1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <vector>
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::support;
37 using namespace llvm::support::endian;
38 using namespace llvm::sys;
39 
40 using namespace lld;
41 using namespace lld::elf;
42 
43 std::vector<InputSectionBase *> elf::InputSections;
44 
45 // Returns a string to construct an error message.
46 std::string lld::toString(const InputSectionBase *Sec) {
47   return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
48 }
49 
50 template <class ELFT>
51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File,
52                                             const typename ELFT::Shdr &Hdr) {
53   if (Hdr.sh_type == SHT_NOBITS)
54     return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size);
55   return check(File.getObj().getSectionContents(&Hdr));
56 }
57 
58 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
59                                    uint32_t Type, uint64_t Entsize,
60                                    uint32_t Link, uint32_t Info,
61                                    uint32_t Alignment, ArrayRef<uint8_t> Data,
62                                    StringRef Name, Kind SectionKind)
63     : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
64                   Link),
65       File(File), RawData(Data) {
66   // In order to reduce memory allocation, we assume that mergeable
67   // sections are smaller than 4 GiB, which is not an unreasonable
68   // assumption as of 2017.
69   if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX)
70     error(toString(this) + ": section too large");
71 
72   NumRelocations = 0;
73   AreRelocsRela = false;
74 
75   // The ELF spec states that a value of 0 means the section has
76   // no alignment constraits.
77   uint32_t V = std::max<uint64_t>(Alignment, 1);
78   if (!isPowerOf2_64(V))
79     fatal(toString(this) + ": sh_addralign is not a power of 2");
80   this->Alignment = V;
81 
82   // In ELF, each section can be compressed by zlib, and if compressed,
83   // section name may be mangled by appending "z" (e.g. ".zdebug_info").
84   // If that's the case, demangle section name so that we can handle a
85   // section as if it weren't compressed.
86   if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) {
87     if (!zlib::isAvailable())
88       error(toString(File) + ": contains a compressed section, " +
89             "but zlib is not available");
90     parseCompressedHeader();
91   }
92 }
93 
94 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
95 // SHF_GROUP is a marker that a section belongs to some comdat group.
96 // That flag doesn't make sense in an executable.
97 static uint64_t getFlags(uint64_t Flags) {
98   Flags &= ~(uint64_t)SHF_INFO_LINK;
99   if (!Config->Relocatable)
100     Flags &= ~(uint64_t)SHF_GROUP;
101   return Flags;
102 }
103 
104 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
105 // March 2017) fail to infer section types for sections starting with
106 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
107 // SHF_INIT_ARRAY. As a result, the following assembler directive
108 // creates ".init_array.100" with SHT_PROGBITS, for example.
109 //
110 //   .section .init_array.100, "aw"
111 //
112 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
113 // incorrect inputs as if they were correct from the beginning.
114 static uint64_t getType(uint64_t Type, StringRef Name) {
115   if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
116     return SHT_INIT_ARRAY;
117   if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
118     return SHT_FINI_ARRAY;
119   return Type;
120 }
121 
122 template <class ELFT>
123 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File,
124                                    const typename ELFT::Shdr &Hdr,
125                                    StringRef Name, Kind SectionKind)
126     : InputSectionBase(&File, getFlags(Hdr.sh_flags),
127                        getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link,
128                        Hdr.sh_info, Hdr.sh_addralign,
129                        getSectionContents(File, Hdr), Name, SectionKind) {
130   // We reject object files having insanely large alignments even though
131   // they are allowed by the spec. I think 4GB is a reasonable limitation.
132   // We might want to relax this in the future.
133   if (Hdr.sh_addralign > UINT32_MAX)
134     fatal(toString(&File) + ": section sh_addralign is too large");
135 }
136 
137 size_t InputSectionBase::getSize() const {
138   if (auto *S = dyn_cast<SyntheticSection>(this))
139     return S->getSize();
140   if (UncompressedSize >= 0)
141     return UncompressedSize;
142   return RawData.size();
143 }
144 
145 void InputSectionBase::uncompress() const {
146   size_t Size = UncompressedSize;
147   UncompressedBuf.reset(new char[Size]);
148 
149   if (Error E =
150           zlib::uncompress(toStringRef(RawData), UncompressedBuf.get(), Size))
151     fatal(toString(this) +
152           ": uncompress failed: " + llvm::toString(std::move(E)));
153   RawData = makeArrayRef((uint8_t *)UncompressedBuf.get(), Size);
154 }
155 
156 uint64_t InputSectionBase::getOffsetInFile() const {
157   const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
158   const uint8_t *SecStart = data().begin();
159   return SecStart - FileStart;
160 }
161 
162 uint64_t SectionBase::getOffset(uint64_t Offset) const {
163   switch (kind()) {
164   case Output: {
165     auto *OS = cast<OutputSection>(this);
166     // For output sections we treat offset -1 as the end of the section.
167     return Offset == uint64_t(-1) ? OS->Size : Offset;
168   }
169   case Regular:
170   case Synthetic:
171     return cast<InputSection>(this)->getOffset(Offset);
172   case EHFrame:
173     // The file crtbeginT.o has relocations pointing to the start of an empty
174     // .eh_frame that is known to be the first in the link. It does that to
175     // identify the start of the output .eh_frame.
