1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputSection.h"
11 #include "Config.h"
12 #include "EhFrame.h"
13 #include "Error.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
16 #include "Memory.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Thunks.h"
22 #include "llvm/Object/Decompressor.h"
23 #include "llvm/Support/Compression.h"
24 #include "llvm/Support/Endian.h"
25 #include <mutex>
26 
27 using namespace llvm;
28 using namespace llvm::ELF;
29 using namespace llvm::object;
30 using namespace llvm::support;
31 using namespace llvm::support::endian;
32 
33 using namespace lld;
34 using namespace lld::elf;
35 
36 // Returns a string to construct an error message.
37 template <class ELFT>
38 std::string lld::toString(const InputSectionBase<ELFT> *Sec) {
39   // File can be absent if section is synthetic.
40   std::string FileName =
41       Sec->getFile() ? Sec->getFile()->getName() : "<internal>";
42   return (FileName + ":(" + Sec->Name + ")").str();
43 }
44 
45 template <class ELFT>
46 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File,
47                                             const typename ELFT::Shdr *Hdr) {
48   if (!File || Hdr->sh_type == SHT_NOBITS)
49     return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
50   return check(File->getObj().getSectionContents(Hdr));
51 }
52 
53 template <class ELFT>
54 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
55                                          uintX_t Flags, uint32_t Type,
56                                          uintX_t Entsize, uint32_t Link,
57                                          uint32_t Info, uintX_t Addralign,
58                                          ArrayRef<uint8_t> Data, StringRef Name,
59                                          Kind SectionKind)
60     : InputSectionData(SectionKind, Name, Data,
61                        !Config->GcSections || !(Flags & SHF_ALLOC)),
62       File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link),
63       Info(Info), Repl(this) {
64   NumRelocations = 0;
65   AreRelocsRela = false;
66 
67   // The ELF spec states that a value of 0 means the section has
68   // no alignment constraits.
69   uint64_t V = std::max<uint64_t>(Addralign, 1);
70   if (!isPowerOf2_64(V))
71     fatal(toString(File) + ": section sh_addralign is not a power of 2");
72 
73   // We reject object files having insanely large alignments even though
74   // they are allowed by the spec. I think 4GB is a reasonable limitation.
75   // We might want to relax this in the future.
76   if (V > UINT32_MAX)
77     fatal(toString(File) + ": section sh_addralign is too large");
78   Alignment = V;
79 }
80 
81 template <class ELFT>
82 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File,
83                                          const Elf_Shdr *Hdr, StringRef Name,
84                                          Kind SectionKind)
85     : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type,
86                        Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info,
87                        Hdr->sh_addralign, getSectionContents(File, Hdr), Name,
88                        SectionKind) {
89   this->Offset = Hdr->sh_offset;
90 }
91 
92 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const {
93   if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this))
94     return S->getSize();
95 
96   return Data.size();
97 }
98 
99 template <class ELFT>
100 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const {
101   switch (kind()) {
102   case Regular:
103     return cast<InputSection<ELFT>>(this)->OutSecOff + Offset;
104   case Synthetic:
105     // For synthetic sections we treat offset -1 as the end of the section.
106     // The same approach is used for synthetic symbols (DefinedSynthetic).
107     return cast<InputSection<ELFT>>(this)->OutSecOff +
108            (Offset == uintX_t(-1) ? getSize() : Offset);
109   case EHFrame:
110     // The file crtbeginT.o has relocations pointing to the start of an empty
111     // .eh_frame that is known to be the first in the link. It does that to
112     // identify the start of the output .eh_frame.
