1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 using namespace llvm::sys;
39 
40 using namespace lld;
41 using namespace lld::elf;
42 
43 std::vector<InputSectionBase *> elf::InputSections;
44 
45 // Returns a string to construct an error message.
46 std::string lld::toString(const InputSectionBase *Sec) {
47   return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
48 }
49 
50 template <class ELFT>
51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
52                                             const typename ELFT::Shdr &Hdr) {
53   if (Hdr.sh_type == SHT_NOBITS)
54     return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
55   return check(File.getObj().getSectionContents(&Hdr));
56 }
57 
58 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
59                                    uint32_t Type, uint64_t Entsize,
60                                    uint32_t Link, uint32_t Info,
61                                    uint32_t Alignment, ArrayRef<uint8_t> Data,
62                                    StringRef Name, Kind SectionKind)
63     : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
64                   Link),
65       File(File), RawData(Data) {
66   // In order to reduce memory allocation, we assume that mergeable
67   // sections are smaller than 4 GiB, which is not an unreasonable
68   // assumption as of 2017.
69   if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX)
70     error(toString(this) + ": section too large");
71 
72   NumRelocations = 0;
73   AreRelocsRela = false;
74   Debug = Name.startswith(".debug") || Name.startswith(".zdebug");
75 
76   // The ELF spec states that a value of 0 means the section has
77   // no alignment constraits.
78   uint32_t V = std::max<uint64_t>(Alignment, 1);
79   if (!isPowerOf2_64(V))
80     fatal(toString(this) + ": sh_addralign is not a power of 2");
81   this->Alignment = V;
82 
83   // In ELF, each section can be compressed by zlib, and if compressed,
84   // section name may be mangled by appending "z" (e.g. ".zdebug_info").
85   // If that's the case, demangle section name so that we can handle a
86   // section as if it weren't compressed.
87   if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) {
88     if (!zlib::isAvailable())
89       error(toString(File) + ": contains a compressed section, " +
90             "but zlib is not available");
91     parseCompressedHeader();
92   }
93 }
94 
95 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
96 // SHF_GROUP is a marker that a section belongs to some comdat group.
97 // That flag doesn't make sense in an executable.
98 static uint64_t getFlags(uint64_t Flags) {
99   Flags &= ~(uint64_t)SHF_INFO_LINK;
100   if (!Config->Relocatable)
101     Flags &= ~(uint64_t)SHF_GROUP;
102   return Flags;
103 }
104 
105 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
106 // March 2017) fail to infer section types for sections starting with
107 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
108 // SHF_INIT_ARRAY. As a result, the following assembler directive
109 // creates ".init_array.100" with SHT_PROGBITS, for example.
110 //
111 //   .section .init_array.100, "aw"
112 //
113 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
114 // incorrect inputs as if they were correct from the beginning.
115 static uint64_t getType(uint64_t Type, StringRef Name) {
116   if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
117     return SHT_INIT_ARRAY;
118   if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
119     return SHT_FINI_ARRAY;
120   return Type;
121 }
122 
123 template <class ELFT>
124 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
125                                    const typename ELFT::Shdr &Hdr,
126                                    StringRef Name, Kind SectionKind)
127     : InputSectionBase(&File, getFlags(Hdr.sh_flags),
128                        getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
129                        Hdr.sh_info, Hdr.sh_addralign,
130                        getSectionContents(File, Hdr), Name, SectionKind) {
131   // We reject object files having insanely large alignments even though
132   // they are allowed by the spec. I think 4GB is a reasonable limitation.
133   // We might want to relax this in the future.
134   if (Hdr.sh_addralign > UINT32_MAX)
135     fatal(toString(&File) + ": section sh_addralign is too large");
136 }
137 
138 size_t InputSectionBase::getSize() const {
139   if (auto *S = dyn_cast<SyntheticSection>(this))
140     return S->getSize();
141   if (UncompressedSize >= 0)
142     return UncompressedSize;
143   return RawData.size();
144 }
145 
146 void InputSectionBase::uncompress() const {
147   size_t Size = UncompressedSize;
148   char *UncompressedBuf;
149   {
150     static std::mutex Mu;
151     std::lock_guard<std::mutex> Lock(Mu);
152     UncompressedBuf = BAlloc.Allocate<char>(Size);
153   }
154 
155   if (Error E = zlib::uncompress(toStringRef(RawData), UncompressedBuf, Size))
156     fatal(toString(this) +
157           ": uncompress failed: " + llvm::toString(std::move(E)));
158   RawData = makeArrayRef((uint8_t *)UncompressedBuf, Size);
159   UncompressedSize = -1;
160 }
161 
162 uint64_t InputSectionBase::getOffsetInFile() const {
163   const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
164   const uint8_t *SecStart = data().begin();
165   return SecStart - FileStart;
166 }
167 
168 uint64_t SectionBase::getOffset(uint64_t Offset) const {
169   switch (kind()) {
170   case Output: {
171     auto *OS = cast<OutputSection>(this);
172     // For output sections we treat offset -1 as the end of the section.
173     return Offset == uint64_t(-1) ? OS->Size : Offset;
174   }
175   case Regular:
176   case Synthetic:
177     return cast<InputSection>(this)->getOffset(Offset);
178   case EHFrame:
179     // The file crtbeginT.o has relocations pointing to the start of an empty
180     // .eh_frame that is known to be the first in the link. It does that to
181     // identify the start of the output .eh_frame.