176     return Offset;
177   case Merge:
178     const MergeInputSection *MS = cast<MergeInputSection>(this);
179     if (InputSection *IS = MS->getParent())
180       return IS->getOffset(MS->getParentOffset(Offset));
181     return MS->getParentOffset(Offset);
182   }
183   llvm_unreachable("invalid section kind");
184 }
185 
186 uint64_t SectionBase::getVA(uint64_t Offset) const {
187   const OutputSection *Out = getOutputSection();
188   return (Out ? Out->Addr : 0) + getOffset(Offset);
189 }
190 
191 OutputSection *SectionBase::getOutputSection() {
192   InputSection *Sec;
193   if (auto *IS = dyn_cast<InputSection>(this))
194     Sec = IS;
195   else if (auto *MS = dyn_cast<MergeInputSection>(this))
196     Sec = MS->getParent();
197   else if (auto *EH = dyn_cast<EhInputSection>(this))
198     Sec = EH->getParent();
199   else
200     return cast<OutputSection>(this);
201   return Sec ? Sec->getParent() : nullptr;
202 }
203 
204 // When a section is compressed, `RawData` consists with a header followed
205 // by zlib-compressed data. This function parses a header to initialize
206 // `UncompressedSize` member and remove the header from `RawData`.
207 void InputSectionBase::parseCompressedHeader() {
208   typedef typename ELF64LE::Chdr Chdr64;
209   typedef typename ELF32LE::Chdr Chdr32;
210 
211   // Old-style header
212   if (Name.startswith(".zdebug")) {
213     if (!toStringRef(RawData).startswith("ZLIB")) {
214       error(toString(this) + ": corrupted compressed section header");
215       return;
216     }
217     RawData = RawData.slice(4);
218 
219     if (RawData.size() < 8) {
220       error(toString(this) + ": corrupted compressed section header");
221       return;
222     }
223 
224     UncompressedSize = read64be(RawData.data());
225     RawData = RawData.slice(8);
226 
227     // Restore the original section name.
228     // (e.g. ".zdebug_info" -> ".debug_info")
229     Name = Saver.save("." + Name.substr(2));
230     return;
231   }
232 
233   assert(Flags & SHF_COMPRESSED);
234   Flags &= ~(uint64_t)SHF_COMPRESSED;
235 
236   // New-style 64-bit header
237   if (Config->Is64) {
238     if (RawData.size() < sizeof(Chdr64)) {
239       error(toString(this) + ": corrupted compressed section");
240       return;
241     }
242 
243     auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data());
244     if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
245       error(toString(this) + ": unsupported compression type");
246       return;
247     }
248 
249     UncompressedSize = Hdr->ch_size;
250     RawData = RawData.slice(sizeof(*Hdr));
251     return;
252   }
253 
254   // New-style 32-bit header
255   if (RawData.size() < sizeof(Chdr32)) {
256     error(toString(this) + ": corrupted compressed section");
257     return;
258   }
259 
260   auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data());
261   if (Hdr->ch_type != ELFCOMPRESS_ZLIB) {
262     error(toString(this) + ": unsupported compression type");
263     return;
264   }
265 
266   UncompressedSize = Hdr->ch_size;
267   RawData = RawData.slice(sizeof(*Hdr));
268 }
269 
270 InputSection *InputSectionBase::getLinkOrderDep() const {
271   assert(Link);
272   assert(Flags & SHF_LINK_ORDER);
273   return cast<InputSection>(File->getSections()[Link]);
274 }
275 
276 // Find a function symbol that encloses a given location.
277 template <class ELFT>
278 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) {
279   for (Symbol *B : File->getSymbols())
280     if (Defined *D = dyn_cast<Defined>(B))
281       if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset &&
282           Offset < D->Value + D->Size)
283         return D;
284   return nullptr;
285 }
286 
287 // Returns a source location string. Used to construct an error message.
288 template <class ELFT>
289 std::string InputSectionBase::getLocation(uint64_t Offset) {
290   std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str();
291 
292   // We don't have file for synthetic sections.
293   if (getFile<ELFT>() == nullptr)
294     return (Config->OutputFile + ":(" + SecAndOffset + ")")
295         .str();
296 
297   // First check if we can get desired values from debugging information.
298   if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset))
299     return Info->FileName + ":" + std::to_string(Info->Line) + ":(" +
300            SecAndOffset + ")";
301 
302   // File->SourceFile contains STT_FILE symbol that contains a
303   // source file name. If it's missing, we use an object file name.
304   std::string SrcFile = getFile<ELFT>()->SourceFile;
305   if (SrcFile.empty())
306     SrcFile = toString(File);
307 
308   if (Defined *D = getEnclosingFunction<ELFT>(Offset))
309     return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")";
310 
311   // If there's no symbol, print out the offset in the section.
312   return (SrcFile + ":(" + SecAndOffset + ")");
313 }
314 
315 // This function is intended to be used for constructing an error message.
316 // The returned message looks like this:
317 //
318 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
319 //
320 //  Returns an empty string if there's no way to get line info.
321 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) {
322   return File->getSrcMsg(Sym, *this, Offset);
323 }
324 
325 // Returns a filename string along with an optional section name. This
326 // function is intended to be used for constructing an error
327 // message. The returned message looks like this:
328 //
329 //   path/to/foo.o:(function bar)
330 //
331 // or
332 //
333 //   path/to/foo.o:(function bar) in archive path/to/bar.a
334 std::string InputSectionBase::getObjMsg(uint64_t Off) {
335   std::string Filename = File->getName();
336 
337   std::string Archive;
338   if (!File->ArchiveName.empty())
339     Archive = " in archive " + File->ArchiveName;
340 
341   // Find a symbol that encloses a given location.
342   for (Symbol *B : File->getSymbols())
343     if (auto *D = dyn_cast<Defined>(B))
344       if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
345         return Filename + ":(" + toString(*D) + ")" + Archive;
346 
347   // If there's no symbol, print out the offset in the section.
