1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputSection.h" 10 #include "Config.h" 11 #include "EhFrame.h" 12 #include "InputFiles.h" 13 #include "LinkerScript.h" 14 #include "OutputSections.h" 15 #include "Relocations.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Threading.h" 27 #include "llvm/Support/xxhash.h" 28 #include <algorithm> 29 #include <mutex> 30 #include <set> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::support; 37 using namespace llvm::support::endian; 38 using namespace llvm::sys; 39 40 using namespace lld; 41 using namespace lld::elf; 42 43 std::vector<InputSectionBase *> elf::InputSections; 44 45 // Returns a string to construct an error message. 46 std::string lld::toString(const InputSectionBase *Sec) { 47 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 48 } 49 50 template <class ELFT> 51 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File, 52 const typename ELFT::Shdr &Hdr) { 53 if (Hdr.sh_type == SHT_NOBITS) 54 return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size); 55 return check(File.getObj().getSectionContents(&Hdr)); 56 } 57 58 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 59 uint32_t Type, uint64_t Entsize, 60 uint32_t Link, uint32_t Info, 61 uint32_t Alignment, ArrayRef<uint8_t> Data, 62 StringRef Name, Kind SectionKind) 63 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 64 Link), 65 File(File), RawData(Data) { 66 // In order to reduce memory allocation, we assume that mergeable 67 // sections are smaller than 4 GiB, which is not an unreasonable 68 // assumption as of 2017. 69 if (SectionKind == SectionBase::Merge && RawData.size() > UINT32_MAX) 70 error(toString(this) + ": section too large"); 71 72 NumRelocations = 0; 73 AreRelocsRela = false; 74 75 // The ELF spec states that a value of 0 means the section has 76 // no alignment constraits. 77 uint32_t V = std::max<uint64_t>(Alignment, 1); 78 if (!isPowerOf2_64(V)) 79 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 80 this->Alignment = V; 81 82 // In ELF, each section can be compressed by zlib, and if compressed, 83 // section name may be mangled by appending "z" (e.g. ".zdebug_info"). 84 // If that's the case, demangle section name so that we can handle a 85 // section as if it weren't compressed. 86 if ((Flags & SHF_COMPRESSED) || Name.startswith(".zdebug")) { 87 if (!zlib::isAvailable()) 88 error(toString(File) + ": contains a compressed section, " + 89 "but zlib is not available"); 90 parseCompressedHeader(); 91 } 92 } 93 94 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 95 // SHF_GROUP is a marker that a section belongs to some comdat group. 96 // That flag doesn't make sense in an executable. 97 static uint64_t getFlags(uint64_t Flags) { 98 Flags &= ~(uint64_t)SHF_INFO_LINK; 99 if (!Config->Relocatable) 100 Flags &= ~(uint64_t)SHF_GROUP; 101 return Flags; 102 } 103 104 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 105 // March 2017) fail to infer section types for sections starting with 106 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 107 // SHF_INIT_ARRAY. As a result, the following assembler directive 108 // creates ".init_array.100" with SHT_PROGBITS, for example. 109 // 110 // .section .init_array.100, "aw" 111 // 112 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 113 // incorrect inputs as if they were correct from the beginning. 114 static uint64_t getType(uint64_t Type, StringRef Name) { 115 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 116 return SHT_INIT_ARRAY; 117 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 118 return SHT_FINI_ARRAY; 119 return Type; 120 } 121 122 template <class ELFT> 123 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File, 124 const typename ELFT::Shdr &Hdr, 125 StringRef Name, Kind SectionKind) 126 : InputSectionBase(&File, getFlags(Hdr.sh_flags), 127 getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link, 128 Hdr.sh_info, Hdr.sh_addralign, 129 getSectionContents(File, Hdr), Name, SectionKind) { 130 // We reject object files having insanely large alignments even though 131 // they are allowed by the spec. I think 4GB is a reasonable limitation. 132 // We might want to relax this in the future. 133 if (Hdr.sh_addralign > UINT32_MAX) 134 fatal(toString(&File) + ": section sh_addralign is too large"); 135 } 136 137 size_t InputSectionBase::getSize() const { 138 if (auto *S = dyn_cast<SyntheticSection>(this)) 139 return S->getSize(); 140 if (UncompressedSize >= 0) 141 return UncompressedSize; 142 return RawData.size(); 143 } 144 145 void InputSectionBase::uncompress() const { 146 size_t Size = UncompressedSize; 147 UncompressedBuf.reset(new char[Size]); 148 149 if (Error E = 150 zlib::uncompress(toStringRef(RawData), UncompressedBuf.get(), Size)) 151 fatal(toString(this) + 152 ": uncompress failed: " + llvm::toString(std::move(E))); 153 RawData = makeArrayRef((uint8_t *)UncompressedBuf.get(), Size); 154 } 155 156 uint64_t InputSectionBase::getOffsetInFile() const { 157 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 158 const uint8_t *SecStart = data().begin(); 159 return SecStart - FileStart; 160 } 161 162 uint64_t SectionBase::getOffset(uint64_t Offset) const { 163 switch (kind()) { 164 case Output: { 165 auto *OS = cast<OutputSection>(this); 166 // For output sections we treat offset -1 as the end of the section. 