1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <unordered_set> 32 #include <vector> 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::support; 38 using namespace llvm::support::endian; 39 using namespace llvm::sys; 40 using namespace lld; 41 using namespace lld::elf; 42 43 SmallVector<InputSectionBase *, 0> elf::inputSections; 44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax; 45 46 // Returns a string to construct an error message. 47 std::string lld::toString(const InputSectionBase *sec) { 48 return (toString(sec->file) + ":(" + sec->name + ")").str(); 49 } 50 51 template <class ELFT> 52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, 53 const typename ELFT::Shdr &hdr) { 54 if (hdr.sh_type == SHT_NOBITS) 55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); 56 return check(file.getObj().getSectionContents(hdr)); 57 } 58 59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, 60 uint32_t type, uint64_t entsize, 61 uint32_t link, uint32_t info, 62 uint32_t alignment, ArrayRef<uint8_t> data, 63 StringRef name, Kind sectionKind) 64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, 65 link), 66 file(file), rawData(data) { 67 // In order to reduce memory allocation, we assume that mergeable 68 // sections are smaller than 4 GiB, which is not an unreasonable 69 // assumption as of 2017. 70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) 71 error(toString(this) + ": section too large"); 72 73 // The ELF spec states that a value of 0 means the section has 74 // no alignment constraints. 75 uint32_t v = std::max<uint32_t>(alignment, 1); 76 if (!isPowerOf2_64(v)) 77 fatal(toString(this) + ": sh_addralign is not a power of 2"); 78 this->alignment = v; 79 80 // In ELF, each section can be compressed by zlib, and if compressed, 81 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 82 // If that's the case, demangle section name so that we can handle a 83 // section as if it weren't compressed. 84 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { 85 if (!zlib::isAvailable()) 86 error(toString(file) + ": contains a compressed section, " + 87 "but zlib is not available"); 88 switch (config->ekind) { 89 case ELF32LEKind: 90 parseCompressedHeader<ELF32LE>(); 91 break; 92 case ELF32BEKind: 93 parseCompressedHeader<ELF32BE>(); 94 break; 95 case ELF64LEKind: 96 parseCompressedHeader<ELF64LE>(); 97 break; 98 case ELF64BEKind: 99 parseCompressedHeader<ELF64BE>(); 100 break; 101 default: 102 llvm_unreachable("unknown ELFT"); 103 } 104 } 105 } 106 107 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 108 // SHF_GROUP is a marker that a section belongs to some comdat group. 109 // That flag doesn't make sense in an executable. 110 static uint64_t getFlags(uint64_t flags) { 111 flags &= ~(uint64_t)SHF_INFO_LINK; 112 if (!config->relocatable) 113 flags &= ~(uint64_t)SHF_GROUP; 114 return flags; 115 } 116 117 template <class ELFT> 118 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, 119 const typename ELFT::Shdr &hdr, 120 StringRef name, Kind sectionKind) 121 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type, 122 hdr.sh_entsize, hdr.sh_link, hdr.sh_info, 123 hdr.sh_addralign, getSectionContents(file, hdr), name, 124 sectionKind) { 125 // We reject object files having insanely large alignments even though 126 // they are allowed by the spec. I think 4GB is a reasonable limitation. 127 // We might want to relax this in the future. 128 if (hdr.sh_addralign > UINT32_MAX) 129 fatal(toString(&file) + ": section sh_addralign is too large"); 130 } 131 132 size_t InputSectionBase::getSize() const { 133 if (auto *s = dyn_cast<SyntheticSection>(this)) 134 return s->getSize(); 135 if (uncompressedSize >= 0) 136 return uncompressedSize; 137 return rawData.size() - bytesDropped; 138 } 139 140 void InputSectionBase::uncompress() const { 141 size_t size = uncompressedSize; 142 char *uncompressedBuf; 143 { 144 static std::mutex mu; 145 std::lock_guard<std::mutex> lock(mu); 146 uncompressedBuf = bAlloc.Allocate<char>(size); 147 } 148 149 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) 150 fatal(toString(this) + 151 ": uncompress failed: " + llvm::toString(std::move(e))); 152 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); 153 uncompressedSize = -1; 154 } 155 156 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const { 157 if (relSecIdx == 0) 158 return {}; 159 RelsOrRelas<ELFT> ret; 160 typename ELFT::Shdr shdr = 161 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx]; 162 if (shdr.sh_type == SHT_REL) { 163 ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>( 164 file->mb.getBufferStart() + shdr.sh_offset), 165 shdr.sh_size / sizeof(typename ELFT::Rel)); 166 } else { 167 assert(shdr.sh_type == SHT_RELA); 168 ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>( 169 file->mb.getBufferStart() + shdr.sh_offset), 170 shdr.sh_size / sizeof(typename ELFT::Rela)); 171 } 172 return ret; 173 } 174 175 uint64_t SectionBase::getOffset(uint64_t offset) const { 176 switch (kind()) { 177 case Output: { 178 auto *os = cast<OutputSection>(this); 179 // For output sections we treat offset -1 as the end of the section. 180 return offset == uint64_t(-1) ? os->size : offset; 181 } 182 case Regular: 183 case Synthetic: 184 return cast<InputSection>(this)->outSecOff + offset; 185 case EHFrame: 186 // The file crtbeginT.o has relocations pointing to the start of an empty 187 // .eh_frame that is known to be the first in the link. It does that to 188 // identify the start of the output .eh_frame. 189 return offset; 190 case Merge: 191 const MergeInputSection *ms = cast<MergeInputSection>(this); 192 if (InputSection *isec = ms->getParent()) 193 return isec->outSecOff + ms->getParentOffset(offset); 194 return ms->getParentOffset(offset); 195 } 196 llvm_unreachable("invalid section kind"); 197 } 198 199 uint64_t SectionBase::getVA(uint64_t offset) const { 200 const OutputSection *out = getOutputSection(); 201 return (out ? out->addr : 0) + getOffset(offset); 202 } 203 204 OutputSection *SectionBase::getOutputSection() { 205 InputSection *sec; 206 if (auto *isec = dyn_cast<InputSection>(this)) 207 sec = isec; 208 else if (auto *ms = dyn_cast<MergeInputSection>(this)) 209 sec = ms->getParent(); 210 else if (auto *eh = dyn_cast<EhInputSection>(this)) 211 sec = eh->getParent(); 212 else 213 return cast<OutputSection>(this); 214 return sec ? sec->getParent() : nullptr; 215 } 216 217 // When a section is compressed, `rawData` consists with a header followed 218 // by zlib-compressed data. This function parses a header to initialize 219 // `uncompressedSize` member and remove the header from `rawData`. 