113     return Offset;
114   case Merge:
115     const MergeInputSection<ELFT> *MS = cast<MergeInputSection<ELFT>>(this);
116     if (MS->MergeSec)
117       return MS->MergeSec->OutSecOff + MS->getOffset(Offset);
118     return MS->getOffset(Offset);
119   }
120   llvm_unreachable("invalid section kind");
121 }
122 
123 template <class ELFT>
124 OutputSectionBase *InputSectionBase<ELFT>::getOutputSection() const {
125   if (auto *MS = dyn_cast<MergeInputSection<ELFT>>(this))
126     return MS->MergeSec ? MS->MergeSec->OutSec : nullptr;
127   return OutSec;
128 }
129 
130 // Uncompress section contents. Note that this function is called
131 // from parallel_for_each, so it must be thread-safe.
132 template <class ELFT> void InputSectionBase<ELFT>::uncompress() {
133   Decompressor Dec = check(Decompressor::create(
134       Name, toStringRef(Data), ELFT::TargetEndianness == llvm::support::little,
135       ELFT::Is64Bits));
136 
137   size_t Size = Dec.getDecompressedSize();
138   char *OutputBuf;
139   {
140     static std::mutex Mu;
141     std::lock_guard<std::mutex> Lock(Mu);
142     OutputBuf = BAlloc.Allocate<char>(Size);
143   }
144 
145   if (Error E = Dec.decompress({OutputBuf, Size}))
146     fatal(toString(this) +
147           ": decompress failed: " + llvm::toString(std::move(E)));
148   Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size);
149 }
150 
151 template <class ELFT>
152 typename ELFT::uint
153 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const {
154   return getOffset(Sym.Value);
155 }
156 
157 template <class ELFT>
158 InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const {
159   if ((Flags & SHF_LINK_ORDER) && Link != 0)
160     return getFile()->getSections()[Link];
161   return nullptr;
162 }
163 
164 // Returns a source location string. Used to construct an error message.
165 template <class ELFT>
166 std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) {
167   // First check if we can get desired values from debugging information.
168   std::string LineInfo = File->getLineInfo(this, Offset);
169   if (!LineInfo.empty())
170     return LineInfo;
171 
172   // File->SourceFile contains STT_FILE symbol that contains a
173   // source file name. If it's missing, we use an object file name.
174   std::string SrcFile = File->SourceFile;
175   if (SrcFile.empty())
176     SrcFile = toString(File);
177 
178   // Find a function symbol that encloses a given location.
179   for (SymbolBody *B : File->getSymbols())
180     if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B))
181       if (D->Section == this && D->Type == STT_FUNC)
182         if (D->Value <= Offset && Offset < D->Value + D->Size)
183           return SrcFile + ":(function " + toString(*D) + ")";
184 
185   // If there's no symbol, print out the offset in the section.
186   return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
187 }
188 
189 template <class ELFT>
190 InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {}
191 
192 template <class ELFT>
193 InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type,
194                                  uintX_t Addralign, ArrayRef<uint8_t> Data,
195                                  StringRef Name, Kind K)
196     : InputSectionBase<ELFT>(nullptr, Flags, Type,
197                              /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign,
198                              Data, Name, K) {}
199 
200 template <class ELFT>
201 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F,
202                                  const Elf_Shdr *Header, StringRef Name)
203     : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {}
204 
205 template <class ELFT>
206 bool InputSection<ELFT>::classof(const InputSectionData *S) {
207   return S->kind() == Base::Regular || S->kind() == Base::Synthetic;
208 }
209 
210 template <class ELFT>
211 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() {
212   assert(this->Type == SHT_RELA || this->Type == SHT_REL);
213   ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections();
214   return Sections[this->Info];
215 }
216 
217 // This is used for -r. We can't use memcpy to copy relocations because we need
218 // to update symbol table offset and section index for each relocation. So we
219 // copy relocations one by one.
220 template <class ELFT>
221 template <class RelTy>
222 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
223   InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection();
224 
225   // Loop is slow and have complexity O(N*M), where N - amount of
226   // relocations and M - amount of symbols in symbol table.
227   // That happens because getSymbolIndex(...) call below performs
228   // simple linear search.
