1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/Threading.h" 28 #include <mutex> 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::support; 34 using namespace llvm::support::endian; 35 using namespace llvm::sys; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 std::vector<InputSectionBase *> elf::InputSections; 41 42 // Returns a string to construct an error message. 43 std::string lld::toString(const InputSectionBase *Sec) { 44 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 45 } 46 47 template <class ELFT> 48 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 49 const typename ELFT::Shdr *Hdr) { 50 if (!File || Hdr->sh_type == SHT_NOBITS) 51 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 52 return check(File->getObj().getSectionContents(Hdr)); 53 } 54 55 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 56 uint32_t Type, uint64_t Entsize, 57 uint32_t Link, uint32_t Info, 58 uint32_t Alignment, ArrayRef<uint8_t> Data, 59 StringRef Name, Kind SectionKind) 60 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 61 Link), 62 File(File), Data(Data), Repl(this) { 63 Live = !Config->GcSections || !(Flags & SHF_ALLOC); 64 Assigned = false; 65 NumRelocations = 0; 66 AreRelocsRela = false; 67 68 // The ELF spec states that a value of 0 means the section has 69 // no alignment constraits. 70 uint32_t V = std::max<uint64_t>(Alignment, 1); 71 if (!isPowerOf2_64(V)) 72 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 73 this->Alignment = V; 74 } 75 76 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 77 // SHF_GROUP is a marker that a section belongs to some comdat group. 78 // That flag doesn't make sense in an executable. 79 static uint64_t getFlags(uint64_t Flags) { 80 Flags &= ~(uint64_t)SHF_INFO_LINK; 81 if (!Config->Relocatable) 82 Flags &= ~(uint64_t)SHF_GROUP; 83 return Flags; 84 } 85 86 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 87 // March 2017) fail to infer section types for sections starting with 88 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 89 // SHF_INIT_ARRAY. As a result, the following assembler directive 90 // creates ".init_array.100" with SHT_PROGBITS, for example. 91 // 92 // .section .init_array.100, "aw" 93 // 94 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 95 // incorrect inputs as if they were correct from the beginning. 96 static uint64_t getType(uint64_t Type, StringRef Name) { 97 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 98 return SHT_INIT_ARRAY; 99 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 100 return SHT_FINI_ARRAY; 101 return Type; 102 } 103 104 template <class ELFT> 105 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 106 const typename ELFT::Shdr *Hdr, 107 StringRef Name, Kind SectionKind) 108 : InputSectionBase(File, getFlags(Hdr->sh_flags), 109 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 110 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 111 getSectionContents(File, Hdr), Name, SectionKind) { 112 // We reject object files having insanely large alignments even though 113 // they are allowed by the spec. I think 4GB is a reasonable limitation. 114 // We might want to relax this in the future. 115 if (Hdr->sh_addralign > UINT32_MAX) 116 fatal(toString(File) + ": section sh_addralign is too large"); 117 } 118 119 size_t InputSectionBase::getSize() const { 120 if (auto *S = dyn_cast<SyntheticSection>(this)) 121 return S->getSize(); 122 123 return Data.size(); 124 } 125 126 uint64_t InputSectionBase::getOffsetInFile() const { 127 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 128 const uint8_t *SecStart = Data.begin(); 129 return SecStart - FileStart; 130 } 131 132 uint64_t SectionBase::getOffset(uint64_t Offset) const { 133 switch (kind()) { 134 case Output: { 135 auto *OS = cast<OutputSection>(this); 136 // For output sections we treat offset -1 as the end of the section. 137 return Offset == uint64_t(-1) ? OS->Size : Offset; 138 } 139 case Regular: 140 return cast<InputSection>(this)->OutSecOff + Offset; 141 case Synthetic: { 142 auto *IS = cast<InputSection>(this); 143 // For synthetic sections we treat offset -1 as the end of the section. 144 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 145 } 146 case EHFrame: 147 // The file crtbeginT.o has relocations pointing to the start of an empty 148 // .eh_frame that is known to be the first in the link. It does that to 149 // identify the start of the output .eh_frame. 