220 template <typename ELFT> void InputSectionBase::parseCompressedHeader() { 221 // Old-style header 222 if (name.startswith(".zdebug")) { 223 if (!toStringRef(rawData).startswith("ZLIB")) { 224 error(toString(this) + ": corrupted compressed section header"); 225 return; 226 } 227 rawData = rawData.slice(4); 228 229 if (rawData.size() < 8) { 230 error(toString(this) + ": corrupted compressed section header"); 231 return; 232 } 233 234 uncompressedSize = read64be(rawData.data()); 235 rawData = rawData.slice(8); 236 237 // Restore the original section name. 238 // (e.g. ".zdebug_info" -> ".debug_info") 239 name = saver.save("." + name.substr(2)); 240 return; 241 } 242 243 assert(flags & SHF_COMPRESSED); 244 flags &= ~(uint64_t)SHF_COMPRESSED; 245 246 // New-style header 247 if (rawData.size() < sizeof(typename ELFT::Chdr)) { 248 error(toString(this) + ": corrupted compressed section"); 249 return; 250 } 251 252 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data()); 253 if (hdr->ch_type != ELFCOMPRESS_ZLIB) { 254 error(toString(this) + ": unsupported compression type"); 255 return; 256 } 257 258 uncompressedSize = hdr->ch_size; 259 alignment = std::max<uint32_t>(hdr->ch_addralign, 1); 260 rawData = rawData.slice(sizeof(*hdr)); 261 } 262 263 InputSection *InputSectionBase::getLinkOrderDep() const { 264 assert(flags & SHF_LINK_ORDER); 265 if (!link) 266 return nullptr; 267 return cast<InputSection>(file->getSections()[link]); 268 } 269 270 // Find a function symbol that encloses a given location. 271 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { 272 for (Symbol *b : file->getSymbols()) 273 if (Defined *d = dyn_cast<Defined>(b)) 274 if (d->section == this && d->type == STT_FUNC && d->value <= offset && 275 offset < d->value + d->size) 276 return d; 277 return nullptr; 278 } 279 280 // Returns an object file location string. Used to construct an error message. 281 template <class ELFT> 282 std::string InputSectionBase::getLocation(uint64_t offset) { 283 std::string secAndOffset = 284 (name + "+0x" + Twine::utohexstr(offset) + ")").str(); 285 286 // We don't have file for synthetic sections. 287 if (getFile<ELFT>() == nullptr) 288 return (config->outputFile + ":(" + secAndOffset).str(); 289 290 std::string file = toString(getFile<ELFT>()); 291 if (Defined *d = getEnclosingFunction(offset)) 292 return file + ":(function " + toString(*d) + ": " + secAndOffset; 293 294 return file + ":(" + secAndOffset; 295 } 296 297 // This function is intended to be used for constructing an error message. 298 // The returned message looks like this: 299 // 300 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 301 // 302 // Returns an empty string if there's no way to get line info. 303 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { 304 return file->getSrcMsg(sym, *this, offset); 305 } 306 307 // Returns a filename string along with an optional section name. This 308 // function is intended to be used for constructing an error 309 // message. The returned message looks like this: 310 // 311 // path/to/foo.o:(function bar) 312 // 313 // or 314 // 315 // path/to/foo.o:(function bar) in archive path/to/bar.a 316 std::string InputSectionBase::getObjMsg(uint64_t off) { 317 std::string filename = std::string(file->getName()); 318 319 std::string archive; 320 if (!file->archiveName.empty()) 321 archive = (" in archive " + file->archiveName).str(); 322 323 // Find a symbol that encloses a given location. 324 for (Symbol *b : file->getSymbols()) 325 if (auto *d = dyn_cast<Defined>(b)) 326 if (d->section == this && d->value <= off && off < d->value + d->size) 327 return filename + ":(" + toString(*d) + ")" + archive; 328 329 // If there's no symbol, print out the offset in the section. 330 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) 331 .str(); 332 } 333 334 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 335 336 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, 337 uint32_t alignment, ArrayRef<uint8_t> data, 338 StringRef name, Kind k) 339 : InputSectionBase(f, flags, type, 340 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, 341 name, k) {} 342 343 template <class ELFT> 344 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, 345 StringRef name) 346 : InputSectionBase(f, header, name, InputSectionBase::Regular) {} 347 348 bool InputSection::classof(const SectionBase *s) { 349 return s->kind() == SectionBase::Regular || 350 s->kind() == SectionBase::Synthetic; 351 } 352 353 OutputSection *InputSection::getParent() const { 354 return cast_or_null<OutputSection>(parent); 355 } 356 357 // Copy SHT_GROUP section contents. Used only for the -r option. 358 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { 359 // ELFT::Word is the 32-bit integral type in the target endianness. 360 using u32 = typename ELFT::Word; 361 ArrayRef<u32> from = getDataAs<u32>(); 362 auto *to = reinterpret_cast<u32 *>(buf); 363 364 // The first entry is not a section number but a flag. 365 *to++ = from[0]; 366 367 // Adjust section numbers because section numbers in an input object files are 368 // different in the output. We also need to handle combined or discarded 369 // members. 370 ArrayRef<InputSectionBase *> sections = file->getSections(); 371 std::unordered_set<uint32_t> seen; 372 for (uint32_t idx : from.slice(1)) { 373 OutputSection *osec = sections[idx]->getOutputSection(); 374 if (osec && seen.insert(osec->sectionIndex).second) 375 *to++ = osec->sectionIndex; 376 } 377 } 378 379 InputSectionBase *InputSection::getRelocatedSection() const { 380 if (!file || (type != SHT_RELA && type != SHT_REL)) 381 return nullptr; 382 ArrayRef<InputSectionBase *> sections = file->getSections(); 383 return sections[info]; 384 } 385 386 // This is used for -r and --emit-relocs. We can't use memcpy to copy 387 // relocations because we need to update symbol table offset and section index 388 // for each relocation. So we copy relocations one by one. 389 template <class ELFT, class RelTy> 390 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { 391 const TargetInfo &target = *elf::target; 392 InputSectionBase *sec = getRelocatedSection(); 393 394 for (const RelTy &rel : rels) { 395 RelType type = rel.getType(config->isMips64EL); 396 const ObjFile<ELFT> *file = getFile<ELFT>(); 397 Symbol &sym = file->getRelocTargetSym(rel); 398 399 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); 400 buf += sizeof(RelTy); 401 402 if (RelTy::IsRela) 403 p->r_addend = getAddend<ELFT>(rel); 404 405 // Output section VA is zero for -r, so r_offset is an offset within the 406 // section, but for --emit-relocs it is a virtual address. 407 p->r_offset = sec->getVA(rel.r_offset); 408 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, 409 config->isMips64EL); 410 411 if (sym.type == STT_SECTION) { 412 // We combine multiple section symbols into only one per 413 // section. This means we have to update the addend. That is 414 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 415 // section data. We do that by adding to the Relocation vector. 