1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "OutputSections.h" 16 #include "Target.h" 17 18 #include "llvm/Support/Endian.h" 19 20 using namespace llvm; 21 using namespace llvm::ELF; 22 using namespace llvm::object; 23 using namespace llvm::support::endian; 24 25 using namespace lld; 26 using namespace lld::elf; 27 28 template <class ELFT> 29 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 30 const Elf_Shdr *Header, 31 Kind SectionKind) 32 : Header(Header), File(File), SectionKind(SectionKind), Repl(this) { 33 // The garbage collector sets sections' Live bits. 34 // If GC is disabled, all sections are considered live by default. 35 Live = !Config->GcSections; 36 37 // The ELF spec states that a value of 0 means the section has 38 // no alignment constraits. 39 Align = std::max<uintX_t>(Header->sh_addralign, 1); 40 } 41 42 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const { 43 if (auto *D = dyn_cast<InputSection<ELFT>>(this)) 44 if (D->getThunksSize() > 0) 45 return D->getThunkOff() + D->getThunksSize(); 46 return Header->sh_size; 47 } 48 49 template <class ELFT> StringRef InputSectionBase<ELFT>::getSectionName() const { 50 return check(File->getObj().getSectionName(this->Header)); 51 } 52 53 template <class ELFT> 54 ArrayRef<uint8_t> InputSectionBase<ELFT>::getSectionData() const { 55 return check(this->File->getObj().getSectionContents(this->Header)); 56 } 57 58 template <class ELFT> 59 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) { 60 switch (SectionKind) { 61 case Regular: 62 return cast<InputSection<ELFT>>(this)->OutSecOff + Offset; 63 case EHFrame: 64 return cast<EhInputSection<ELFT>>(this)->getOffset(Offset); 65 case Merge: 66 return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset); 67 case MipsReginfo: 68 case MipsOptions: 69 // MIPS .reginfo and .MIPS.options sections are consumed by the linker, 70 // and the linker produces a single output section. It is possible that 71 // input files contain section symbol points to the corresponding input 72 // section. Redirect it to the produced output section. 73 if (Offset != 0) 74 fatal("Unsupported reference to the middle of '" + getSectionName() + 75 "' section"); 76 return this->OutSec->getVA(); 77 } 78 llvm_unreachable("invalid section kind"); 79 } 80 81 template <class ELFT> 82 typename ELFT::uint 83 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) { 84 return getOffset(Sym.Value); 85 } 86 87 template <class ELFT> 88 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F, 89 const Elf_Shdr *Header) 90 : InputSectionBase<ELFT>(F, Header, Base::Regular) {} 91 92 template <class ELFT> 93 bool InputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 94 return S->SectionKind == Base::Regular; 95 } 96 97 template <class ELFT> 98 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() { 99 assert(this->Header->sh_type == SHT_RELA || this->Header->sh_type == SHT_REL); 100 ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections(); 101 return Sections[this->Header->sh_info]; 102 } 103 104 template <class ELFT> void InputSection<ELFT>::addThunk(SymbolBody &Body) { 105 Body.ThunkIndex = Thunks.size(); 106 Thunks.push_back(&Body); 107 } 108 109 template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const { 110 return this->Header->sh_size; 111 } 112 113 template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const { 114 return Thunks.size() * Target->ThunkSize; 115 } 116 117 // This is used for -r. We can't use memcpy to copy relocations because we need 118 // to update symbol table offset and section index for each relocation. So we 119 // copy relocations one by one. 120 template <class ELFT> 121 template <class RelTy> 122 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 123 InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection(); 124 125 for (const RelTy &Rel : Rels) { 126 uint32_t Type = Rel.getType(Config->Mips64EL); 127 SymbolBody &Body = this->File->getRelocTargetSym(Rel); 128 129 RelTy *P = reinterpret_cast<RelTy *>(Buf); 130 Buf += sizeof(RelTy); 131 132 P->r_offset = RelocatedSection->getOffset(Rel.r_offset); 133 P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL); 134 } 135 } 136 137 // Page(Expr) is the page address of the expression Expr, defined 138 // as (Expr & ~0xFFF). (This applies even if the machine page size 139 // supported by the platform has a different value.) 