150 return Offset; 151 case Merge: 152 const MergeInputSection *MS = cast<MergeInputSection>(this); 153 if (InputSection *IS = MS->getParent()) 154 return IS->OutSecOff + MS->getOffset(Offset); 155 return MS->getOffset(Offset); 156 } 157 llvm_unreachable("invalid section kind"); 158 } 159 160 OutputSection *SectionBase::getOutputSection() { 161 InputSection *Sec; 162 if (auto *IS = dyn_cast<InputSection>(this)) 163 Sec = cast<InputSection>(IS->Repl); 164 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 165 Sec = MS->getParent(); 166 else if (auto *EH = dyn_cast<EhInputSection>(this)) 167 Sec = EH->getParent(); 168 else 169 return cast<OutputSection>(this); 170 return Sec ? Sec->getParent() : nullptr; 171 } 172 173 // Uncompress section contents. Note that this function is called 174 // from parallel_for_each, so it must be thread-safe. 175 void InputSectionBase::uncompress() { 176 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 177 Config->IsLE, Config->Is64)); 178 179 size_t Size = Dec.getDecompressedSize(); 180 char *OutputBuf; 181 { 182 static std::mutex Mu; 183 std::lock_guard<std::mutex> Lock(Mu); 184 OutputBuf = BAlloc.Allocate<char>(Size); 185 } 186 187 if (Error E = Dec.decompress({OutputBuf, Size})) 188 fatal(toString(this) + 189 ": decompress failed: " + llvm::toString(std::move(E))); 190 this->Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 191 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 192 } 193 194 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 195 return getOffset(Sym.Value); 196 } 197 198 InputSection *InputSectionBase::getLinkOrderDep() const { 199 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 200 InputSectionBase *L = File->getSections()[Link]; 201 if (auto *IS = dyn_cast<InputSection>(L)) 202 return IS; 203 error( 204 "Merge and .eh_frame sections are not supported with SHF_LINK_ORDER " + 205 toString(L)); 206 } 207 return nullptr; 208 } 209 210 // Returns a source location string. Used to construct an error message. 211 template <class ELFT> 212 std::string InputSectionBase::getLocation(uint64_t Offset) { 213 // We don't have file for synthetic sections. 214 if (getFile<ELFT>() == nullptr) 215 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 216 .str(); 217 218 // First check if we can get desired values from debugging information. 219 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 220 if (!LineInfo.empty()) 221 return LineInfo; 222 223 // File->SourceFile contains STT_FILE symbol that contains a 224 // source file name. If it's missing, we use an object file name. 225 std::string SrcFile = getFile<ELFT>()->SourceFile; 226 if (SrcFile.empty()) 227 SrcFile = toString(File); 228 229 // Find a function symbol that encloses a given location. 230 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 231 if (auto *D = dyn_cast<DefinedRegular>(B)) 232 if (D->Section == this && D->Type == STT_FUNC) 233 if (D->Value <= Offset && Offset < D->Value + D->Size) 234 return SrcFile + ":(function " + toString(*D) + ")"; 235 236 // If there's no symbol, print out the offset in the section. 237 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 238 } 239 240 // Returns a source location string. This function is intended to be 241 // used for constructing an error message. The returned message looks 242 // like this: 243 // 244 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 245 // 246 // Returns an empty string if there's no way to get line info. 247 template <class ELFT> std::string InputSectionBase::getSrcMsg(uint64_t Offset) { 248 // Synthetic sections don't have input files. 249 ObjFile<ELFT> *File = getFile<ELFT>(); 250 if (!File) 251 return ""; 252 253 Optional<DILineInfo> Info = File->getDILineInfo(this, Offset); 254 255 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 256 if (!Info) 257 return File->SourceFile; 258 259 std::string Path = Info->FileName; 260 std::string Filename = path::filename(Path); 261 std::string Lineno = ":" + std::to_string(Info->Line); 262 if (Filename == Path) 263 return Filename + Lineno; 264 return Filename + Lineno + " (" + Path + Lineno + ")"; 265 } 266 267 // Returns a filename string along with an optional section name. This 268 // function is intended to be used for constructing an error 269 // message. The returned message looks like this: 270 // 271 // path/to/foo.o:(function bar) 272 // 273 // or 274 // 275 // path/to/foo.o:(function bar) in archive path/to/bar.a 276 template <class ELFT> std::string InputSectionBase::getObjMsg(uint64_t Off) { 277 // Synthetic sections don't have input files. 278 ObjFile<ELFT> *File = getFile<ELFT>(); 279 if (!File) 280 return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str(); 281 std::string Filename = File->getName(); 282 283 std::string Archive; 284 if (!File->ArchiveName.empty()) 285 Archive = (" in archive " + File->ArchiveName).str(); 286 287 // Find a symbol that encloses a given location. 