1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 using namespace llvm::sys; 39 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::InputSections; 44 45 // Returns a string to construct an error message. 46 std::string lld::toString(const InputSectionBase *Sec) { 47 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 48 } 49 50 template <class ELFT> 51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File, 52 const typename ELFT::Shdr &Hdr) { 53 if (Hdr.sh_type == SHT_NOBITS) 54 return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size); 55 return check(File.getObj().getSectionContents(&Hdr)); 56 } 57 58 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 59 uint32_t Type, uint64_t Entsize, 60 uint32_t Link, uint32_t Info, 61 uint32_t Alignment, ArrayRef<uint8_t> Data, 62 StringRef Name, Kind SectionKind) 63 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 64 Link), 65 File(File), RawData(Data) { 66 // In order to reduce memory allocation, we assume that mergeable 67 // sections are smaller than 4 GiB, which is not an unreasonable 68 // assumption as of 2017. 69 if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX) 70 error(toString(this) + ": section too large"); 71 72 NumRelocations = 0; 73 AreRelocsRela = false; 74 Debug = Name.startswith(".debug") || Name.startswith(".zdebug"); 75 76 // The ELF spec states that a value of 0 means the section has 77 // no alignment constraits. 78 uint32_t V = std::max<uint64_t>(Alignment, 1); 79 if (!isPowerOf2_64(V)) 80 fatal(toString(this) + ": sh_addralign is not a power of 2"); 81 this->Alignment = V; 82 83 // In ELF, each section can be compressed by zlib, and if compressed, 84 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 85 // If that's the case, demangle section name so that we can handle a 86 // section as if it weren't compressed. 87 if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) { 88 if (!zlib::isAvailable()) 89 error(toString(File) + ": contains a compressed section, " + 90 "but zlib is not available"); 91 parseCompressedHeader(); 92 } 93 } 94 95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 96 // SHF_GROUP is a marker that a section belongs to some comdat group. 97 // That flag doesn't make sense in an executable. 98 static uint64_t getFlags(uint64_t Flags) { 99 Flags &= ~(uint64_t)SHF_INFO_LINK; 100 if (!Config->Relocatable) 101 Flags &= ~(uint64_t)SHF_GROUP; 102 return Flags; 103 } 104 105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 106 // March 2017) fail to infer section types for sections starting with 107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 108 // SHF_INIT_ARRAY. As a result, the following assembler directive 109 // creates ".init_array.100" with SHT_PROGBITS, for example. 110 // 111 // .section .init_array.100, "aw" 112 // 113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 114 // incorrect inputs as if they were correct from the beginning. 115 static uint64_t getType(uint64_t Type, StringRef Name) { 116 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 117 return SHT_INIT_ARRAY; 118 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 119 return SHT_FINI_ARRAY; 120 return Type; 121 } 122 123 template <class ELFT> 124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File, 125 const typename ELFT::Shdr &Hdr, 126 StringRef Name, Kind SectionKind) 127 : InputSectionBase(&File, getFlags(Hdr.sh_flags), 128 getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link, 129 Hdr.sh_info, Hdr.sh_addralign, 130 getSectionContents(File, Hdr), Name, SectionKind) { 131 // We reject object files having insanely large alignments even though 132 // they are allowed by the spec. I think 4GB is a reasonable limitation. 133 // We might want to relax this in the future. 134 if (Hdr.sh_addralign > UINT32_MAX) 135 fatal(toString(&File) + ": section sh_addralign is too large"); 136 } 137 138 size_t InputSectionBase::getSize() const { 139 if (auto *S = dyn_cast<SyntheticSection>(this)) 140 return S->getSize(); 141 if (UncompressedSize >= 0) 142 return UncompressedSize; 143 return RawData.size(); 144 } 145 146 void InputSectionBase::uncompress() const { 147 size_t Size = UncompressedSize; 148 char *UncompressedBuf; 149 { 150 static std::mutex Mu; 151 std::lock_guard<std::mutex> Lock(Mu); 152 UncompressedBuf = BAlloc.Allocate<char>(Size); 153 } 154 155 if (Error E = zlib::uncompress(toStringRef(RawData), UncompressedBuf, Size)) 156 fatal(toString(this) + 157 ": uncompress failed: " + llvm::toString(std::move(E))); 158 RawData = makeArrayRef((uint8_t *)UncompressedBuf, Size); 159 UncompressedSize = -1; 160 } 161 162 uint64_t InputSectionBase::getOffsetInFile() const { 163 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 164 const uint8_t *SecStart = data().begin(); 165 return SecStart - FileStart; 166 } 167 168 uint64_t SectionBase::getOffset(uint64_t Offset) const { 169 switch (kind()) { 170 case Output: { 171 auto *OS = cast<OutputSection>(this); 172 // For output sections we treat offset -1 as the end of the section. 173 return Offset == uint64_t(-1) ? OS->Size : Offset; 174 } 175 case Regular: 176 case Synthetic: 177 return cast<InputSection>(this)->getOffset(Offset); 178 case EHFrame: 179 // The file crtbeginT.o has relocations pointing to the start of an empty 180 // .eh_frame that is known to be the first in the link. It does that to 181 // identify the start of the output .eh_frame. 