416 417 // .eh_frame is horribly special and can reference discarded sections. To 418 // avoid having to parse and recreate .eh_frame, we just replace any 419 // relocation in it pointing to discarded sections with R_*_NONE, which 420 // hopefully creates a frame that is ignored at runtime. Also, don't warn 421 // on .gcc_except_table and debug sections. 422 // 423 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc 424 auto *d = dyn_cast<Defined>(&sym); 425 if (!d) { 426 if (!isDebugSection(*sec) && sec->name != ".eh_frame" && 427 sec->name != ".gcc_except_table" && sec->name != ".got2" && 428 sec->name != ".toc") { 429 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; 430 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; 431 warn("relocation refers to a discarded section: " + 432 CHECK(file->getObj().getSectionName(sec), file) + 433 "\n>>> referenced by " + getObjMsg(p->r_offset)); 434 } 435 p->setSymbolAndType(0, 0, false); 436 continue; 437 } 438 SectionBase *section = d->section; 439 if (!section->isLive()) { 440 p->setSymbolAndType(0, 0, false); 441 continue; 442 } 443 444 int64_t addend = getAddend<ELFT>(rel); 445 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; 446 if (!RelTy::IsRela) 447 addend = target.getImplicitAddend(bufLoc, type); 448 449 if (config->emachine == EM_MIPS && 450 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { 451 // Some MIPS relocations depend on "gp" value. By default, 452 // this value has 0x7ff0 offset from a .got section. But 453 // relocatable files produced by a compiler or a linker 454 // might redefine this default value and we must use it 455 // for a calculation of the relocation result. When we 456 // generate EXE or DSO it's trivial. Generating a relocatable 457 // output is more difficult case because the linker does 458 // not calculate relocations in this mode and loses 459 // individual "gp" values used by each input object file. 460 // As a workaround we add the "gp" value to the relocation 461 // addend and save it back to the file. 462 addend += sec->getFile<ELFT>()->mipsGp0; 463 } 464 465 if (RelTy::IsRela) 466 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; 467 else if (config->relocatable && type != target.noneRel) 468 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); 469 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 && 470 p->r_addend >= 0x8000 && sec->file->ppc32Got2) { 471 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 472 // indicates that r30 is relative to the input section .got2 473 // (r_addend>=0x8000), after linking, r30 should be relative to the output 474 // section .got2 . To compensate for the shift, adjust r_addend by 475 // ppc32Got->outSecOff. 476 p->r_addend += sec->file->ppc32Got2->outSecOff; 477 } 478 } 479 } 480 481 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 482 // references specially. The general rule is that the value of the symbol in 483 // this context is the address of the place P. A further special case is that 484 // branch relocations to an undefined weak reference resolve to the next 485 // instruction. 486 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, 487 uint32_t p) { 488 switch (type) { 489 // Unresolved branch relocations to weak references resolve to next 490 // instruction, this will be either 2 or 4 bytes on from P. 491 case R_ARM_THM_JUMP8: 492 case R_ARM_THM_JUMP11: 493 return p + 2 + a; 494 case R_ARM_CALL: 495 case R_ARM_JUMP24: 496 case R_ARM_PC24: 497 case R_ARM_PLT32: 498 case R_ARM_PREL31: 499 case R_ARM_THM_JUMP19: 500 case R_ARM_THM_JUMP24: 501 return p + 4 + a; 502 case R_ARM_THM_CALL: 503 // We don't want an interworking BLX to ARM 504 return p + 5 + a; 505 // Unresolved non branch pc-relative relocations 506 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 507 // targets a weak-reference. 508 case R_ARM_MOVW_PREL_NC: 509 case R_ARM_MOVT_PREL: 510 case R_ARM_REL32: 511 case R_ARM_THM_ALU_PREL_11_0: 512 case R_ARM_THM_MOVW_PREL_NC: 513 case R_ARM_THM_MOVT_PREL: 514 case R_ARM_THM_PC12: 515 return p + a; 516 // p + a is unrepresentable as negative immediates can't be encoded. 517 case R_ARM_THM_PC8: 518 return p; 519 } 520 llvm_unreachable("ARM pc-relative relocation expected\n"); 521 } 522 523 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 524 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 525 switch (type) { 526 // Unresolved branch relocations to weak references resolve to next 527 // instruction, this is 4 bytes on from P. 528 case R_AARCH64_CALL26: 529 case R_AARCH64_CONDBR19: 530 case R_AARCH64_JUMP26: 531 case R_AARCH64_TSTBR14: 532 return p + 4; 533 // Unresolved non branch pc-relative relocations 534 case R_AARCH64_PREL16: 535 case R_AARCH64_PREL32: 536 case R_AARCH64_PREL64: 537 case R_AARCH64_ADR_PREL_LO21: 538 case R_AARCH64_LD_PREL_LO19: 539 case R_AARCH64_PLT32: 540 return p; 541 } 542 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 543 } 544 545 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { 546 switch (type) { 547 case R_RISCV_BRANCH: 548 case R_RISCV_JAL: 549 case R_RISCV_CALL: 550 case R_RISCV_CALL_PLT: 551 case R_RISCV_RVC_BRANCH: 552 case R_RISCV_RVC_JUMP: 553 return p; 554 default: 555 return 0; 556 } 557 } 558 559 // ARM SBREL relocations are of the form S + A - B where B is the static base 560 // The ARM ABI defines base to be "addressing origin of the output segment 561 // defining the symbol S". We defined the "addressing origin"/static base to be 562 // the base of the PT_LOAD segment containing the Sym. 563 // The procedure call standard only defines a Read Write Position Independent 564 // RWPI variant so in practice we should expect the static base to be the base 565 // of the RW segment. 566 static uint64_t getARMStaticBase(const Symbol &sym) { 567 OutputSection *os = sym.getOutputSection(); 568 if (!os || !os->ptLoad || !os->ptLoad->firstSec) 569 fatal("SBREL relocation to " + sym.getName() + " without static base"); 570 return os->ptLoad->firstSec->addr; 571 } 572 573 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 574 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 575 // is calculated using PCREL_HI20's symbol. 576 // 577 // This function returns the R_RISCV_PCREL_HI20 relocation from 578 // R_RISCV_PCREL_LO12's symbol and addend. 579 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { 580 const Defined *d = cast<Defined>(sym); 581 if (!d->section) { 582 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + 583 sym->getName()); 584 return nullptr; 585 } 586 InputSection *isec = cast<InputSection>(d->section); 587 588 if (addend != 0) 589 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 590 isec->getObjMsg(d->value) + " is ignored"); 591 592 // Relocations are sorted by offset, so we can use std::equal_range to do 593 // binary search. 