288 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 289 if (auto *D = dyn_cast<DefinedRegular>(B)) 290 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 291 return Filename + ":(" + toString(*D) + ")" + Archive; 292 293 // If there's no symbol, print out the offset in the section. 294 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 295 .str(); 296 } 297 298 InputSectionBase InputSectionBase::Discarded; 299 300 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 301 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 302 : InputSectionBase(nullptr, Flags, Type, 303 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 304 Name, K) {} 305 306 template <class ELFT> 307 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 308 StringRef Name) 309 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 310 311 bool InputSection::classof(const SectionBase *S) { 312 return S->kind() == SectionBase::Regular || 313 S->kind() == SectionBase::Synthetic; 314 } 315 316 bool InputSectionBase::classof(const SectionBase *S) { 317 return S->kind() != Output; 318 } 319 320 OutputSection *InputSection::getParent() const { 321 return cast_or_null<OutputSection>(Parent); 322 } 323 324 // Copy SHT_GROUP section contents. Used only for the -r option. 325 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 326 // ELFT::Word is the 32-bit integral type in the target endianness. 327 typedef typename ELFT::Word u32; 328 ArrayRef<u32> From = getDataAs<u32>(); 329 auto *To = reinterpret_cast<u32 *>(Buf); 330 331 // The first entry is not a section number but a flag. 332 *To++ = From[0]; 333 334 // Adjust section numbers because section numbers in an input object 335 // files are different in the output. 336 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 337 for (uint32_t Idx : From.slice(1)) 338 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 339 } 340 341 InputSectionBase *InputSection::getRelocatedSection() { 342 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 343 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 344 return Sections[this->Info]; 345 } 346 347 // This is used for -r and --emit-relocs. We can't use memcpy to copy 348 // relocations because we need to update symbol table offset and section index 349 // for each relocation. So we copy relocations one by one. 350 template <class ELFT, class RelTy> 351 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 352 InputSectionBase *RelocatedSection = getRelocatedSection(); 353 354 // Loop is slow and have complexity O(N*M), where N - amount of 355 // relocations and M - amount of symbols in symbol table. 356 // That happens because getSymbolIndex(...) call below performs 357 // simple linear search. 358 for (const RelTy &Rel : Rels) { 359 uint32_t Type = Rel.getType(Config->IsMips64EL); 360 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 361 362 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 363 Buf += sizeof(RelTy); 364 365 if (Config->IsRela) 366 P->r_addend = getAddend<ELFT>(Rel); 367 368 // Output section VA is zero for -r, so r_offset is an offset within the 369 // section, but for --emit-relocs it is an virtual address. 370 P->r_offset = RelocatedSection->getOutputSection()->Addr + 371 RelocatedSection->getOffset(Rel.r_offset); 372 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type, 373 Config->IsMips64EL); 374 375 if (Body.Type == STT_SECTION) { 376 // We combine multiple section symbols into only one per 377 // section. This means we have to update the addend. That is 378 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 379 // section data. We do that by adding to the Relocation vector. 380 381 // .eh_frame is horribly special and can reference discarded sections. To 382 // avoid having to parse and recreate .eh_frame, we just replace any 383 // relocation in it pointing to discarded sections with R_*_NONE, which 384 // hopefully creates a frame that is ignored at runtime. 385 SectionBase *Section = cast<DefinedRegular>(Body).Section; 386 if (Section == &InputSection::Discarded) { 387 P->setSymbolAndType(0, 0, false); 388 continue; 389 } 390 391 if (Config->IsRela) { 392 P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; 393 } else if (Config->Relocatable) { 394 const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; 395 RelocatedSection->Relocations.push_back( 396 {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), 397 &Body}); 398 } 399 } 400 401 } 402 } 403 404 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 405 // references specially. The general rule is that the value of the symbol in 406 // this context is the address of the place P. A further special case is that 407 // branch relocations to an undefined weak reference resolve to the next 408 // instruction. 