182 return Offset; 183 case Merge: 184 const MergeInputSection *MS = cast<MergeInputSection>(this); 185 if (InputSection *IS = MS->getParent()) 186 return IS->getOffset(MS->getParentOffset(Offset)); 187 return MS->getParentOffset(Offset); 188 } 189 llvm_unreachable("invalid section kind"); 190 } 191 192 uint64_t SectionBase::getVA(uint64_t Offset) const { 193 const OutputSection *Out = getOutputSection(); 194 return (Out ? Out->Addr : 0) + getOffset(Offset); 195 } 196 197 OutputSection *SectionBase::getOutputSection() { 198 InputSection *Sec; 199 if (auto *IS = dyn_cast<InputSection>(this)) 200 Sec = IS; 201 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 202 Sec = MS->getParent(); 203 else if (auto *EH = dyn_cast<EhInputSection>(this)) 204 Sec = EH->getParent(); 205 else 206 return cast<OutputSection>(this); 207 return Sec ? Sec->getParent() : nullptr; 208 } 209 210 // When a section is compressed, `RawData` consists with a header followed 211 // by zlib-compressed data. This function parses a header to initialize 212 // `UncompressedSize` member and remove the header from `RawData`. 213 void InputSectionBase::parseCompressedHeader() { 214 using Chdr64 = typename ELF64LE::Chdr; 215 using Chdr32 = typename ELF32LE::Chdr; 216 217 // Old-style header 218 if (Name.startswith(".zdebug")) { 219 if (!toStringRef(RawData).startswith("ZLIB")) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 RawData = RawData.slice(4); 224 225 if (RawData.size() < 8) { 226 error(toString(this) + ": corrupted compressed section header"); 227 return; 228 } 229 230 UncompressedSize = read64be(RawData.data()); 231 RawData = RawData.slice(8); 232 233 // Restore the original section name. 234 // (e.g. ".zdebug_info" -> ".debug_info") 235 Name = Saver.save("." + Name.substr(2)); 236 return; 237 } 238 239 assert(Flags & SHF_COMPRESSED); 240 Flags &= ~(uint64_t)SHF_COMPRESSED; 241 242 // New-style 64-bit header 243 if (Config->Is64) { 244 if (RawData.size() < sizeof(Chdr64)) { 245 error(toString(this) + ": corrupted compressed section"); 246 return; 247 } 248 249 auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data()); 250 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 251 error(toString(this) + ": unsupported compression type"); 252 return; 253 } 254 255 UncompressedSize = Hdr->ch_size; 256 RawData = RawData.slice(sizeof(*Hdr)); 257 return; 258 } 259 260 // New-style 32-bit header 261 if (RawData.size() < sizeof(Chdr32)) { 262 error(toString(this) + ": corrupted compressed section"); 263 return; 264 } 265 266 auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data()); 267 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 268 error(toString(this) + ": unsupported compression type"); 269 return; 270 } 271 272 UncompressedSize = Hdr->ch_size; 273 RawData = RawData.slice(sizeof(*Hdr)); 274 } 275 276 InputSection *InputSectionBase::getLinkOrderDep() const { 277 assert(Link); 278 assert(Flags & SHF_LINK_ORDER); 279 return cast<InputSection>(File->getSections()[Link]); 280 } 281 282 // Find a function symbol that encloses a given location. 283 template <class ELFT> 284 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) { 285 for (Symbol *B : File->getSymbols()) 286 if (Defined *D = dyn_cast<Defined>(B)) 287 if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset && 288 Offset < D->Value + D->Size) 289 return D; 290 return nullptr; 291 } 292 293 // Returns a source location string. Used to construct an error message. 294 template <class ELFT> 295 std::string InputSectionBase::getLocation(uint64_t Offset) { 296 std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str(); 297 298 // We don't have file for synthetic sections. 299 if (getFile<ELFT>() == nullptr) 300 return (Config->OutputFile + ":(" + SecAndOffset + ")") 301 .str(); 302 303 // First check if we can get desired values from debugging information. 304 if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset)) 305 return Info->FileName + ":" + std::to_string(Info->Line) + ":(" + 306 SecAndOffset + ")"; 307 308 // File->SourceFile contains STT_FILE symbol that contains a 309 // source file name. If it's missing, we use an object file name. 310 std::string SrcFile = getFile<ELFT>()->SourceFile; 311 if (SrcFile.empty()) 312 SrcFile = toString(File); 313 314 if (Defined *D = getEnclosingFunction<ELFT>(Offset)) 315 return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")"; 316 317 // If there's no symbol, print out the offset in the section. 318 return (SrcFile + ":(" + SecAndOffset + ")"); 319 } 320 321 // This function is intended to be used for constructing an error message. 322 // The returned message looks like this: 323 // 324 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 325 // 326 // Returns an empty string if there's no way to get line info. 327 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 328 return File->getSrcMsg(Sym, *this, Offset); 329 } 330 331 // Returns a filename string along with an optional section name. This 332 // function is intended to be used for constructing an error 333 // message. The returned message looks like this: 334 // 335 // path/to/foo.o:(function bar) 336 // 337 // or 338 // 339 // path/to/foo.o:(function bar) in archive path/to/bar.a 340 std::string InputSectionBase::getObjMsg(uint64_t Off) { 341 std::string Filename = File->getName(); 342 343 std::string Archive; 344 if (!File->ArchiveName.empty()) 345 Archive = " in archive " + File->ArchiveName; 346 347 // Find a symbol that encloses a given location. 348 for (Symbol *B : File->getSymbols()) 349 if (auto *D = dyn_cast<Defined>(B)) 350 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 351 return Filename + ":(" + toString(*D) + ")" + Archive; 352 353 // If there's no symbol, print out the offset in the section. 