348   return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
349       .str();
350 }
351 
352 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
353 
354 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type,
355                            uint32_t Alignment, ArrayRef<uint8_t> Data,
356                            StringRef Name, Kind K)
357     : InputSectionBase(F, Flags, Type,
358                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
359                        Name, K) {}
360 
361 template <class ELFT>
362 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header,
363                            StringRef Name)
364     : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
365 
366 bool InputSection::classof(const SectionBase *S) {
367   return S->kind() == SectionBase::Regular ||
368          S->kind() == SectionBase::Synthetic;
369 }
370 
371 OutputSection *InputSection::getParent() const {
372   return cast_or_null<OutputSection>(Parent);
373 }
374 
375 // Copy SHT_GROUP section contents. Used only for the -r option.
376 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
377   // ELFT::Word is the 32-bit integral type in the target endianness.
378   typedef typename ELFT::Word u32;
379   ArrayRef<u32> From = getDataAs<u32>();
380   auto *To = reinterpret_cast<u32 *>(Buf);
381 
382   // The first entry is not a section number but a flag.
383   *To++ = From[0];
384 
385   // Adjust section numbers because section numbers in an input object
386   // files are different in the output.
387   ArrayRef<InputSectionBase *> Sections = File->getSections();
388   for (uint32_t Idx : From.slice(1))
389     *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
390 }
391 
392 InputSectionBase *InputSection::getRelocatedSection() const {
393   if (!File || (Type != SHT_RELA && Type != SHT_REL))
394     return nullptr;
395   ArrayRef<InputSectionBase *> Sections = File->getSections();
396   return Sections[Info];
397 }
398 
399 // This is used for -r and --emit-relocs. We can't use memcpy to copy
400 // relocations because we need to update symbol table offset and section index
401 // for each relocation. So we copy relocations one by one.
402 template <class ELFT, class RelTy>
403 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
404   InputSectionBase *Sec = getRelocatedSection();
405 
406   for (const RelTy &Rel : Rels) {
407     RelType Type = Rel.getType(Config->IsMips64EL);
408     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
409 
410     auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
411     Buf += sizeof(RelTy);
412 
413     if (RelTy::IsRela)
414       P->r_addend = getAddend<ELFT>(Rel);
415 
416     // Output section VA is zero for -r, so r_offset is an offset within the
417     // section, but for --emit-relocs it is an virtual address.
418     P->r_offset = Sec->getVA(Rel.r_offset);
419     P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type,
420                         Config->IsMips64EL);
421 
422     if (Sym.Type == STT_SECTION) {
423       // We combine multiple section symbols into only one per
424       // section. This means we have to update the addend. That is
425       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
426       // section data. We do that by adding to the Relocation vector.
427 
428       // .eh_frame is horribly special and can reference discarded sections. To
429       // avoid having to parse and recreate .eh_frame, we just replace any
430       // relocation in it pointing to discarded sections with R_*_NONE, which
431       // hopefully creates a frame that is ignored at runtime.
432       auto *D = dyn_cast<Defined>(&Sym);
433       if (!D) {
434         error("STT_SECTION symbol should be defined");
435         continue;
436       }
437       SectionBase *Section = D->Section->Repl;
438       if (!Section->Live) {
439         P->setSymbolAndType(0, 0, false);
440         continue;
441       }
442 
443       int64_t Addend = getAddend<ELFT>(Rel);
444       const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset;
445       if (!RelTy::IsRela)
446         Addend = Target->getImplicitAddend(BufLoc, Type);
447 
448       if (Config->EMachine == EM_MIPS && Config->Relocatable &&
449           Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) {
450         // Some MIPS relocations depend on "gp" value. By default,
451         // this value has 0x7ff0 offset from a .got section. But
452         // relocatable files produced by a complier or a linker
453         // might redefine this default value and we must use it
454         // for a calculation of the relocation result. When we
455         // generate EXE or DSO it's trivial. Generating a relocatable
456         // output is more difficult case because the linker does
457         // not calculate relocations in this mode and loses
458         // individual "gp" values used by each input object file.
459         // As a workaround we add the "gp" value to the relocation
460         // addend and save it back to the file.
461         Addend += Sec->getFile<ELFT>()->MipsGp0;
462       }
463 
464       if (RelTy::IsRela)
465         P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr;
466       else if (Config->Relocatable)
467         Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym});
468     }
469   }
470 }
471 
472 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
473 // references specially. The general rule is that the value of the symbol in
474 // this context is the address of the place P. A further special case is that
475 // branch relocations to an undefined weak reference resolve to the next
476 // instruction.
477 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
478                                               uint32_t P) {
479   switch (Type) {
480   // Unresolved branch relocations to weak references resolve to next
481   // instruction, this will be either 2 or 4 bytes on from P.
482   case R_ARM_THM_JUMP11:
483     return P + 2 + A;
484   case R_ARM_CALL:
485   case R_ARM_JUMP24:
486   case R_ARM_PC24:
487   case R_ARM_PLT32:
488   case R_ARM_PREL31:
489   case R_ARM_THM_JUMP19:
490   case R_ARM_THM_JUMP24:
491     return P + 4 + A;
492   case R_ARM_THM_CALL:
493     // We don't want an interworking BLX to ARM
494     return P + 5 + A;
495   // Unresolved non branch pc-relative relocations
496   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
497   // targets a weak-reference.
498   case R_ARM_MOVW_PREL_NC:
499   case R_ARM_MOVT_PREL:
500   case R_ARM_REL32:
501   case R_ARM_THM_MOVW_PREL_NC:
502   case R_ARM_THM_MOVT_PREL:
503     return P + A;
504   }
505   llvm_unreachable("ARM pc-relative relocation expected\n");
506 }
507 
508 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
509 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
510                                                   uint64_t P) {
511   switch (Type) {
512   // Unresolved branch relocations to weak references resolve to next
513   // instruction, this is 4 bytes on from P.