409 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 410 uint32_t P) { 411 switch (Type) { 412 // Unresolved branch relocations to weak references resolve to next 413 // instruction, this will be either 2 or 4 bytes on from P. 414 case R_ARM_THM_JUMP11: 415 return P + 2 + A; 416 case R_ARM_CALL: 417 case R_ARM_JUMP24: 418 case R_ARM_PC24: 419 case R_ARM_PLT32: 420 case R_ARM_PREL31: 421 case R_ARM_THM_JUMP19: 422 case R_ARM_THM_JUMP24: 423 return P + 4 + A; 424 case R_ARM_THM_CALL: 425 // We don't want an interworking BLX to ARM 426 return P + 5 + A; 427 // Unresolved non branch pc-relative relocations 428 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 429 // targets a weak-reference. 430 case R_ARM_MOVW_PREL_NC: 431 case R_ARM_MOVT_PREL: 432 case R_ARM_REL32: 433 case R_ARM_THM_MOVW_PREL_NC: 434 case R_ARM_THM_MOVT_PREL: 435 return P + A; 436 } 437 llvm_unreachable("ARM pc-relative relocation expected\n"); 438 } 439 440 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 441 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 442 uint64_t P) { 443 switch (Type) { 444 // Unresolved branch relocations to weak references resolve to next 445 // instruction, this is 4 bytes on from P. 446 case R_AARCH64_CALL26: 447 case R_AARCH64_CONDBR19: 448 case R_AARCH64_JUMP26: 449 case R_AARCH64_TSTBR14: 450 return P + 4 + A; 451 // Unresolved non branch pc-relative relocations 452 case R_AARCH64_PREL16: 453 case R_AARCH64_PREL32: 454 case R_AARCH64_PREL64: 455 case R_AARCH64_ADR_PREL_LO21: 456 return P + A; 457 } 458 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 459 } 460 461 // ARM SBREL relocations are of the form S + A - B where B is the static base 462 // The ARM ABI defines base to be "addressing origin of the output segment 463 // defining the symbol S". We defined the "addressing origin"/static base to be 464 // the base of the PT_LOAD segment containing the Body. 465 // The procedure call standard only defines a Read Write Position Independent 466 // RWPI variant so in practice we should expect the static base to be the base 467 // of the RW segment. 468 static uint64_t getARMStaticBase(const SymbolBody &Body) { 469 OutputSection *OS = Body.getOutputSection(); 470 if (!OS || !OS->FirstInPtLoad) 471 fatal("SBREL relocation to " + Body.getName() + " without static base"); 472 return OS->FirstInPtLoad->Addr; 473 } 474 475 static uint64_t getRelocTargetVA(uint32_t Type, int64_t A, uint64_t P, 476 const SymbolBody &Body, RelExpr Expr) { 477 switch (Expr) { 478 case R_ABS: 479 case R_RELAX_GOT_PC_NOPIC: 480 return Body.getVA(A); 481 case R_ARM_SBREL: 482 return Body.getVA(A) - getARMStaticBase(Body); 483 case R_GOT: 484 case R_RELAX_TLS_GD_TO_IE_ABS: 485 return Body.getGotVA() + A; 486 case R_GOTONLY_PC: 487 return InX::Got->getVA() + A - P; 488 case R_GOTONLY_PC_FROM_END: 489 return InX::Got->getVA() + A - P + InX::Got->getSize(); 490 case R_GOTREL: 491 return Body.getVA(A) - InX::Got->getVA(); 492 case R_GOTREL_FROM_END: 493 return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 494 case R_GOT_FROM_END: 495 case R_RELAX_TLS_GD_TO_IE_END: 496 return Body.getGotOffset() + A - InX::Got->getSize(); 497 case R_GOT_OFF: 498 return Body.getGotOffset() + A; 499 case R_GOT_PAGE_PC: 500 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 501 return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); 502 case R_GOT_PC: 503 case R_RELAX_TLS_GD_TO_IE: 504 return Body.getGotVA() + A - P; 505 case R_HINT: 506 case R_NONE: 507 case R_TLSDESC_CALL: 508 llvm_unreachable("cannot relocate hint relocs"); 509 case R_MIPS_GOTREL: 510 return Body.getVA(A) - InX::MipsGot->getGp(); 511 case R_MIPS_GOT_GP: 512 return InX::MipsGot->getGp() + A; 513 case R_MIPS_GOT_GP_PC: { 514 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 515 // is _gp_disp symbol. In that case we should use the following 516 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 517 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 518 uint64_t V = InX::MipsGot->getGp() + A - P; 519 if (Type == R_MIPS_LO16) 520 V += 4; 521 return V; 522 } 523 case R_MIPS_GOT_LOCAL_PAGE: 524 // If relocation against MIPS local symbol requires GOT entry, this entry 525 // should be initialized by 'page address'. This address is high 16-bits 526 // of sum the symbol's value and the addend. 