354 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 355 .str(); 356 } 357 358 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 359 360 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type, 361 uint32_t Alignment, ArrayRef<uint8_t> Data, 362 StringRef Name, Kind K) 363 : InputSectionBase(F, Flags, Type, 364 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 365 Name, K) {} 366 367 template <class ELFT> 368 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header, 369 StringRef Name) 370 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 371 372 bool InputSection::classof(const SectionBase *S) { 373 return S->kind() == SectionBase::Regular || 374 S->kind() == SectionBase::Synthetic; 375 } 376 377 OutputSection *InputSection::getParent() const { 378 return cast_or_null<OutputSection>(Parent); 379 } 380 381 // Copy SHT_GROUP section contents. Used only for the -r option. 382 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 383 // ELFT::Word is the 32-bit integral type in the target endianness. 384 using u32 = typename ELFT::Word; 385 ArrayRef<u32> From = getDataAs<u32>(); 386 auto *To = reinterpret_cast<u32 *>(Buf); 387 388 // The first entry is not a section number but a flag. 389 *To++ = From[0]; 390 391 // Adjust section numbers because section numbers in an input object 392 // files are different in the output. 393 ArrayRef<InputSectionBase *> Sections = File->getSections(); 394 for (uint32_t Idx : From.slice(1)) 395 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 396 } 397 398 InputSectionBase *InputSection::getRelocatedSection() const { 399 if (!File || (Type != SHT_RELA && Type != SHT_REL)) 400 return nullptr; 401 ArrayRef<InputSectionBase *> Sections = File->getSections(); 402 return Sections[Info]; 403 } 404 405 // This is used for -r and --emit-relocs. We can't use memcpy to copy 406 // relocations because we need to update symbol table offset and section index 407 // for each relocation. So we copy relocations one by one. 408 template <class ELFT, class RelTy> 409 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 410 InputSectionBase *Sec = getRelocatedSection(); 411 412 for (const RelTy &Rel : Rels) { 413 RelType Type = Rel.getType(Config->IsMips64EL); 414 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 415 416 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 417 Buf += sizeof(RelTy); 418 419 if (RelTy::IsRela) 420 P->r_addend = getAddend<ELFT>(Rel); 421 422 // Output section VA is zero for -r, so r_offset is an offset within the 423 // section, but for --emit-relocs it is an virtual address. 424 P->r_offset = Sec->getVA(Rel.r_offset); 425 P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type, 426 Config->IsMips64EL); 427 428 if (Sym.Type == STT_SECTION) { 429 // We combine multiple section symbols into only one per 430 // section. This means we have to update the addend. That is 431 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 432 // section data. We do that by adding to the Relocation vector. 433 434 // .eh_frame is horribly special and can reference discarded sections. To 435 // avoid having to parse and recreate .eh_frame, we just replace any 436 // relocation in it pointing to discarded sections with R_*_NONE, which 437 // hopefully creates a frame that is ignored at runtime. 438 auto *D = dyn_cast<Defined>(&Sym); 439 if (!D) { 440 error("STT_SECTION symbol should be defined"); 441 continue; 442 } 443 SectionBase *Section = D->Section->Repl; 444 if (!Section->Live) { 445 P->setSymbolAndType(0, 0, false); 446 continue; 447 } 448 449 int64_t Addend = getAddend<ELFT>(Rel); 450 const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset; 451 if (!RelTy::IsRela) 452 Addend = Target->getImplicitAddend(BufLoc, Type); 453 454 if (Config->EMachine == EM_MIPS && Config->Relocatable && 455 Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) { 456 // Some MIPS relocations depend on "gp" value. By default, 457 // this value has 0x7ff0 offset from a .got section. But 458 // relocatable files produced by a complier or a linker 459 // might redefine this default value and we must use it 460 // for a calculation of the relocation result. When we 461 // generate EXE or DSO it's trivial. Generating a relocatable 462 // output is more difficult case because the linker does 463 // not calculate relocations in this mode and loses 464 // individual "gp" values used by each input object file. 465 // As a workaround we add the "gp" value to the relocation 466 // addend and save it back to the file. 467 Addend += Sec->getFile<ELFT>()->MipsGp0; 468 } 469 470 if (RelTy::IsRela) 471 P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr; 472 else if (Config->Relocatable) 473 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym}); 474 } 475 } 476 } 477 478 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 479 // references specially. The general rule is that the value of the symbol in 480 // this context is the address of the place P. A further special case is that 481 // branch relocations to an undefined weak reference resolve to the next 482 // instruction. 483 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 484 uint32_t P) { 485 switch (Type) { 486 // Unresolved branch relocations to weak references resolve to next 487 // instruction, this will be either 2 or 4 bytes on from P. 488 case R_ARM_THM_JUMP11: 489 return P + 2 + A; 490 case R_ARM_CALL: 491 case R_ARM_JUMP24: 492 case R_ARM_PC24: 493 case R_ARM_PLT32: 494 case R_ARM_PREL31: 495 case R_ARM_THM_JUMP19: 496 case R_ARM_THM_JUMP24: 497 return P + 4 + A; 498 case R_ARM_THM_CALL: 499 // We don't want an interworking BLX to ARM 500 return P + 5 + A; 501 // Unresolved non branch pc-relative relocations 502 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 503 // targets a weak-reference. 