1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/Endian.h" 25 #include <mutex> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 std::vector<InputSectionBase *> elf::InputSections; 37 38 // Returns a string to construct an error message. 39 std::string lld::toString(const InputSectionBase *Sec) { 40 // File can be absent if section is synthetic. 41 std::string FileName = Sec->File ? Sec->File->getName() : "<internal>"; 42 return (FileName + ":(" + Sec->Name + ")").str(); 43 } 44 45 template <class ELFT> 46 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, 47 const typename ELFT::Shdr *Hdr) { 48 if (!File || Hdr->sh_type == SHT_NOBITS) 49 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 50 return check(File->getObj().getSectionContents(Hdr)); 51 } 52 53 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 54 uint32_t Type, uint64_t Entsize, 55 uint32_t Link, uint32_t Info, 56 uint64_t Addralign, ArrayRef<uint8_t> Data, 57 StringRef Name, Kind SectionKind) 58 : File(File), Data(Data), Name(Name), SectionKind(SectionKind), 59 Live(!Config->GcSections || !(Flags & SHF_ALLOC)), Assigned(false), 60 Flags(Flags), Entsize(Entsize), Type(Type), Link(Link), Info(Info), 61 Repl(this) { 62 NumRelocations = 0; 63 AreRelocsRela = false; 64 65 // The ELF spec states that a value of 0 means the section has 66 // no alignment constraits. 67 uint64_t V = std::max<uint64_t>(Addralign, 1); 68 if (!isPowerOf2_64(V)) 69 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 70 71 // We reject object files having insanely large alignments even though 72 // they are allowed by the spec. I think 4GB is a reasonable limitation. 73 // We might want to relax this in the future. 74 if (V > UINT32_MAX) 75 fatal(toString(File) + ": section sh_addralign is too large"); 76 Alignment = V; 77 } 78 79 template <class ELFT> 80 InputSectionBase::InputSectionBase(elf::ObjectFile<ELFT> *File, 81 const typename ELFT::Shdr *Hdr, 82 StringRef Name, Kind SectionKind) 83 : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type, 84 Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, 85 Hdr->sh_addralign, getSectionContents(File, Hdr), Name, 86 SectionKind) { 87 this->Offset = Hdr->sh_offset; 88 } 89 90 template <class ELFT> size_t InputSectionBase::getSize() const { 91 if (auto *S = dyn_cast<SyntheticSection>(this)) 92 return S->getSize(); 93 94 return Data.size(); 95 } 96 97 template <class ELFT> 98 uint64_t InputSectionBase::getOffset(uint64_t Offset) const { 99 typedef typename ELFT::uint uintX_t; 100 switch (kind()) { 101 case Regular: 102 return cast<InputSection>(this)->OutSecOff + Offset; 103 case Synthetic: 104 // For synthetic sections we treat offset -1 as the end of the section. 105 // The same approach is used for synthetic symbols (DefinedSynthetic). 106 return cast<InputSection>(this)->OutSecOff + 107 (Offset == uintX_t(-1) ? getSize<ELFT>() : Offset); 108 case EHFrame: 109 // The file crtbeginT.o has relocations pointing to the start of an empty 110 // .eh_frame that is known to be the first in the link. It does that to 111 // identify the start of the output .eh_frame. 112 return Offset; 113 case Merge: 114 const MergeInputSection<ELFT> *MS = cast<MergeInputSection<ELFT>>(this); 115 if (MS->MergeSec) 116 return MS->MergeSec->OutSecOff + MS->getOffset(Offset); 117 return MS->getOffset(Offset); 118 } 119 llvm_unreachable("invalid section kind"); 120 } 121 122 template <class ELFT> 123 OutputSection *InputSectionBase::getOutputSection() const { 124 if (auto *MS = dyn_cast<MergeInputSection<ELFT>>(this)) 125 return MS->MergeSec ? MS->MergeSec->OutSec : nullptr; 126 if (auto *EH = dyn_cast<EhInputSection<ELFT>>(this)) 127 return EH->EHSec->OutSec; 128 return OutSec; 129 } 130 131 // Uncompress section contents. Note that this function is called 132 // from parallel_for_each, so it must be thread-safe. 133 template <class ELFT> void