527 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) - 528 InX::MipsGot->getGp(); 529 case R_MIPS_GOT_OFF: 530 case R_MIPS_GOT_OFF32: 531 // In case of MIPS if a GOT relocation has non-zero addend this addend 532 // should be applied to the GOT entry content not to the GOT entry offset. 533 // That is why we use separate expression type. 534 return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) - 535 InX::MipsGot->getGp(); 536 case R_MIPS_TLSGD: 537 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 538 InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp(); 539 case R_MIPS_TLSLD: 540 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 541 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 542 case R_PAGE_PC: 543 case R_PLT_PAGE_PC: { 544 uint64_t Dest; 545 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 546 Dest = getAArch64Page(A); 547 else 548 Dest = getAArch64Page(Body.getVA(A)); 549 return Dest - getAArch64Page(P); 550 } 551 case R_PC: { 552 uint64_t Dest; 553 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 554 // On ARM and AArch64 a branch to an undefined weak resolves to the 555 // next instruction, otherwise the place. 556 if (Config->EMachine == EM_ARM) 557 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 558 else if (Config->EMachine == EM_AARCH64) 559 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 560 else 561 Dest = Body.getVA(A); 562 } else { 563 Dest = Body.getVA(A); 564 } 565 return Dest - P; 566 } 567 case R_PLT: 568 return Body.getPltVA() + A; 569 case R_PLT_PC: 570 case R_PPC_PLT_OPD: 571 return Body.getPltVA() + A - P; 572 case R_PPC_OPD: { 573 uint64_t SymVA = Body.getVA(A); 574 // If we have an undefined weak symbol, we might get here with a symbol 575 // address of zero. That could overflow, but the code must be unreachable, 576 // so don't bother doing anything at all. 577 if (!SymVA) 578 return 0; 579 if (Out::Opd) { 580 // If this is a local call, and we currently have the address of a 581 // function-descriptor, get the underlying code address instead. 582 uint64_t OpdStart = Out::Opd->Addr; 583 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 584 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 585 if (InOpd) 586 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 587 } 588 return SymVA - P; 589 } 590 case R_PPC_TOC: 591 return getPPC64TocBase() + A; 592 case R_RELAX_GOT_PC: 593 return Body.getVA(A) - P; 594 case R_RELAX_TLS_GD_TO_LE: 595 case R_RELAX_TLS_IE_TO_LE: 596 case R_RELAX_TLS_LD_TO_LE: 597 case R_TLS: 598 // A weak undefined TLS symbol resolves to the base of the TLS 599 // block, i.e. gets a value of zero. If we pass --gc-sections to 600 // lld and .tbss is not referenced, it gets reclaimed and we don't 601 // create a TLS program header. Therefore, we resolve this 602 // statically to zero. 603 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 604 Body.symbol()->isWeak()) 605 return 0; 606 if (Target->TcbSize) 607 return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 608 return Body.getVA(A) - Out::TlsPhdr->p_memsz; 609 case R_RELAX_TLS_GD_TO_LE_NEG: 610 case R_NEG_TLS: 611 return Out::TlsPhdr->p_memsz - Body.getVA(A); 612 case R_SIZE: 613 return A; // Body.getSize was already folded into the addend. 614 case R_TLSDESC: 615 return InX::Got->getGlobalDynAddr(Body) + A; 616 case R_TLSDESC_PAGE: 617 return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) - 618 getAArch64Page(P); 619 case R_TLSGD: 620 return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize(); 621 case R_TLSGD_PC: 622 return InX::Got->getGlobalDynAddr(Body) + A - P; 623 case R_TLSLD: 624 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 625 case R_TLSLD_PC: 626 return InX::Got->getTlsIndexVA() + A - P; 627 } 628 llvm_unreachable("Invalid expression"); 629 } 630 631 // This function applies relocations to sections without SHF_ALLOC bit. 632 // Such sections are never mapped to memory at runtime. Debug sections are 633 // an example. Relocations in non-alloc sections are much easier to 634 // handle than in allocated sections because it will never need complex 635 // treatement such as GOT or PLT (because at runtime no one refers them). 636 // So, we handle relocations for non-alloc sections directly in this 637 // function as a performance optimization. 