504 case R_ARM_MOVW_PREL_NC: 505 case R_ARM_MOVT_PREL: 506 case R_ARM_REL32: 507 case R_ARM_THM_MOVW_PREL_NC: 508 case R_ARM_THM_MOVT_PREL: 509 return P + A; 510 } 511 llvm_unreachable("ARM pc-relative relocation expected\n"); 512 } 513 514 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 515 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 516 uint64_t P) { 517 switch (Type) { 518 // Unresolved branch relocations to weak references resolve to next 519 // instruction, this is 4 bytes on from P. 520 case R_AARCH64_CALL26: 521 case R_AARCH64_CONDBR19: 522 case R_AARCH64_JUMP26: 523 case R_AARCH64_TSTBR14: 524 return P + 4 + A; 525 // Unresolved non branch pc-relative relocations 526 case R_AARCH64_PREL16: 527 case R_AARCH64_PREL32: 528 case R_AARCH64_PREL64: 529 case R_AARCH64_ADR_PREL_LO21: 530 case R_AARCH64_LD_PREL_LO19: 531 return P + A; 532 } 533 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 534 } 535 536 // ARM SBREL relocations are of the form S + A - B where B is the static base 537 // The ARM ABI defines base to be "addressing origin of the output segment 538 // defining the symbol S". We defined the "addressing origin"/static base to be 539 // the base of the PT_LOAD segment containing the Sym. 540 // The procedure call standard only defines a Read Write Position Independent 541 // RWPI variant so in practice we should expect the static base to be the base 542 // of the RW segment. 543 static uint64_t getARMStaticBase(const Symbol &Sym) { 544 OutputSection *OS = Sym.getOutputSection(); 545 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 546 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 547 return OS->PtLoad->FirstSec->Addr; 548 } 549 550 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 551 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 552 // is calculated using PCREL_HI20's symbol. 553 // 554 // This function returns the R_RISCV_PCREL_HI20 relocation from 555 // R_RISCV_PCREL_LO12's symbol and addend. 556 static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) { 557 const Defined *D = cast<Defined>(Sym); 558 InputSection *IS = cast<InputSection>(D->Section); 559 560 if (Addend != 0) 561 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 562 IS->getObjMsg(D->Value) + " is ignored"); 563 564 // Relocations are sorted by offset, so we can use std::equal_range to do 565 // binary search. 566 Relocation R; 567 R.Offset = D->Value; 568 auto Range = 569 std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), R, 570 [](const Relocation &LHS, const Relocation &RHS) { 571 return LHS.Offset < RHS.Offset; 572 }); 573 574 for (auto It = Range.first; It != Range.second; ++It) 575 if (It->Expr == R_PC) 576 return &*It; 577 578 error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) + 579 " without an associated R_RISCV_PCREL_HI20 relocation"); 580 return nullptr; 581 } 582 583 // A TLS symbol's virtual address is relative to the TLS segment. Add a 584 // target-specific adjustment to produce a thread-pointer-relative offset. 585 static int64_t getTlsTpOffset() { 586 switch (Config->EMachine) { 587 case EM_ARM: 588 case EM_AARCH64: 589 // Variant 1. The thread pointer points to a TCB with a fixed 2-word size, 590 // followed by a variable amount of alignment padding, followed by the TLS 591 // segment. 592 // 593 // NB: While the ARM/AArch64 ABI formally has a 2-word TCB size, lld 594 // effectively increases the TCB size to 8 words for Android compatibility. 595 // It accomplishes this by increasing the segment's alignment. 596 return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align); 597 case EM_386: 598 case EM_X86_64: 599 // Variant 2. The TLS segment is located just before the thread pointer. 600 return -Out::TlsPhdr->p_memsz; 601 case EM_PPC64: 602 // The thread pointer points to a fixed offset from the start of the 603 // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit 604 // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the 605 // program's TLS segment. 606 return -0x7000; 607 default: 608 llvm_unreachable("unhandled Config->EMachine"); 609 } 610 } 611 612 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A, 613 uint64_t P, const Symbol &Sym, RelExpr Expr) { 614 switch (Expr) { 615 case R_ABS: 616 case R_RELAX_TLS_LD_TO_LE_ABS: 617 case R_RELAX_GOT_PC_NOPIC: 618 return Sym.getVA(A); 619 case R_ADDEND: 620 return A; 621 case R_ARM_SBREL: 622 return Sym.getVA(A) - getARMStaticBase(Sym); 623 case R_GOT: 624 case R_RELAX_TLS_GD_TO_IE_ABS: 625 return Sym.getGotVA() + A; 626 case R_GOTONLY_PC: 627 return In.Got->getVA() + A - P; 628 case R_GOTPLTONLY_PC: 629 return In.GotPlt->getVA() + A - P; 630 case R_GOTREL: 631 return Sym.getVA(A) - In.Got->getVA(); 632 case R_GOTPLTREL: 633 return Sym.getVA(A) - In.GotPlt->getVA(); 634 case R_GOTPLT: 635 case R_RELAX_TLS_GD_TO_IE_END: 636 return Sym.getGotVA() + A - In.GotPlt->getVA(); 637 case R_TLSLD_GOT_OFF: 638 case R_GOT_OFF: 639 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 640 return Sym.getGotOffset() + A; 641 case R_AARCH64_GOT_PAGE_PC: 642 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 643 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 644 case R_GOT_PC: 645 case R_RELAX_TLS_GD_TO_IE: 646 return Sym.getGotVA() + A - P; 647 case R_HEXAGON_GOT: 648 return Sym.getGotVA() - In.GotPlt->getVA(); 649 case R_MIPS_GOTREL: 650 return Sym.getVA(A) - In.MipsGot->getGp(File); 651 case R_MIPS_GOT_GP: 652 return In.MipsGot->getGp(File) + A; 653 case R_MIPS_GOT_GP_PC: { 654 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 655 // is _gp_disp symbol. In that case we should use the following 656 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 657 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 658 // microMIPS variants of these relocations use slightly different 659 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 660 // to correctly handle less-sugnificant bit of the microMIPS symbol. 