167 return Offset == uint64_t(-1) ? OS->Size : Offset; 168 } 169 case Regular: 170 case Synthetic: 171 return cast<InputSection>(this)->getOffset(Offset); 172 case EHFrame: 173 // The file crtbeginT.o has relocations pointing to the start of an empty 174 // .eh_frame that is known to be the first in the link. It does that to 175 // identify the start of the output .eh_frame. 176 return Offset; 177 case Merge: 178 const MergeInputSection *MS = cast<MergeInputSection>(this); 179 if (InputSection *IS = MS->getParent()) 180 return IS->getOffset(MS->getParentOffset(Offset)); 181 return MS->getParentOffset(Offset); 182 } 183 llvm_unreachable("invalid section kind"); 184 } 185 186 uint64_t SectionBase::getVA(uint64_t Offset) const { 187 const OutputSection *Out = getOutputSection(); 188 return (Out ? Out->Addr : 0) + getOffset(Offset); 189 } 190 191 OutputSection *SectionBase::getOutputSection() { 192 InputSection *Sec; 193 if (auto *IS = dyn_cast<InputSection>(this)) 194 Sec = IS; 195 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 196 Sec = MS->getParent(); 197 else if (auto *EH = dyn_cast<EhInputSection>(this)) 198 Sec = EH->getParent(); 199 else 200 return cast<OutputSection>(this); 201 return Sec ? Sec->getParent() : nullptr; 202 } 203 204 // When a section is compressed, `RawData` consists with a header followed 205 // by zlib-compressed data. This function parses a header to initialize 206 // `UncompressedSize` member and remove the header from `RawData`. 207 void InputSectionBase::parseCompressedHeader() { 208 typedef typename ELF64LE::Chdr Chdr64; 209 typedef typename ELF32LE::Chdr Chdr32; 210 211 // Old-style header 212 if (Name.startswith(".zdebug")) { 213 if (!toStringRef(RawData).startswith("ZLIB")) { 214 error(toString(this) + ": corrupted compressed section header"); 215 return; 216 } 217 RawData = RawData.slice(4); 218 219 if (RawData.size() < 8) { 220 error(toString(this) + ": corrupted compressed section header"); 221 return; 222 } 223 224 UncompressedSize = read64be(RawData.data()); 225 RawData = RawData.slice(8); 226 227 // Restore the original section name. 228 // (e.g. ".zdebug_info" -> ".debug_info") 229 Name = Saver.save("." + Name.substr(2)); 230 return; 231 } 232 233 assert(Flags & SHF_COMPRESSED); 234 Flags &= ~(uint64_t)SHF_COMPRESSED; 235 236 // New-style 64-bit header 237 if (Config->Is64) { 238 if (RawData.size() < sizeof(Chdr64)) { 239 error(toString(this) + ": corrupted compressed section"); 240 return; 241 } 242 243 auto *Hdr = reinterpret_cast<const Chdr64 *>(RawData.data()); 244 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 245 error(toString(this) + ": unsupported compression type"); 246 return; 247 } 248 249 UncompressedSize = Hdr->ch_size; 250 RawData = RawData.slice(sizeof(*Hdr)); 251 return; 252 } 253 254 // New-style 32-bit header 255 if (RawData.size() < sizeof(Chdr32)) { 256 error(toString(this) + ": corrupted compressed section"); 257 return; 258 } 259 260 auto *Hdr = reinterpret_cast<const Chdr32 *>(RawData.data()); 261 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) { 262 error(toString(this) + ": unsupported compression type"); 263 return; 264 } 265 266 UncompressedSize = Hdr->ch_size; 267 RawData = RawData.slice(sizeof(*Hdr)); 268 } 269 270 InputSection *InputSectionBase::getLinkOrderDep() const { 271 assert(Link); 272 assert(Flags & SHF_LINK_ORDER); 273 return cast<InputSection>(File->getSections()[Link]); 274 } 275 276 // Find a function symbol that encloses a given location. 277 template <class ELFT> 278 Defined *InputSectionBase::getEnclosingFunction(uint64_t Offset) { 279 for (Symbol *B : File->getSymbols()) 280 if (Defined *D = dyn_cast<Defined>(B)) 281 if (D->Section == this && D->Type == STT_FUNC && D->Value <= Offset && 282 Offset < D->Value + D->Size) 283 return D; 284 return nullptr; 285 } 286 287 // Returns a source location string. Used to construct an error message. 288 template <class ELFT> 289 std::string InputSectionBase::getLocation(uint64_t Offset) { 290 std::string SecAndOffset = (Name + "+0x" + utohexstr(Offset)).str(); 291 292 // We don't have file for synthetic sections. 293 if (getFile<ELFT>() == nullptr) 294 return (Config->OutputFile + ":(" + SecAndOffset + ")") 295 .str(); 296 297 // First check if we can get desired values from debugging information. 298 if (Optional<DILineInfo> Info = getFile<ELFT>()->getDILineInfo(this, Offset)) 299 return Info->FileName + ":" + std::to_string(Info->Line) + ":(" + 300 SecAndOffset + ")"; 301 302 // File->SourceFile contains STT_FILE symbol that contains a 303 // source file name. If it's missing, we use an object file name. 304 std::string SrcFile = getFile<ELFT>()->SourceFile; 305 if (SrcFile.empty()) 306 SrcFile = toString(File); 307 308 if (Defined *D = getEnclosingFunction<ELFT>(Offset)) 309 return SrcFile + ":(function " + toString(*D) + ": " + SecAndOffset + ")"; 310 311 // If there's no symbol, print out the offset in the section. 