638 template <class ELFT, class RelTy> 639 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 640 for (const RelTy &Rel : Rels) { 641 uint32_t Type = Rel.getType(Config->IsMips64EL); 642 uint64_t Offset = getOffset(Rel.r_offset); 643 uint8_t *BufLoc = Buf + Offset; 644 int64_t Addend = getAddend<ELFT>(Rel); 645 if (!RelTy::IsRela) 646 Addend += Target->getImplicitAddend(BufLoc, Type); 647 648 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 649 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 650 if (Expr == R_NONE) 651 continue; 652 if (Expr != R_ABS) { 653 error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); 654 return; 655 } 656 657 uint64_t AddrLoc = getParent()->Addr + Offset; 658 uint64_t SymVA = 0; 659 if (!Sym.isTls() || Out::TlsPhdr) 660 SymVA = SignExtend64<sizeof(typename ELFT::uint) * 8>( 661 getRelocTargetVA(Type, Addend, AddrLoc, Sym, R_ABS)); 662 Target->relocateOne(BufLoc, Type, SymVA); 663 } 664 } 665 666 template <class ELFT> ObjFile<ELFT> *InputSectionBase::getFile() const { 667 return cast_or_null<ObjFile<ELFT>>(File); 668 } 669 670 template <class ELFT> 671 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 672 if (Flags & SHF_ALLOC) 673 relocateAlloc(Buf, BufEnd); 674 else 675 relocateNonAlloc<ELFT>(Buf, BufEnd); 676 } 677 678 template <class ELFT> 679 void InputSectionBase::relocateNonAlloc(uint8_t *Buf, uint8_t *BufEnd) { 680 // scanReloc function in Writer.cpp constructs Relocations 681 // vector only for SHF_ALLOC'ed sections. For other sections, 682 // we handle relocations directly here. 683 auto *IS = cast<InputSection>(this); 684 assert(!(IS->Flags & SHF_ALLOC)); 685 if (IS->AreRelocsRela) 686 IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); 687 else 688 IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); 689 } 690 691 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 692 assert(Flags & SHF_ALLOC); 693 const unsigned Bits = Config->Wordsize * 8; 694 for (const Relocation &Rel : Relocations) { 695 uint64_t Offset = getOffset(Rel.Offset); 696 uint8_t *BufLoc = Buf + Offset; 697 uint32_t Type = Rel.Type; 698 699 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 700 RelExpr Expr = Rel.Expr; 701 uint64_t TargetVA = SignExtend64( 702 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 703 704 switch (Expr) { 705 case R_RELAX_GOT_PC: 706 case R_RELAX_GOT_PC_NOPIC: 707 Target->relaxGot(BufLoc, TargetVA); 708 break; 709 case R_RELAX_TLS_IE_TO_LE: 710 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 711 break; 712 case R_RELAX_TLS_LD_TO_LE: 713 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 714 break; 715 case R_RELAX_TLS_GD_TO_LE: 716 case R_RELAX_TLS_GD_TO_LE_NEG: 717 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 718 break; 719 case R_RELAX_TLS_GD_TO_IE: 720 case R_RELAX_TLS_GD_TO_IE_ABS: 721 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 722 case R_RELAX_TLS_GD_TO_IE_END: 723 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 724 break; 725 case R_PPC_PLT_OPD: 726 // Patch a nop (0x60000000) to a ld. 727 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 728 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 729 LLVM_FALLTHROUGH; 730 default: 731 Target->relocateOne(BufLoc, Type, TargetVA); 732 break; 733 } 734 } 735 } 736 737 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 738 if (this->Type == SHT_NOBITS) 739 return; 740 741 if (auto *S = dyn_cast<SyntheticSection>(this)) { 742 S->writeTo(Buf + OutSecOff); 743 return; 744 } 745 746 // If -r or --emit-relocs is given, then an InputSection 747 // may be a relocation section. 748 if (this->Type == SHT_RELA) { 749 copyRelocations<ELFT>(Buf + OutSecOff, 750 this->template getDataAs<typename ELFT::Rela>()); 751 return; 752 } 753 if (this->Type == SHT_REL) { 754 copyRelocations<ELFT>(Buf + OutSecOff, 755 this->template getDataAs<typename ELFT::Rel>()); 756 return; 757 } 758 759 // If -r is given, we may have a SHT_GROUP section. 760 if (this->Type == SHT_GROUP) { 761 copyShtGroup<ELFT>(Buf + OutSecOff); 762 return; 763 } 764 765 // Copy section contents from source object file to output file 766 // and then apply relocations. 767 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 768 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 769 this->relocate<ELFT>(Buf, BufEnd); 770 } 771 772 void InputSection::replace(InputSection *Other) { 773 this->Alignment = std::max(this->Alignment, Other->Alignment); 774 Other->Repl = this->Repl; 775 Other->Live = false; 776 } 777 778 template <class ELFT> 779 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 780 const typename ELFT::Shdr *Header, 781 StringRef Name) 782 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 783 // Mark .eh_frame sections as live by default because there are 784 // usually no relocations that point to .eh_frames. Otherwise, 785 // the garbage collector would drop all .eh_frame sections. 