661 uint64_t V = In.MipsGot->getGp(File) + A - P; 662 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 663 V += 4; 664 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 665 V -= 1; 666 return V; 667 } 668 case R_MIPS_GOT_LOCAL_PAGE: 669 // If relocation against MIPS local symbol requires GOT entry, this entry 670 // should be initialized by 'page address'. This address is high 16-bits 671 // of sum the symbol's value and the addend. 672 return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) - 673 In.MipsGot->getGp(File); 674 case R_MIPS_GOT_OFF: 675 case R_MIPS_GOT_OFF32: 676 // In case of MIPS if a GOT relocation has non-zero addend this addend 677 // should be applied to the GOT entry content not to the GOT entry offset. 678 // That is why we use separate expression type. 679 return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) - 680 In.MipsGot->getGp(File); 681 case R_MIPS_TLSGD: 682 return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) - 683 In.MipsGot->getGp(File); 684 case R_MIPS_TLSLD: 685 return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) - 686 In.MipsGot->getGp(File); 687 case R_AARCH64_PAGE_PC: { 688 uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A); 689 return getAArch64Page(Val) - getAArch64Page(P); 690 } 691 case R_RISCV_PC_INDIRECT: { 692 if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A)) 693 return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(), 694 *HiRel->Sym, HiRel->Expr); 695 return 0; 696 } 697 case R_PC: { 698 uint64_t Dest; 699 if (Sym.isUndefWeak()) { 700 // On ARM and AArch64 a branch to an undefined weak resolves to the 701 // next instruction, otherwise the place. 702 if (Config->EMachine == EM_ARM) 703 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 704 else if (Config->EMachine == EM_AARCH64) 705 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 706 else 707 Dest = Sym.getVA(A); 708 } else { 709 Dest = Sym.getVA(A); 710 } 711 return Dest - P; 712 } 713 case R_PLT: 714 return Sym.getPltVA() + A; 715 case R_PLT_PC: 716 case R_PPC_CALL_PLT: 717 return Sym.getPltVA() + A - P; 718 case R_PPC_CALL: { 719 uint64_t SymVA = Sym.getVA(A); 720 // If we have an undefined weak symbol, we might get here with a symbol 721 // address of zero. That could overflow, but the code must be unreachable, 722 // so don't bother doing anything at all. 723 if (!SymVA) 724 return 0; 725 726 // PPC64 V2 ABI describes two entry points to a function. The global entry 727 // point is used for calls where the caller and callee (may) have different 728 // TOC base pointers and r2 needs to be modified to hold the TOC base for 729 // the callee. For local calls the caller and callee share the same 730 // TOC base and so the TOC pointer initialization code should be skipped by 731 // branching to the local entry point. 732 return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther); 733 } 734 case R_PPC_TOC: 735 return getPPC64TocBase() + A; 736 case R_RELAX_GOT_PC: 737 return Sym.getVA(A) - P; 738 case R_RELAX_TLS_GD_TO_LE: 739 case R_RELAX_TLS_IE_TO_LE: 740 case R_RELAX_TLS_LD_TO_LE: 741 case R_TLS: 742 // A weak undefined TLS symbol resolves to the base of the TLS 743 // block, i.e. gets a value of zero. If we pass --gc-sections to 744 // lld and .tbss is not referenced, it gets reclaimed and we don't 745 // create a TLS program header. Therefore, we resolve this 746 // statically to zero. 747 if (Sym.isTls() && Sym.isUndefWeak()) 748 return 0; 749 return Sym.getVA(A) + getTlsTpOffset(); 750 case R_RELAX_TLS_GD_TO_LE_NEG: 751 case R_NEG_TLS: 752 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 753 case R_SIZE: 754 return Sym.getSize() + A; 755 case R_TLSDESC: 756 return In.Got->getGlobalDynAddr(Sym) + A; 757 case R_AARCH64_TLSDESC_PAGE: 758 return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) - 759 getAArch64Page(P); 760 case R_TLSGD_GOT: 761 return In.Got->getGlobalDynOffset(Sym) + A; 762 case R_TLSGD_GOTPLT: 763 return In.Got->getVA() + In.Got->getGlobalDynOffset(Sym) + A - In.GotPlt->getVA(); 764 case R_TLSGD_PC: 765 return In.Got->getGlobalDynAddr(Sym) + A - P; 766 case R_TLSLD_GOTPLT: 767 return In.Got->getVA() + In.Got->getTlsIndexOff() + A - In.GotPlt->getVA(); 768 case R_TLSLD_GOT: 769 return In.Got->getTlsIndexOff() + A; 770 case R_TLSLD_PC: 771 return In.Got->getTlsIndexVA() + A - P; 772 default: 773 llvm_unreachable("invalid expression"); 774 } 775 } 776 777 // This function applies relocations to sections without SHF_ALLOC bit. 778 // Such sections are never mapped to memory at runtime. Debug sections are 779 // an example. Relocations in non-alloc sections are much easier to 780 // handle than in allocated sections because it will never need complex 781 // treatement such as GOT or PLT (because at runtime no one refers them). 782 // So, we handle relocations for non-alloc sections directly in this 783 // function as a performance optimization. 784 template <class ELFT, class RelTy> 785 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 786 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 787 788 for (const RelTy &Rel : Rels) { 789 RelType Type = Rel.getType(Config->IsMips64EL); 790 791 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 792 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 793 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 794 // need to keep this bug-compatible code for a while. 