312 return (SrcFile + ":(" + SecAndOffset + ")"); 313 } 314 315 // This function is intended to be used for constructing an error message. 316 // The returned message looks like this: 317 // 318 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 319 // 320 // Returns an empty string if there's no way to get line info. 321 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 322 return File->getSrcMsg(Sym, *this, Offset); 323 } 324 325 // Returns a filename string along with an optional section name. This 326 // function is intended to be used for constructing an error 327 // message. The returned message looks like this: 328 // 329 // path/to/foo.o:(function bar) 330 // 331 // or 332 // 333 // path/to/foo.o:(function bar) in archive path/to/bar.a 334 std::string InputSectionBase::getObjMsg(uint64_t Off) { 335 std::string Filename = File->getName(); 336 337 std::string Archive; 338 if (!File->ArchiveName.empty()) 339 Archive = " in archive " + File->ArchiveName; 340 341 // Find a symbol that encloses a given location. 342 for (Symbol *B : File->getSymbols()) 343 if (auto *D = dyn_cast<Defined>(B)) 344 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 345 return Filename + ":(" + toString(*D) + ")" + Archive; 346 347 // If there's no symbol, print out the offset in the section. 348 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 349 .str(); 350 } 351 352 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 353 354 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type, 355 uint32_t Alignment, ArrayRef<uint8_t> Data, 356 StringRef Name, Kind K) 357 : InputSectionBase(F, Flags, Type, 358 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 359 Name, K) {} 360 361 template <class ELFT> 362 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header, 363 StringRef Name) 364 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 365 366 bool InputSection::classof(const SectionBase *S) { 367 return S->kind() == SectionBase::Regular || 368 S->kind() == SectionBase::Synthetic; 369 } 370 371 OutputSection *InputSection::getParent() const { 372 return cast_or_null<OutputSection>(Parent); 373 } 374 375 // Copy SHT_GROUP section contents. Used only for the -r option. 376 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 377 // ELFT::Word is the 32-bit integral type in the target endianness. 378 typedef typename ELFT::Word u32; 379 ArrayRef<u32> From = getDataAs<u32>(); 380 auto *To = reinterpret_cast<u32 *>(Buf); 381 382 // The first entry is not a section number but a flag. 383 *To++ = From[0]; 384 385 // Adjust section numbers because section numbers in an input object 386 // files are different in the output. 387 ArrayRef<InputSectionBase *> Sections = File->getSections(); 388 for (uint32_t Idx : From.slice(1)) 389 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 390 } 391 392 InputSectionBase *InputSection::getRelocatedSection() const { 393 if (!File || (Type != SHT_RELA && Type != SHT_REL)) 394 return nullptr; 395 ArrayRef<InputSectionBase *> Sections = File->getSections(); 396 return Sections[Info]; 397 } 398 399 // This is used for -r and --emit-relocs. We can't use memcpy to copy 400 // relocations because we need to update symbol table offset and section index 401 // for each relocation. So we copy relocations one by one. 402 template <class ELFT, class RelTy> 403 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 404 InputSectionBase *Sec = getRelocatedSection(); 405 406 for (const RelTy &Rel : Rels) { 407 RelType Type = Rel.getType(Config->IsMips64EL); 408 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 409 410 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 411 Buf += sizeof(RelTy); 412 413 if (RelTy::IsRela) 414 P->r_addend = getAddend<ELFT>(Rel); 415 416 // Output section VA is zero for -r, so r_offset is an offset within the 417 // section, but for --emit-relocs it is an virtual address. 418 P->r_offset = Sec->getVA(Rel.r_offset); 419 P->setSymbolAndType(In.SymTab->getSymbolIndex(&Sym), Type, 420 Config->IsMips64EL); 421 422 if (Sym.Type == STT_SECTION) { 423 // We combine multiple section symbols into only one per 424 // section. This means we have to update the addend. That is 425 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 426 // section data. We do that by adding to the Relocation vector. 427 428 // .eh_frame is horribly special and can reference discarded sections. To 429 // avoid having to parse and recreate .eh_frame, we just replace any 430 // relocation in it pointing to discarded sections with R_*_NONE, which 431 // hopefully creates a frame that is ignored at runtime. 