786 this->Live = true; 787 } 788 789 SyntheticSection *EhInputSection::getParent() const { 790 return cast_or_null<SyntheticSection>(Parent); 791 } 792 793 bool EhInputSection::classof(const SectionBase *S) { 794 return S->kind() == InputSectionBase::EHFrame; 795 } 796 797 // Returns the index of the first relocation that points to a region between 798 // Begin and Begin+Size. 799 template <class IntTy, class RelTy> 800 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 801 unsigned &RelocI) { 802 // Start search from RelocI for fast access. That works because the 803 // relocations are sorted in .eh_frame. 804 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 805 const RelTy &Rel = Rels[RelocI]; 806 if (Rel.r_offset < Begin) 807 continue; 808 809 if (Rel.r_offset < Begin + Size) 810 return RelocI; 811 return -1; 812 } 813 return -1; 814 } 815 816 // .eh_frame is a sequence of CIE or FDE records. 817 // This function splits an input section into records and returns them. 818 template <class ELFT> void EhInputSection::split() { 819 // Early exit if already split. 820 if (!this->Pieces.empty()) 821 return; 822 823 if (this->NumRelocations) { 824 if (this->AreRelocsRela) 825 split<ELFT>(this->relas<ELFT>()); 826 else 827 split<ELFT>(this->rels<ELFT>()); 828 return; 829 } 830 split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 831 } 832 833 template <class ELFT, class RelTy> 834 void EhInputSection::split(ArrayRef<RelTy> Rels) { 835 ArrayRef<uint8_t> Data = this->Data; 836 unsigned RelI = 0; 837 for (size_t Off = 0, End = Data.size(); Off != End;) { 838 size_t Size = readEhRecordSize<ELFT>(this, Off); 839 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 840 // The empty record is the end marker. 841 if (Size == 4) 842 break; 843 Off += Size; 844 } 845 } 846 847 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 848 // Optimize the common case. 849 StringRef S((const char *)A.data(), A.size()); 850 if (EntSize == 1) 851 return S.find(0); 852 853 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 854 const char *B = S.begin() + I; 855 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 856 return I; 857 } 858 return StringRef::npos; 859 } 860 861 SyntheticSection *MergeInputSection::getParent() const { 862 return cast_or_null<SyntheticSection>(Parent); 863 } 864 865 // Split SHF_STRINGS section. Such section is a sequence of 866 // null-terminated strings. 867 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 868 size_t Off = 0; 869 bool IsAlloc = this->Flags & SHF_ALLOC; 870 while (!Data.empty()) { 871 size_t End = findNull(Data, EntSize); 872 if (End == StringRef::npos) 873 fatal(toString(this) + ": string is not null terminated"); 874 size_t Size = End + EntSize; 875 Pieces.emplace_back(Off, !IsAlloc); 876 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 877 Data = Data.slice(Size); 878 Off += Size; 879 } 880 } 881 882 // Split non-SHF_STRINGS section. Such section is a sequence of 883 // fixed size records. 884 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 885 size_t EntSize) { 886 size_t Size = Data.size(); 887 assert((Size % EntSize) == 0); 888 bool IsAlloc = this->Flags & SHF_ALLOC; 889 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 890 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 891 Pieces.emplace_back(I, !IsAlloc); 892 } 893 } 894 895 template <class ELFT> 896 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 897 const typename ELFT::Shdr *Header, 898 StringRef Name) 899 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 900 901 // This function is called after we obtain a complete list of input sections 902 // that need to be linked. This is responsible to split section contents 903 // into small chunks for further processing. 904 // 905 // Note that this function is called from parallel_for_each. This must be 906 // thread-safe (i.e. no memory allocation from the pools). 907 void MergeInputSection::splitIntoPieces() { 908 ArrayRef<uint8_t> Data = this->Data; 909 uint64_t EntSize = this->Entsize; 910 if (this->Flags & SHF_STRINGS) 911 splitStrings(Data, EntSize); 912 else 913 splitNonStrings(Data, EntSize); 914 915 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 916 for (uint64_t Off : LiveOffsets) 917 this->getSectionPiece(Off)->Live = true; 918 } 919 920 bool MergeInputSection::classof(const SectionBase *S) { 921 return S->kind() == InputSectionBase::Merge; 922 } 923 924 // Do binary search to get a section piece at a given input offset. 