795 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 796 continue; 797 798 uint64_t Offset = getOffset(Rel.r_offset); 799 uint8_t *BufLoc = Buf + Offset; 800 int64_t Addend = getAddend<ELFT>(Rel); 801 if (!RelTy::IsRela) 802 Addend += Target->getImplicitAddend(BufLoc, Type); 803 804 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 805 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 806 if (Expr == R_NONE) 807 continue; 808 809 if (Expr != R_ABS) { 810 std::string Msg = getLocation<ELFT>(Offset) + 811 ": has non-ABS relocation " + toString(Type) + 812 " against symbol '" + toString(Sym) + "'"; 813 if (Expr != R_PC) { 814 error(Msg); 815 return; 816 } 817 818 // If the control reaches here, we found a PC-relative relocation in a 819 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 820 // at runtime, the notion of PC-relative doesn't make sense here. So, 821 // this is a usage error. However, GNU linkers historically accept such 822 // relocations without any errors and relocate them as if they were at 823 // address 0. For bug-compatibilty, we accept them with warnings. We 824 // know Steel Bank Common Lisp as of 2018 have this bug. 825 warn(Msg); 826 Target->relocateOne(BufLoc, Type, 827 SignExtend64<Bits>(Sym.getVA(Addend - Offset))); 828 continue; 829 } 830 831 if (Sym.isTls() && !Out::TlsPhdr) 832 Target->relocateOne(BufLoc, Type, 0); 833 else 834 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 835 } 836 } 837 838 // This is used when '-r' is given. 839 // For REL targets, InputSection::copyRelocations() may store artificial 840 // relocations aimed to update addends. They are handled in relocateAlloc() 841 // for allocatable sections, and this function does the same for 842 // non-allocatable sections, such as sections with debug information. 843 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) { 844 const unsigned Bits = Config->Is64 ? 64 : 32; 845 846 for (const Relocation &Rel : Sec->Relocations) { 847 // InputSection::copyRelocations() adds only R_ABS relocations. 848 assert(Rel.Expr == R_ABS); 849 uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff; 850 uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits); 851 Target->relocateOne(BufLoc, Rel.Type, TargetVA); 852 } 853 } 854 855 template <class ELFT> 856 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 857 if (Flags & SHF_EXECINSTR) 858 adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd); 859 860 if (Flags & SHF_ALLOC) { 861 relocateAlloc(Buf, BufEnd); 862 return; 863 } 864 865 auto *Sec = cast<InputSection>(this); 866 if (Config->Relocatable) 867 relocateNonAllocForRelocatable(Sec, Buf); 868 else if (Sec->AreRelocsRela) 869 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 870 else 871 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 872 } 873 874 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 875 assert(Flags & SHF_ALLOC); 876 const unsigned Bits = Config->Wordsize * 8; 877 878 for (const Relocation &Rel : Relocations) { 879 uint64_t Offset = Rel.Offset; 880 if (auto *Sec = dyn_cast<InputSection>(this)) 881 Offset += Sec->OutSecOff; 882 uint8_t *BufLoc = Buf + Offset; 883 RelType Type = Rel.Type; 884 885 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 886 RelExpr Expr = Rel.Expr; 887 uint64_t TargetVA = SignExtend64( 888 getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), 889 Bits); 890 891 switch (Expr) { 892 case R_RELAX_GOT_PC: 893 case R_RELAX_GOT_PC_NOPIC: 894 Target->relaxGot(BufLoc, TargetVA); 895 break; 896 case R_RELAX_TLS_IE_TO_LE: 897 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 898 break; 899 case R_RELAX_TLS_LD_TO_LE: 900 case R_RELAX_TLS_LD_TO_LE_ABS: 901 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 902 break; 903 case R_RELAX_TLS_GD_TO_LE: 904 case R_RELAX_TLS_GD_TO_LE_NEG: 905 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 906 break; 907 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 908 case R_RELAX_TLS_GD_TO_IE: 909 case R_RELAX_TLS_GD_TO_IE_ABS: 910 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 911 case R_RELAX_TLS_GD_TO_IE_END: 912 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 913 break; 914 case R_PPC_CALL: 915 // If this is a call to __tls_get_addr, it may be part of a TLS 916 // sequence that has been relaxed and turned into a nop. In this 917 // case, we don't want to handle it as a call. 918 if (read32(BufLoc) == 0x60000000) // nop 919 break; 920 921 // Patch a nop (0x60000000) to a ld. 922 if (Rel.Sym->NeedsTocRestore) { 923 if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) { 924 error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc"); 925 break; 926 } 927 write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 928 } 929 Target->relocateOne(BufLoc, Type, TargetVA); 930 break; 931 default: 932 Target->relocateOne(BufLoc, Type, TargetVA); 933 break; 934 } 935 } 936 } 937 938 // For each function-defining prologue, find any calls to __morestack, 939 // and replace them with calls to __morestack_non_split. 940 static void switchMorestackCallsToMorestackNonSplit( 941 DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) { 942 943 // If the target adjusted a function's prologue, all calls to 944 // __morestack inside that function should be switched to 945 // __morestack_non_split. 946 Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split"); 947 if (!MoreStackNonSplit) { 948 error("Mixing split-stack objects requires a definition of " 949 "__morestack_non_split"); 950 return; 951 } 952 953 // Sort both collections to compare addresses efficiently. 954 llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) { 955 return L->Offset < R->Offset; 956 }); 957 std::vector<Defined *> Functions(Prologues.begin(), Prologues.end()); 958 llvm::sort(Functions, [](const Defined *L, const Defined *R) { 959 return L->Value < R->Value; 960 }); 961 962 auto It = MorestackCalls.begin(); 963 for (Defined *F : Functions) { 964 // Find the first call to __morestack within the function. 