229   for (const RelTy &Rel : Rels) {
230     uint32_t Type = Rel.getType(Config->Mips64EL);
231     SymbolBody &Body = this->File->getRelocTargetSym(Rel);
232 
233     Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf);
234     Buf += sizeof(RelTy);
235 
236     if (Config->Rela)
237       P->r_addend = getAddend<ELFT>(Rel);
238     P->r_offset = RelocatedSection->getOffset(Rel.r_offset);
239     P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type,
240                         Config->Mips64EL);
241   }
242 }
243 
244 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A,
245                                               uint32_t P) {
246   switch (Type) {
247   case R_ARM_THM_JUMP11:
248     return P + 2;
249   case R_ARM_CALL:
250   case R_ARM_JUMP24:
251   case R_ARM_PC24:
252   case R_ARM_PLT32:
253   case R_ARM_PREL31:
254   case R_ARM_THM_JUMP19:
255   case R_ARM_THM_JUMP24:
256     return P + 4;
257   case R_ARM_THM_CALL:
258     // We don't want an interworking BLX to ARM
259     return P + 5;
260   default:
261     return A;
262   }
263 }
264 
265 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
266                                                   uint64_t P) {
267   switch (Type) {
268   case R_AARCH64_CALL26:
269   case R_AARCH64_CONDBR19:
270   case R_AARCH64_JUMP26:
271   case R_AARCH64_TSTBR14:
272     return P + 4;
273   default:
274     return A;
275   }
276 }
277 
278 template <class ELFT>
279 static typename ELFT::uint
280 getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P,
281                  const SymbolBody &Body, RelExpr Expr) {
282   switch (Expr) {
283   case R_HINT:
284   case R_TLSDESC_CALL:
285     llvm_unreachable("cannot relocate hint relocs");
286   case R_TLSLD:
287     return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize();
288   case R_TLSLD_PC:
289     return In<ELFT>::Got->getTlsIndexVA() + A - P;
290   case R_PPC_TOC:
291     return getPPC64TocBase() + A;
292   case R_TLSGD:
293     return In<ELFT>::Got->getGlobalDynOffset(Body) + A -
294            In<ELFT>::Got->getSize();
295   case R_TLSGD_PC:
296     return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P;
297   case R_TLSDESC:
298     return In<ELFT>::Got->getGlobalDynAddr(Body) + A;
299   case R_TLSDESC_PAGE:
300     return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) -
301            getAArch64Page(P);
302   case R_PLT:
303     return Body.getPltVA<ELFT>() + A;
304   case R_PLT_PC:
305   case R_PPC_PLT_OPD:
306     return Body.getPltVA<ELFT>() + A - P;
307   case R_SIZE:
308     return Body.getSize<ELFT>() + A;
309   case R_GOTREL:
310     return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA();
311   case R_GOTREL_FROM_END:
312     return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() -
313            In<ELFT>::Got->getSize();
314   case R_RELAX_TLS_GD_TO_IE_END:
315   case R_GOT_FROM_END:
316     return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize();
317   case R_RELAX_TLS_GD_TO_IE_ABS:
318   case R_GOT:
319     return Body.getGotVA<ELFT>() + A;
320   case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
321   case R_GOT_PAGE_PC:
322     return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P);
323   case R_RELAX_TLS_GD_TO_IE:
324   case R_GOT_PC:
325     return Body.getGotVA<ELFT>() + A - P;
326   case R_GOTONLY_PC:
327     return In<ELFT>::Got->getVA() + A - P;
328   case R_GOTONLY_PC_FROM_END:
329     return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize();
330   case R_RELAX_TLS_LD_TO_LE:
331   case R_RELAX_TLS_IE_TO_LE:
332   case R_RELAX_TLS_GD_TO_LE:
333   case R_TLS:
334     // A weak undefined TLS symbol resolves to the base of the TLS
335     // block, i.e. gets a value of zero. If we pass --gc-sections to
336     // lld and .tbss is not referenced, it gets reclaimed and we don't
337     // create a TLS program header. Therefore, we resolve this
338     // statically to zero.