432 auto *D = dyn_cast<Defined>(&Sym); 433 if (!D) { 434 error("STT_SECTION symbol should be defined"); 435 continue; 436 } 437 SectionBase *Section = D->Section->Repl; 438 if (!Section->Live) { 439 P->setSymbolAndType(0, 0, false); 440 continue; 441 } 442 443 int64_t Addend = getAddend<ELFT>(Rel); 444 const uint8_t *BufLoc = Sec->data().begin() + Rel.r_offset; 445 if (!RelTy::IsRela) 446 Addend = Target->getImplicitAddend(BufLoc, Type); 447 448 if (Config->EMachine == EM_MIPS && Config->Relocatable && 449 Target->getRelExpr(Type, Sym, BufLoc) == R_MIPS_GOTREL) { 450 // Some MIPS relocations depend on "gp" value. By default, 451 // this value has 0x7ff0 offset from a .got section. But 452 // relocatable files produced by a complier or a linker 453 // might redefine this default value and we must use it 454 // for a calculation of the relocation result. When we 455 // generate EXE or DSO it's trivial. Generating a relocatable 456 // output is more difficult case because the linker does 457 // not calculate relocations in this mode and loses 458 // individual "gp" values used by each input object file. 459 // As a workaround we add the "gp" value to the relocation 460 // addend and save it back to the file. 461 Addend += Sec->getFile<ELFT>()->MipsGp0; 462 } 463 464 if (RelTy::IsRela) 465 P->r_addend = Sym.getVA(Addend) - Section->getOutputSection()->Addr; 466 else if (Config->Relocatable) 467 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Addend, &Sym}); 468 } 469 } 470 } 471 472 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 473 // references specially. The general rule is that the value of the symbol in 474 // this context is the address of the place P. A further special case is that 475 // branch relocations to an undefined weak reference resolve to the next 476 // instruction. 477 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 478 uint32_t P) { 479 switch (Type) { 480 // Unresolved branch relocations to weak references resolve to next 481 // instruction, this will be either 2 or 4 bytes on from P. 482 case R_ARM_THM_JUMP11: 483 return P + 2 + A; 484 case R_ARM_CALL: 485 case R_ARM_JUMP24: 486 case R_ARM_PC24: 487 case R_ARM_PLT32: 488 case R_ARM_PREL31: 489 case R_ARM_THM_JUMP19: 490 case R_ARM_THM_JUMP24: 491 return P + 4 + A; 492 case R_ARM_THM_CALL: 493 // We don't want an interworking BLX to ARM 494 return P + 5 + A; 495 // Unresolved non branch pc-relative relocations 496 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 497 // targets a weak-reference. 498 case R_ARM_MOVW_PREL_NC: 499 case R_ARM_MOVT_PREL: 500 case R_ARM_REL32: 501 case R_ARM_THM_MOVW_PREL_NC: 502 case R_ARM_THM_MOVT_PREL: 503 return P + A; 504 } 505 llvm_unreachable("ARM pc-relative relocation expected\n"); 506 } 507 508 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 509 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 510 uint64_t P) { 511 switch (Type) { 512 // Unresolved branch relocations to weak references resolve to next 513 // instruction, this is 4 bytes on from P. 514 case R_AARCH64_CALL26: 515 case R_AARCH64_CONDBR19: 516 case R_AARCH64_JUMP26: 517 case R_AARCH64_TSTBR14: 518 return P + 4 + A; 519 // Unresolved non branch pc-relative relocations 520 case R_AARCH64_PREL16: 521 case R_AARCH64_PREL32: 522 case R_AARCH64_PREL64: 523 case R_AARCH64_ADR_PREL_LO21: 524 case R_AARCH64_LD_PREL_LO19: 525 return P + A; 526 } 527 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 528 } 529 530 // ARM SBREL relocations are of the form S + A - B where B is the static base 531 // The ARM ABI defines base to be "addressing origin of the output segment 532 // defining the symbol S". We defined the "addressing origin"/static base to be 533 // the base of the PT_LOAD segment containing the Sym. 534 // The procedure call standard only defines a Read Write Position Independent 535 // RWPI variant so in practice we should expect the static base to be the base 536 // of the RW segment. 537 static uint64_t getARMStaticBase(const Symbol &Sym) { 538 OutputSection *OS = Sym.getOutputSection(); 539 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 540 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 541 return OS->PtLoad->FirstSec->Addr; 542 } 543 544 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually 545 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA 546 // is calculated using PCREL_HI20's symbol. 547 // 548 // This function returns the R_RISCV_PCREL_HI20 relocation from 549 // R_RISCV_PCREL_LO12's symbol and addend. 550 static Relocation *getRISCVPCRelHi20(const Symbol *Sym, uint64_t Addend) { 551 const Defined *D = cast<Defined>(Sym); 552 InputSection *IS = cast<InputSection>(D->Section); 553 554 if (Addend != 0) 555 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + 556 IS->getObjMsg(D->Value) + " is ignored"); 557 558 // Relocations are sorted by offset, so we can use std::equal_range to do 559 // binary search. 