140 static uint64_t getAArch64Page(uint64_t Expr) { 141 return Expr & (~static_cast<uint64_t>(0xFFF)); 142 } 143 144 // For computing values, each R_RELAX_TLS_* corresponds to whatever expression 145 // the target uses in the mode this is being relaxed into. For example, anything 146 // that relaxes to LE just needs an R_TLS since that is what is used if we 147 // had a local exec expression to begin with. 148 static RelExpr getRelaxedExpr(RelExpr Expr) { 149 switch (Expr) { 150 default: 151 return Expr; 152 case R_RELAX_TLS_GD_TO_LE: 153 if (Config->EMachine == EM_386) 154 return R_NEG_TLS; 155 return R_TLS; 156 case R_RELAX_TLS_GD_TO_IE: 157 if (Config->EMachine == EM_386) 158 return R_GOT_FROM_END; 159 return R_GOT_PC; 160 case R_RELAX_TLS_IE_TO_LE: 161 case R_RELAX_TLS_LD_TO_LE: 162 return R_TLS; 163 } 164 } 165 166 template <class ELFT> 167 static typename ELFT::uint 168 getSymVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P, 169 const SymbolBody &Body, uint8_t *BufLoc, 170 const elf::ObjectFile<ELFT> &File, RelExpr Expr) { 171 typedef typename ELFT::uint uintX_t; 172 Expr = getRelaxedExpr(Expr); 173 174 switch (Expr) { 175 case R_HINT: 176 llvm_unreachable("cannot relocate hint relocs"); 177 case R_RELAX_TLS_GD_TO_LE: 178 case R_RELAX_TLS_GD_TO_IE: 179 case R_RELAX_TLS_IE_TO_LE: 180 case R_RELAX_TLS_LD_TO_LE: 181 llvm_unreachable("Should have been mapped"); 182 case R_TLSLD: 183 return Out<ELFT>::Got->getTlsIndexOff() + A - 184 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 185 case R_TLSLD_PC: 186 return Out<ELFT>::Got->getTlsIndexVA() + A - P; 187 case R_THUNK: 188 return Body.getThunkVA<ELFT>(); 189 case R_PPC_TOC: 190 return getPPC64TocBase() + A; 191 case R_TLSGD: 192 return Out<ELFT>::Got->getGlobalDynOffset(Body) + A - 193 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 194 case R_TLSGD_PC: 195 return Out<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 196 case R_PLT: 197 return Body.getPltVA<ELFT>() + A; 198 case R_PLT_PC: 199 case R_PPC_PLT_OPD: 200 return Body.getPltVA<ELFT>() + A - P; 201 case R_SIZE: 202 return Body.getSize<ELFT>() + A; 203 case R_GOTREL: 204 return Body.getVA<ELFT>(A) - Out<ELFT>::Got->getVA(); 205 case R_GOT_FROM_END: 206 return Body.getGotOffset<ELFT>() + A - 207 Out<ELFT>::Got->getNumEntries() * sizeof(uintX_t); 208 case R_GOT: 209 return Body.getGotVA<ELFT>() + A; 210 case R_GOT_PAGE_PC: 211 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 212 case R_GOT_PC: 213 return Body.getGotVA<ELFT>() + A - P; 214 case R_GOTONLY_PC: 215 return Out<ELFT>::Got->getVA() + A - P; 216 case R_TLS: 217 if (Target->TcbSize) 218 return Body.getVA<ELFT>(A) + 219 alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align); 220 return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz; 221 case R_NEG_TLS: 222 return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 223 case R_ABS: 224 return Body.getVA<ELFT>(A); 225 case R_GOT_OFF: 226 return Body.getGotOffset<ELFT>() + A; 227 case R_MIPS_GOT_LOCAL_PAGE: 228 // If relocation against MIPS local symbol requires GOT entry, this entry 229 // should be initialized by 'page address'. This address is high 16-bits 230 // of sum the symbol's value and the addend. 