1121 // __morestack inside that function should be switched to 1122 // __morestack_non_split. 1123 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1124 if (!moreStackNonSplit) { 1125 error("Mixing split-stack objects requires a definition of " 1126 "__morestack_non_split"); 1127 return; 1128 } 1129 1130 // Sort both collections to compare addresses efficiently. 1131 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1132 return l->offset < r->offset; 1133 }); 1134 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1135 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1136 return l->value < r->value; 1137 }); 1138 1139 auto it = morestackCalls.begin(); 1140 for (Defined *f : functions) { 1141 // Find the first call to __morestack within the function. 1142 while (it != morestackCalls.end() && (*it)->offset < f->value) 1143 ++it; 1144 // Adjust all calls inside the function. 1145 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1146 (*it)->sym = moreStackNonSplit; 1147 ++it; 1148 } 1149 } 1150 } 1151 1152 static bool enclosingPrologueAttempted(uint64_t offset, 1153 const DenseSet<Defined *> &prologues) { 1154 for (Defined *f : prologues) 1155 if (f->value <= offset && offset < f->value + f->size) 1156 return true; 1157 return false; 1158 } 1159 1160 // If a function compiled for split stack calls a function not 1161 // compiled for split stack, then the caller needs its prologue 1162 // adjusted to ensure that the called function will have enough stack 1163 // available. Find those functions, and adjust their prologues. 1164 template <class ELFT> 1165 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1166 uint8_t *end) { 1167 if (!getFile<ELFT>()->splitStack) 1168 return; 1169 DenseSet<Defined *> prologues; 1170 std::vector<Relocation *> morestackCalls; 1171 1172 for (Relocation &rel : relocations) { 1173 // Local symbols can't possibly be cross-calls, and should have been 1174 // resolved long before this line. 1175 if (rel.sym->isLocal()) 1176 continue; 1177 1178 // Ignore calls into the split-stack api. 1179 if (rel.sym->getName().startswith("__morestack")) { 1180 if (rel.sym->getName().equals("__morestack")) 1181 morestackCalls.push_back(&rel); 1182 continue; 1183 } 1184 1185 // A relocation to non-function isn't relevant. Sometimes 1186 // __morestack is not marked as a function, so this check comes 1187 // after the name check. 1188 if (rel.sym->type != STT_FUNC) 1189 continue; 1190 1191 // If the callee's-file was compiled with split stack, nothing to do. In 1192 // this context, a "Defined" symbol is one "defined by the binary currently 1193 // being produced". So an "undefined" symbol might be provided by a shared 1194 // library. It is not possible to tell how such symbols were compiled, so be 1195 // conservative. 1196 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1197 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1198 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1199 continue; 1200 1201 if (enclosingPrologueAttempted(rel.offset, prologues)) 1202 continue; 1203 1204 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { 1205 prologues.insert(f); 1206 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1207 f->stOther)) 1208 continue; 1209 if (!getFile<ELFT>()->someNoSplitStack) 1210 error(lld::toString(this) + ": " + f->getName() + 1211 " (with -fsplit-stack) calls " + rel.sym->getName() + 1212 " (without -fsplit-stack), but couldn't adjust its prologue"); 1213 } 1214 } 1215 1216 if (target->needsMoreStackNonSplit) 1217 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1218 } 1219 1220 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1221 if (type == SHT_NOBITS) 1222 return; 1223 1224 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1225 s->writeTo(buf + outSecOff); 1226 return; 1227 } 1228 1229 // If -r or --emit-relocs is given, then an InputSection 1230 // may be a relocation section. 1231 if (type == SHT_RELA) { 1232 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); 1233 return; 1234 } 1235 if (type == SHT_REL) { 1236 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); 1237 return; 1238 } 1239 1240 // If -r is given, we may have a SHT_GROUP section. 1241 if (type == SHT_GROUP) { 1242 copyShtGroup<ELFT>(buf + outSecOff); 1243 return; 1244 } 1245 1246 // If this is a compressed section, uncompress section contents directly 1247 // to the buffer. 1248 if (uncompressedSize >= 0) { 1249 size_t size = uncompressedSize; 1250 if (Error e = zlib::uncompress(toStringRef(rawData), 1251 (char *)(buf + outSecOff), size)) 1252 fatal(toString(this) + 1253 ": uncompress failed: " + llvm::toString(std::move(e))); 1254 uint8_t *bufEnd = buf + outSecOff + size; 1255 relocate<ELFT>(buf + outSecOff, bufEnd); 1256 return; 1257 } 1258 1259 // Copy section contents from source object file to output file 1260 // and then apply relocations. 1261 memcpy(buf + outSecOff, data().data(), data().size()); 1262 uint8_t *bufEnd = buf + outSecOff + data().size(); 1263 relocate<ELFT>(buf + outSecOff, bufEnd); 1264 } 1265 1266 void InputSection::replace(InputSection *other) { 1267 alignment = std::max(alignment, other->alignment); 1268 1269 // When a section is replaced with another section that was allocated to 1270 // another partition, the replacement section (and its associated sections) 1271 // need to be placed in the main partition so that both partitions will be 1272 // able to access it. 1273 if (partition != other->partition) { 1274 partition = 1; 1275 for (InputSection *isec : dependentSections) 1276 isec->partition = 1; 1277 } 1278 1279 other->repl = repl; 1280 other->markDead(); 1281 } 1282 1283 template <class ELFT> 1284 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1285 const typename ELFT::Shdr &header, 1286 StringRef name) 1287 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1288 1289 SyntheticSection *EhInputSection::getParent() const { 1290 return cast_or_null<SyntheticSection>(parent); 1291 } 1292 1293 // Returns the index of the first relocation that points to a region between 1294 // Begin and Begin+Size. 1295 template <class IntTy, class RelTy> 1296 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1297 unsigned &relocI) { 1298 // Start search from RelocI for fast access. That works because the 1299 // relocations are sorted in .eh_frame. 