560 auto Range = std::equal_range(IS->Relocations.begin(), IS->Relocations.end(), 561 D->Value, RelocationOffsetComparator{}); 562 for (auto It = std::get<0>(Range); It != std::get<1>(Range); ++It) 563 if (isRelExprOneOf<R_PC>(It->Expr)) 564 return &*It; 565 566 error("R_RISCV_PCREL_LO12 relocation points to " + IS->getObjMsg(D->Value) + 567 " without an associated R_RISCV_PCREL_HI20 relocation"); 568 return nullptr; 569 } 570 571 // A TLS symbol's virtual address is relative to the TLS segment. Add a 572 // target-specific adjustment to produce a thread-pointer-relative offset. 573 static int64_t getTlsTpOffset() { 574 switch (Config->EMachine) { 575 case EM_ARM: 576 case EM_AARCH64: 577 // Variant 1. The thread pointer points to a TCB with a fixed 2-word size, 578 // followed by a variable amount of alignment padding, followed by the TLS 579 // segment. 580 // 581 // NB: While the ARM/AArch64 ABI formally has a 2-word TCB size, lld 582 // effectively increases the TCB size to 8 words for Android compatibility. 583 // It accomplishes this by increasing the segment's alignment. 584 return alignTo(Config->Wordsize * 2, Out::TlsPhdr->p_align); 585 case EM_386: 586 case EM_X86_64: 587 // Variant 2. The TLS segment is located just before the thread pointer. 588 return -Out::TlsPhdr->p_memsz; 589 case EM_PPC64: 590 // The thread pointer points to a fixed offset from the start of the 591 // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit 592 // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the 593 // program's TLS segment. 594 return -0x7000; 595 default: 596 llvm_unreachable("unhandled Config->EMachine"); 597 } 598 } 599 600 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type, int64_t A, 601 uint64_t P, const Symbol &Sym, RelExpr Expr) { 602 switch (Expr) { 603 case R_INVALID: 604 return 0; 605 case R_ABS: 606 case R_RELAX_TLS_LD_TO_LE_ABS: 607 case R_RELAX_GOT_PC_NOPIC: 608 return Sym.getVA(A); 609 case R_ADDEND: 610 return A; 611 case R_ARM_SBREL: 612 return Sym.getVA(A) - getARMStaticBase(Sym); 613 case R_GOT: 614 case R_GOT_PLT: 615 case R_RELAX_TLS_GD_TO_IE_ABS: 616 return Sym.getGotVA() + A; 617 case R_GOTONLY_PC: 618 return In.Got->getVA() + A - P; 619 case R_GOTONLY_PC_FROM_END: 620 return In.Got->getVA() + A - P + In.Got->getSize(); 621 case R_GOTREL: 622 return Sym.getVA(A) - In.Got->getVA(); 623 case R_GOTREL_FROM_END: 624 return Sym.getVA(A) - In.Got->getVA() - In.Got->getSize(); 625 case R_GOT_FROM_END: 626 case R_RELAX_TLS_GD_TO_IE_END: 627 return Sym.getGotOffset() + A - In.Got->getSize(); 628 case R_TLSLD_GOT_OFF: 629 case R_GOT_OFF: 630 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 631 return Sym.getGotOffset() + A; 632 case R_AARCH64_GOT_PAGE_PC: 633 case R_AARCH64_GOT_PAGE_PC_PLT: 634 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 635 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 636 case R_GOT_PC: 637 case R_RELAX_TLS_GD_TO_IE: 638 return Sym.getGotVA() + A - P; 639 case R_HEXAGON_GOT: 640 return Sym.getGotVA() - In.GotPlt->getVA(); 641 case R_MIPS_GOTREL: 642 return Sym.getVA(A) - In.MipsGot->getGp(File); 643 case R_MIPS_GOT_GP: 644 return In.MipsGot->getGp(File) + A; 645 case R_MIPS_GOT_GP_PC: { 646 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 647 // is _gp_disp symbol. In that case we should use the following 648 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 649 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 650 // microMIPS variants of these relocations use slightly different 651 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 652 // to correctly handle less-sugnificant bit of the microMIPS symbol. 653 uint64_t V = In.MipsGot->getGp(File) + A - P; 654 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 655 V += 4; 656 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 657 V -= 1; 658 return V; 659 } 660 case R_MIPS_GOT_LOCAL_PAGE: 661 // If relocation against MIPS local symbol requires GOT entry, this entry 662 // should be initialized by 'page address'. This address is high 16-bits 663 // of sum the symbol's value and the addend. 664 return In.MipsGot->getVA() + In.MipsGot->getPageEntryOffset(File, Sym, A) - 665 In.MipsGot->getGp(File); 666 case R_MIPS_GOT_OFF: 667 case R_MIPS_GOT_OFF32: 668 // In case of MIPS if a GOT relocation has non-zero addend this addend 669 // should be applied to the GOT entry content not to the GOT entry offset. 670 // That is why we use separate expression type. 671 return In.MipsGot->getVA() + In.MipsGot->getSymEntryOffset(File, Sym, A) - 672 In.MipsGot->getGp(File); 673 case R_MIPS_TLSGD: 674 return In.MipsGot->getVA() + In.MipsGot->getGlobalDynOffset(File, Sym) - 675 In.MipsGot->getGp(File); 676 case R_MIPS_TLSLD: 677 return In.MipsGot->getVA() + In.MipsGot->getTlsIndexOffset(File) - 678 In.MipsGot->getGp(File); 679 case R_AARCH64_PAGE_PC: { 680 uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getVA(A); 681 return getAArch64Page(Val) - getAArch64Page(P); 682 } 683 case R_AARCH64_PLT_PAGE_PC: { 684 uint64_t Val = Sym.isUndefWeak() ? P + A : Sym.getPltVA() + A; 685 return getAArch64Page(Val) - getAArch64Page(P); 686 } 687 case R_RISCV_PC_INDIRECT: { 688 if (const Relocation *HiRel = getRISCVPCRelHi20(&Sym, A)) 689 return getRelocTargetVA(File, HiRel->Type, HiRel->Addend, Sym.getVA(), 690 *HiRel->Sym, HiRel->Expr); 691 return 0; 692 } 693 case R_PC: { 694 uint64_t Dest; 695 if (Sym.isUndefWeak()) { 696 // On ARM and AArch64 a branch to an undefined weak resolves to the 697 // next instruction, otherwise the place. 