594 Relocation r; 595 r.offset = d->value; 596 auto range = 597 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, 598 [](const Relocation &lhs, const Relocation &rhs) { 599 return lhs.offset < rhs.offset; 600 }); 601 602 for (auto it = range.first; it != range.second; ++it) 603 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || 604 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) 605 return &*it; 606 607 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + 608 " without an associated R_RISCV_PCREL_HI20 relocation"); 609 return nullptr; 610 } 611 612 // A TLS symbol's virtual address is relative to the TLS segment. Add a 613 // target-specific adjustment to produce a thread-pointer-relative offset. 614 static int64_t getTlsTpOffset(const Symbol &s) { 615 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. 616 if (&s == ElfSym::tlsModuleBase) 617 return 0; 618 619 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 620 // while most others use Variant 1. At run time TP will be aligned to p_align. 621 622 // Variant 1. TP will be followed by an optional gap (which is the size of 2 623 // pointers on ARM/AArch64, 0 on other targets), followed by alignment 624 // padding, then the static TLS blocks. The alignment padding is added so that 625 // (TP + gap + padding) is congruent to p_vaddr modulo p_align. 626 // 627 // Variant 2. Static TLS blocks, followed by alignment padding are placed 628 // before TP. The alignment padding is added so that (TP - padding - 629 // p_memsz) is congruent to p_vaddr modulo p_align. 630 PhdrEntry *tls = Out::tlsPhdr; 631 switch (config->emachine) { 632 // Variant 1. 633 case EM_ARM: 634 case EM_AARCH64: 635 return s.getVA(0) + config->wordsize * 2 + 636 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1)); 637 case EM_MIPS: 638 case EM_PPC: 639 case EM_PPC64: 640 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is 641 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library 642 // data and 0xf000 of the program's TLS segment. 643 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; 644 case EM_RISCV: 645 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)); 646 647 // Variant 2. 648 case EM_HEXAGON: 649 case EM_SPARCV9: 650 case EM_386: 651 case EM_X86_64: 652 return s.getVA(0) - tls->p_memsz - 653 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); 654 default: 655 llvm_unreachable("unhandled Config->EMachine"); 656 } 657 } 658 659 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type, 660 int64_t a, uint64_t p, 661 const Symbol &sym, RelExpr expr) { 662 switch (expr) { 663 case R_ABS: 664 case R_DTPREL: 665 case R_RELAX_TLS_LD_TO_LE_ABS: 666 case R_RELAX_GOT_PC_NOPIC: 667 case R_RISCV_ADD: 668 return sym.getVA(a); 669 case R_ADDEND: 670 return a; 671 case R_ARM_SBREL: 672 return sym.getVA(a) - getARMStaticBase(sym); 673 case R_GOT: 674 case R_RELAX_TLS_GD_TO_IE_ABS: 675 return sym.getGotVA() + a; 676 case R_GOTONLY_PC: 677 return in.got->getVA() + a - p; 678 case R_GOTPLTONLY_PC: 679 return in.gotPlt->getVA() + a - p; 680 case R_GOTREL: 681 case R_PPC64_RELAX_TOC: 682 return sym.getVA(a) - in.got->getVA(); 683 case R_GOTPLTREL: 684 return sym.getVA(a) - in.gotPlt->getVA(); 685 case R_GOTPLT: 686 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 687 return sym.getGotVA() + a - in.gotPlt->getVA(); 688 case R_TLSLD_GOT_OFF: 689 case R_GOT_OFF: 690 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 691 return sym.getGotOffset() + a; 692 case R_AARCH64_GOT_PAGE_PC: 693 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 694 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); 695 case R_AARCH64_GOT_PAGE: 696 return sym.getGotVA() + a - getAArch64Page(in.got->getVA()); 697 case R_GOT_PC: 698 case R_RELAX_TLS_GD_TO_IE: 699 return sym.getGotVA() + a - p; 700 case R_MIPS_GOTREL: 701 return sym.getVA(a) - in.mipsGot->getGp(file); 702 case R_MIPS_GOT_GP: 703 return in.mipsGot->getGp(file) + a; 704 case R_MIPS_GOT_GP_PC: { 705 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 706 // is _gp_disp symbol. In that case we should use the following 707 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 708 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 709 // microMIPS variants of these relocations use slightly different 710 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 711 // to correctly handle less-significant bit of the microMIPS symbol. 712 uint64_t v = in.mipsGot->getGp(file) + a - p; 713 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) 714 v += 4; 715 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) 716 v -= 1; 717 return v; 718 } 719 case R_MIPS_GOT_LOCAL_PAGE: 720 // If relocation against MIPS local symbol requires GOT entry, this entry 721 // should be initialized by 'page address'. This address is high 16-bits 722 // of sum the symbol's value and the addend. 723 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - 724 in.mipsGot->getGp(file); 725 case R_MIPS_GOT_OFF: 726 case R_MIPS_GOT_OFF32: 727 // In case of MIPS if a GOT relocation has non-zero addend this addend 728 // should be applied to the GOT entry content not to the GOT entry offset. 729 // That is why we use separate expression type. 730 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - 731 in.mipsGot->getGp(file); 732 case R_MIPS_TLSGD: 733 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - 734 in.mipsGot->getGp(file); 735 case R_MIPS_TLSLD: 736 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - 737 in.mipsGot->getGp(file); 738 case R_AARCH64_PAGE_PC: { 739 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); 740 return getAArch64Page(val) - getAArch64Page(p); 741 } 742 case R_RISCV_PC_INDIRECT: { 743 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) 744 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), 745 *hiRel->sym, hiRel->expr); 746 return 0; 747 } 748 case R_PC: 749 case R_ARM_PCA: { 750 uint64_t dest; 751 if (expr == R_ARM_PCA) 752 // Some PC relative ARM (Thumb) relocations align down the place. 753 p = p & 0xfffffffc; 754 if (sym.isUndefWeak()) { 755 // On ARM and AArch64 a branch to an undefined weak resolves to the next 756 // instruction, otherwise the place. On RISCV, resolve an undefined weak 757 // to the same instruction to cause an infinite loop (making the user 758 // aware of the issue) while ensuring no overflow. 