514   case R_AARCH64_CALL26:
515   case R_AARCH64_CONDBR19:
516   case R_AARCH64_JUMP26:
517   case R_AARCH64_TSTBR14:
518     return P + 4 + A;
519   // Unresolved non branch pc-relative relocations
520   case R_AARCH64_PREL16:
521   case R_AARCH64_PREL32:
522   case R_AARCH64_PREL64:
523   case R_AARCH64_ADR_PREL_LO21:
524   case R_AARCH64_LD_PREL_LO19:
525     return P + A;
526   }
527   llvm_unreachable("AArch64 pc-relative relocation expected\n");
528 }
529 
530 // ARM SBREL relocations are of the form S + A - B where B is the static base
531 // The ARM ABI defines base to be "addressing origin of the output segment
532 // defining the symbol S". We defined the "addressing origin"/static base to be
533 // the base of the PT_LOAD segment containing the Sym.
534 // The procedure call standard only defines a Read Write Position Independent
535 // RWPI variant so in practice we should expect the static base to be the base
536 // of the RW segment.
537 static uint64_t getARMStaticBase(const Symbol &Sym) {
538   OutputSection *OS = Sym.getOutputSection();
539   if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
540     fatal("SBREL relocation to " + Sym.getName() + " without static base");
541   return OS->PtLoad->FirstSec->Addr;
542 }
543 
544 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
545 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
546 // is calculated using PCREL_HI20's symbol.
547 //
548 // This function returns the R_RISCV_PCREL_HI20 relocation from
549 // R_RISCV_PCREL_LO12's symbol and addend.
550 static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) {
551   const Defined *D = cast<Defined>(Sym);
552   InputSection *IS = cast<InputSection>(D->Section);
553 
554   if (Addend != 0)
555     warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
556          IS->getObjMsg(D->Value) + " is ignored");
557 
558   // Relocations are sorted by offset, so we can use std::equal_range to do
559   // binary search.
560   Relocation R;
561   R.Offset = D->Value;
562   auto Range =
563       std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), R,
564                        [](const Relocation &LHS, const Relocation &RHS) {
565                          return LHS.Offset < RHS.Offset;
566                        });
567 
568   for (auto It = Range.first; It != Range.second; ++It)
569     if (It->Expr == R_PC)
570       return &*It;
571 
572   error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) +
573         " without an associated R_RISCV_PCREL_HI20 relocation");
574   return nullptr;
575 }
576 
577 // A TLS symbol's virtual address is relative to the TLS segment. Add a
578 // target-specific adjustment to produce a thread-pointer-relative offset.
579 static int64_t getTlsTpOffset() {
580   switch (Config->EMachine) {
581   case EM_ARM:
582   case EM_AARCH64:
583     // Variant 1. The thread pointer points to a TCB with a fixed 2-word size,
584     // followed by a variable amount of alignment padding, followed by the TLS
585     // segment.
586     //
587     // NB: While the ARM/AArch64 ABI formally has a 2-word TCB size, lld
588     // effectively increases the TCB size to 8 words for Android compatibility.
589     // It accomplishes this by increasing the segment's alignment.
590     return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align);
591   case EM_386:
592   case EM_X86_64:
593     // Variant 2. The TLS segment is located just before the thread pointer.
594     return -Out::TlsPhdr->p_memsz;
595   case EM_PPC64:
596     // The thread pointer points to a fixed offset from the start of the
597     // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit
598     // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the
599     // program's TLS segment.
600     return -0x7000;
601   default:
602     llvm_unreachable("unhandled Config->EMachine");
603   }
604 }
605 
606 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A,
607                                  uint64_t P, const Symbol &Sym, RelExpr Expr) {
608   switch (Expr) {
609   case R_ABS:
610   case R_RELAX_TLS_LD_TO_LE_ABS:
611   case R_RELAX_GOT_PC_NOPIC:
612     return Sym.getVA(A);
613   case R_ADDEND:
614     return A;
615   case R_ARM_SBREL:
616     return Sym.getVA(A) - getARMStaticBase(Sym);
617   case R_GOT:
618   case R_RELAX_TLS_GD_TO_IE_ABS:
619     return Sym.getGotVA() + A;
620   case R_GOTONLY_PC:
621     return In.Got->getVA() + A - P;
622   case R_GOTONLY_PC_FROM_END:
623     return In.Got->getVA() + A - P + In.Got->getSize();
624   case R_GOTREL:
625     return Sym.getVA(A) - In.Got->getVA();
626   case R_GOTREL_FROM_END:
627     return Sym.getVA(A) - In.Got->getVA() - In.Got->getSize();
628   case R_GOT_FROM_END:
629   case R_RELAX_TLS_GD_TO_IE_END:
630     return Sym.getGotOffset() + A - In.Got->getSize();
631   case R_TLSLD_GOT_OFF:
632   case R_GOT_OFF:
633   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
634     return Sym.getGotOffset() + A;
635   case R_AARCH64_GOT_PAGE_PC:
636   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
637     return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P);
638   case R_GOT_PC:
639   case R_RELAX_TLS_GD_TO_IE:
640     return Sym.getGotVA() + A - P;
641   case R_HEXAGON_GOT:
642     return Sym.getGotVA() - In.GotPlt->getVA();
643   case R_MIPS_GOTREL:
644     return Sym.getVA(A) - In.MipsGot->getGp(File);
645   case R_MIPS_GOT_GP:
646     return In.MipsGot->getGp(File) + A;
647   case R_MIPS_GOT_GP_PC: {
648     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
649     // is _gp_disp symbol. In that case we should use the following
650     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
651     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
652     // microMIPS variants of these relocations use slightly different
653     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
654     // to correctly handle less-sugnificant bit of the microMIPS symbol.