182     return Offset;
183   case Merge:
184     const MergeInputSection *MS = cast<MergeInputSection>(this);
185     if (InputSection *IS = MS->getParent())
186       return IS->getOffset(MS->getParentOffset(Offset));
187     return MS->getParentOffset(Offset);
188   }
189   llvm_unreachable("invalid section kind");
190 }
191 
192 uint64_t SectionBase::getVA(uint64_t Offset) const {
193   const OutputSection *Out = getOutputSection();
194   return (Out ? Out->Addr : 0) + getOffset(Offset);
195 }
196 
197 OutputSection *SectionBase::getOutputSection() {
198   InputSection *Sec;
199   if (auto *IS = dyn_cast<InputSection>(this))
200     Sec = IS;
201   else if (auto *MS = dyn_cast<MergeInputSection>(this))
202     Sec = MS->getParent();
203   else if (auto *EH = dyn_cast<EhInputSection>(this))
204     Sec = EH->getParent();
205   else
206     return cast<OutputSection>(this);
207   return Sec ? Sec->getParent() : nullptr;
208 }
209 
210 // When a section is compressed, `RawData` consists with a header followed
211 // by zlib-compressed data. This function parses a header to initialize
212 // `UncompressedSize` member and remove the header from `RawData`.
213 void InputSectionBase::parseCompressedHeader() {
214   using Chdr64 = typename ELF64LE::Chdr;
215   using Chdr32 = typename ELF32LE::Chdr;
216 
217   // Old-style header
218   if (Name.startswith(".zdebug")) {
219     if (!toStringRef(RawData).startswith("ZLIB")) {
220       error(toString(this) + ": corrupted compressed section header");
221       return;
222     }
223     RawData = RawData.slice(4);
224 
225     if (RawData.size() < 8) {
226       error(toString(this) + ": corrupted compressed section header");
227       return;
228     }
229 
230     UncompressedSize = read64be(RawData.data());
231     RawData = RawData.slice(8);
232 
233     // Restore the original section name.
234     // (e.g. ".zdebug_info" -> ".debug_info")
235     Name = Saver.save("." + Name.substr(2));
236     return;
237   }
238 
239   assert(Flags & SHF_COMPRESSED);
240   Flags &= ~(uint64_t)SHF_COMPRESSED;
241 
242   // New-style 64-bit header
243   if (Config->Is64) {
244     if (RawData.size() < sizeof(Chdr64)) {
245       error(toString(this) + ": corrupted compressed section");
246       return;
247     }
248 
249     auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data());
250     if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
251       error(toString(this) + ": unsupported compression type");
252       return;
253     }
254 
255     UncompressedSize = Hdr->ch_size;
256     RawData = RawData.slice(sizeof(*Hdr));
257     return;
258   }
259 
260   // New-style 32-bit header
261   if (RawData.size() < sizeof(Chdr32)) {
262     error(toString(this) + ": corrupted compressed section");
263     return;
264   }
265 
266   auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data());
267   if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
268     error(toString(this) + ": unsupported compression type");
269     return;
270   }
271 
272   UncompressedSize = Hdr->ch_size;
273   RawData = RawData.slice(sizeof(*Hdr));
274 }
275 
276 InputSection *InputSectionBase::getLinkOrderDep() const {
277   assert(Link);
278   assert(Flags & SHF_LINK_ORDER);
279   return cast<InputSection>(File->getSections()[Link]);
280 }
281 
282 // Find a function symbol that encloses a given location.
283 template <class ELFT>
284 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
285   for (Symbol *B : File->getSymbols())
286     if (Defined *D = dyn_cast<Defined>(B))
287       if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
288           Offset < D->Value + D->Size)
289         return D;
290   return nullptr;
291 }
292 
293 // Returns a source location string. Used to construct an error message.
294 template <class ELFT>
295 std::string InputSectionBase::getLocation(uint64_t Offset) {
296   std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str();
297 
298   // We don't have file for synthetic sections.
299   if (getFile<ELFT>() == nullptr)
300     return (Config->OutputFile + ":(" + SecAndOffset + ")")
301         .str();
302 
303   // First check if we can get desired values from debugging information.
304   if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
305     return Info->FileName + ":" + std::to_string(Info->Line) + ":(" +
306            SecAndOffset + ")";
307 
308   // File->SourceFile contains STT_FILE symbol that contains a
309   // source file name. If it's missing, we use an object file name.
310   std::string SrcFile = getFile<ELFT>()->SourceFile;
311   if (SrcFile.empty())
312     SrcFile = toString(File);
313 
314   if (Defined *D = getEnclosingFunction<ELFT>(Offset))
315     return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")";
316 
317   // If there's no symbol, print out the offset in the section.
318   return (SrcFile + ":(" + SecAndOffset + ")");
319 }
320 
321 // This function is intended to be used for constructing an error message.
322 // The returned message looks like this:
323 //
324 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
325 //
326 //  Returns an empty string if there's no way to get line info.
327 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
328   return File->getSrcMsg(Sym, *this, Offset);
329 }
330 
331 // Returns a filename string along with an optional section name. This
332 // function is intended to be used for constructing an error
333 // message. The returned message looks like this:
334 //
335 //   path/to/foo.o:(function bar)
336 //
337 // or
338 //
339 //   path/to/foo.o:(function bar) in archive path/to/bar.a
340 std::string InputSectionBase::getObjMsg(uint64_t Off) {
341   std::string Filename = File->getName();
342 
343   std::string Archive;
344   if (!File->ArchiveName.empty())
345     Archive = " in archive " + File->ArchiveName;
346 
347   // Find a symbol that encloses a given location.
348   for (Symbol *B : File->getSymbols())
349     if (auto *D = dyn_cast<Defined>(B))
350       if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
351         return Filename + ":(" + toString(*D) + ")" + Archive;
352 
353   // If there's no symbol, print out the offset in the section.