759 if (config->emachine == EM_ARM) 760 dest = getARMUndefinedRelativeWeakVA(type, a, p); 761 else if (config->emachine == EM_AARCH64) 762 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a; 763 else if (config->emachine == EM_PPC) 764 dest = p; 765 else if (config->emachine == EM_RISCV) 766 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a; 767 else 768 dest = sym.getVA(a); 769 } else { 770 dest = sym.getVA(a); 771 } 772 return dest - p; 773 } 774 case R_PLT: 775 return sym.getPltVA() + a; 776 case R_PLT_PC: 777 case R_PPC64_CALL_PLT: 778 return sym.getPltVA() + a - p; 779 case R_PLT_GOTPLT: 780 return sym.getPltVA() + a - in.gotPlt->getVA(); 781 case R_PPC32_PLTREL: 782 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 783 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for 784 // target VA computation. 785 return sym.getPltVA() - p; 786 case R_PPC64_CALL: { 787 uint64_t symVA = sym.getVA(a); 788 // If we have an undefined weak symbol, we might get here with a symbol 789 // address of zero. That could overflow, but the code must be unreachable, 790 // so don't bother doing anything at all. 791 if (!symVA) 792 return 0; 793 794 // PPC64 V2 ABI describes two entry points to a function. The global entry 795 // point is used for calls where the caller and callee (may) have different 796 // TOC base pointers and r2 needs to be modified to hold the TOC base for 797 // the callee. For local calls the caller and callee share the same 798 // TOC base and so the TOC pointer initialization code should be skipped by 799 // branching to the local entry point. 800 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); 801 } 802 case R_PPC64_TOCBASE: 803 return getPPC64TocBase() + a; 804 case R_RELAX_GOT_PC: 805 case R_PPC64_RELAX_GOT_PC: 806 return sym.getVA(a) - p; 807 case R_RELAX_TLS_GD_TO_LE: 808 case R_RELAX_TLS_IE_TO_LE: 809 case R_RELAX_TLS_LD_TO_LE: 810 case R_TPREL: 811 // It is not very clear what to return if the symbol is undefined. With 812 // --noinhibit-exec, even a non-weak undefined reference may reach here. 813 // Just return A, which matches R_ABS, and the behavior of some dynamic 814 // loaders. 815 if (sym.isUndefined()) 816 return a; 817 return getTlsTpOffset(sym) + a; 818 case R_RELAX_TLS_GD_TO_LE_NEG: 819 case R_TPREL_NEG: 820 if (sym.isUndefined()) 821 return a; 822 return -getTlsTpOffset(sym) + a; 823 case R_SIZE: 824 return sym.getSize() + a; 825 case R_TLSDESC: 826 return in.got->getGlobalDynAddr(sym) + a; 827 case R_TLSDESC_PC: 828 return in.got->getGlobalDynAddr(sym) + a - p; 829 case R_TLSDESC_GOTPLT: 830 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 831 case R_AARCH64_TLSDESC_PAGE: 832 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - 833 getAArch64Page(p); 834 case R_TLSGD_GOT: 835 return in.got->getGlobalDynOffset(sym) + a; 836 case R_TLSGD_GOTPLT: 837 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA(); 838 case R_TLSGD_PC: 839 return in.got->getGlobalDynAddr(sym) + a - p; 840 case R_TLSLD_GOTPLT: 841 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); 842 case R_TLSLD_GOT: 843 return in.got->getTlsIndexOff() + a; 844 case R_TLSLD_PC: 845 return in.got->getTlsIndexVA() + a - p; 846 default: 847 llvm_unreachable("invalid expression"); 848 } 849 } 850 851 // This function applies relocations to sections without SHF_ALLOC bit. 852 // Such sections are never mapped to memory at runtime. Debug sections are 853 // an example. Relocations in non-alloc sections are much easier to 854 // handle than in allocated sections because it will never need complex 855 // treatment such as GOT or PLT (because at runtime no one refers them). 856 // So, we handle relocations for non-alloc sections directly in this 857 // function as a performance optimization. 858 template <class ELFT, class RelTy> 859 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { 860 const unsigned bits = sizeof(typename ELFT::uint) * 8; 861 const TargetInfo &target = *elf::target; 862 const bool isDebug = isDebugSection(*this); 863 const bool isDebugLocOrRanges = 864 isDebug && (name == ".debug_loc" || name == ".debug_ranges"); 865 const bool isDebugLine = isDebug && name == ".debug_line"; 866 Optional<uint64_t> tombstone; 867 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc)) 868 if (patAndValue.first.match(this->name)) { 869 tombstone = patAndValue.second; 870 break; 871 } 872 873 for (const RelTy &rel : rels) { 874 RelType type = rel.getType(config->isMips64EL); 875 876 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 877 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 878 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 879 // need to keep this bug-compatible code for a while. 880 if (config->emachine == EM_386 && type == R_386_GOTPC) 881 continue; 882 883 uint64_t offset = rel.r_offset; 884 uint8_t *bufLoc = buf + offset; 885 int64_t addend = getAddend<ELFT>(rel); 886 if (!RelTy::IsRela) 887 addend += target.getImplicitAddend(bufLoc, type); 888 889 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); 890 RelExpr expr = target.getRelExpr(type, sym, bufLoc); 891 if (expr == R_NONE) 892 continue; 893 894 if (expr == R_SIZE) { 895 target.relocateNoSym(bufLoc, type, 896 SignExtend64<bits>(sym.getSize() + addend)); 897 continue; 898 } 899 900 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC 901 // sections. 902 if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL && 903 expr != R_RISCV_ADD) { 904 std::string msg = getLocation<ELFT>(offset) + 905 ": has non-ABS relocation " + toString(type) + 906 " against symbol '" + toString(sym) + "'"; 907 if (expr != R_PC && expr != R_ARM_PCA) { 908 error(msg); 909 return; 910 } 911 912 // If the control reaches here, we found a PC-relative relocation in a 913 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 914 // at runtime, the notion of PC-relative doesn't make sense here. So, 915 // this is a usage error. However, GNU linkers historically accept such 916 // relocations without any errors and relocate them as if they were at 917 // address 0. For bug-compatibilty, we accept them with warnings. We 918 // know Steel Bank Common Lisp as of 2018 have this bug. 919 warn(msg); 920 target.relocateNoSym( 921 bufLoc, type, 922 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff))); 923 continue; 924 } 925 926 if (tombstone || 927 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) { 928 // Resolve relocations in .debug_* referencing (discarded symbols or ICF 929 // folded section symbols) to a tombstone value. Resolving to addend is 930 // unsatisfactory because the result address range may collide with a 931 // valid range of low address, or leave multiple CUs claiming ownership of 932 // the same range of code, which may confuse consumers. 933 // 934 // To address the problems, we use -1 as a tombstone value for most 935 // .debug_* sections. We have to ignore the addend because we don't want 936 // to resolve an address attribute (which may have a non-zero addend) to 937 // -1+addend (wrap around to a low address). 