339     if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) &&
340         Body.symbol()->isWeak())
341       return 0;
342     if (Target->TcbSize)
343       return Body.getVA<ELFT>(A) +
344              alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align);
345     return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz;
346   case R_RELAX_TLS_GD_TO_LE_NEG:
347   case R_NEG_TLS:
348     return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A);
349   case R_ABS:
350   case R_RELAX_GOT_PC_NOPIC:
351     return Body.getVA<ELFT>(A);
352   case R_GOT_OFF:
353     return Body.getGotOffset<ELFT>() + A;
354   case R_MIPS_GOT_LOCAL_PAGE:
355     // If relocation against MIPS local symbol requires GOT entry, this entry
356     // should be initialized by 'page address'. This address is high 16-bits
357     // of sum the symbol's value and the addend.
358     return In<ELFT>::MipsGot->getVA() +
359            In<ELFT>::MipsGot->getPageEntryOffset(Body, A) -
360            In<ELFT>::MipsGot->getGp();
361   case R_MIPS_GOT_OFF:
362   case R_MIPS_GOT_OFF32:
363     // In case of MIPS if a GOT relocation has non-zero addend this addend
364     // should be applied to the GOT entry content not to the GOT entry offset.
365     // That is why we use separate expression type.
366     return In<ELFT>::MipsGot->getVA() +
367            In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) -
368            In<ELFT>::MipsGot->getGp();
369   case R_MIPS_GOTREL:
370     return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp();
371   case R_MIPS_TLSGD:
372     return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
373            In<ELFT>::MipsGot->getGlobalDynOffset(Body) -
374            In<ELFT>::MipsGot->getGp();
375   case R_MIPS_TLSLD:
376     return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() +
377            In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp();
378   case R_PPC_OPD: {
379     uint64_t SymVA = Body.getVA<ELFT>(A);
380     // If we have an undefined weak symbol, we might get here with a symbol
381     // address of zero. That could overflow, but the code must be unreachable,
382     // so don't bother doing anything at all.
383     if (!SymVA)
384       return 0;
385     if (Out<ELF64BE>::Opd) {
386       // If this is a local call, and we currently have the address of a
387       // function-descriptor, get the underlying code address instead.
388       uint64_t OpdStart = Out<ELF64BE>::Opd->Addr;
389       uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size;
390       bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
391       if (InOpd)
392         SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]);
393     }
394     return SymVA - P;
395   }
396   case R_PC:
397     if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) {
398       // On ARM and AArch64 a branch to an undefined weak resolves to the
399       // next instruction, otherwise the place.
400       if (Config->EMachine == EM_ARM)
401         return getARMUndefinedRelativeWeakVA(Type, A, P);
402       if (Config->EMachine == EM_AARCH64)
403         return getAArch64UndefinedRelativeWeakVA(Type, A, P);
404     }
405   case R_RELAX_GOT_PC:
406     return Body.getVA<ELFT>(A) - P;
407   case R_PLT_PAGE_PC:
408   case R_PAGE_PC:
409     if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
410       return getAArch64Page(A);
411     return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P);
412   }
413   llvm_unreachable("Invalid expression");
414 }
415 
416 // This function applies relocations to sections without SHF_ALLOC bit.
417 // Such sections are never mapped to memory at runtime. Debug sections are
418 // an example. Relocations in non-alloc sections are much easier to
419 // handle than in allocated sections because it will never need complex
420 // treatement such as GOT or PLT (because at runtime no one refers them).
421 // So, we handle relocations for non-alloc sections directly in this
422 // function as a performance optimization.