354   return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
355       .str();
356 }
357 
358 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
359 
360 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
361                            uint32_t Alignment, ArrayRef<uint8_t> Data,
362                            StringRef Name, Kind K)
363     : InputSectionBase(F, Flags, Type,
364                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
365                        Name, K) {}
366 
367 template <class ELFT>
368 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
369                            StringRef Name)
370     : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
371 
372 bool InputSection::classof(const SectionBase *S) {
373   return S->kind() == SectionBase::Regular ||
374          S->kind() == SectionBase::Synthetic;
375 }
376 
377 OutputSection *InputSection::getParent() const {
378   return cast_or_null<OutputSection>(Parent);
379 }
380 
381 // Copy SHT_GROUP section contents. Used only for the -r option.
382 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
383   // ELFT::Word is the 32-bit integral type in the target endianness.
384   using u32 = typename ELFT::Word;
385   ArrayRef<u32> From = getDataAs<u32>();
386   auto *To = reinterpret_cast<u32 *>(Buf);
387 
388   // The first entry is not a section number but a flag.
389   *To++ = From[0];
390 
391   // Adjust section numbers because section numbers in an input object
392   // files are different in the output.
393   ArrayRef<InputSectionBase *> Sections = File->getSections();
394   for (uint32_t Idx : From.slice(1))
395     *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
396 }
397 
398 InputSectionBase *InputSection::getRelocatedSection() const {
399   if (!File || (Type != SHT_RELA && Type != SHT_REL))
400     return nullptr;
401   ArrayRef<InputSectionBase *> Sections = File->getSections();
402   return Sections[Info];
403 }
404 
405 // This is used for -r and --emit-relocs. We can't use memcpy to copy
406 // relocations because we need to update symbol table offset and section index
407 // for each relocation. So we copy relocations one by one.
408 template <class ELFT, class RelTy>
409 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
410   InputSectionBase *Sec = getRelocatedSection();
411 
412   for (const RelTy &Rel : Rels) {
413     RelType Type = Rel.getType(Config->IsMips64EL);
414     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
415 
416     auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
417     Buf += sizeof(RelTy);
418 
419     if (RelTy::IsRela)
420       P->r_addend = getAddend<ELFT>(Rel);
421 
422     // Output section VA is zero for -r, so r_offset is an offset within the
423     // section, but for --emit-relocs it is an virtual address.
424     P->r_offset = Sec->getVA(Rel.r_offset);
425     P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type,
426                         Config->IsMips64EL);
427 
428     if (Sym.Type == STT_SECTION) {
429       // We combine multiple section symbols into only one per
430       // section. This means we have to update the addend. That is
431       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
432       // section data. We do that by adding to the Relocation vector.
433 
434       // .eh_frame is horribly special and can reference discarded sections. To
435       // avoid having to parse and recreate .eh_frame, we just replace any
436       // relocation in it pointing to discarded sections with R_*_NONE, which
437       // hopefully creates a frame that is ignored at runtime.
438       auto *D = dyn_cast<Defined>(&Sym);
439       if (!D) {
440         error("STT_SECTION symbol should be defined");
441         continue;
442       }
443       SectionBase *Section = D->Section->Repl;
444       if (!Section->Live) {
445         P->setSymbolAndType(0, 0, false);
446         continue;
447       }
448 
449       int64_t Addend = getAddend<ELFT>(Rel);
450       const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset;
451       if (!RelTy::IsRela)
452         Addend = Target->getImplicitAddend(BufLoc, Type);
453 
454       if (Config->EMachine == EM_MIPS && Config->Relocatable &&
455           Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
456         // Some MIPS relocations depend on "gp" value. By default,
457         // this value has 0x7ff0 offset from a .got section. But
458         // relocatable files produced by a complier or a linker
459         // might redefine this default value and we must use it
460         // for a calculation of the relocation result. When we
461         // generate EXE or DSO it's trivial. Generating a relocatable
462         // output is more difficult case because the linker does
463         // not calculate relocations in this mode and loses
464         // individual "gp" values used by each input object file.
465         // As a workaround we add the "gp" value to the relocation
466         // addend and save it back to the file.
467         Addend += Sec->getFile<ELFT>()->MipsGp0;
468       }
469 
470       if (RelTy::IsRela)
471         P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
472       else if (Config->Relocatable)
473         Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
474     }
475   }
476 }
477 
478 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
479 // references specially. The general rule is that the value of the symbol in
480 // this context is the address of the place P. A further special case is that
481 // branch relocations to an undefined weak reference resolve to the next
482 // instruction.
483 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
484                                               uint32_t P) {
485   switch (Type) {
486   // Unresolved branch relocations to weak references resolve to next
487   // instruction, this will be either 2 or 4 bytes on from P.
488   case R_ARM_THM_JUMP11:
489     return P + 2 + A;
490   case R_ARM_CALL:
491   case R_ARM_JUMP24:
492   case R_ARM_PC24:
493   case R_ARM_PLT32:
494   case R_ARM_PREL31:
495   case R_ARM_THM_JUMP19:
496   case R_ARM_THM_JUMP24:
497     return P + 4 + A;
498   case R_ARM_THM_CALL:
499     // We don't want an interworking BLX to ARM
500     return P + 5 + A;
501   // Unresolved non branch pc-relative relocations
502   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
503   // targets a weak-reference.