InputSectionBase::uncompress() { 134 Decompressor Dec = check(Decompressor::create( 135 Name, toStringRef(Data), ELFT::TargetEndianness == llvm::support::little, 136 ELFT::Is64Bits)); 137 138 size_t Size = Dec.getDecompressedSize(); 139 char *OutputBuf; 140 { 141 static std::mutex Mu; 142 std::lock_guard<std::mutex> Lock(Mu); 143 OutputBuf = BAlloc.Allocate<char>(Size); 144 } 145 146 if (Error E = Dec.decompress({OutputBuf, Size})) 147 fatal(toString(this) + 148 ": decompress failed: " + llvm::toString(std::move(E))); 149 Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 150 } 151 152 template <class ELFT> 153 uint64_t InputSectionBase::getOffset(const DefinedRegular &Sym) const { 154 return getOffset<ELFT>(Sym.Value); 155 } 156 157 template <class ELFT> 158 InputSectionBase *InputSectionBase::getLinkOrderDep() const { 159 if ((Flags & SHF_LINK_ORDER) && Link != 0) 160 return getFile<ELFT>()->getSections()[Link]; 161 return nullptr; 162 } 163 164 // Returns a source location string. Used to construct an error message. 165 template <class ELFT> 166 std::string InputSectionBase::getLocation(uint64_t Offset) { 167 // First check if we can get desired values from debugging information. 168 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 169 if (!LineInfo.empty()) 170 return LineInfo; 171 172 // File->SourceFile contains STT_FILE symbol that contains a 173 // source file name. If it's missing, we use an object file name. 174 std::string SrcFile = getFile<ELFT>()->SourceFile; 175 if (SrcFile.empty()) 176 SrcFile = toString(File); 177 178 // Find a function symbol that encloses a given location. 179 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 180 if (auto *D = dyn_cast<DefinedRegular>(B)) 181 if (D->Section == this && D->Type == STT_FUNC) 182 if (D->Value <= Offset && Offset < D->Value + D->Size) 183 return SrcFile + ":(function " + toString(*D) + ")"; 184 185 // If there's no symbol, print out the offset in the section. 186 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 187 } 188 189 InputSection InputSection::Discarded; 190 191 InputSection::InputSection() : InputSectionBase() {} 192 193 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint64_t Addralign, 194 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 195 : InputSectionBase(nullptr, Flags, Type, 196 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign, Data, 197 Name, K) {} 198 199 template <class ELFT> 200 InputSection::InputSection(elf::ObjectFile<ELFT> *F, 201 const typename ELFT::Shdr *Header, StringRef Name) 202 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 203 204 bool InputSection::classof(const InputSectionBase *S) { 205 return S->kind() == InputSectionBase::Regular || 206 S->kind() == InputSectionBase::Synthetic; 207 } 208 209 template <class ELFT> InputSectionBase *InputSection::getRelocatedSection() { 210 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 211 ArrayRef<InputSectionBase *> Sections = this->getFile<ELFT>()->getSections(); 212 return Sections[this->Info]; 213 } 214 215 // This is used for -r and --emit-relocs. We can't use memcpy to copy 216 // relocations because we need to update symbol table offset and section index 217 // for each relocation. So we copy relocations one by one. 218 template <class ELFT, class RelTy> 219 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 220 InputSectionBase *RelocatedSection = getRelocatedSection<ELFT>(); 221 222 // Loop is slow and have complexity O(N*M), where N - amount of 223 // relocations and M - amount of symbols in symbol table. 224 // That happens because getSymbolIndex(...) call below performs 225 // simple linear search. 226 for (const RelTy &Rel : Rels) { 227 uint32_t Type = Rel.getType(Config->Mips64EL); 228 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 229 230 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 231 Buf += sizeof(RelTy); 232 233 if (Config->Rela) 234 P->r_addend = getAddend<ELFT>(Rel); 235 236 // Output section VA is zero for -r, so r_offset is an offset within the 237 // section, but for --emit-relocs it is an virtual address. 