938 // 939 // R_DTPREL type relocations represent an offset into the dynamic thread 940 // vector. The computed value is st_value plus a non-negative offset. 941 // Negative values are invalid, so -1 can be used as the tombstone value. 942 // 943 // If the referenced symbol is discarded (made Undefined), or the 944 // section defining the referenced symbol is garbage collected, 945 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded 946 // case. However, resolving a relocation in .debug_line to -1 would stop 947 // debugger users from setting breakpoints on the folded-in function, so 948 // exclude .debug_line. 949 // 950 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value 951 // (base address selection entry), use 1 (which is used by GNU ld for 952 // .debug_ranges). 953 // 954 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone 955 // value. Enable -1 in a future release. 956 auto *ds = dyn_cast<Defined>(&sym); 957 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) { 958 // If -z dead-reloc-in-nonalloc= is specified, respect it. 959 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone) 960 : (isDebugLocOrRanges ? 1 : 0); 961 target.relocateNoSym(bufLoc, type, value); 962 continue; 963 } 964 } 965 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); 966 } 967 } 968 969 // This is used when '-r' is given. 970 // For REL targets, InputSection::copyRelocations() may store artificial 971 // relocations aimed to update addends. They are handled in relocateAlloc() 972 // for allocatable sections, and this function does the same for 973 // non-allocatable sections, such as sections with debug information. 974 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { 975 const unsigned bits = config->is64 ? 64 : 32; 976 977 for (const Relocation &rel : sec->relocations) { 978 // InputSection::copyRelocations() adds only R_ABS relocations. 979 assert(rel.expr == R_ABS); 980 uint8_t *bufLoc = buf + rel.offset; 981 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); 982 target->relocate(bufLoc, rel, targetVA); 983 } 984 } 985 986 template <class ELFT> 987 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { 988 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) 989 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); 990 991 if (flags & SHF_ALLOC) { 992 relocateAlloc(buf, bufEnd); 993 return; 994 } 995 996 auto *sec = cast<InputSection>(this); 997 if (config->relocatable) { 998 relocateNonAllocForRelocatable(sec, buf); 999 } else { 1000 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>(); 1001 if (rels.areRelocsRel()) 1002 sec->relocateNonAlloc<ELFT>(buf, rels.rels); 1003 else 1004 sec->relocateNonAlloc<ELFT>(buf, rels.relas); 1005 } 1006 } 1007 1008 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { 1009 assert(flags & SHF_ALLOC); 1010 const unsigned bits = config->wordsize * 8; 1011 const TargetInfo &target = *elf::target; 1012 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1); 1013 1014 for (const Relocation &rel : relocations) { 1015 if (rel.expr == R_NONE) 1016 continue; 1017 uint64_t offset = rel.offset; 1018 uint8_t *bufLoc = buf + offset; 1019 1020 uint64_t addrLoc = getOutputSection()->addr + offset; 1021 if (auto *sec = dyn_cast<InputSection>(this)) 1022 addrLoc += sec->outSecOff; 1023 const uint64_t targetVA = 1024 SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc, 1025 *rel.sym, rel.expr), bits); 1026 1027 switch (rel.expr) { 1028 case R_RELAX_GOT_PC: 1029 case R_RELAX_GOT_PC_NOPIC: 1030 target.relaxGot(bufLoc, rel, targetVA); 1031 break; 1032 case R_PPC64_RELAX_GOT_PC: { 1033 // The R_PPC64_PCREL_OPT relocation must appear immediately after 1034 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. 1035 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed 1036 // the associated R_PPC64_GOT_PCREL34 since only the latter has an 1037 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 1038 // and only relax the other if the saved offset matches. 1039 if (rel.type == R_PPC64_GOT_PCREL34) 1040 lastPPCRelaxedRelocOff = offset; 1041 if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff) 1042 break; 1043 target.relaxGot(bufLoc, rel, targetVA); 1044 break; 1045 } 1046 case R_PPC64_RELAX_TOC: 1047 // rel.sym refers to the STT_SECTION symbol associated to the .toc input 1048 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC 1049 // entry, there may be R_PPC64_TOC16_HA not paired with 1050 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation 1051 // opportunities but is safe. 1052 if (ppc64noTocRelax.count({rel.sym, rel.addend}) || 1053 !tryRelaxPPC64TocIndirection(rel, bufLoc)) 1054 target.relocate(bufLoc, rel, targetVA); 1055 break; 1056 case R_RELAX_TLS_IE_TO_LE: 1057 target.relaxTlsIeToLe(bufLoc, rel, targetVA); 1058 break; 1059 case R_RELAX_TLS_LD_TO_LE: 1060 case R_RELAX_TLS_LD_TO_LE_ABS: 1061 target.relaxTlsLdToLe(bufLoc, rel, targetVA); 1062 break; 1063 case R_RELAX_TLS_GD_TO_LE: 1064 case R_RELAX_TLS_GD_TO_LE_NEG: 1065 target.relaxTlsGdToLe(bufLoc, rel, targetVA); 1066 break; 1067 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 1068 case R_RELAX_TLS_GD_TO_IE: 1069 case R_RELAX_TLS_GD_TO_IE_ABS: 1070 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 1071 case R_RELAX_TLS_GD_TO_IE_GOTPLT: 1072 target.relaxTlsGdToIe(bufLoc, rel, targetVA); 1073 break; 1074 case R_PPC64_CALL: 1075 // If this is a call to __tls_get_addr, it may be part of a TLS 1076 // sequence that has been relaxed and turned into a nop. In this 1077 // case, we don't want to handle it as a call. 1078 if (read32(bufLoc) == 0x60000000) // nop 1079 break; 1080 1081 // Patch a nop (0x60000000) to a ld. 1082 if (rel.sym->needsTocRestore) { 1083 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for 1084 // recursive calls even if the function is preemptible. This is not 1085 // wrong in the common case where the function is not preempted at 1086 // runtime. Just ignore. 1087 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) && 1088 rel.sym->file != file) { 1089 // Use substr(6) to remove the "__plt_" prefix. 1090 errorOrWarn(getErrorLocation(bufLoc) + "call to " + 1091 lld::toString(*rel.sym).substr(6) + 1092 " lacks nop, can't restore toc"); 1093 break; 1094 } 1095 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 1096 } 1097 target.relocate(bufLoc, rel, targetVA); 1098 break; 1099 default: 1100 target.relocate(bufLoc, rel, targetVA); 1101 break; 1102 } 1103 } 1104 1105 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of 1106 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp 1107 // insn. This is primarily used to relax and optimize jumps created with 1108 // basic block sections. 1109 if (jumpInstrMod) { 1110 target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original, 1111 jumpInstrMod->size); 1112 } 1113 } 1114 1115 // For each function-defining prologue, find any calls to __morestack, 1116 // and replace them with calls to __morestack_non_split. 