231 return Out<ELFT>::Got->getMipsLocalPageOffset(Body.getVA<ELFT>(A)); 232 case R_MIPS_GOT_LOCAL: 233 // For non-local symbols GOT entries should contain their full 234 // addresses. But if such symbol cannot be preempted, we do not 235 // have to put them into the "global" part of GOT and use dynamic 236 // linker to determine their actual addresses. That is why we 237 // create GOT entries for them in the "local" part of GOT. 238 return Out<ELFT>::Got->getMipsLocalEntryOffset(Body.getVA<ELFT>(A)); 239 case R_PPC_OPD: { 240 uint64_t SymVA = Body.getVA<ELFT>(A); 241 // If we have an undefined weak symbol, we might get here with a symbol 242 // address of zero. That could overflow, but the code must be unreachable, 243 // so don't bother doing anything at all. 244 if (!SymVA) 245 return 0; 246 if (Out<ELF64BE>::Opd) { 247 // If this is a local call, and we currently have the address of a 248 // function-descriptor, get the underlying code address instead. 249 uint64_t OpdStart = Out<ELF64BE>::Opd->getVA(); 250 uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize(); 251 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 252 if (InOpd) 253 SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]); 254 } 255 return SymVA - P; 256 } 257 case R_PC: 258 case R_RELAX_GOT_PC: 259 return Body.getVA<ELFT>(A) - P; 260 case R_PAGE_PC: 261 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 262 } 263 llvm_unreachable("Invalid expression"); 264 } 265 266 // This function applies relocations to sections without SHF_ALLOC bit. 267 // Such sections are never mapped to memory at runtime. Debug sections are 268 // an example. Relocations in non-alloc sections are much easier to 269 // handle than in allocated sections because it will never need complex 270 // treatement such as GOT or PLT (because at runtime no one refers them). 271 // So, we handle relocations for non-alloc sections directly in this 272 // function as a performance optimization. 273 template <class ELFT> 274 template <class RelTy> 275 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 276 const unsigned Bits = sizeof(uintX_t) * 8; 277 for (const RelTy &Rel : Rels) { 278 uint32_t Type = Rel.getType(Config->Mips64EL); 279 uintX_t Offset = this->getOffset(Rel.r_offset); 280 uint8_t *BufLoc = Buf + Offset; 281 uintX_t Addend = getAddend<ELFT>(Rel); 282 if (!RelTy::IsRela) 283 Addend += Target->getImplicitAddend(BufLoc, Type); 284 285 SymbolBody &Sym = this->File->getRelocTargetSym(Rel); 286 if (Target->getRelExpr(Type, Sym) != R_ABS) { 287 error(this->getSectionName() + " has non-ABS reloc"); 288 return; 289 } 290 291 uintX_t AddrLoc = this->OutSec->getVA() + Offset; 292 uint64_t SymVA = SignExtend64<Bits>(getSymVA<ELFT>( 293 Type, Addend, AddrLoc, Sym, BufLoc, *this->File, R_ABS)); 294 Target->relocateOne(BufLoc, Type, SymVA); 295 } 296 } 297 298 template <class ELFT> 299 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) { 300 // scanReloc function in Writer.cpp constructs Relocations 301 // vector only for SHF_ALLOC'ed sections. For other sections, 302 // we handle relocations directly here. 303 auto *IS = dyn_cast<InputSection<ELFT>>(this); 304 if (IS && !(IS->Header->sh_flags & SHF_ALLOC)) { 305 for (const Elf_Shdr *RelSec : IS->RelocSections) { 306 if (RelSec->sh_type == SHT_RELA) 307 IS->relocateNonAlloc(Buf, IS->File->getObj().relas(RelSec)); 308 else 309 IS->relocateNonAlloc(Buf, IS->File->getObj().rels(RelSec)); 310 } 311 return; 312 } 313 314 const unsigned Bits = sizeof(uintX_t) * 8; 315 for (const Relocation &Rel : Relocations) { 316 uintX_t Offset = Rel.Offset; 317 uint8_t *BufLoc = Buf + Offset; 318 uint32_t Type = Rel.Type; 319 uintX_t A = Rel.Addend; 320 321 uintX_t AddrLoc = OutSec->getVA() + Offset; 322 RelExpr Expr = Rel.Expr; 323 uint64_t SymVA = SignExtend64<Bits>( 324 getSymVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, BufLoc, *File, Expr)); 325 326 switch (Expr) { 327 case R_RELAX_GOT_PC: 328 Target->relaxGot(BufLoc, SymVA); 329 break; 330 case R_RELAX_TLS_IE_TO_LE: 331 Target->relaxTlsIeToLe(BufLoc, Type, SymVA); 332 break; 333 case R_RELAX_TLS_LD_TO_LE: 334 Target->relaxTlsLdToLe(BufLoc, Type, SymVA); 335 break; 336 case R_RELAX_TLS_GD_TO_LE: 337 Target->relaxTlsGdToLe(BufLoc, Type, SymVA); 338 break; 339 case R_RELAX_TLS_GD_TO_IE: 340 Target->relaxTlsGdToIe(BufLoc, Type, SymVA); 341 break; 342 case R_PPC_PLT_OPD: 343 // Patch a nop (0x60000000) to a ld. 344 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 345 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 346 // fallthrough 347 default: 348 Target->relocateOne(BufLoc, Type, SymVA); 349 break; 350 } 351 } 352 } 353 354 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) { 355 if (this->Header->sh_type == SHT_NOBITS) 356 return; 357 ELFFile<ELFT> &EObj = this->File->getObj(); 358 359 // If -r is given, then an InputSection may be a relocation section. 360 if (this->Header->sh_type == SHT_RELA) { 361 copyRelocations(Buf + OutSecOff, EObj.relas(this->Header)); 362 return; 363 } 364 if (this->Header->sh_type == SHT_REL) { 365 copyRelocations(Buf + OutSecOff, EObj.rels(this->Header)); 366 return; 367 } 368 369 // Copy section contents from source object file to output file. 370 ArrayRef<uint8_t> Data = this->getSectionData(); 371 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 372 373 // Iterate over all relocation sections that apply to this section. 374 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 375 this->relocate(Buf, BufEnd); 376 377 // The section might have a data/code generated by the linker and need 378 // to be written after the section. Usually these are thunks - small piece 379 // of code used to jump between "incompatible" functions like PIC and non-PIC 380 // or if the jump target too far and its address does not fit to the short 381 // jump istruction. 382 if (!Thunks.empty()) { 383 Buf += OutSecOff + getThunkOff(); 384 for (const SymbolBody *S : Thunks) { 385 Target->writeThunk(Buf, S->getVA<ELFT>()); 386 Buf += Target->ThunkSize; 387 } 388 } 389 } 390 391 template <class ELFT> 392 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) { 393 this->Align = std::max(this->Align, Other->Align); 394 Other->Repl = this->Repl; 395 Other->Live = false; 396 } 397 398 template <class ELFT> 399 SplitInputSection<ELFT>::SplitInputSection( 400 elf::ObjectFile<ELFT> *File, const Elf_Shdr *Header, 401 typename InputSectionBase<ELFT>::Kind SectionKind) 402 : InputSectionBase<ELFT>(File, Header, SectionKind) {} 403 404 template <class ELFT> 405 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 406 const Elf_Shdr *Header) 407 : SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::EHFrame) { 408 // Mark .eh_frame sections as live by default because there are 409 // usually no relocations that point to .eh_frames. Otherwise, 410 // the garbage collector would drop all .eh_frame sections. 411 this->Live = true; 412 } 413 414 template <class ELFT> 415 bool EhInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 416 return S->SectionKind == InputSectionBase<ELFT>::EHFrame; 417 } 418 419 // .eh_frame is a sequence of CIE or FDE records. 420 // This function splits an input section into records and returns them. 421 template <class ELFT> 422 void EhInputSection<ELFT>::split() { 423 ArrayRef<uint8_t> Data = this->getSectionData(); 424 for (size_t Off = 0, End = Data.size(); Off != End;) { 425 size_t Size = readEhRecordSize<ELFT>(Data.slice(Off)); 426 this->Pieces.emplace_back(Off, Data.slice(Off, Size)); 427 // The empty record is the end marker. 