698 if (Config->EMachine == EM_ARM) 699 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 700 else if (Config->EMachine == EM_AARCH64) 701 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 702 else 703 Dest = Sym.getVA(A); 704 } else { 705 Dest = Sym.getVA(A); 706 } 707 return Dest - P; 708 } 709 case R_PLT: 710 return Sym.getPltVA() + A; 711 case R_PLT_PC: 712 case R_PPC_CALL_PLT: 713 return Sym.getPltVA() + A - P; 714 case R_PPC_CALL: { 715 uint64_t SymVA = Sym.getVA(A); 716 // If we have an undefined weak symbol, we might get here with a symbol 717 // address of zero. That could overflow, but the code must be unreachable, 718 // so don't bother doing anything at all. 719 if (!SymVA) 720 return 0; 721 722 // PPC64 V2 ABI describes two entry points to a function. The global entry 723 // point is used for calls where the caller and callee (may) have different 724 // TOC base pointers and r2 needs to be modified to hold the TOC base for 725 // the callee. For local calls the caller and callee share the same 726 // TOC base and so the TOC pointer initialization code should be skipped by 727 // branching to the local entry point. 728 return SymVA - P + getPPC64GlobalEntryToLocalEntryOffset(Sym.StOther); 729 } 730 case R_PPC_TOC: 731 return getPPC64TocBase() + A; 732 case R_RELAX_GOT_PC: 733 return Sym.getVA(A) - P; 734 case R_RELAX_TLS_GD_TO_LE: 735 case R_RELAX_TLS_IE_TO_LE: 736 case R_RELAX_TLS_LD_TO_LE: 737 case R_TLS: 738 // A weak undefined TLS symbol resolves to the base of the TLS 739 // block, i.e. gets a value of zero. If we pass --gc-sections to 740 // lld and .tbss is not referenced, it gets reclaimed and we don't 741 // create a TLS program header. Therefore, we resolve this 742 // statically to zero. 743 if (Sym.isTls() && Sym.isUndefWeak()) 744 return 0; 745 return Sym.getVA(A) + getTlsTpOffset(); 746 case R_RELAX_TLS_GD_TO_LE_NEG: 747 case R_NEG_TLS: 748 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 749 case R_SIZE: 750 return Sym.getSize() + A; 751 case R_TLSDESC: 752 return In.Got->getGlobalDynAddr(Sym) + A; 753 case R_AARCH64_TLSDESC_PAGE: 754 return getAArch64Page(In.Got->getGlobalDynAddr(Sym) + A) - 755 getAArch64Page(P); 756 case R_TLSGD_GOT: 757 return In.Got->getGlobalDynOffset(Sym) + A; 758 case R_TLSGD_GOT_FROM_END: 759 return In.Got->getGlobalDynOffset(Sym) + A - In.Got->getSize(); 760 case R_TLSGD_PC: 761 return In.Got->getGlobalDynAddr(Sym) + A - P; 762 case R_TLSLD_GOT_FROM_END: 763 return In.Got->getTlsIndexOff() + A - In.Got->getSize(); 764 case R_TLSLD_GOT: 765 return In.Got->getTlsIndexOff() + A; 766 case R_TLSLD_PC: 767 return In.Got->getTlsIndexVA() + A - P; 768 default: 769 llvm_unreachable("invalid expression"); 770 } 771 } 772 773 // This function applies relocations to sections without SHF_ALLOC bit. 774 // Such sections are never mapped to memory at runtime. Debug sections are 775 // an example. Relocations in non-alloc sections are much easier to 776 // handle than in allocated sections because it will never need complex 777 // treatement such as GOT or PLT (because at runtime no one refers them). 778 // So, we handle relocations for non-alloc sections directly in this 779 // function as a performance optimization. 780 template <class ELFT, class RelTy> 781 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 782 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 783 784 for (const RelTy &Rel : Rels) { 785 RelType Type = Rel.getType(Config->IsMips64EL); 786 787 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 788 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 789 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 790 // need to keep this bug-compatible code for a while. 791 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 792 continue; 793 794 uint64_t Offset = getOffset(Rel.r_offset); 795 uint8_t *BufLoc = Buf + Offset; 796 int64_t Addend = getAddend<ELFT>(Rel); 797 if (!RelTy::IsRela) 798 Addend += Target->getImplicitAddend(BufLoc, Type); 799 800 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 801 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 802 if (Expr == R_NONE) 803 continue; 804 805 if (Expr != R_ABS) { 806 std::string Msg = getLocation<ELFT>(Offset) + 807 ": has non-ABS relocation " + toString(Type) + 808 " against symbol '" + toString(Sym) + "'"; 809 if (Expr != R_PC) { 810 error(Msg); 811 return; 812 } 813 814 // If the control reaches here, we found a PC-relative relocation in a 815 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 816 // at runtime, the notion of PC-relative doesn't make sense here. So, 817 // this is a usage error. However, GNU linkers historically accept such 818 // relocations without any errors and relocate them as if they were at 819 // address 0. For bug-compatibilty, we accept them with warnings. We 820 // know Steel Bank Common Lisp as of 2018 have this bug. 821 warn(Msg); 822 Target->relocateOne(BufLoc, Type, 823 SignExtend64<Bits>(Sym.getVA(Addend - Offset))); 824 continue; 825 } 826 827 if (Sym.isTls() && !Out::TlsPhdr) 828 Target->relocateOne(BufLoc, Type, 0); 829 else 830 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 831 } 832 } 833 834 // This is used when '-r' is given. 