238 P->r_offset = RelocatedSection->OutSec->Addr + 239 RelocatedSection->getOffset<ELFT>(Rel.r_offset); 240 P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type, 241 Config->Mips64EL); 242 243 if (Body.Type == STT_SECTION) { 244 // We combine multiple section symbols into only one per 245 // section. This means we have to update the addend. That is 246 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 247 // section data. We do that by adding to the Relocation vector. 248 249 // .eh_frame is horribly special and can reference discarded sections. To 250 // avoid having to parse and recreate .eh_frame, we just replace any 251 // relocation in it pointing to discarded sections with R_*_NONE, which 252 // hopefully creates a frame that is ignored at runtime. 253 InputSectionBase *Section = cast<DefinedRegular>(Body).Section; 254 if (Section == &InputSection::Discarded) { 255 P->setSymbolAndType(0, 0, false); 256 continue; 257 } 258 259 if (Config->Rela) { 260 P->r_addend += Body.getVA<ELFT>() - Section->OutSec->Addr; 261 } else if (Config->Relocatable) { 262 const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; 263 RelocatedSection->Relocations.push_back( 264 {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), 265 &Body}); 266 } 267 } 268 269 } 270 } 271 272 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 273 uint32_t P) { 274 switch (Type) { 275 case R_ARM_THM_JUMP11: 276 return P + 2; 277 case R_ARM_CALL: 278 case R_ARM_JUMP24: 279 case R_ARM_PC24: 280 case R_ARM_PLT32: 281 case R_ARM_PREL31: 282 case R_ARM_THM_JUMP19: 283 case R_ARM_THM_JUMP24: 284 return P + 4; 285 case R_ARM_THM_CALL: 286 // We don't want an interworking BLX to ARM 287 return P + 5; 288 default: 289 return A; 290 } 291 } 292 293 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 294 uint64_t P) { 295 switch (Type) { 296 case R_AARCH64_CALL26: 297 case R_AARCH64_CONDBR19: 298 case R_AARCH64_JUMP26: 299 case R_AARCH64_TSTBR14: 300 return P + 4; 301 default: 302 return A; 303 } 304 } 305 306 template <class ELFT> 307 static typename ELFT::uint 308 getRelocTargetVA(uint32_t Type, int64_t A, typename ELFT::uint P, 309 const SymbolBody &Body, RelExpr Expr) { 310 switch (Expr) { 311 case R_HINT: 312 case R_NONE: 313 case R_TLSDESC_CALL: 314 llvm_unreachable("cannot relocate hint relocs"); 315 case R_TLSLD: 316 return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize(); 317 case R_TLSLD_PC: 318 return In<ELFT>::Got->getTlsIndexVA() + A - P; 319 case R_PPC_TOC: 320 return getPPC64TocBase() + A; 321 case R_TLSGD: 322 return In<ELFT>::Got->getGlobalDynOffset(Body) + A - 323 In<ELFT>::Got->getSize(); 324 case R_TLSGD_PC: 325 return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 326 case R_TLSDESC: 327 return In<ELFT>::Got->getGlobalDynAddr(Body) + A; 328 case R_TLSDESC_PAGE: 329 return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) - 330 getAArch64Page(P); 331 case R_PLT: 332 return Body.getPltVA<ELFT>() + A; 333 case R_PLT_PC: 334 case R_PPC_PLT_OPD: 335 return Body.getPltVA<ELFT>() + A - P; 336 case R_SIZE: 337 return Body.getSize<ELFT>() + A; 338 case R_GOTREL: 339 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA(); 340 case R_GOTREL_FROM_END: 341 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() - 342 In<ELFT>::Got->getSize(); 343 case R_RELAX_TLS_GD_TO_IE_END: 344 case R_GOT_FROM_END: 345 return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize(); 346 case R_RELAX_TLS_GD_TO_IE_ABS: 347 case R_GOT: 348 return Body.getGotVA<ELFT>() + A; 349 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 350 case R_GOT_PAGE_PC: 351 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 352 