504   case R_ARM_MOVW_PREL_NC:
505   case R_ARM_MOVT_PREL:
506   case R_ARM_REL32:
507   case R_ARM_THM_MOVW_PREL_NC:
508   case R_ARM_THM_MOVT_PREL:
509     return P + A;
510   }
511   llvm_unreachable("ARM pc-relative relocation expected\n");
512 }
513 
514 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
515 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
516                                                   uint64_t P) {
517   switch (Type) {
518   // Unresolved branch relocations to weak references resolve to next
519   // instruction, this is 4 bytes on from P.
520   case R_AARCH64_CALL26:
521   case R_AARCH64_CONDBR19:
522   case R_AARCH64_JUMP26:
523   case R_AARCH64_TSTBR14:
524     return P + 4 + A;
525   // Unresolved non branch pc-relative relocations
526   case R_AARCH64_PREL16:
527   case R_AARCH64_PREL32:
528   case R_AARCH64_PREL64:
529   case R_AARCH64_ADR_PREL_LO21:
530   case R_AARCH64_LD_PREL_LO19:
531     return P + A;
532   }
533   llvm_unreachable("AArch64 pc-relative relocation expected\n");
534 }
535 
536 // ARM SBREL relocations are of the form S + A - B where B is the static base
537 // The ARM ABI defines base to be "addressing origin of the output segment
538 // defining the symbol S". We defined the "addressing origin"/static base to be
539 // the base of the PT_LOAD segment containing the Sym.
540 // The procedure call standard only defines a Read Write Position Independent
541 // RWPI variant so in practice we should expect the static base to be the base
542 // of the RW segment.
543 static uint64_t getARMStaticBase(const Symbol &Sym) {
544   OutputSection *OS = Sym.getOutputSection();
545   if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
546     fatal("SBREL relocation to " + Sym.getName() + " without static base");
547   return OS->PtLoad->FirstSec->Addr;
548 }
549 
550 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
551 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
552 // is calculated using PCREL_HI20's symbol.
553 //
554 // This function returns the R_RISCV_PCREL_HI20 relocation from
555 // R_RISCV_PCREL_LO12's symbol and addend.
556 static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) {
557   const Defined *D = cast<Defined>(Sym);
558   InputSection *IS = cast<InputSection>(D->Section);
559 
560   if (Addend != 0)
561     warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
562          IS->getObjMsg(D->Value) + " is ignored");
563 
564   // Relocations are sorted by offset, so we can use std::equal_range to do
565   // binary search.
566   Relocation R;
567   R.Offset = D->Value;
568   auto Range =
569       std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), R,
570                        [](const Relocation &LHS, const Relocation &RHS) {
571                          return LHS.Offset < RHS.Offset;
572                        });
573 
574   for (auto It = Range.first; It != Range.second; ++It)
575     if (It->Expr == R_PC)
576       return &*It;
577 
578   error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) +
579         " without an associated R_RISCV_PCREL_HI20 relocation");
580   return nullptr;
581 }
582 
583 // A TLS symbol's virtual address is relative to the TLS segment. Add a
584 // target-specific adjustment to produce a thread-pointer-relative offset.
585 static int64_t getTlsTpOffset() {
586   switch (Config->EMachine) {
587   case EM_ARM:
588   case EM_AARCH64:
589     // Variant 1. The thread pointer points to a TCB with a fixed 2-word size,
590     // followed by a variable amount of alignment padding, followed by the TLS
591     // segment.
592     //
593     // NB: While the ARM/AArch64 ABI formally has a 2-word TCB size, lld
594     // effectively increases the TCB size to 8 words for Android compatibility.
595     // It accomplishes this by increasing the segment's alignment.
596     return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align);
597   case EM_386:
598   case EM_X86_64:
599     // Variant 2. The TLS segment is located just before the thread pointer.
600     return -Out::TlsPhdr->p_memsz;
601   case EM_PPC64:
602     // The thread pointer points to a fixed offset from the start of the
603     // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit
604     // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the
605     // program's TLS segment.
606     return -0x7000;
607   default:
608     llvm_unreachable("unhandled Config->EMachine");
609   }
610 }
611 
612 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
613                                  uint64_t P, const Symbol &Sym, RelExpr Expr) {
614   switch (Expr) {
615   case R_ABS:
616   case R_RELAX_TLS_LD_TO_LE_ABS:
617   case R_RELAX_GOT_PC_NOPIC:
618     return Sym.getVA(A);
619   case R_ADDEND:
620     return A;
621   case R_ARM_SBREL:
622     return Sym.getVA(A) - getARMStaticBase(Sym);
623   case R_GOT:
624   case R_RELAX_TLS_GD_TO_IE_ABS:
625     return Sym.getGotVA() + A;
626   case R_GOTONLY_PC:
627     return In.Got->getVA() + A - P;
628   case R_GOTPLTONLY_PC:
629     return In.GotPlt->getVA() + A - P;
630   case R_GOTREL:
631     return Sym.getVA(A) - In.Got->getVA();
632   case R_GOTPLTREL:
633     return Sym.getVA(A) - In.GotPlt->getVA();
634   case R_GOTPLT:
635   case R_RELAX_TLS_GD_TO_IE_END:
636     return Sym.getGotVA() + A - In.GotPlt->getVA();
637   case R_TLSLD_GOT_OFF:
638   case R_GOT_OFF:
639   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
640     return Sym.getGotOffset() + A;
641   case R_AARCH64_GOT_PAGE_PC:
642   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
643     return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
644   case R_GOT_PC:
645   case R_RELAX_TLS_GD_TO_IE:
646     return Sym.getGotVA() + A - P;
647   case R_HEXAGON_GOT:
648     return Sym.getGotVA() - In.GotPlt->getVA();
649   case R_MIPS_GOTREL:
650     return Sym.getVA(A) - In.MipsGot->getGp(File);
651   case R_MIPS_GOT_GP:
652     return In.MipsGot->getGp(File) + A;
653   case R_MIPS_GOT_GP_PC: {
654     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
655     // is _gp_disp symbol. In that case we should use the following
656     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
657     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
658     // microMIPS variants of these relocations use slightly different
659     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
660     // to correctly handle less-sugnificant bit of the microMIPS symbol.