1300 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1301 const RelTy &rel = rels[relocI]; 1302 if (rel.r_offset < begin) 1303 continue; 1304 1305 if (rel.r_offset < begin + size) 1306 return relocI; 1307 return -1; 1308 } 1309 return -1; 1310 } 1311 1312 // .eh_frame is a sequence of CIE or FDE records. 1313 // This function splits an input section into records and returns them. 1314 template <class ELFT> void EhInputSection::split() { 1315 if (areRelocsRela) 1316 split<ELFT>(relas<ELFT>()); 1317 else 1318 split<ELFT>(rels<ELFT>()); 1319 } 1320 1321 template <class ELFT, class RelTy> 1322 void EhInputSection::split(ArrayRef<RelTy> rels) { 1323 // getReloc expects the relocations to be sorted by r_offset. See the comment 1324 // in scanRelocs. 1325 SmallVector<RelTy, 0> storage; 1326 rels = sortRels(rels, storage); 1327 1328 unsigned relI = 0; 1329 for (size_t off = 0, end = data().size(); off != end;) { 1330 size_t size = readEhRecordSize(this, off); 1331 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1332 // The empty record is the end marker. 1333 if (size == 4) 1334 break; 1335 off += size; 1336 } 1337 } 1338 1339 static size_t findNull(StringRef s, size_t entSize) { 1340 // Optimize the common case. 1341 if (entSize == 1) 1342 return s.find(0); 1343 1344 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1345 const char *b = s.begin() + i; 1346 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1347 return i; 1348 } 1349 return StringRef::npos; 1350 } 1351 1352 SyntheticSection *MergeInputSection::getParent() const { 1353 return cast_or_null<SyntheticSection>(parent); 1354 } 1355 1356 // Split SHF_STRINGS section. Such section is a sequence of 1357 // null-terminated strings. 1358 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1359 size_t off = 0; 1360 bool isAlloc = flags & SHF_ALLOC; 1361 StringRef s = toStringRef(data); 1362 1363 while (!s.empty()) { 1364 size_t end = findNull(s, entSize); 1365 if (end == StringRef::npos) 1366 fatal(toString(this) + ": string is not null terminated"); 1367 size_t size = end + entSize; 1368 1369 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); 1370 s = s.substr(size); 1371 off += size; 1372 } 1373 } 1374 1375 // Split non-SHF_STRINGS section. Such section is a sequence of 1376 // fixed size records. 1377 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1378 size_t entSize) { 1379 size_t size = data.size(); 1380 assert((size % entSize) == 0); 1381 bool isAlloc = flags & SHF_ALLOC; 1382 1383 for (size_t i = 0; i != size; i += entSize) 1384 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); 1385 } 1386 1387 template <class ELFT> 1388 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1389 const typename ELFT::Shdr &header, 1390 StringRef name) 1391 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1392 1393 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1394 uint64_t entsize, ArrayRef<uint8_t> data, 1395 StringRef name) 1396 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1397 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1398 1399 // This function is called after we obtain a complete list of input sections 1400 // that need to be linked. This is responsible to split section contents 1401 // into small chunks for further processing. 1402 // 1403 // Note that this function is called from parallelForEach. This must be 1404 // thread-safe (i.e. no memory allocation from the pools). 1405 void MergeInputSection::splitIntoPieces() { 1406 assert(pieces.empty()); 1407 1408 if (flags & SHF_STRINGS) 1409 splitStrings(data(), entsize); 1410 else 1411 splitNonStrings(data(), entsize); 1412 } 1413 1414 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1415 if (this->data().size() <= offset) 1416 fatal(toString(this) + ": offset is outside the section"); 1417 1418 // If Offset is not at beginning of a section piece, it is not in the map. 1419 // In that case we need to do a binary search of the original section piece vector. 1420 auto it = partition_point( 1421 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1422 return &it[-1]; 1423 } 1424 1425 // Returns the offset in an output section for a given input offset. 1426 // Because contents of a mergeable section is not contiguous in output, 1427 // it is not just an addition to a base output offset. 1428 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1429 // If Offset is not at beginning of a section piece, it is not in the map. 1430 // In that case we need to search from the original section piece vector. 1431 const SectionPiece &piece = *getSectionPiece(offset); 1432 uint64_t addend = offset - piece.inputOff; 1433 return piece.outputOff + addend; 1434 } 1435 1436 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1437 StringRef); 1438 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1439 StringRef); 1440 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1441 StringRef); 1442 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1443 StringRef); 1444 1445 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1446 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1447 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1448 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1449 1450 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1451 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1452 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1453 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1454 1455 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1456 const ELF32LE::Shdr &, StringRef); 1457 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1458 const ELF32BE::Shdr &, StringRef); 1459 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1460 const ELF64LE::Shdr &, StringRef); 1461 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1462 const ELF64BE::Shdr &, StringRef); 1463 1464 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1465 const ELF32LE::Shdr &, StringRef); 1466 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1467 const ELF32BE::Shdr &, StringRef); 1468 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1469 const ELF64LE::Shdr &, StringRef); 1470 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1471 const ELF64BE::Shdr &, StringRef); 1472 1473 template void EhInputSection::split<ELF32LE>(); 1474 template void EhInputSection::split<ELF32BE>(); 1475 template void EhInputSection::split<ELF64LE>(); 1476 template void EhInputSection::split<ELF64BE>(); 1477