case R_RELAX_TLS_GD_TO_IE: 353 case R_GOT_PC: 354 return Body.getGotVA<ELFT>() + A - P; 355 case R_GOTONLY_PC: 356 return In<ELFT>::Got->getVA() + A - P; 357 case R_GOTONLY_PC_FROM_END: 358 return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize(); 359 case R_RELAX_TLS_LD_TO_LE: 360 case R_RELAX_TLS_IE_TO_LE: 361 case R_RELAX_TLS_GD_TO_LE: 362 case R_TLS: 363 // A weak undefined TLS symbol resolves to the base of the TLS 364 // block, i.e. gets a value of zero. If we pass --gc-sections to 365 // lld and .tbss is not referenced, it gets reclaimed and we don't 366 // create a TLS program header. Therefore, we resolve this 367 // statically to zero. 368 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 369 Body.symbol()->isWeak()) 370 return 0; 371 if (Target->TcbSize) 372 return Body.getVA<ELFT>(A) + 373 alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 374 return Body.getVA<ELFT>(A) - Out::TlsPhdr->p_memsz; 375 case R_RELAX_TLS_GD_TO_LE_NEG: 376 case R_NEG_TLS: 377 return Out::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 378 case R_ABS: 379 case R_RELAX_GOT_PC_NOPIC: 380 return Body.getVA<ELFT>(A); 381 case R_GOT_OFF: 382 return Body.getGotOffset<ELFT>() + A; 383 case R_MIPS_GOT_LOCAL_PAGE: 384 // If relocation against MIPS local symbol requires GOT entry, this entry 385 // should be initialized by 'page address'. This address is high 16-bits 386 // of sum the symbol's value and the addend. 387 return In<ELFT>::MipsGot->getVA() + 388 In<ELFT>::MipsGot->getPageEntryOffset(Body, A) - 389 In<ELFT>::MipsGot->getGp(); 390 case R_MIPS_GOT_OFF: 391 case R_MIPS_GOT_OFF32: 392 // In case of MIPS if a GOT relocation has non-zero addend this addend 393 // should be applied to the GOT entry content not to the GOT entry offset. 394 // That is why we use separate expression type. 395 return In<ELFT>::MipsGot->getVA() + 396 In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) - 397 In<ELFT>::MipsGot->getGp(); 398 case R_MIPS_GOTREL: 399 return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp(); 400 case R_MIPS_TLSGD: 401 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 402 In<ELFT>::MipsGot->getGlobalDynOffset(Body) - 403 In<ELFT>::MipsGot->getGp(); 404 case R_MIPS_TLSLD: 405 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 406 In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp(); 407 case R_PPC_OPD: { 408 uint64_t SymVA = Body.getVA<ELFT>(A); 409 // If we have an undefined weak symbol, we might get here with a symbol 410 // address of zero. That could overflow, but the code must be unreachable, 411 // so don't bother doing anything at all. 412 if (!SymVA) 413 return 0; 414 if (Out::Opd) { 415 // If this is a local call, and we currently have the address of a 416 // function-descriptor, get the underlying code address instead. 417 uint64_t OpdStart = Out::Opd->Addr; 418 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 419 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 420 if (InOpd) 421 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 422 } 423 return SymVA - P; 424 } 425 case R_PC: 426 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 427 // On ARM and AArch64 a branch to an undefined weak resolves to the 428 // next instruction, otherwise the place. 429 if (Config->EMachine == EM_ARM) 430 return getARMUndefinedRelativeWeakVA(Type, A, P); 431 if (Config->EMachine == EM_AARCH64) 432 return getAArch64UndefinedRelativeWeakVA(Type, A, P); 433 } 434 case R_RELAX_GOT_PC: 435 return Body.getVA<ELFT>(A) - P; 436 case R_PLT_PAGE_PC: 437 case R_PAGE_PC: 438 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 439 return getAArch64Page(A); 440 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 441 } 442 llvm_unreachable("Invalid expression"); 443 } 444 445 // This function applies relocations to sections without SHF_ALLOC bit. 446 // Such sections are never mapped to memory at runtime. Debug sections are 447 // an example. Relocations in non-alloc sections are much easier to 448 // handle than in allocated sections because it will never need complex 449 // treatement such as GOT or PLT (because at runtime no one refers them). 