428 if (Size == 4) 429 break; 430 Off += Size; 431 } 432 } 433 434 template <class ELFT> 435 typename ELFT::uint EhInputSection<ELFT>::getOffset(uintX_t Offset) { 436 // The file crtbeginT.o has relocations pointing to the start of an empty 437 // .eh_frame that is known to be the first in the link. It does that to 438 // identify the start of the output .eh_frame. Handle this special case. 439 if (this->getSectionHdr()->sh_size == 0) 440 return Offset; 441 SectionPiece *Piece = this->getSectionPiece(Offset); 442 if (Piece->OutputOff == size_t(-1)) 443 return -1; // Not in the output 444 445 uintX_t Addend = Offset - Piece->InputOff; 446 return Piece->OutputOff + Addend; 447 } 448 449 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 450 // Optimize the common case. 451 StringRef S((const char *)A.data(), A.size()); 452 if (EntSize == 1) 453 return S.find(0); 454 455 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 456 const char *B = S.begin() + I; 457 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 458 return I; 459 } 460 return StringRef::npos; 461 } 462 463 // Split SHF_STRINGS section. Such section is a sequence of 464 // null-terminated strings. 465 static std::vector<SectionPiece> splitStrings(ArrayRef<uint8_t> Data, 466 size_t EntSize) { 467 std::vector<SectionPiece> V; 468 size_t Off = 0; 469 while (!Data.empty()) { 470 size_t End = findNull(Data, EntSize); 471 if (End == StringRef::npos) 472 fatal("string is not null terminated"); 473 size_t Size = End + EntSize; 474 V.emplace_back(Off, Data.slice(0, Size)); 475 Data = Data.slice(Size); 476 Off += Size; 477 } 478 return V; 479 } 480 481 // Split non-SHF_STRINGS section. Such section is a sequence of 482 // fixed size records. 483 static std::vector<SectionPiece> splitNonStrings(ArrayRef<uint8_t> Data, 484 size_t EntSize) { 485 std::vector<SectionPiece> V; 486 size_t Size = Data.size(); 487 assert((Size % EntSize) == 0); 488 for (unsigned I = 0, N = Size; I != N; I += EntSize) 489 V.emplace_back(I, Data.slice(I, EntSize)); 490 return V; 491 } 492 493 template <class ELFT> 494 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 495 const Elf_Shdr *Header) 496 : SplitInputSection<ELFT>(F, Header, InputSectionBase<ELFT>::Merge) {} 497 498 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 499 ArrayRef<uint8_t> Data = this->getSectionData(); 500 uintX_t EntSize = this->Header->sh_entsize; 501 if (this->Header->sh_flags & SHF_STRINGS) 502 this->Pieces = splitStrings(Data, EntSize); 503 else 504 this->Pieces = splitNonStrings(Data, EntSize); 505 506 if (Config->GcSections) 507 for (uintX_t Off : LiveOffsets) 508 this->getSectionPiece(Off)->Live = true; 509 } 510 511 template <class ELFT> 512 bool MergeInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 513 return S->SectionKind == InputSectionBase<ELFT>::Merge; 514 } 515 516 // Do binary search to get a section piece at a given input offset. 517 template <class ELFT> 518 SectionPiece *SplitInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 519 ArrayRef<uint8_t> D = this->getSectionData(); 520 StringRef Data((const char *)D.data(), D.size()); 521 uintX_t Size = Data.size(); 522 if (Offset >= Size) 523 fatal("entry is past the end of the section"); 524 525 // Find the element this offset points to. 526 auto I = std::upper_bound( 527 Pieces.begin(), Pieces.end(), Offset, 528 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 529 --I; 530 return &*I; 531 } 532 533 // Returns the offset in an output section for a given input offset. 534 // Because contents of a mergeable section is not contiguous in output, 535 // it is not just an addition to a base output offset. 536 template <class ELFT> 537 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) { 538 auto It = OffsetMap.find(Offset); 539 if (It != OffsetMap.end()) 540 return It->second; 541 542 // If Offset is not at beginning of a section piece, it is not in the map. 543 // In that case we need to search from the original section piece vector. 