661     uint64_t V = In.MipsGot->getGp(File) + A - P;
662     if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
663       V += 4;
664     if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
665       V -= 1;
666     return V;
667   }
668   case R_MIPS_GOT_LOCAL_PAGE:
669     // If relocation against MIPS local symbol requires GOT entry, this entry
670     // should be initialized by 'page address'. This address is high 16-bits
671     // of sum the symbol's value and the addend.
672     return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) -
673            In.MipsGot->getGp(File);
674   case R_MIPS_GOT_OFF:
675   case R_MIPS_GOT_OFF32:
676     // In case of MIPS if a GOT relocation has non-zero addend this addend
677     // should be applied to the GOT entry content not to the GOT entry offset.
678     // That is why we use separate expression type.
679     return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) -
680            In.MipsGot->getGp(File);
681   case R_MIPS_TLSGD:
682     return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) -
683            In.MipsGot->getGp(File);
684   case R_MIPS_TLSLD:
685     return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) -
686            In.MipsGot->getGp(File);
687   case R_AARCH64_PAGE_PC: {
688     uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A);
689     return getAArch64Page(Val) - getAArch64Page(P);
690   }
691   case R_RISCV_PC_INDIRECT: {
692     if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A))
693       return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(),
694                               *HiRel->Sym, HiRel->Expr);
695     return 0;
696   }
697   case R_PC: {
698     uint64_t Dest;
699     if (Sym.isUndefWeak()) {
700       // On ARM and AArch64 a branch to an undefined weak resolves to the
701       // next instruction, otherwise the place.
702       if (Config->EMachine == EM_ARM)
703         Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
704       else if (Config->EMachine == EM_AARCH64)
705         Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
706       else
707         Dest = Sym.getVA(A);
708     } else {
709       Dest = Sym.getVA(A);
710     }
711     return Dest - P;
712   }
713   case R_PLT:
714     return Sym.getPltVA() + A;
715   case R_PLT_PC:
716   case R_PPC_CALL_PLT:
717     return Sym.getPltVA() + A - P;
718   case R_PPC_CALL: {
719     uint64_t SymVA = Sym.getVA(A);
720     // If we have an undefined weak symbol, we might get here with a symbol
721     // address of zero. That could overflow, but the code must be unreachable,
722     // so don't bother doing anything at all.
723     if (!SymVA)
724       return 0;
725 
726     // PPC64 V2 ABI describes two entry points to a function. The global entry
727     // point is used for calls where the caller and callee (may) have different
728     // TOC base pointers and r2 needs to be modified to hold the TOC base for
729     // the callee. For local calls the caller and callee share the same
730     // TOC base and so the TOC pointer initialization code should be skipped by
731     // branching to the local entry point.
732     return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther);
733   }
734   case R_PPC_TOC:
735     return getPPC64TocBase() + A;
736   case R_RELAX_GOT_PC:
737     return Sym.getVA(A) - P;
738   case R_RELAX_TLS_GD_TO_LE:
739   case R_RELAX_TLS_IE_TO_LE:
740   case R_RELAX_TLS_LD_TO_LE:
741   case R_TLS:
742     // A weak undefined TLS symbol resolves to the base of the TLS
743     // block, i.e. gets a value of zero. If we pass --gc-sections to
744     // lld and .tbss is not referenced, it gets reclaimed and we don't
745     // create a TLS program header. Therefore, we resolve this
746     // statically to zero.
747     if (Sym.isTls() && Sym.isUndefWeak())
748       return 0;
749     return Sym.getVA(A) + getTlsTpOffset();
750   case R_RELAX_TLS_GD_TO_LE_NEG:
751   case R_NEG_TLS:
752     return Out::TlsPhdr->p_memsz - Sym.getVA(A);
753   case R_SIZE:
754     return Sym.getSize() + A;
755   case R_TLSDESC:
756     return In.Got->getGlobalDynAddr(Sym) + A;
757   case R_AARCH64_TLSDESC_PAGE:
758     return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) -
759            getAArch64Page(P);
760   case R_TLSGD_GOT:
761     return In.Got->getGlobalDynOffset(Sym) + A;
762   case R_TLSGD_GOTPLT:
763     return In.Got->getVA() + In.Got->getGlobalDynOffset(Sym) + A - In.GotPlt->getVA();
764   case R_TLSGD_PC:
765     return In.Got->getGlobalDynAddr(Sym) + A - P;
766   case R_TLSLD_GOTPLT:
767     return In.Got->getVA() + In.Got->getTlsIndexOff() + A - In.GotPlt->getVA();
768   case R_TLSLD_GOT:
769     return In.Got->getTlsIndexOff() + A;
770   case R_TLSLD_PC:
771     return In.Got->getTlsIndexVA() + A - P;
772   default:
773     llvm_unreachable("invalid expression");
774   }
775 }
776 
777 // This function applies relocations to sections without SHF_ALLOC bit.
778 // Such sections are never mapped to memory at runtime. Debug sections are
779 // an example. Relocations in non-alloc sections are much easier to
780 // handle than in allocated sections because it will never need complex
781 // treatement such as GOT or PLT (because at runtime no one refers them).
782 // So, we handle relocations for non-alloc sections directly in this
783 // function as a performance optimization.