965 while (It != MorestackCalls.end() && (*It)->Offset < F->Value) 966 ++It; 967 // Adjust all calls inside the function. 968 while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) { 969 (*It)->Sym = MoreStackNonSplit; 970 ++It; 971 } 972 } 973 } 974 975 static bool enclosingPrologueAttempted(uint64_t Offset, 976 const DenseSet<Defined *> &Prologues) { 977 for (Defined *F : Prologues) 978 if (F->Value <= Offset && Offset < F->Value + F->Size) 979 return true; 980 return false; 981 } 982 983 // If a function compiled for split stack calls a function not 984 // compiled for split stack, then the caller needs its prologue 985 // adjusted to ensure that the called function will have enough stack 986 // available. Find those functions, and adjust their prologues. 987 template <class ELFT> 988 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf, 989 uint8_t *End) { 990 if (!getFile<ELFT>()->SplitStack) 991 return; 992 DenseSet<Defined *> Prologues; 993 std::vector<Relocation *> MorestackCalls; 994 995 for (Relocation &Rel : Relocations) { 996 // Local symbols can't possibly be cross-calls, and should have been 997 // resolved long before this line. 998 if (Rel.Sym->isLocal()) 999 continue; 1000 1001 // Ignore calls into the split-stack api. 1002 if (Rel.Sym->getName().startswith("__morestack")) { 1003 if (Rel.Sym->getName().equals("__morestack")) 1004 MorestackCalls.push_back(&Rel); 1005 continue; 1006 } 1007 1008 // A relocation to non-function isn't relevant. Sometimes 1009 // __morestack is not marked as a function, so this check comes 1010 // after the name check. 1011 if (Rel.Sym->Type != STT_FUNC) 1012 continue; 1013 1014 // If the callee's-file was compiled with split stack, nothing to do. In 1015 // this context, a "Defined" symbol is one "defined by the binary currently 1016 // being produced". So an "undefined" symbol might be provided by a shared 1017 // library. It is not possible to tell how such symbols were compiled, so be 1018 // conservative. 1019 if (Defined *D = dyn_cast<Defined>(Rel.Sym)) 1020 if (InputSection *IS = cast_or_null<InputSection>(D->Section)) 1021 if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack) 1022 continue; 1023 1024 if (enclosingPrologueAttempted(Rel.Offset, Prologues)) 1025 continue; 1026 1027 if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) { 1028 Prologues.insert(F); 1029 if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value), 1030 End, F->StOther)) 1031 continue; 1032 if (!getFile<ELFT>()->SomeNoSplitStack) 1033 error(lld::toString(this) + ": " + F->getName() + 1034 " (with -fsplit-stack) calls " + Rel.Sym->getName() + 1035 " (without -fsplit-stack), but couldn't adjust its prologue"); 1036 } 1037 } 1038 1039 if (Target->NeedsMoreStackNonSplit) 1040 switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls); 1041 } 1042 1043 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 1044 if (Type == SHT_NOBITS) 1045 return; 1046 1047 if (auto *S = dyn_cast<SyntheticSection>(this)) { 1048 S->writeTo(Buf + OutSecOff); 1049 return; 1050 } 1051 1052 // If -r or --emit-relocs is given, then an InputSection 1053 // may be a relocation section. 1054 if (Type == SHT_RELA) { 1055 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>()); 1056 return; 1057 } 1058 if (Type == SHT_REL) { 1059 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>()); 1060 return; 1061 } 1062 1063 // If -r is given, we may have a SHT_GROUP section. 1064 if (Type == SHT_GROUP) { 1065 copyShtGroup<ELFT>(Buf + OutSecOff); 1066 return; 1067 } 1068 1069 // If this is a compressed section, uncompress section contents directly 1070 // to the buffer. 1071 if (UncompressedSize >= 0) { 1072 size_t Size = UncompressedSize; 1073 if (Error E = zlib::uncompress(toStringRef(RawData), 1074 (char *)(Buf + OutSecOff), Size)) 1075 fatal(toString(this) + 1076 ": uncompress failed: " + llvm::toString(std::move(E))); 1077 uint8_t *BufEnd = Buf + OutSecOff + Size; 1078 relocate<ELFT>(Buf, BufEnd); 1079 return; 1080 } 1081 1082 // Copy section contents from source object file to output file 1083 // and then apply relocations. 1084 memcpy(Buf + OutSecOff, data().data(), data().size()); 1085 uint8_t *BufEnd = Buf + OutSecOff + data().size(); 1086 relocate<ELFT>(Buf, BufEnd); 1087 } 1088 1089 void InputSection::replace(InputSection *Other) { 1090 Alignment = std::max(Alignment, Other->Alignment); 1091 Other->Repl = Repl; 1092 Other->Live = false; 1093 } 1094 1095 template <class ELFT> 1096 EhInputSection::EhInputSection(ObjFile<ELFT> &F, 1097 const typename ELFT::Shdr &Header, 1098 StringRef Name) 1099 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 1100 1101 SyntheticSection *EhInputSection::getParent() const { 1102 return cast_or_null<SyntheticSection>(Parent); 1103 } 1104 1105 // Returns the index of the first relocation that points to a region between 1106 // Begin and Begin+Size. 1107 template <class IntTy, class RelTy> 1108 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 1109 unsigned &RelocI) { 1110 // Start search from RelocI for fast access. That works because the 1111 // relocations are sorted in .eh_frame. 1112 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 1113 const RelTy &Rel = Rels[RelocI]; 1114 if (Rel.r_offset < Begin) 1115 continue; 1116 1117 if (Rel.r_offset < Begin + Size) 1118 return RelocI; 1119 return -1; 1120 } 1121 return -1; 1122 } 1123 1124 // .eh_frame is a sequence of CIE or FDE records. 1125 // This function splits an input section into records and returns them. 1126 template <class ELFT> void EhInputSection::split() { 1127 if (AreRelocsRela) 1128 split<ELFT>(relas<ELFT>()); 1129 else 1130 split<ELFT>(rels<ELFT>()); 1131 } 1132 1133 template <class ELFT, class RelTy> 1134 void EhInputSection::split(ArrayRef<RelTy> Rels) { 1135 unsigned RelI = 0; 1136 for (size_t Off = 0, End = data().size(); Off != End;) { 1137 size_t Size = readEhRecordSize(this, Off); 1138 Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 1139 // The empty record is the end marker. 