544 SectionPiece &Piece = *this->getSectionPiece(Offset); 545 assert(Piece.Live); 546 uintX_t Addend = Offset - Piece.InputOff; 547 return Piece.OutputOff + Addend; 548 } 549 550 // Create a map from input offsets to output offsets for all section pieces. 551 // It is called after finalize(). 552 template <class ELFT> void MergeInputSection<ELFT>::finalizePieces() { 553 OffsetMap.grow(this->Pieces.size()); 554 for (SectionPiece &Piece : this->Pieces) { 555 if (!Piece.Live) 556 continue; 557 if (Piece.OutputOff == size_t(-1)) { 558 // Offsets of tail-merged strings are computed lazily. 559 auto *OutSec = static_cast<MergeOutputSection<ELFT> *>(this->OutSec); 560 ArrayRef<uint8_t> D = Piece.data(); 561 StringRef S((const char *)D.data(), D.size()); 562 Piece.OutputOff = OutSec->getOffset(S); 563 } 564 OffsetMap[Piece.InputOff] = Piece.OutputOff; 565 } 566 } 567 568 template <class ELFT> 569 MipsReginfoInputSection<ELFT>::MipsReginfoInputSection(elf::ObjectFile<ELFT> *F, 570 const Elf_Shdr *Hdr) 571 : InputSectionBase<ELFT>(F, Hdr, InputSectionBase<ELFT>::MipsReginfo) { 572 // Initialize this->Reginfo. 573 ArrayRef<uint8_t> D = this->getSectionData(); 574 if (D.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) { 575 error("invalid size of .reginfo section"); 576 return; 577 } 578 Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(D.data()); 579 } 580 581 template <class ELFT> 582 bool MipsReginfoInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 583 return S->SectionKind == InputSectionBase<ELFT>::MipsReginfo; 584 } 585 586 template <class ELFT> 587 MipsOptionsInputSection<ELFT>::MipsOptionsInputSection(elf::ObjectFile<ELFT> *F, 588 const Elf_Shdr *Hdr) 589 : InputSectionBase<ELFT>(F, Hdr, InputSectionBase<ELFT>::MipsOptions) { 590 // Find ODK_REGINFO option in the section's content. 591 ArrayRef<uint8_t> D = this->getSectionData(); 592 while (!D.empty()) { 593 if (D.size() < sizeof(Elf_Mips_Options<ELFT>)) { 594 error("invalid size of .MIPS.options section"); 595 break; 596 } 597 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(D.data()); 598 if (O->kind == ODK_REGINFO) { 599 Reginfo = &O->getRegInfo(); 600 break; 601 } 602 D = D.slice(O->size); 603 } 604 } 605 606 template <class ELFT> 607 bool MipsOptionsInputSection<ELFT>::classof(const InputSectionBase<ELFT> *S) { 608 return S->SectionKind == InputSectionBase<ELFT>::MipsOptions; 609 } 610 611 template class elf::InputSectionBase<ELF32LE>; 612 template class elf::InputSectionBase<ELF32BE>; 613 template class elf::InputSectionBase<ELF64LE>; 614 template class elf::InputSectionBase<ELF64BE>; 615 616 template class elf::InputSection<ELF32LE>; 617 template class elf::InputSection<ELF32BE>; 618 template class elf::InputSection<ELF64LE>; 619 template class elf::InputSection<ELF64BE>; 620 621 template class elf::SplitInputSection<ELF32LE>; 622 template class elf::SplitInputSection<ELF32BE>; 623 template class elf::SplitInputSection<ELF64LE>; 624 template class elf::SplitInputSection<ELF64BE>; 625 626 template class elf::EhInputSection<ELF32LE>; 627 template class elf::EhInputSection<ELF32BE>; 628 template class elf::EhInputSection<ELF64LE>; 629 template class elf::EhInputSection<ELF64BE>; 630 631 template class elf::MergeInputSection<ELF32LE>; 632 template class elf::MergeInputSection<ELF32BE>; 633 template class elf::MergeInputSection<ELF64LE>; 634 template class elf::MergeInputSection<ELF64BE>; 635 636 template class elf::MipsReginfoInputSection<ELF32LE>; 637 template class elf::MipsReginfoInputSection<ELF32BE>; 638 template class elf::MipsReginfoInputSection<ELF64LE>; 639 template class elf::MipsReginfoInputSection<ELF64BE>; 640 641 template class elf::MipsOptionsInputSection<ELF32LE>; 642 template class elf::MipsOptionsInputSection<ELF32BE>; 643 template class elf::MipsOptionsInputSection<ELF64LE>; 644 template class elf::MipsOptionsInputSection<ELF64BE>; 645