835 // For REL targets, InputSection::copyRelocations() may store artificial 836 // relocations aimed to update addends. They are handled in relocateAlloc() 837 // for allocatable sections, and this function does the same for 838 // non-allocatable sections, such as sections with debug information. 839 static void relocateNonAllocForRelocatable(InputSection *Sec, uint8_t *Buf) { 840 const unsigned Bits = Config->Is64 ? 64 : 32; 841 842 for (const Relocation &Rel : Sec->Relocations) { 843 // InputSection::copyRelocations() adds only R_ABS relocations. 844 assert(Rel.Expr == R_ABS); 845 uint8_t *BufLoc = Buf + Rel.Offset + Sec->OutSecOff; 846 uint64_t TargetVA = SignExtend64(Rel.Sym->getVA(Rel.Addend), Bits); 847 Target->relocateOne(BufLoc, Rel.Type, TargetVA); 848 } 849 } 850 851 template <class ELFT> 852 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 853 if (Flags & SHF_EXECINSTR) 854 adjustSplitStackFunctionPrologues<ELFT>(Buf, BufEnd); 855 856 if (Flags & SHF_ALLOC) { 857 relocateAlloc(Buf, BufEnd); 858 return; 859 } 860 861 auto *Sec = cast<InputSection>(this); 862 if (Config->Relocatable) 863 relocateNonAllocForRelocatable(Sec, Buf); 864 else if (Sec->AreRelocsRela) 865 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 866 else 867 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 868 } 869 870 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 871 assert(Flags & SHF_ALLOC); 872 const unsigned Bits = Config->Wordsize * 8; 873 874 for (const Relocation &Rel : Relocations) { 875 uint64_t Offset = Rel.Offset; 876 if (auto *Sec = dyn_cast<InputSection>(this)) 877 Offset += Sec->OutSecOff; 878 uint8_t *BufLoc = Buf + Offset; 879 RelType Type = Rel.Type; 880 881 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 882 RelExpr Expr = Rel.Expr; 883 uint64_t TargetVA = SignExtend64( 884 getRelocTargetVA(File, Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), 885 Bits); 886 887 switch (Expr) { 888 case R_RELAX_GOT_PC: 889 case R_RELAX_GOT_PC_NOPIC: 890 Target->relaxGot(BufLoc, TargetVA); 891 break; 892 case R_RELAX_TLS_IE_TO_LE: 893 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 894 break; 895 case R_RELAX_TLS_LD_TO_LE: 896 case R_RELAX_TLS_LD_TO_LE_ABS: 897 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 898 break; 899 case R_RELAX_TLS_GD_TO_LE: 900 case R_RELAX_TLS_GD_TO_LE_NEG: 901 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 902 break; 903 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: 904 case R_RELAX_TLS_GD_TO_IE: 905 case R_RELAX_TLS_GD_TO_IE_ABS: 906 case R_RELAX_TLS_GD_TO_IE_GOT_OFF: 907 case R_RELAX_TLS_GD_TO_IE_END: 908 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 909 break; 910 case R_PPC_CALL: 911 // If this is a call to __tls_get_addr, it may be part of a TLS 912 // sequence that has been relaxed and turned into a nop. In this 913 // case, we don't want to handle it as a call. 914 if (read32(BufLoc) == 0x60000000) // nop 915 break; 916 917 // Patch a nop (0x60000000) to a ld. 918 if (Rel.Sym->NeedsTocRestore) { 919 if (BufLoc + 8 > BufEnd || read32(BufLoc + 4) != 0x60000000) { 920 error(getErrorLocation(BufLoc) + "call lacks nop, can't restore toc"); 921 break; 922 } 923 write32(BufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) 924 } 925 Target->relocateOne(BufLoc, Type, TargetVA); 926 break; 927 default: 928 Target->relocateOne(BufLoc, Type, TargetVA); 929 break; 930 } 931 } 932 } 933 934 // For each function-defining prologue, find any calls to __morestack, 935 // and replace them with calls to __morestack_non_split. 936 static void switchMorestackCallsToMorestackNonSplit( 937 DenseSet<Defined *> &Prologues, std::vector<Relocation *> &MorestackCalls) { 938 939 // If the target adjusted a function's prologue, all calls to 940 // __morestack inside that function should be switched to 941 // __morestack_non_split. 942 Symbol *MoreStackNonSplit = Symtab->find("__morestack_non_split"); 943 if (!MoreStackNonSplit) { 944 error("Mixing split-stack objects requires a definition of " 945 "__morestack_non_split"); 946 return; 947 } 948 949 // Sort both collections to compare addresses efficiently. 950 llvm::sort(MorestackCalls, [](const Relocation *L, const Relocation *R) { 951 return L->Offset < R->Offset; 952 }); 953 std::vector<Defined *> Functions(Prologues.begin(), Prologues.end()); 954 llvm::sort(Functions, [](const Defined *L, const Defined *R) { 955 return L->Value < R->Value; 956 }); 957 958 auto It = MorestackCalls.begin(); 959 for (Defined *F : Functions) { 960 // Find the first call to __morestack within the function. 