1140 if (Size == 4) 1141 break; 1142 Off += Size; 1143 } 1144 } 1145 1146 static size_t findNull(StringRef S, size_t EntSize) { 1147 // Optimize the common case. 1148 if (EntSize == 1) 1149 return S.find(0); 1150 1151 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 1152 const char *B = S.begin() + I; 1153 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 1154 return I; 1155 } 1156 return StringRef::npos; 1157 } 1158 1159 SyntheticSection *MergeInputSection::getParent() const { 1160 return cast_or_null<SyntheticSection>(Parent); 1161 } 1162 1163 // Split SHF_STRINGS section. Such section is a sequence of 1164 // null-terminated strings. 1165 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 1166 size_t Off = 0; 1167 bool IsAlloc = Flags & SHF_ALLOC; 1168 StringRef S = toStringRef(Data); 1169 1170 while (!S.empty()) { 1171 size_t End = findNull(S, EntSize); 1172 if (End == StringRef::npos) 1173 fatal(toString(this) + ": string is not null terminated"); 1174 size_t Size = End + EntSize; 1175 1176 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 1177 S = S.substr(Size); 1178 Off += Size; 1179 } 1180 } 1181 1182 // Split non-SHF_STRINGS section. Such section is a sequence of 1183 // fixed size records. 1184 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 1185 size_t EntSize) { 1186 size_t Size = Data.size(); 1187 assert((Size % EntSize) == 0); 1188 bool IsAlloc = Flags & SHF_ALLOC; 1189 1190 for (size_t I = 0; I != Size; I += EntSize) 1191 Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc); 1192 } 1193 1194 template <class ELFT> 1195 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F, 1196 const typename ELFT::Shdr &Header, 1197 StringRef Name) 1198 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 1199 1200 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type, 1201 uint64_t Entsize, ArrayRef<uint8_t> Data, 1202 StringRef Name) 1203 : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0, 1204 /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {} 1205 1206 // This function is called after we obtain a complete list of input sections 1207 // that need to be linked. This is responsible to split section contents 1208 // into small chunks for further processing. 1209 // 1210 // Note that this function is called from parallelForEach. This must be 1211 // thread-safe (i.e. no memory allocation from the pools). 1212 void MergeInputSection::splitIntoPieces() { 1213 assert(Pieces.empty()); 1214 1215 if (Flags & SHF_STRINGS) 1216 splitStrings(data(), Entsize); 1217 else 1218 splitNonStrings(data(), Entsize); 1219 } 1220 1221 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 1222 if (this->data().size() <= Offset) 1223 fatal(toString(this) + ": offset is outside the section"); 1224 1225 // If Offset is not at beginning of a section piece, it is not in the map. 1226 // In that case we need to do a binary search of the original section piece vector. 1227 auto It2 = 1228 llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) { 1229 return Offset < P.InputOff; 1230 }); 1231 return &It2[-1]; 1232 } 1233 1234 // Returns the offset in an output section for a given input offset. 1235 // Because contents of a mergeable section is not contiguous in output, 1236 // it is not just an addition to a base output offset. 1237 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const { 1238 // If Offset is not at beginning of a section piece, it is not in the map. 1239 // In that case we need to search from the original section piece vector. 1240 const SectionPiece &Piece = 1241 *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset)); 1242 uint64_t Addend = Offset - Piece.InputOff; 1243 return Piece.OutputOff + Addend; 1244 } 1245 1246 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1247 StringRef); 1248 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1249 StringRef); 1250 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1251 StringRef); 1252 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1253 StringRef); 1254 1255 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1256 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1257 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1258 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1259 1260 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1261 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1262 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1263 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1264 1265 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1266 const ELF32LE::Shdr &, StringRef); 1267 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1268 const ELF32BE::Shdr &, StringRef); 1269 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1270 const ELF64LE::Shdr &, StringRef); 1271 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1272 const ELF64BE::Shdr &, StringRef); 1273 1274 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1275 const ELF32LE::Shdr &, StringRef); 1276 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1277 const ELF32BE::Shdr &, StringRef); 1278 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1279 const ELF64LE::Shdr &, StringRef); 1280 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1281 const ELF64BE::Shdr &, StringRef); 1282 1283 template void EhInputSection::split<ELF32LE>(); 1284 template void EhInputSection::split<ELF32BE>(); 1285 template void EhInputSection::split<ELF64LE>(); 1286 template void EhInputSection::split<ELF64BE>(); 1287