784 template <class ELFT, class RelTy>
785 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
786   const unsigned Bits = sizeof(typename ELFT::uint) * 8;
787 
788   for (const RelTy &Rel : Rels) {
789     RelType Type = Rel.getType(Config->IsMips64EL);
790 
791     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
792     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
793     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
794     // need to keep this bug-compatible code for a while.
795     if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
796       continue;
797 
798     uint64_t Offset = getOffset(Rel.r_offset);
799     uint8_t *BufLoc = Buf + Offset;
800     int64_t Addend = getAddend<ELFT>(Rel);
801     if (!RelTy::IsRela)
802       Addend += Target->getImplicitAddend(BufLoc, Type);
803 
804     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
805     RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
806     if (Expr == R_NONE)
807       continue;
808 
809     if (Expr != R_ABS) {
810       std::string Msg = getLocation<ELFT>(Offset) +
811                         ": has non-ABS relocation " + toString(Type) +
812                         " against symbol '" + toString(Sym) + "'";
813       if (Expr != R_PC) {
814         error(Msg);
815         return;
816       }
817 
818       // If the control reaches here, we found a PC-relative relocation in a
819       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
820       // at runtime, the notion of PC-relative doesn't make sense here. So,
821       // this is a usage error. However, GNU linkers historically accept such
822       // relocations without any errors and relocate them as if they were at
823       // address 0. For bug-compatibilty, we accept them with warnings. We
824       // know Steel Bank Common Lisp as of 2018 have this bug.
825       warn(Msg);
826       Target->relocateOne(BufLoc, Type,
827                           SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
828       continue;
829     }
830 
831     if (Sym.isTls() && !Out::TlsPhdr)
832       Target->relocateOne(BufLoc, Type, 0);
833     else
834       Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
835   }
836 }
837 
838 // This is used when '-r' is given.
839 // For REL targets, InputSection::copyRelocations() may store artificial
840 // relocations aimed to update addends. They are handled in relocateAlloc()
841 // for allocatable sections, and this function does the same for
842 // non-allocatable sections, such as sections with debug information.
843 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
844   const unsigned Bits = Config->Is64 ? 64 : 32;
845 
846   for (const Relocation &Rel : Sec->Relocations) {
847     // InputSection::copyRelocations() adds only R_ABS relocations.
848     assert(Rel.Expr == R_ABS);
849     uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
850     uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
851     Target->relocateOne(BufLoc, Rel.Type, TargetVA);
852   }
853 }
854 
855 template <class ELFT>
856 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
857   if (Flags & SHF_EXECINSTR)
858     adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
859 
860   if (Flags & SHF_ALLOC) {
861     relocateAlloc(Buf, BufEnd);
862     return;
863   }
864 
865   auto *Sec = cast<InputSection>(this);
866   if (Config->Relocatable)
867     relocateNonAllocForRelocatable(Sec, Buf);
868   else if (Sec->AreRelocsRela)
869     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
870   else
871     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
872 }
873 
874 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
875   assert(Flags & SHF_ALLOC);
876   const unsigned Bits = Config->Wordsize * 8;
877 
878   for (const Relocation &Rel : Relocations) {
879     uint64_t Offset = Rel.Offset;
880     if (auto *Sec = dyn_cast<InputSection>(this))
881       Offset += Sec->OutSecOff;
882     uint8_t *BufLoc = Buf + Offset;
883     RelType Type = Rel.Type;
884 
885     uint64_t AddrLoc = getOutputSection()->Addr + Offset;
886     RelExpr Expr = Rel.Expr;
887     uint64_t TargetVA = SignExtend64(
888         getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
889         Bits);
890 
891     switch (Expr) {
892     case R_RELAX_GOT_PC:
893     case R_RELAX_GOT_PC_NOPIC:
894       Target->relaxGot(BufLoc, TargetVA);
895       break;
896     case R_RELAX_TLS_IE_TO_LE:
897       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
898       break;
899     case R_RELAX_TLS_LD_TO_LE:
900     case R_RELAX_TLS_LD_TO_LE_ABS:
901       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
902       break;
903     case R_RELAX_TLS_GD_TO_LE:
904     case R_RELAX_TLS_GD_TO_LE_NEG:
905       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
906       break;
907     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
908     case R_RELAX_TLS_GD_TO_IE:
909     case R_RELAX_TLS_GD_TO_IE_ABS:
910     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
911     case R_RELAX_TLS_GD_TO_IE_END:
912       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
913       break;
914     case R_PPC_CALL:
915       // If this is a call to __tls_get_addr, it may be part of a TLS
916       // sequence that has been relaxed and turned into a nop. In this
917       // case, we don't want to handle it as a call.
918       if (read32(BufLoc) == 0x60000000) // nop
919         break;
920 
921       // Patch a nop (0x60000000) to a ld.
922       if (Rel.Sym->NeedsTocRestore) {
923         if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
924           error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
925           break;
926         }
927         write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
928       }
929       Target->relocateOne(BufLoc, Type, TargetVA);
930       break;
931     default:
932       Target->relocateOne(BufLoc, Type, TargetVA);
933       break;
934     }
935   }
936 }
937 
938 // For each function-defining prologue, find any calls to __morestack,
939 // and replace them with calls to __morestack_non_split.
940 static void switchMorestackCallsToMorestackNonSplit(
941     DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
942 
943   // If the target adjusted a function's prologue, all calls to
944   // __morestack inside that function should be switched to
945   // __morestack_non_split.
946   Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
947   if (!MoreStackNonSplit) {
948     error("Mixing split-stack objects requires a definition of "
949           "__morestack_non_split");
950     return;
951   }
952 
953   // Sort both collections to compare addresses efficiently.