450 // So, we handle relocations for non-alloc sections directly in this 451 // function as a performance optimization. 452 template <class ELFT, class RelTy> 453 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 454 typedef typename ELFT::uint uintX_t; 455 for (const RelTy &Rel : Rels) { 456 uint32_t Type = Rel.getType(Config->Mips64EL); 457 uintX_t Offset = this->getOffset<ELFT>(Rel.r_offset); 458 uint8_t *BufLoc = Buf + Offset; 459 int64_t Addend = getAddend<ELFT>(Rel); 460 if (!RelTy::IsRela) 461 Addend += Target->getImplicitAddend(BufLoc, Type); 462 463 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 464 RelExpr Expr = Target->getRelExpr(Type, Sym); 465 if (Expr == R_NONE) 466 continue; 467 if (Expr != R_ABS) { 468 error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); 469 return; 470 } 471 472 uintX_t AddrLoc = this->OutSec->Addr + Offset; 473 uint64_t SymVA = 0; 474 if (!Sym.isTls() || Out::TlsPhdr) 475 SymVA = SignExtend64<sizeof(uintX_t) * 8>( 476 getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS)); 477 Target->relocateOne(BufLoc, Type, SymVA); 478 } 479 } 480 481 template <class ELFT> elf::ObjectFile<ELFT> *InputSectionBase::getFile() const { 482 return cast_or_null<elf::ObjectFile<ELFT>>(File); 483 } 484 485 template <class ELFT> 486 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 487 // scanReloc function in Writer.cpp constructs Relocations 488 // vector only for SHF_ALLOC'ed sections. For other sections, 489 // we handle relocations directly here. 490 auto *IS = dyn_cast<InputSection>(this); 491 if (IS && !(IS->Flags & SHF_ALLOC)) { 492 if (IS->AreRelocsRela) 493 IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); 494 else 495 IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); 496 return; 497 } 498 499 typedef typename ELFT::uint uintX_t; 500 const unsigned Bits = sizeof(uintX_t) * 8; 501 for (const Relocation &Rel : Relocations) { 502 uintX_t Offset = getOffset<ELFT>(Rel.Offset); 503 uint8_t *BufLoc = Buf + Offset; 504 uint32_t Type = Rel.Type; 505 506 uintX_t AddrLoc = getOutputSection<ELFT>()->Addr + Offset; 507 RelExpr Expr = Rel.Expr; 508 uint64_t TargetVA = SignExtend64<Bits>( 509 getRelocTargetVA<ELFT>(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr)); 510 511 switch (Expr) { 512 case R_RELAX_GOT_PC: 513 case R_RELAX_GOT_PC_NOPIC: 514 Target->relaxGot(BufLoc, TargetVA); 515 break; 516 case R_RELAX_TLS_IE_TO_LE: 517 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 518 break; 519 case R_RELAX_TLS_LD_TO_LE: 520 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 521 break; 522 case R_RELAX_TLS_GD_TO_LE: 523 case R_RELAX_TLS_GD_TO_LE_NEG: 524 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 525 break; 526 case R_RELAX_TLS_GD_TO_IE: 527 case R_RELAX_TLS_GD_TO_IE_ABS: 528 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 529 case R_RELAX_TLS_GD_TO_IE_END: 530 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 531 break; 532 case R_PPC_PLT_OPD: 533 // Patch a nop (0x60000000) to a ld. 534 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 535 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 536 // fallthrough 537 default: 538 Target->relocateOne(BufLoc, Type, TargetVA); 539 break; 540 } 541 } 542 } 543 544 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 545 if (this->Type == SHT_NOBITS) 546 return; 547 548 if (auto *S = dyn_cast<SyntheticSection>(this)) { 549 S->writeTo(Buf + OutSecOff); 550 return; 551 } 552 553 // If -r or --emit-relocs is given, then an InputSection 554 // may be a relocation section. 