655     uint64_t V = In.MipsGot->getGp(File) + A - P;
656     if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
657       V += 4;
658     if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16)
659       V -= 1;
660     return V;
661   }
662   case R_MIPS_GOT_LOCAL_PAGE:
663     // If relocation against MIPS local symbol requires GOT entry, this entry
664     // should be initialized by 'page address'. This address is high 16-bits
665     // of sum the symbol's value and the addend.
666     return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) -
667            In.MipsGot->getGp(File);
668   case R_MIPS_GOT_OFF:
669   case R_MIPS_GOT_OFF32:
670     // In case of MIPS if a GOT relocation has non-zero addend this addend
671     // should be applied to the GOT entry content not to the GOT entry offset.
672     // That is why we use separate expression type.
673     return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) -
674            In.MipsGot->getGp(File);
675   case R_MIPS_TLSGD:
676     return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) -
677            In.MipsGot->getGp(File);
678   case R_MIPS_TLSLD:
679     return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) -
680            In.MipsGot->getGp(File);
681   case R_AARCH64_PAGE_PC: {
682     uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A);
683     return getAArch64Page(Val) - getAArch64Page(P);
684   }
685   case R_RISCV_PC_INDIRECT: {
686     if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A))
687       return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(),
688                               *HiRel->Sym, HiRel->Expr);
689     return 0;
690   }
691   case R_PC: {
692     uint64_t Dest;
693     if (Sym.isUndefWeak()) {
694       // On ARM and AArch64 a branch to an undefined weak resolves to the
695       // next instruction, otherwise the place.
696       if (Config->EMachine == EM_ARM)
697         Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
698       else if (Config->EMachine == EM_AARCH64)
699         Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
700       else
701         Dest = Sym.getVA(A);
702     } else {
703       Dest = Sym.getVA(A);
704     }
705     return Dest - P;
706   }
707   case R_PLT:
708     return Sym.getPltVA() + A;
709   case R_PLT_PC:
710   case R_PPC_CALL_PLT:
711     return Sym.getPltVA() + A - P;
712   case R_PPC_CALL: {
713     uint64_t SymVA = Sym.getVA(A);
714     // If we have an undefined weak symbol, we might get here with a symbol
715     // address of zero. That could overflow, but the code must be unreachable,
716     // so don't bother doing anything at all.
717     if (!SymVA)
718       return 0;
719 
720     // PPC64 V2 ABI describes two entry points to a function. The global entry
721     // point is used for calls where the caller and callee (may) have different
722     // TOC base pointers and r2 needs to be modified to hold the TOC base for
723     // the callee. For local calls the caller and callee share the same
724     // TOC base and so the TOC pointer initialization code should be skipped by
725     // branching to the local entry point.
726     return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther);
727   }
728   case R_PPC_TOC:
729     return getPPC64TocBase() + A;
730   case R_RELAX_GOT_PC:
731     return Sym.getVA(A) - P;
732   case R_RELAX_TLS_GD_TO_LE:
733   case R_RELAX_TLS_IE_TO_LE:
734   case R_RELAX_TLS_LD_TO_LE:
735   case R_TLS:
736     // A weak undefined TLS symbol resolves to the base of the TLS
737     // block, i.e. gets a value of zero. If we pass --gc-sections to
738     // lld and .tbss is not referenced, it gets reclaimed and we don't
739     // create a TLS program header. Therefore, we resolve this
740     // statically to zero.
741     if (Sym.isTls() && Sym.isUndefWeak())
742       return 0;
743     return Sym.getVA(A) + getTlsTpOffset();
744   case R_RELAX_TLS_GD_TO_LE_NEG:
745   case R_NEG_TLS:
746     return Out::TlsPhdr->p_memsz - Sym.getVA(A);
747   case R_SIZE:
748     return Sym.getSize() + A;
749   case R_TLSDESC:
750     return In.Got->getGlobalDynAddr(Sym) + A;
751   case R_AARCH64_TLSDESC_PAGE:
752     return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) -
753            getAArch64Page(P);
754   case R_TLSGD_GOT:
755     return In.Got->getGlobalDynOffset(Sym) + A;
756   case R_TLSGD_GOT_FROM_END:
757     return In.Got->getGlobalDynOffset(Sym) + A - In.Got->getSize();
758   case R_TLSGD_PC:
759     return In.Got->getGlobalDynAddr(Sym) + A - P;
760   case R_TLSLD_GOT_FROM_END:
761     return In.Got->getTlsIndexOff() + A - In.Got->getSize();
762   case R_TLSLD_GOT:
763     return In.Got->getTlsIndexOff() + A;
764   case R_TLSLD_PC:
765     return In.Got->getTlsIndexVA() + A - P;
766   default:
767     llvm_unreachable("invalid expression");
768   }
769 }
770 
771 // This function applies relocations to sections without SHF_ALLOC bit.
772 // Such sections are never mapped to memory at runtime. Debug sections are
773 // an example. Relocations in non-alloc sections are much easier to
774 // handle than in allocated sections because it will never need complex
775 // treatement such as GOT or PLT (because at runtime no one refers them).
776 // So, we handle relocations for non-alloc sections directly in this
777 // function as a performance optimization.
778 template <class ELFT, class RelTy>
779 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
780   const unsigned Bits = sizeof(typename ELFT::uint) * 8;
781 
782   for (const RelTy &Rel : Rels) {
783     RelType Type = Rel.getType(Config->IsMips64EL);
784 
785     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
786     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
787     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
788     // need to keep this bug-compatible code for a while.