954   llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) {
955     return L->Offset < R->Offset;
956   });
957   std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
958   llvm::sort(Functions, [](const Defined *L, const Defined *R) {
959     return L->Value < R->Value;
960   });
961 
962   auto It = MorestackCalls.begin();
963   for (Defined *F : Functions) {
964     // Find the first call to __morestack within the function.
965     while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
966       ++It;
967     // Adjust all calls inside the function.
968     while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
969       (*It)->Sym = MoreStackNonSplit;
970       ++It;
971     }
972   }
973 }
974 
975 static bool enclosingPrologueAttempted(uint64_t Offset,
976                                        const DenseSet<Defined *> &Prologues) {
977   for (Defined *F : Prologues)
978     if (F->Value <= Offset && Offset < F->Value + F->Size)
979       return true;
980   return false;
981 }
982 
983 // If a function compiled for split stack calls a function not
984 // compiled for split stack, then the caller needs its prologue
985 // adjusted to ensure that the called function will have enough stack
986 // available. Find those functions, and adjust their prologues.
987 template <class ELFT>
988 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
989                                                          uint8_t *End) {
990   if (!getFile<ELFT>()->SplitStack)
991     return;
992   DenseSet<Defined *> Prologues;
993   std::vector<Relocation *> MorestackCalls;
994 
995   for (Relocation &Rel : Relocations) {
996     // Local symbols can't possibly be cross-calls, and should have been
997     // resolved long before this line.
998     if (Rel.Sym->isLocal())
999       continue;
1000 
1001     // Ignore calls into the split-stack api.
1002     if (Rel.Sym->getName().startswith("__morestack")) {
1003       if (Rel.Sym->getName().equals("__morestack"))
1004         MorestackCalls.push_back(&Rel);
1005       continue;
1006     }
1007 
1008     // A relocation to non-function isn't relevant. Sometimes
1009     // __morestack is not marked as a function, so this check comes
1010     // after the name check.
1011     if (Rel.Sym->Type != STT_FUNC)
1012       continue;
1013 
1014     // If the callee's-file was compiled with split stack, nothing to do.  In
1015     // this context, a "Defined" symbol is one "defined by the binary currently
1016     // being produced". So an "undefined" symbol might be provided by a shared
1017     // library. It is not possible to tell how such symbols were compiled, so be
1018     // conservative.
1019     if (Defined *D = dyn_cast<Defined>(Rel.Sym))
1020       if (InputSection *IS = cast_or_null<InputSection>(D->Section))
1021         if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack)
1022           continue;
1023 
1024     if (enclosingPrologueAttempted(Rel.Offset, Prologues))
1025       continue;
1026 
1027     if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
1028       Prologues.insert(F);
1029       if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value),
1030                                                    End, F->StOther))
1031         continue;
1032       if (!getFile<ELFT>()->SomeNoSplitStack)
1033         error(lld::toString(this) + ": " + F->getName() +
1034               " (with -fsplit-stack) calls " + Rel.Sym->getName() +
1035               " (without -fsplit-stack), but couldn't adjust its prologue");
1036     }
1037   }
1038 
1039   if (Target->NeedsMoreStackNonSplit)
1040     switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls);
1041 }
1042 
1043 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
1044   if (Type == SHT_NOBITS)
1045     return;
1046 
1047   if (auto *S = dyn_cast<SyntheticSection>(this)) {
1048     S->writeTo(Buf + OutSecOff);
1049     return;
1050   }
1051 
1052   // If -r or --emit-relocs is given, then an InputSection
1053   // may be a relocation section.
1054   if (Type == SHT_RELA) {
1055     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
1056     return;
1057   }
1058   if (Type == SHT_REL) {
1059     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
1060     return;
1061   }
1062 
1063   // If -r is given, we may have a SHT_GROUP section.
1064   if (Type == SHT_GROUP) {
1065     copyShtGroup<ELFT>(Buf + OutSecOff);
1066     return;
1067   }
1068 
1069   // If this is a compressed section, uncompress section contents directly
1070   // to the buffer.
1071   if (UncompressedSize >= 0) {
1072     size_t Size = UncompressedSize;
1073     if (Error E = zlib::uncompress(toStringRef(RawData),
1074                                    (char *)(Buf + OutSecOff), Size))
1075       fatal(toString(this) +
1076             ": uncompress failed: " + llvm::toString(std::move(E)));
1077     uint8_t *BufEnd = Buf + OutSecOff + Size;
1078     relocate<ELFT>(Buf, BufEnd);
1079     return;
1080   }
1081 
1082   // Copy section contents from source object file to output file
1083   // and then apply relocations.
1084   memcpy(Buf + OutSecOff, data().data(), data().size());
1085   uint8_t *BufEnd = Buf + OutSecOff + data().size();
1086   relocate<ELFT>(Buf, BufEnd);
1087 }
1088 
1089 void InputSection::replace(InputSection *Other) {
1090   Alignment = std::max(Alignment, Other->Alignment);
1091   Other->Repl = Repl;
1092   Other->Live = false;
1093 }
1094 
1095 template <class ELFT>
1096 EhInputSection::EhInputSection(ObjFile<ELFT> &F,
1097                                const typename ELFT::Shdr &Header,
1098                                StringRef Name)
1099     : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
1100 
1101 SyntheticSection *EhInputSection::getParent() const {
1102   return cast_or_null<SyntheticSection>(Parent);
1103 }
1104 
1105 // Returns the index of the first relocation that points to a region between
1106 // Begin and Begin+Size.