1117 static void switchMorestackCallsToMorestackNonSplit( 1118 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { 1119 1120 // If the target adjusted a function's prologue, all calls to 1121 // __morestack inside that function should be switched to 1122 // __morestack_non_split. 1123 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); 1124 if (!moreStackNonSplit) { 1125 error("Mixing split-stack objects requires a definition of " 1126 "__morestack_non_split"); 1127 return; 1128 } 1129 1130 // Sort both collections to compare addresses efficiently. 1131 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { 1132 return l->offset < r->offset; 1133 }); 1134 std::vector<Defined *> functions(prologues.begin(), prologues.end()); 1135 llvm::sort(functions, [](const Defined *l, const Defined *r) { 1136 return l->value < r->value; 1137 }); 1138 1139 auto it = morestackCalls.begin(); 1140 for (Defined *f : functions) { 1141 // Find the first call to __morestack within the function. 1142 while (it != morestackCalls.end() && (*it)->offset < f->value) 1143 ++it; 1144 // Adjust all calls inside the function. 1145 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { 1146 (*it)->sym = moreStackNonSplit; 1147 ++it; 1148 } 1149 } 1150 } 1151 1152 static bool enclosingPrologueAttempted(uint64_t offset, 1153 const DenseSet<Defined *> &prologues) { 1154 for (Defined *f : prologues) 1155 if (f->value <= offset && offset < f->value + f->size) 1156 return true; 1157 return false; 1158 } 1159 1160 // If a function compiled for split stack calls a function not 1161 // compiled for split stack, then the caller needs its prologue 1162 // adjusted to ensure that the called function will have enough stack 1163 // available. Find those functions, and adjust their prologues. 1164 template <class ELFT> 1165 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, 1166 uint8_t *end) { 1167 DenseSet<Defined *> prologues; 1168 std::vector<Relocation *> morestackCalls; 1169 1170 for (Relocation &rel : relocations) { 1171 // Local symbols can't possibly be cross-calls, and should have been 1172 // resolved long before this line. 1173 if (rel.sym->isLocal()) 1174 continue; 1175 1176 // Ignore calls into the split-stack api. 1177 if (rel.sym->getName().startswith("__morestack")) { 1178 if (rel.sym->getName().equals("__morestack")) 1179 morestackCalls.push_back(&rel); 1180 continue; 1181 } 1182 1183 // A relocation to non-function isn't relevant. Sometimes 1184 // __morestack is not marked as a function, so this check comes 1185 // after the name check. 1186 if (rel.sym->type != STT_FUNC) 1187 continue; 1188 1189 // If the callee's-file was compiled with split stack, nothing to do. In 1190 // this context, a "Defined" symbol is one "defined by the binary currently 1191 // being produced". So an "undefined" symbol might be provided by a shared 1192 // library. It is not possible to tell how such symbols were compiled, so be 1193 // conservative. 1194 if (Defined *d = dyn_cast<Defined>(rel.sym)) 1195 if (InputSection *isec = cast_or_null<InputSection>(d->section)) 1196 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) 1197 continue; 1198 1199 if (enclosingPrologueAttempted(rel.offset, prologues)) 1200 continue; 1201 1202 if (Defined *f = getEnclosingFunction(rel.offset)) { 1203 prologues.insert(f); 1204 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end, 1205 f->stOther)) 1206 continue; 1207 if (!getFile<ELFT>()->someNoSplitStack) 1208 error(lld::toString(this) + ": " + f->getName() + 1209 " (with -fsplit-stack) calls " + rel.sym->getName() + 1210 " (without -fsplit-stack), but couldn't adjust its prologue"); 1211 } 1212 } 1213 1214 if (target->needsMoreStackNonSplit) 1215 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); 1216 } 1217 1218 template <class ELFT> void InputSection::writeTo(uint8_t *buf) { 1219 if (auto *s = dyn_cast<SyntheticSection>(this)) { 1220 s->writeTo(buf); 1221 return; 1222 } 1223 1224 if (LLVM_UNLIKELY(type == SHT_NOBITS)) 1225 return; 1226 // If -r or --emit-relocs is given, then an InputSection 1227 // may be a relocation section. 1228 if (LLVM_UNLIKELY(type == SHT_RELA)) { 1229 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>()); 1230 return; 1231 } 1232 if (LLVM_UNLIKELY(type == SHT_REL)) { 1233 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>()); 1234 return; 1235 } 1236 1237 // If -r is given, we may have a SHT_GROUP section. 1238 if (LLVM_UNLIKELY(type == SHT_GROUP)) { 1239 copyShtGroup<ELFT>(buf); 1240 return; 1241 } 1242 1243 // If this is a compressed section, uncompress section contents directly 1244 // to the buffer. 1245 if (uncompressedSize >= 0) { 1246 size_t size = uncompressedSize; 1247 if (Error e = zlib::uncompress(toStringRef(rawData), (char *)buf, size)) 1248 fatal(toString(this) + 1249 ": uncompress failed: " + llvm::toString(std::move(e))); 1250 uint8_t *bufEnd = buf + size; 1251 relocate<ELFT>(buf, bufEnd); 1252 return; 1253 } 1254 1255 // Copy section contents from source object file to output file 1256 // and then apply relocations. 1257 memcpy(buf, data().data(), data().size()); 1258 uint8_t *bufEnd = buf + data().size(); 1259 relocate<ELFT>(buf, bufEnd); 1260 } 1261 1262 void InputSection::replace(InputSection *other) { 1263 alignment = std::max(alignment, other->alignment); 1264 1265 // When a section is replaced with another section that was allocated to 1266 // another partition, the replacement section (and its associated sections) 1267 // need to be placed in the main partition so that both partitions will be 1268 // able to access it. 1269 if (partition != other->partition) { 1270 partition = 1; 1271 for (InputSection *isec : dependentSections) 1272 isec->partition = 1; 1273 } 1274 1275 other->repl = repl; 1276 other->markDead(); 1277 } 1278 1279 template <class ELFT> 1280 EhInputSection::EhInputSection(ObjFile<ELFT> &f, 1281 const typename ELFT::Shdr &header, 1282 StringRef name) 1283 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} 1284 1285 SyntheticSection *EhInputSection::getParent() const { 1286 return cast_or_null<SyntheticSection>(parent); 1287 } 1288 1289 // Returns the index of the first relocation that points to a region between 1290 // Begin and Begin+Size. 1291 template <class IntTy, class RelTy> 1292 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, 1293 unsigned &relocI) { 1294 // Start search from RelocI for fast access. That works because the 1295 // relocations are sorted in .eh_frame. 1296 for (unsigned n = rels.size(); relocI < n; ++relocI) { 1297 const RelTy &rel = rels[relocI]; 1298 if (rel.r_offset < begin) 1299 continue; 1300 1301 if (rel.r_offset < begin + size) 1302 return relocI; 1303 return -1; 1304 } 1305 return -1; 1306 } 1307 1308 // .eh_frame is a sequence of CIE or FDE records. 