555 if (this->Type == SHT_RELA) { 556 copyRelocations<ELFT>(Buf + OutSecOff, 557 this->template getDataAs<typename ELFT::Rela>()); 558 return; 559 } 560 if (this->Type == SHT_REL) { 561 copyRelocations<ELFT>(Buf + OutSecOff, 562 this->template getDataAs<typename ELFT::Rel>()); 563 return; 564 } 565 566 // Copy section contents from source object file to output file. 567 ArrayRef<uint8_t> Data = this->Data; 568 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 569 570 // Iterate over all relocation sections that apply to this section. 571 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 572 this->relocate<ELFT>(Buf, BufEnd); 573 } 574 575 void InputSection::replace(InputSection *Other) { 576 this->Alignment = std::max(this->Alignment, Other->Alignment); 577 Other->Repl = this->Repl; 578 Other->Live = false; 579 } 580 581 template <class ELFT> 582 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 583 const Elf_Shdr *Header, StringRef Name) 584 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 585 // Mark .eh_frame sections as live by default because there are 586 // usually no relocations that point to .eh_frames. Otherwise, 587 // the garbage collector would drop all .eh_frame sections. 588 this->Live = true; 589 } 590 591 template <class ELFT> 592 bool EhInputSection<ELFT>::classof(const InputSectionBase *S) { 593 return S->kind() == InputSectionBase::EHFrame; 594 } 595 596 // Returns the index of the first relocation that points to a region between 597 // Begin and Begin+Size. 598 template <class IntTy, class RelTy> 599 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 600 unsigned &RelocI) { 601 // Start search from RelocI for fast access. That works because the 602 // relocations are sorted in .eh_frame. 603 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 604 const RelTy &Rel = Rels[RelocI]; 605 if (Rel.r_offset < Begin) 606 continue; 607 608 if (Rel.r_offset < Begin + Size) 609 return RelocI; 610 return -1; 611 } 612 return -1; 613 } 614 615 // .eh_frame is a sequence of CIE or FDE records. 616 // This function splits an input section into records and returns them. 617 template <class ELFT> void EhInputSection<ELFT>::split() { 618 // Early exit if already split. 619 if (!this->Pieces.empty()) 620 return; 621 622 if (this->NumRelocations) { 623 if (this->AreRelocsRela) 624 split(this->relas<ELFT>()); 625 else 626 split(this->rels<ELFT>()); 627 return; 628 } 629 split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 630 } 631 632 template <class ELFT> 633 template <class RelTy> 634 void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) { 635 ArrayRef<uint8_t> Data = this->Data; 636 unsigned RelI = 0; 637 for (size_t Off = 0, End = Data.size(); Off != End;) { 638 size_t Size = readEhRecordSize<ELFT>(this, Off); 639 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 640 // The empty record is the end marker. 641 if (Size == 4) 642 break; 643 Off += Size; 644 } 645 } 646 647 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 648 // Optimize the common case. 649 StringRef S((const char *)A.data(), A.size()); 650 if (EntSize == 1) 651 return S.find(0); 652 653 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 654 const char *B = S.begin() + I; 655 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 656 return I; 657 } 658 return StringRef::npos; 659 } 660 661 // Split SHF_STRINGS section. Such section is a sequence of 662 // null-terminated strings. 663 template <class ELFT> 664 void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data, 665 size_t EntSize) { 666 size_t Off = 0; 667 bool IsAlloc = this->Flags & SHF_ALLOC; 668 while (!Data.empty()) { 669 size_t End = findNull(Data, EntSize); 670 if (End == StringRef::npos) 671 fatal(toString(this) + ": string is not null terminated"); 672 size_t Size = End + EntSize; 673 Pieces.emplace_back(Off, !IsAlloc); 674 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 675 Data = Data.slice(Size); 676 Off += Size; 677 } 678 } 679 680 // Split non-SHF_STRINGS section. Such section is a sequence of 681 // fixed size records. 