423 template <class ELFT>
424 template <class RelTy>
425 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
426   for (const RelTy &Rel : Rels) {
427     uint32_t Type = Rel.getType(Config->Mips64EL);
428     uintX_t Offset = this->getOffset(Rel.r_offset);
429     uint8_t *BufLoc = Buf + Offset;
430     uintX_t Addend = getAddend<ELFT>(Rel);
431     if (!RelTy::IsRela)
432       Addend += Target->getImplicitAddend(BufLoc, Type);
433 
434     SymbolBody &Sym = this->File->getRelocTargetSym(Rel);
435     if (Target->getRelExpr(Type, Sym) != R_ABS) {
436       error(this->getLocation(Offset) + ": has non-ABS reloc");
437       return;
438     }
439 
440     uintX_t AddrLoc = this->OutSec->Addr + Offset;
441     uint64_t SymVA = 0;
442     if (!Sym.isTls() || Out<ELFT>::TlsPhdr)
443       SymVA = SignExtend64<sizeof(uintX_t) * 8>(
444           getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS));
445     Target->relocateOne(BufLoc, Type, SymVA);
446   }
447 }
448 
449 template <class ELFT>
450 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) {
451   // scanReloc function in Writer.cpp constructs Relocations
452   // vector only for SHF_ALLOC'ed sections. For other sections,
453   // we handle relocations directly here.
454   auto *IS = dyn_cast<InputSection<ELFT>>(this);
455   if (IS && !(IS->Flags & SHF_ALLOC)) {
456     if (IS->AreRelocsRela)
457       IS->relocateNonAlloc(Buf, IS->relas());
458     else
459       IS->relocateNonAlloc(Buf, IS->rels());
460     return;
461   }
462 
463   const unsigned Bits = sizeof(uintX_t) * 8;
464   for (const Relocation &Rel : Relocations) {
465     uintX_t Offset = getOffset(Rel.Offset);
466     uint8_t *BufLoc = Buf + Offset;
467     uint32_t Type = Rel.Type;
468     uintX_t A = Rel.Addend;
469 
470     uintX_t AddrLoc = OutSec->Addr + Offset;
471     RelExpr Expr = Rel.Expr;
472     uint64_t TargetVA = SignExtend64<Bits>(
473         getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr));
474 
475     switch (Expr) {
476     case R_RELAX_GOT_PC:
477     case R_RELAX_GOT_PC_NOPIC:
478       Target->relaxGot(BufLoc, TargetVA);
479       break;
480     case R_RELAX_TLS_IE_TO_LE:
481       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
482       break;
483     case R_RELAX_TLS_LD_TO_LE:
484       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
485       break;
486     case R_RELAX_TLS_GD_TO_LE:
487     case R_RELAX_TLS_GD_TO_LE_NEG:
488       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
489       break;
490     case R_RELAX_TLS_GD_TO_IE:
491     case R_RELAX_TLS_GD_TO_IE_ABS:
492     case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
493     case R_RELAX_TLS_GD_TO_IE_END:
494       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
495       break;
496     case R_PPC_PLT_OPD:
497       // Patch a nop (0x60000000) to a ld.
498       if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
499         write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
500     // fallthrough
501     default:
502       Target->relocateOne(BufLoc, Type, TargetVA);
503       break;
504     }
505   }
506 }
507 
508 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) {
509   if (this->Type == SHT_NOBITS)
510     return;
511 
512   if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) {
513     S->writeTo(Buf + OutSecOff);
514     return;
515   }
516 
517   // If -r is given, then an InputSection may be a relocation section.
518   if (this->Type == SHT_RELA) {
519     copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>());
520     return;
521   }
522   if (this->Type == SHT_REL) {
523     copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>());
524     return;
525   }
526 
527   // Copy section contents from source object file to output file.
528   ArrayRef<uint8_t> Data = this->Data;
529   memcpy(Buf + OutSecOff, Data.data(), Data.size());
530 
531   // Iterate over all relocation sections that apply to this section.
532   uint8_t *BufEnd = Buf + OutSecOff + Data.size();
533   this->relocate(Buf, BufEnd);
534 }
535 
536 template <class ELFT>
537 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) {
538   this->Alignment = std::max(this->Alignment, Other->Alignment);
539   Other->Repl = this->Repl;
540   Other->Live = false;
541 }
542 
543 template <class ELFT>
544 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F,
545                                      const Elf_Shdr *Header, StringRef Name)
546     : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) {
547   // Mark .eh_frame sections as live by default because there are
548   // usually no relocations that point to .eh_frames. Otherwise,
549   // the garbage collector would drop all .eh_frame sections.