1309 // This function splits an input section into records and returns them. 1310 template <class ELFT> void EhInputSection::split() { 1311 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(); 1312 if (rels.areRelocsRel()) 1313 split<ELFT>(rels.rels); 1314 else 1315 split<ELFT>(rels.relas); 1316 } 1317 1318 template <class ELFT, class RelTy> 1319 void EhInputSection::split(ArrayRef<RelTy> rels) { 1320 // getReloc expects the relocations to be sorted by r_offset. See the comment 1321 // in scanRelocs. 1322 SmallVector<RelTy, 0> storage; 1323 rels = sortRels(rels, storage); 1324 1325 unsigned relI = 0; 1326 for (size_t off = 0, end = data().size(); off != end;) { 1327 size_t size = readEhRecordSize(this, off); 1328 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); 1329 // The empty record is the end marker. 1330 if (size == 4) 1331 break; 1332 off += size; 1333 } 1334 } 1335 1336 static size_t findNull(StringRef s, size_t entSize) { 1337 // Optimize the common case. 1338 if (entSize == 1) 1339 return s.find(0); 1340 1341 for (unsigned i = 0, n = s.size(); i != n; i += entSize) { 1342 const char *b = s.begin() + i; 1343 if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) 1344 return i; 1345 } 1346 return StringRef::npos; 1347 } 1348 1349 SyntheticSection *MergeInputSection::getParent() const { 1350 return cast_or_null<SyntheticSection>(parent); 1351 } 1352 1353 // Split SHF_STRINGS section. Such section is a sequence of 1354 // null-terminated strings. 1355 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { 1356 size_t off = 0; 1357 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1358 StringRef s = toStringRef(data); 1359 1360 while (!s.empty()) { 1361 size_t end = findNull(s, entSize); 1362 if (end == StringRef::npos) 1363 fatal(toString(this) + ": string is not null terminated"); 1364 size_t size = end + entSize; 1365 1366 pieces.emplace_back(off, xxHash64(s.substr(0, size)), live); 1367 s = s.substr(size); 1368 off += size; 1369 } 1370 } 1371 1372 // Split non-SHF_STRINGS section. Such section is a sequence of 1373 // fixed size records. 1374 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, 1375 size_t entSize) { 1376 size_t size = data.size(); 1377 assert((size % entSize) == 0); 1378 const bool live = !(flags & SHF_ALLOC) || !config->gcSections; 1379 1380 pieces.assign(size / entSize, SectionPiece(0, 0, false)); 1381 for (size_t i = 0, j = 0; i != size; i += entSize, j++) 1382 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live}; 1383 } 1384 1385 template <class ELFT> 1386 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, 1387 const typename ELFT::Shdr &header, 1388 StringRef name) 1389 : InputSectionBase(f, header, name, InputSectionBase::Merge) {} 1390 1391 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, 1392 uint64_t entsize, ArrayRef<uint8_t> data, 1393 StringRef name) 1394 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, 1395 /*Alignment*/ entsize, data, name, SectionBase::Merge) {} 1396 1397 // This function is called after we obtain a complete list of input sections 1398 // that need to be linked. This is responsible to split section contents 1399 // into small chunks for further processing. 1400 // 1401 // Note that this function is called from parallelForEach. This must be 1402 // thread-safe (i.e. no memory allocation from the pools). 1403 void MergeInputSection::splitIntoPieces() { 1404 assert(pieces.empty()); 1405 1406 if (flags & SHF_STRINGS) 1407 splitStrings(data(), entsize); 1408 else 1409 splitNonStrings(data(), entsize); 1410 } 1411 1412 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { 1413 if (this->data().size() <= offset) 1414 fatal(toString(this) + ": offset is outside the section"); 1415 1416 // If Offset is not at beginning of a section piece, it is not in the map. 1417 // In that case we need to do a binary search of the original section piece vector. 1418 auto it = partition_point( 1419 pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); 1420 return &it[-1]; 1421 } 1422 1423 // Returns the offset in an output section for a given input offset. 1424 // Because contents of a mergeable section is not contiguous in output, 1425 // it is not just an addition to a base output offset. 1426 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { 1427 // If Offset is not at beginning of a section piece, it is not in the map. 1428 // In that case we need to search from the original section piece vector. 1429 const SectionPiece &piece = *getSectionPiece(offset); 1430 uint64_t addend = offset - piece.inputOff; 1431 return piece.outputOff + addend; 1432 } 1433 1434 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1435 StringRef); 1436 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1437 StringRef); 1438 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1439 StringRef); 1440 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1441 StringRef); 1442 1443 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1444 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1445 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1446 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1447 1448 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1449 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1450 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1451 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1452 1453 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const; 1454 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const; 1455 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const; 1456 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const; 1457 1458 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1459 const ELF32LE::Shdr &, StringRef); 1460 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1461 const ELF32BE::Shdr &, StringRef); 1462 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1463 const ELF64LE::Shdr &, StringRef); 1464 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1465 const ELF64BE::Shdr &, StringRef); 1466 1467 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1468 const ELF32LE::Shdr &, StringRef); 1469 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1470 const ELF32BE::Shdr &, StringRef); 1471 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1472 const ELF64LE::Shdr &, StringRef); 1473 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1474 const ELF64BE::Shdr &, StringRef); 1475 1476 template void EhInputSection::split<ELF32LE>(); 1477 template void EhInputSection::split<ELF32BE>(); 1478 template void EhInputSection::split<ELF64LE>(); 1479 template void EhInputSection::split<ELF64BE>(); 1480