682 template <class ELFT> 683 void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data, 684 size_t EntSize) { 685 size_t Size = Data.size(); 686 assert((Size % EntSize) == 0); 687 bool IsAlloc = this->Flags & SHF_ALLOC; 688 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 689 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 690 Pieces.emplace_back(I, !IsAlloc); 691 } 692 } 693 694 template <class ELFT> 695 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 696 const Elf_Shdr *Header, 697 StringRef Name) 698 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 699 700 // This function is called after we obtain a complete list of input sections 701 // that need to be linked. This is responsible to split section contents 702 // into small chunks for further processing. 703 // 704 // Note that this function is called from parallel_for_each. This must be 705 // thread-safe (i.e. no memory allocation from the pools). 706 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 707 ArrayRef<uint8_t> Data = this->Data; 708 uintX_t EntSize = this->Entsize; 709 if (this->Flags & SHF_STRINGS) 710 splitStrings(Data, EntSize); 711 else 712 splitNonStrings(Data, EntSize); 713 714 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 715 for (uintX_t Off : LiveOffsets) 716 this->getSectionPiece(Off)->Live = true; 717 } 718 719 template <class ELFT> 720 bool MergeInputSection<ELFT>::classof(const InputSectionBase *S) { 721 return S->kind() == InputSectionBase::Merge; 722 } 723 724 // Do binary search to get a section piece at a given input offset. 725 template <class ELFT> 726 SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 727 auto *This = static_cast<const MergeInputSection<ELFT> *>(this); 728 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 729 } 730 731 template <class It, class T, class Compare> 732 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 733 size_t Size = std::distance(First, Last); 734 assert(Size != 0); 735 while (Size != 1) { 736 size_t H = Size / 2; 737 const It MI = First + H; 738 Size -= H; 739 First = Comp(Value, *MI) ? First : First + H; 740 } 741 return Comp(Value, *First) ? First : First + 1; 742 } 743 744 template <class ELFT> 745 const SectionPiece * 746 MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const { 747 uintX_t Size = this->Data.size(); 748 if (Offset >= Size) 749 fatal(toString(this) + ": entry is past the end of the section"); 750 751 // Find the element this offset points to. 752 auto I = fastUpperBound( 753 Pieces.begin(), Pieces.end(), Offset, 754 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 755 --I; 756 return &*I; 757 } 758 759 // Returns the offset in an output section for a given input offset. 760 // Because contents of a mergeable section is not contiguous in output, 761 // it is not just an addition to a base output offset. 762 template <class ELFT> 763 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const { 764 // Initialize OffsetMap lazily. 765 std::call_once(InitOffsetMap, [&] { 766 OffsetMap.reserve(Pieces.size()); 767 for (const SectionPiece &Piece : Pieces) 768 OffsetMap[Piece.InputOff] = Piece.OutputOff; 769 }); 770 771 // Find a string starting at a given offset. 772 auto It = OffsetMap.find(Offset); 773 if (It != OffsetMap.end()) 774 return It->second; 775 776 if (!this->Live) 777 return 0; 778 779 // If Offset is not at beginning of a section piece, it is not in the map. 780 // In that case we need to search from the original section piece vector. 