550   this->Live = true;
551 }
552 
553 template <class ELFT>
554 bool EhInputSection<ELFT>::classof(const InputSectionData *S) {
555   return S->kind() == InputSectionBase<ELFT>::EHFrame;
556 }
557 
558 // Returns the index of the first relocation that points to a region between
559 // Begin and Begin+Size.
560 template <class IntTy, class RelTy>
561 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
562                          unsigned &RelocI) {
563   // Start search from RelocI for fast access. That works because the
564   // relocations are sorted in .eh_frame.
565   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
566     const RelTy &Rel = Rels[RelocI];
567     if (Rel.r_offset < Begin)
568       continue;
569 
570     if (Rel.r_offset < Begin + Size)
571       return RelocI;
572     return -1;
573   }
574   return -1;
575 }
576 
577 // .eh_frame is a sequence of CIE or FDE records.
578 // This function splits an input section into records and returns them.
579 template <class ELFT> void EhInputSection<ELFT>::split() {
580   // Early exit if already split.
581   if (!this->Pieces.empty())
582     return;
583 
584   if (this->NumRelocations) {
585     if (this->AreRelocsRela)
586       split(this->relas());
587     else
588       split(this->rels());
589     return;
590   }
591   split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr));
592 }
593 
594 template <class ELFT>
595 template <class RelTy>
596 void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) {
597   ArrayRef<uint8_t> Data = this->Data;
598   unsigned RelI = 0;
599   for (size_t Off = 0, End = Data.size(); Off != End;) {
600     size_t Size = readEhRecordSize<ELFT>(this, Off);
601     this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
602     // The empty record is the end marker.
603     if (Size == 4)
604       break;
605     Off += Size;
606   }
607 }
608 
609 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) {
610   // Optimize the common case.
611   StringRef S((const char *)A.data(), A.size());
612   if (EntSize == 1)
613     return S.find(0);
614 
615   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
616     const char *B = S.begin() + I;
617     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
618       return I;
619   }
620   return StringRef::npos;
621 }
622 
623 // Split SHF_STRINGS section. Such section is a sequence of
624 // null-terminated strings.
625 template <class ELFT>
626 void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data,
627                                            size_t EntSize) {
628   size_t Off = 0;
629   bool IsAlloc = this->Flags & SHF_ALLOC;
630   while (!Data.empty()) {
631     size_t End = findNull(Data, EntSize);
632     if (End == StringRef::npos)
633       fatal(toString(this) + ": string is not null terminated");
634     size_t Size = End + EntSize;
635     Pieces.emplace_back(Off, !IsAlloc);
636     Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size))));
637     Data = Data.slice(Size);
638     Off += Size;
639   }
640 }
641 
642 // Split non-SHF_STRINGS section. Such section is a sequence of
643 // fixed size records.
644 template <class ELFT>
645 void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data,
646                                               size_t EntSize) {
647   size_t Size = Data.size();
648   assert((Size % EntSize) == 0);
649   bool IsAlloc = this->Flags & SHF_ALLOC;
650   for (unsigned I = 0, N = Size; I != N; I += EntSize) {
651     Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize))));
652     Pieces.emplace_back(I, !IsAlloc);
653   }
654 }
655 
656 template <class ELFT>
657 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F,
658                                            const Elf_Shdr *Header,
659                                            StringRef Name)
660     : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {}
661 
662 // This function is called after we obtain a complete list of input sections
663 // that need to be linked. This is responsible to split section contents
664 // into small chunks for further processing.
665 //
666 // Note that this function is called from parallel_for_each. This must be
667 // thread-safe (i.e. no memory allocation from the pools).