1107 template <class IntTy, class RelTy>
1108 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
1109                          unsigned &RelocI) {
1110   // Start search from RelocI for fast access. That works because the
1111   // relocations are sorted in .eh_frame.
1112   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
1113     const RelTy &Rel = Rels[RelocI];
1114     if (Rel.r_offset < Begin)
1115       continue;
1116 
1117     if (Rel.r_offset < Begin + Size)
1118       return RelocI;
1119     return -1;
1120   }
1121   return -1;
1122 }
1123 
1124 // .eh_frame is a sequence of CIE or FDE records.
1125 // This function splits an input section into records and returns them.
1126 template <class ELFT> void EhInputSection::split() {
1127   if (AreRelocsRela)
1128     split<ELFT>(relas<ELFT>());
1129   else
1130     split<ELFT>(rels<ELFT>());
1131 }
1132 
1133 template <class ELFT, class RelTy>
1134 void EhInputSection::split(ArrayRef<RelTy> Rels) {
1135   unsigned RelI = 0;
1136   for (size_t Off = 0, End = data().size(); Off != End;) {
1137     size_t Size = readEhRecordSize(this, Off);
1138     Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1139     // The empty record is the end marker.
1140     if (Size == 4)
1141       break;
1142     Off += Size;
1143   }
1144 }
1145 
1146 static size_t findNull(StringRef S, size_t EntSize) {
1147   // Optimize the common case.
1148   if (EntSize == 1)
1149     return S.find(0);
1150 
1151   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1152     const char *B = S.begin() + I;
1153     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1154       return I;
1155   }
1156   return StringRef::npos;
1157 }
1158 
1159 SyntheticSection *MergeInputSection::getParent() const {
1160   return cast_or_null<SyntheticSection>(Parent);
1161 }
1162 
1163 // Split SHF_STRINGS section. Such section is a sequence of
1164 // null-terminated strings.
1165 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1166   size_t Off = 0;
1167   bool IsAlloc = Flags & SHF_ALLOC;
1168   StringRef S = toStringRef(Data);
1169 
1170   while (!S.empty()) {
1171     size_t End = findNull(S, EntSize);
1172     if (End == StringRef::npos)
1173       fatal(toString(this) + ": string is not null terminated");
1174     size_t Size = End + EntSize;
1175 
1176     Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1177     S = S.substr(Size);
1178     Off += Size;
1179   }
1180 }
1181 
1182 // Split non-SHF_STRINGS section. Such section is a sequence of
1183 // fixed size records.
1184 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1185                                         size_t EntSize) {
1186   size_t Size = Data.size();
1187   assert((Size % EntSize) == 0);
1188   bool IsAlloc = Flags & SHF_ALLOC;
1189 
1190   for (size_t I = 0; I != Size; I += EntSize)
1191     Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1192 }
1193 
1194 template <class ELFT>
1195 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1196                                      const typename ELFT::Shdr &Header,
1197                                      StringRef Name)
1198     : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1199 
1200 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1201                                      uint64_t Entsize, ArrayRef<uint8_t> Data,
1202                                      StringRef Name)
1203     : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1204                        /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1205 
1206 // This function is called after we obtain a complete list of input sections
1207 // that need to be linked. This is responsible to split section contents
1208 // into small chunks for further processing.
1209 //
1210 // Note that this function is called from parallelForEach. This must be
1211 // thread-safe (i.e. no memory allocation from the pools).
1212 void MergeInputSection::splitIntoPieces() {
1213   assert(Pieces.empty());
1214 
1215   if (Flags & SHF_STRINGS)
1216     splitStrings(data(), Entsize);
1217   else
1218     splitNonStrings(data(), Entsize);
1219 }
1220 
1221 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1222   if (this->data().size() <= Offset)
1223     fatal(toString(this) + ": offset is outside the section");
1224 
1225   // If Offset is not at beginning of a section piece, it is not in the map.
1226   // In that case we need to  do a binary search of the original section piece vector.
1227   auto It2 =
1228       llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) {
1229         return Offset < P.InputOff;
1230       });
1231   return &It2[-1];
1232 }
1233 
1234 // Returns the offset in an output section for a given input offset.
1235 // Because contents of a mergeable section is not contiguous in output,
1236 // it is not just an addition to a base output offset.
1237 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1238   // If Offset is not at beginning of a section piece, it is not in the map.
1239   // In that case we need to search from the original section piece vector.
1240   const SectionPiece &Piece =
1241       *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset));
1242   uint64_t Addend = Offset - Piece.InputOff;
1243   return Piece.OutputOff + Addend;
1244 }
1245 
1246 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1247                                     StringRef);
1248 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1249                                     StringRef);
1250 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1251                                     StringRef);
1252 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1253                                     StringRef);
1254 
1255 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1256 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1257 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1258 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1259 
1260 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1261 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1262 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1263 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1264 
1265 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1266                                               const ELF32LE::Shdr &, StringRef);
1267 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1268                                               const ELF32BE::Shdr &, StringRef);
1269 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1270                                               const ELF64LE::Shdr &, StringRef);
1271 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1272                                               const ELF64BE::Shdr &, StringRef);
1273 
1274 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1275                                         const ELF32LE::Shdr &, StringRef);
1276 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1277                                         const ELF32BE::Shdr &, StringRef);
1278 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1279                                         const ELF64LE::Shdr &, StringRef);
1280 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1281                                         const ELF64BE::Shdr &, StringRef);
1282 
1283 template void EhInputSection::split<ELF32LE>();
1284 template void EhInputSection::split<ELF32BE>();
1285 template void EhInputSection::split<ELF64LE>();
1286 template void EhInputSection::split<ELF64BE>();
1287