781 const SectionPiece &Piece = *this->getSectionPiece(Offset); 782 if (!Piece.Live) 783 return 0; 784 785 uintX_t Addend = Offset - Piece.InputOff; 786 return Piece.OutputOff + Addend; 787 } 788 789 template InputSection::InputSection(elf::ObjectFile<ELF32LE> *F, 790 const ELF32LE::Shdr *Header, 791 StringRef Name); 792 template InputSection::InputSection(elf::ObjectFile<ELF32BE> *F, 793 const ELF32BE::Shdr *Header, 794 StringRef Name); 795 template InputSection::InputSection(elf::ObjectFile<ELF64LE> *F, 796 const ELF64LE::Shdr *Header, 797 StringRef Name); 798 template InputSection::InputSection(elf::ObjectFile<ELF64BE> *F, 799 const ELF64BE::Shdr *Header, 800 StringRef Name); 801 802 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t Offset); 803 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t Offset); 804 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t Offset); 805 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t Offset); 806 807 template void InputSection::writeTo<ELF32LE>(uint8_t *Buf); 808 template void InputSection::writeTo<ELF32BE>(uint8_t *Buf); 809 template void InputSection::writeTo<ELF64LE>(uint8_t *Buf); 810 template void InputSection::writeTo<ELF64BE>(uint8_t *Buf); 811 812 template class elf::EhInputSection<ELF32LE>; 813 template class elf::EhInputSection<ELF32BE>; 814 template class elf::EhInputSection<ELF64LE>; 815 template class elf::EhInputSection<ELF64BE>; 816 817 template class elf::MergeInputSection<ELF32LE>; 818 template class elf::MergeInputSection<ELF32BE>; 819 template class elf::MergeInputSection<ELF64LE>; 820 template class elf::MergeInputSection<ELF64BE>; 821 822 template void InputSectionBase::uncompress<ELF32LE>(); 823 template void InputSectionBase::uncompress<ELF32BE>(); 824 template void InputSectionBase::uncompress<ELF64LE>(); 825 template void InputSectionBase::uncompress<ELF64BE>(); 826 827 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF32LE>() const; 828 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF32BE>() const; 829 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF64LE>() const; 830 template InputSectionBase *InputSectionBase::getLinkOrderDep<ELF64BE>() const; 831 832 template OutputSection *InputSectionBase::getOutputSection<ELF32LE>() const; 833 template OutputSection *InputSectionBase::getOutputSection<ELF32BE>() const; 834 template OutputSection *InputSectionBase::getOutputSection<ELF64LE>() const; 835 template OutputSection *InputSectionBase::getOutputSection<ELF64BE>() const; 836 837 template InputSectionBase *InputSection::getRelocatedSection<ELF32LE>(); 838 template InputSectionBase *InputSection::getRelocatedSection<ELF32BE>(); 839 template InputSectionBase *InputSection::getRelocatedSection<ELF64LE>(); 840 template InputSectionBase *InputSection::getRelocatedSection<ELF64BE>(); 841 842 template uint64_t 843 InputSectionBase::getOffset<ELF32LE>(const DefinedRegular &Sym) const; 844 template uint64_t 845 InputSectionBase::getOffset<ELF32BE>(const DefinedRegular &Sym) const; 846 template uint64_t 847 InputSectionBase::getOffset<ELF64LE>(const DefinedRegular &Sym) const; 848 template uint64_t 849 InputSectionBase::getOffset<ELF64BE>(const DefinedRegular &Sym) const; 850 851 template uint64_t InputSectionBase::getOffset<ELF32LE>(uint64_t Offset) const; 852 template uint64_t InputSectionBase::getOffset<ELF32BE>(uint64_t Offset) const; 853 template uint64_t InputSectionBase::getOffset<ELF64LE>(uint64_t Offset) const; 854 template uint64_t InputSectionBase::getOffset<ELF64BE>(uint64_t Offset) const; 855 856 template size_t InputSectionBase::getSize<ELF32LE>() const; 857 template size_t InputSectionBase::getSize<ELF32BE>() const; 858 template size_t InputSectionBase::getSize<ELF64LE>() const; 859 template size_t InputSectionBase::getSize<ELF64BE>() const; 860 861 template elf::ObjectFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; 862 template elf::ObjectFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; 863 template elf::ObjectFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; 864 template elf::ObjectFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; 865