925 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 926 auto *This = static_cast<const MergeInputSection *>(this); 927 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 928 } 929 930 template <class It, class T, class Compare> 931 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 932 size_t Size = std::distance(First, Last); 933 assert(Size != 0); 934 while (Size != 1) { 935 size_t H = Size / 2; 936 const It MI = First + H; 937 Size -= H; 938 First = Comp(Value, *MI) ? First : First + H; 939 } 940 return Comp(Value, *First) ? First : First + 1; 941 } 942 943 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 944 uint64_t Size = this->Data.size(); 945 if (Offset >= Size) 946 fatal(toString(this) + ": entry is past the end of the section"); 947 948 // Find the element this offset points to. 949 auto I = fastUpperBound( 950 Pieces.begin(), Pieces.end(), Offset, 951 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 952 --I; 953 return &*I; 954 } 955 956 // Returns the offset in an output section for a given input offset. 957 // Because contents of a mergeable section is not contiguous in output, 958 // it is not just an addition to a base output offset. 959 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 960 // Initialize OffsetMap lazily. 961 llvm::call_once(InitOffsetMap, [&] { 962 OffsetMap.reserve(Pieces.size()); 963 for (const SectionPiece &Piece : Pieces) 964 OffsetMap[Piece.InputOff] = Piece.OutputOff; 965 }); 966 967 // Find a string starting at a given offset. 968 auto It = OffsetMap.find(Offset); 969 if (It != OffsetMap.end()) 970 return It->second; 971 972 if (!this->Live) 973 return 0; 974 975 // If Offset is not at beginning of a section piece, it is not in the map. 976 // In that case we need to search from the original section piece vector. 977 const SectionPiece &Piece = *this->getSectionPiece(Offset); 978 if (!Piece.Live) 979 return 0; 980 981 uint64_t Addend = Offset - Piece.InputOff; 982 return Piece.OutputOff + Addend; 983 } 984 985 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 986 StringRef); 987 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 988 StringRef); 989 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 990 StringRef); 991 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 992 StringRef); 993 994 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 995 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 996 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 997 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 998 999 template std::string InputSectionBase::getSrcMsg<ELF32LE>(uint64_t); 1000 template std::string InputSectionBase::getSrcMsg<ELF32BE>(uint64_t); 1001 template std::string InputSectionBase::getSrcMsg<ELF64LE>(uint64_t); 1002 template std::string InputSectionBase::getSrcMsg<ELF64BE>(uint64_t); 1003 1004 template std::string InputSectionBase::getObjMsg<ELF32LE>(uint64_t); 1005 template std::string InputSectionBase::getObjMsg<ELF32BE>(uint64_t); 1006 template std::string InputSectionBase::getObjMsg<ELF64LE>(uint64_t); 1007 template std::string InputSectionBase::getObjMsg<ELF64BE>(uint64_t); 1008 1009 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1010 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1011 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1012 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1013 1014 template ObjFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; 1015 template ObjFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; 1016 template ObjFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; 1017 template ObjFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; 1018 1019 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1020 const ELF32LE::Shdr *, StringRef); 1021 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1022 const ELF32BE::Shdr *, StringRef); 1023 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1024 const ELF64LE::Shdr *, StringRef); 1025 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1026 const ELF64BE::Shdr *, StringRef); 1027 1028 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1029 const ELF32LE::Shdr *, StringRef); 1030 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1031 const ELF32BE::Shdr *, StringRef); 1032 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1033 const ELF64LE::Shdr *, StringRef); 1034 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1035 const ELF64BE::Shdr *, StringRef); 1036 1037 template void EhInputSection::split<ELF32LE>(); 1038 template void EhInputSection::split<ELF32BE>(); 1039 template void EhInputSection::split<ELF64LE>(); 1040 template void EhInputSection::split<ELF64BE>(); 1041