668 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() {
669   ArrayRef<uint8_t> Data = this->Data;
670   uintX_t EntSize = this->Entsize;
671   if (this->Flags & SHF_STRINGS)
672     splitStrings(Data, EntSize);
673   else
674     splitNonStrings(Data, EntSize);
675 
676   if (Config->GcSections && (this->Flags & SHF_ALLOC))
677     for (uintX_t Off : LiveOffsets)
678       this->getSectionPiece(Off)->Live = true;
679 }
680 
681 template <class ELFT>
682 bool MergeInputSection<ELFT>::classof(const InputSectionData *S) {
683   return S->kind() == InputSectionBase<ELFT>::Merge;
684 }
685 
686 // Do binary search to get a section piece at a given input offset.
687 template <class ELFT>
688 SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) {
689   auto *This = static_cast<const MergeInputSection<ELFT> *>(this);
690   return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
691 }
692 
693 template <class It, class T, class Compare>
694 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
695   size_t Size = std::distance(First, Last);
696   assert(Size != 0);
697   while (Size != 1) {
698     size_t H = Size / 2;
699     const It MI = First + H;
700     Size -= H;
701     First = Comp(Value, *MI) ? First : First + H;
702   }
703   return Comp(Value, *First) ? First : First + 1;
704 }
705 
706 template <class ELFT>
707 const SectionPiece *
708 MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const {
709   uintX_t Size = this->Data.size();
710   if (Offset >= Size)
711     fatal(toString(this) + ": entry is past the end of the section");
712 
713   // Find the element this offset points to.
714   auto I = fastUpperBound(
715       Pieces.begin(), Pieces.end(), Offset,
716       [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; });
717   --I;
718   return &*I;
719 }
720 
721 // Returns the offset in an output section for a given input offset.
722 // Because contents of a mergeable section is not contiguous in output,
723 // it is not just an addition to a base output offset.
724 template <class ELFT>
725 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const {
726   // Initialize OffsetMap lazily.
727   std::call_once(InitOffsetMap, [&] {
728     OffsetMap.reserve(Pieces.size());
729     for (const SectionPiece &Piece : Pieces)
730       OffsetMap[Piece.InputOff] = Piece.OutputOff;
731   });
732 
733   // Find a string starting at a given offset.
734   auto It = OffsetMap.find(Offset);
735   if (It != OffsetMap.end())
736     return It->second;
737 
738   if (!this->Live)
739     return 0;
740 
741   // If Offset is not at beginning of a section piece, it is not in the map.
742   // In that case we need to search from the original section piece vector.
743   const SectionPiece &Piece = *this->getSectionPiece(Offset);
744   if (!Piece.Live)
745     return 0;
746 
747   uintX_t Addend = Offset - Piece.InputOff;
748   return Piece.OutputOff + Addend;
749 }
750 
751 template class elf::InputSectionBase<ELF32LE>;
752 template class elf::InputSectionBase<ELF32BE>;
753 template class elf::InputSectionBase<ELF64LE>;
754 template class elf::InputSectionBase<ELF64BE>;
755 
756 template class elf::InputSection<ELF32LE>;
757 template class elf::InputSection<ELF32BE>;
758 template class elf::InputSection<ELF64LE>;
759 template class elf::InputSection<ELF64BE>;
760 
761 template class elf::EhInputSection<ELF32LE>;
762 template class elf::EhInputSection<ELF32BE>;
763 template class elf::EhInputSection<ELF64LE>;
764 template class elf::EhInputSection<ELF64BE>;
765 
766 template class elf::MergeInputSection<ELF32LE>;
767 template class elf::MergeInputSection<ELF32BE>;
768 template class elf::MergeInputSection<ELF64LE>;
769 template class elf::MergeInputSection<ELF64BE>;
770 
771 template std::string lld::toString(const InputSectionBase<ELF32LE> *);
772 template std::string lld::toString(const InputSectionBase<ELF32BE> *);
773 template std::string lld::toString(const InputSectionBase<ELF64LE> *);
774 template std::string lld::toString(const InputSectionBase<ELF64BE> *);
775