789     if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
790       continue;
791 
792     uint64_t Offset = getOffset(Rel.r_offset);
793     uint8_t *BufLoc = Buf + Offset;
794     int64_t Addend = getAddend<ELFT>(Rel);
795     if (!RelTy::IsRela)
796       Addend += Target->getImplicitAddend(BufLoc, Type);
797 
798     Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel);
799     RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
800     if (Expr == R_NONE)
801       continue;
802 
803     if (Expr != R_ABS) {
804       std::string Msg = getLocation<ELFT>(Offset) +
805                         ": has non-ABS relocation " + toString(Type) +
806                         " against symbol '" + toString(Sym) + "'";
807       if (Expr != R_PC) {
808         error(Msg);
809         return;
810       }
811 
812       // If the control reaches here, we found a PC-relative relocation in a
813       // non-ALLOC section. Since non-ALLOC section is not loaded into memory
814       // at runtime, the notion of PC-relative doesn't make sense here. So,
815       // this is a usage error. However, GNU linkers historically accept such
816       // relocations without any errors and relocate them as if they were at
817       // address 0. For bug-compatibilty, we accept them with warnings. We
818       // know Steel Bank Common Lisp as of 2018 have this bug.
819       warn(Msg);
820       Target->relocateOne(BufLoc, Type,
821                           SignExtend64<Bits>(Sym.getVA(Addend - Offset)));
822       continue;
823     }
824 
825     if (Sym.isTls() && !Out::TlsPhdr)
826       Target->relocateOne(BufLoc, Type, 0);
827     else
828       Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
829   }
830 }
831 
832 // This is used when '-r' is given.
833 // For REL targets, InputSection::copyRelocations() may store artificial
834 // relocations aimed to update addends. They are handled in relocateAlloc()
835 // for allocatable sections, and this function does the same for
836 // non-allocatable sections, such as sections with debug information.
837 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) {
838   const unsigned Bits = Config->Is64 ? 64 : 32;
839 
840   for (const Relocation &Rel : Sec->Relocations) {
841     // InputSection::copyRelocations() adds only R_ABS relocations.
842     assert(Rel.Expr == R_ABS);
843     uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff;
844     uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits);
845     Target->relocateOne(BufLoc, Rel.Type, TargetVA);
846   }
847 }
848 
849 template <class ELFT>
850 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
851   if (Flags & SHF_EXECINSTR)
852     adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd);
853 
854   if (Flags & SHF_ALLOC) {
855     relocateAlloc(Buf, BufEnd);
856     return;
857   }
858 
859   auto *Sec = cast<InputSection>(this);
860   if (Config->Relocatable)
861     relocateNonAllocForRelocatable(Sec, Buf);
862   else if (Sec->AreRelocsRela)
863     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
864   else
865     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
866 }
867 
868 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
869   assert(Flags & SHF_ALLOC);
870   const unsigned Bits = Config->Wordsize * 8;
871 
872   for (const Relocation &Rel : Relocations) {
873     uint64_t Offset = Rel.Offset;
874     if (auto *Sec = dyn_cast<InputSection>(this))
875       Offset += Sec->OutSecOff;
876     uint8_t *BufLoc = Buf + Offset;
877     RelType Type = Rel.Type;
878 
879     uint64_t AddrLoc = getOutputSection()->Addr + Offset;
880     RelExpr Expr = Rel.Expr;
881     uint64_t TargetVA = SignExtend64(
882         getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr),
883         Bits);
884 
885     switch (Expr) {
886     case R_RELAX_GOT_PC:
887     case R_RELAX_GOT_PC_NOPIC:
888       Target->relaxGot(BufLoc, TargetVA);
889       break;
890     case R_RELAX_TLS_IE_TO_LE:
891       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
892       break;
893     case R_RELAX_TLS_LD_TO_LE:
894     case R_RELAX_TLS_LD_TO_LE_ABS:
895       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
896       break;
897     case R_RELAX_TLS_GD_TO_LE:
898     case R_RELAX_TLS_GD_TO_LE_NEG:
899       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
900       break;
901     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
902     case R_RELAX_TLS_GD_TO_IE:
903     case R_RELAX_TLS_GD_TO_IE_ABS:
904     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
905     case R_RELAX_TLS_GD_TO_IE_END:
906       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
907       break;
908     case R_PPC_CALL:
909       // If this is a call to __tls_get_addr, it may be part of a TLS
910       // sequence that has been relaxed and turned into a nop. In this
911       // case, we don't want to handle it as a call.
912       if (read32(BufLoc) == 0x60000000) // nop
913         break;
914 
915       // Patch a nop (0x60000000) to a ld.
916       if (Rel.Sym->NeedsTocRestore) {
917         if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) {
918           error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc");
919           break;
920         }
921         write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
922       }
923       Target->relocateOne(BufLoc, Type, TargetVA);
924       break;
925     default:
926       Target->relocateOne(BufLoc, Type, TargetVA);
927       break;
928     }
929   }
930 }
931 
932 // For each function-defining prologue, find any calls to __morestack,
933 // and replace them with calls to __morestack_non_split.
934 static void switchMorestackCallsToMorestackNonSplit(
935     DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) {
936 
937   // If the target adjusted a function's prologue, all calls to
938   // __morestack inside that function should be switched to
939   // __morestack_non_split.
940   Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split");
941   if (!MoreStackNonSplit) {
942     error("Mixing split-stack objects requires a definition of "
943           "__morestack_non_split");
944     return;
945   }
946 
947   // Sort both collections to compare addresses efficiently.
948   llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) {
949     return L->Offset < R->Offset;
950   });
951   std::vector<Defined *> Functions(Prologues.begin(), Prologues.end());
952   llvm::sort(Functions, [](const Defined *L, const Defined *R) {
953     return L->Value < R->Value;
954   });
955 
956   auto It = MorestackCalls.begin();
957   for (Defined *F : Functions) {
958     // Find the first call to __morestack within the function.
959     while (It != MorestackCalls.end() && (*It)->Offset < F->Value)
960       ++It;
961     // Adjust all calls inside the function.
962     while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) {
963       (*It)->Sym = MoreStackNonSplit;
964       ++It;
965     }
966   }
967 }
968 
969 static bool enclosingPrologueAttempted(uint64_t Offset,
970                                        const DenseSet<Defined *> &Prologues) {
971   for (Defined *F : Prologues)
972     if (F->Value <= Offset && Offset < F->Value + F->Size)
973       return true;
974   return false;
975 }
976 
977 // If a function compiled for split stack calls a function not
978 // compiled for split stack, then the caller needs its prologue
979 // adjusted to ensure that the called function will have enough stack
980 // available. Find those functions, and adjust their prologues.
981 template <class ELFT>
982 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf,
983                                                          uint8_t *End) {
984   if (!getFile<ELFT>()->SplitStack)
985     return;
986   DenseSet<Defined *> Prologues;
987   std::vector<Relocation *> MorestackCalls;
988 
989   for (Relocation &Rel : Relocations) {
990     // Local symbols can't possibly be cross-calls, and should have been
991     // resolved long before this line.
992     if (Rel.Sym->isLocal())
993       continue;
994 
995     // Ignore calls into the split-stack api.
996     if (Rel.Sym->getName().startswith("__morestack")) {
997       if (Rel.Sym->getName().equals("__morestack"))
998         MorestackCalls.push_back(&Rel);
999       continue;
1000     }
1001 
1002     // A relocation to non-function isn't relevant. Sometimes
1003     // __morestack is not marked as a function, so this check comes
1004     // after the name check.
1005     if (Rel.Sym->Type != STT_FUNC)
1006       continue;
1007 
1008     // If the callee's-file was compiled with split stack, nothing to do.  In
1009     // this context, a "Defined" symbol is one "defined by the binary currently
1010     // being produced". So an "undefined" symbol might be provided by a shared
1011     // library. It is not possible to tell how such symbols were compiled, so be
1012     // conservative.
1013     if (Defined *D = dyn_cast<Defined>(Rel.Sym))
1014       if (InputSection *IS = cast_or_null<InputSection>(D->Section))
1015         if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack)
1016           continue;
1017 
1018     if (enclosingPrologueAttempted(Rel.Offset, Prologues))
1019       continue;
1020 
1021     if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) {
1022       Prologues.insert(F);
1023       if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value),
1024                                                    End, F->StOther))
1025         continue;
1026       if (!getFile<ELFT>()->SomeNoSplitStack)
1027         error(lld::toString(this) + ": " + F->getName() +
1028               " (with -fsplit-stack) calls " + Rel.Sym->getName() +
1029               " (without -fsplit-stack), but couldn't adjust its prologue");
1030     }
1031   }
1032 
1033   if (Target->NeedsMoreStackNonSplit)
1034     switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls);
1035 }
1036 
1037 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
1038   if (Type == SHT_NOBITS)
1039     return;
1040 
1041   if (auto *S = dyn_cast<SyntheticSection>(this)) {
1042     S->writeTo(Buf + OutSecOff);
1043     return;
1044   }
1045 
1046   // If -r or --emit-relocs is given, then an InputSection
1047   // may be a relocation section.
1048   if (Type == SHT_RELA) {
1049     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>());
1050     return;
1051   }
1052   if (Type == SHT_REL) {
1053     copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>());
1054     return;
1055   }
1056 
1057   // If -r is given, we may have a SHT_GROUP section.
1058   if (Type == SHT_GROUP) {
1059     copyShtGroup<ELFT>(Buf + OutSecOff);
1060     return;
1061   }
1062 
1063   // If this is a compressed section, uncompress section contents directly
1064   // to the buffer.
1065   if (UncompressedSize >= 0 && !UncompressedBuf) {
1066     size_t Size = UncompressedSize;
1067     if (Error E = zlib::uncompress(toStringRef(RawData),
1068                                    (char *)(Buf + OutSecOff), Size))
1069       fatal(toString(this) +
1070             ": uncompress failed: " + llvm::toString(std::move(E)));
1071     uint8_t *BufEnd = Buf + OutSecOff + Size;
1072     relocate<ELFT>(Buf, BufEnd);
1073     return;
1074   }
1075 
1076   // Copy section contents from source object file to output file
1077   // and then apply relocations.
1078   memcpy(Buf + OutSecOff, data().data(), data().size());
1079   uint8_t *BufEnd = Buf + OutSecOff + data().size();
1080   relocate<ELFT>(Buf, BufEnd);
1081 }
1082 
1083 void InputSection::replace(InputSection *Other) {
1084   Alignment = std::max(Alignment, Other->Alignment);
1085   Other->Repl = Repl;
1086   Other->Live = false;
1087 }
1088 
1089 template <class ELFT>
1090 EhInputSection::EhInputSection(ObjFile<ELFT> &F,
1091                                const typename ELFT::Shdr &Header,
1092                                StringRef Name)
1093     : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {}
1094 
1095 SyntheticSection *EhInputSection::getParent() const {
1096   return cast_or_null<SyntheticSection>(Parent);
1097 }
1098 
1099 // Returns the index of the first relocation that points to a region between
1100 // Begin and Begin+Size.
1101 template <class IntTy, class RelTy>
1102 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
1103                          unsigned &RelocI) {
1104   // Start search from RelocI for fast access. That works because the
1105   // relocations are sorted in .eh_frame.
1106   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
1107     const RelTy &Rel = Rels[RelocI];
1108     if (Rel.r_offset < Begin)
1109       continue;
1110 
1111     if (Rel.r_offset < Begin + Size)
1112       return RelocI;
1113     return -1;
1114   }
1115   return -1;
1116 }
1117 
1118 // .eh_frame is a sequence of CIE or FDE records.
1119 // This function splits an input section into records and returns them.
1120 template <class ELFT> void EhInputSection::split() {
1121   if (AreRelocsRela)
1122     split<ELFT>(relas<ELFT>());
1123   else
1124     split<ELFT>(rels<ELFT>());
1125 }
1126 
1127 template <class ELFT, class RelTy>
1128 void EhInputSection::split(ArrayRef<RelTy> Rels) {
1129   unsigned RelI = 0;
1130   for (size_t Off = 0, End = data().size(); Off != End;) {
1131     size_t Size = readEhRecordSize(this, Off);
1132     Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
1133     // The empty record is the end marker.
1134     if (Size == 4)
1135       break;
1136     Off += Size;
1137   }
1138 }
1139 
1140 static size_t findNull(StringRef S, size_t EntSize) {
1141   // Optimize the common case.
1142   if (EntSize == 1)
1143     return S.find(0);
1144 
1145   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
1146     const char *B = S.begin() + I;
1147     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
1148       return I;
1149   }
1150   return StringRef::npos;
1151 }
1152 
1153 SyntheticSection *MergeInputSection::getParent() const {
1154   return cast_or_null<SyntheticSection>(Parent);
1155 }
1156 
1157 // Split SHF_STRINGS section. Such section is a sequence of
1158 // null-terminated strings.
1159 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
1160   size_t Off = 0;
1161   bool IsAlloc = Flags & SHF_ALLOC;
1162   StringRef S = toStringRef(Data);
1163 
1164   while (!S.empty()) {
1165     size_t End = findNull(S, EntSize);
1166     if (End == StringRef::npos)
1167       fatal(toString(this) + ": string is not null terminated");
1168     size_t Size = End + EntSize;
1169 
1170     Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
1171     S = S.substr(Size);
1172     Off += Size;
1173   }
1174 }
1175 
1176 // Split non-SHF_STRINGS section. Such section is a sequence of
1177 // fixed size records.
1178 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
1179                                         size_t EntSize) {
1180   size_t Size = Data.size();
1181   assert((Size % EntSize) == 0);
1182   bool IsAlloc = Flags & SHF_ALLOC;
1183 
1184   for (size_t I = 0; I != Size; I += EntSize)
1185     Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc);
1186 }
1187 
1188 template <class ELFT>
1189 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F,
1190                                      const typename ELFT::Shdr &Header,
1191                                      StringRef Name)
1192     : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {}
1193 
1194 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type,
1195                                      uint64_t Entsize, ArrayRef<uint8_t> Data,
1196                                      StringRef Name)
1197     : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0,
1198                        /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {}
1199 
1200 // This function is called after we obtain a complete list of input sections
1201 // that need to be linked. This is responsible to split section contents
1202 // into small chunks for further processing.
1203 //
1204 // Note that this function is called from parallelForEach. This must be
1205 // thread-safe (i.e. no memory allocation from the pools).
1206 void MergeInputSection::splitIntoPieces() {
1207   assert(Pieces.empty());
1208 
1209   if (Flags & SHF_STRINGS)
1210     splitStrings(data(), Entsize);
1211   else
1212     splitNonStrings(data(), Entsize);
1213 }
1214 
1215 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
1216   if (this->data().size() <= Offset)
1217     fatal(toString(this) + ": offset is outside the section");
1218 
1219   // If Offset is not at beginning of a section piece, it is not in the map.
1220   // In that case we need to  do a binary search of the original section piece vector.
1221   auto It2 =
1222       llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) {
1223         return Offset < P.InputOff;
1224       });
1225   return &It2[-1];
1226 }
1227 
1228 // Returns the offset in an output section for a given input offset.
1229 // Because contents of a mergeable section is not contiguous in output,
1230 // it is not just an addition to a base output offset.
1231 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const {
1232   // If Offset is not at beginning of a section piece, it is not in the map.
1233   // In that case we need to search from the original section piece vector.
1234   const SectionPiece &Piece =
1235       *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset));
1236   uint64_t Addend = Offset - Piece.InputOff;
1237   return Piece.OutputOff + Addend;
1238 }
1239 
1240 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1241                                     StringRef);
1242 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1243                                     StringRef);
1244 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1245                                     StringRef);
1246 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1247                                     StringRef);
1248 
1249 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1250 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1251 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1252 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1253 
1254 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1255 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1256 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1257 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1258 
1259 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1260                                               const ELF32LE::Shdr &, StringRef);
1261 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1262                                               const ELF32BE::Shdr &, StringRef);
1263 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1264                                               const ELF64LE::Shdr &, StringRef);
1265 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1266                                               const ELF64BE::Shdr &, StringRef);
1267 
1268 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1269                                         const ELF32LE::Shdr &, StringRef);
1270 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1271                                         const ELF32BE::Shdr &, StringRef);
1272 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1273                                         const ELF64LE::Shdr &, StringRef);
1274 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1275                                         const ELF64BE::Shdr &, StringRef);
1276 
1277 template void EhInputSection::split<ELF32LE>();
1278 template void EhInputSection::split<ELF32BE>();
1279 template void EhInputSection::split<ELF64LE>();
1280 template void EhInputSection::split<ELF64BE>();
1281