961 while (It != MorestackCalls.end() && (*It)->Offset < F->Value) 962 ++It; 963 // Adjust all calls inside the function. 964 while (It != MorestackCalls.end() && (*It)->Offset < F->Value + F->Size) { 965 (*It)->Sym = MoreStackNonSplit; 966 ++It; 967 } 968 } 969 } 970 971 static bool enclosingPrologueAttempted(uint64_t Offset, 972 const DenseSet<Defined *> &Prologues) { 973 for (Defined *F : Prologues) 974 if (F->Value <= Offset && Offset < F->Value + F->Size) 975 return true; 976 return false; 977 } 978 979 // If a function compiled for split stack calls a function not 980 // compiled for split stack, then the caller needs its prologue 981 // adjusted to ensure that the called function will have enough stack 982 // available. Find those functions, and adjust their prologues. 983 template <class ELFT> 984 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *Buf, 985 uint8_t *End) { 986 if (!getFile<ELFT>()->SplitStack) 987 return; 988 DenseSet<Defined *> Prologues; 989 std::vector<Relocation *> MorestackCalls; 990 991 for (Relocation &Rel : Relocations) { 992 // Local symbols can't possibly be cross-calls, and should have been 993 // resolved long before this line. 994 if (Rel.Sym->isLocal()) 995 continue; 996 997 // Ignore calls into the split-stack api. 998 if (Rel.Sym->getName().startswith("__morestack")) { 999 if (Rel.Sym->getName().equals("__morestack")) 1000 MorestackCalls.push_back(&Rel); 1001 continue; 1002 } 1003 1004 // A relocation to non-function isn't relevant. Sometimes 1005 // __morestack is not marked as a function, so this check comes 1006 // after the name check. 1007 if (Rel.Sym->Type != STT_FUNC) 1008 continue; 1009 1010 // If the callee's-file was compiled with split stack, nothing to do. In 1011 // this context, a "Defined" symbol is one "defined by the binary currently 1012 // being produced". So an "undefined" symbol might be provided by a shared 1013 // library. It is not possible to tell how such symbols were compiled, so be 1014 // conservative. 1015 if (Defined *D = dyn_cast<Defined>(Rel.Sym)) 1016 if (InputSection *IS = cast_or_null<InputSection>(D->Section)) 1017 if (!IS || !IS->getFile<ELFT>() || IS->getFile<ELFT>()->SplitStack) 1018 continue; 1019 1020 if (enclosingPrologueAttempted(Rel.Offset, Prologues)) 1021 continue; 1022 1023 if (Defined *F = getEnclosingFunction<ELFT>(Rel.Offset)) { 1024 Prologues.insert(F); 1025 if (Target->adjustPrologueForCrossSplitStack(Buf + getOffset(F->Value), 1026 End, F->StOther)) 1027 continue; 1028 if (!getFile<ELFT>()->SomeNoSplitStack) 1029 error(lld::toString(this) + ": " + F->getName() + 1030 " (with -fsplit-stack) calls " + Rel.Sym->getName() + 1031 " (without -fsplit-stack), but couldn't adjust its prologue"); 1032 } 1033 } 1034 1035 if (Target->NeedsMoreStackNonSplit) 1036 switchMorestackCallsToMorestackNonSplit(Prologues, MorestackCalls); 1037 } 1038 1039 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 1040 if (Type == SHT_NOBITS) 1041 return; 1042 1043 if (auto *S = dyn_cast<SyntheticSection>(this)) { 1044 S->writeTo(Buf + OutSecOff); 1045 return; 1046 } 1047 1048 // If -r or --emit-relocs is given, then an InputSection 1049 // may be a relocation section. 1050 if (Type == SHT_RELA) { 1051 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>()); 1052 return; 1053 } 1054 if (Type == SHT_REL) { 1055 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>()); 1056 return; 1057 } 1058 1059 // If -r is given, we may have a SHT_GROUP section. 1060 if (Type == SHT_GROUP) { 1061 copyShtGroup<ELFT>(Buf + OutSecOff); 1062 return; 1063 } 1064 1065 // If this is a compressed section, uncompress section contents directly 1066 // to the buffer. 1067 if (UncompressedSize >= 0 && !UncompressedBuf) { 1068 size_t Size = UncompressedSize; 1069 if (Error E = zlib::uncompress(toStringRef(RawData), 1070 (char *)(Buf + OutSecOff), Size)) 1071 fatal(toString(this) + 1072 ": uncompress failed: " + llvm::toString(std::move(E))); 1073 uint8_t *BufEnd = Buf + OutSecOff + Size; 1074 relocate<ELFT>(Buf, BufEnd); 1075 return; 1076 } 1077 1078 // Copy section contents from source object file to output file 1079 // and then apply relocations. 1080 memcpy(Buf + OutSecOff, data().data(), data().size()); 1081 uint8_t *BufEnd = Buf + OutSecOff + data().size(); 1082 relocate<ELFT>(Buf, BufEnd); 1083 } 1084 1085 void InputSection::replace(InputSection *Other) { 1086 Alignment = std::max(Alignment, Other->Alignment); 1087 Other->Repl = Repl; 1088 Other->Live = false; 1089 } 1090 1091 template <class ELFT> 1092 EhInputSection::EhInputSection(ObjFile<ELFT> &F, 1093 const typename ELFT::Shdr &Header, 1094 StringRef Name) 1095 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 1096 1097 SyntheticSection *EhInputSection::getParent() const { 1098 return cast_or_null<SyntheticSection>(Parent); 1099 } 1100 1101 // Returns the index of the first relocation that points to a region between 1102 // Begin and Begin+Size. 1103 template <class IntTy, class RelTy> 1104 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 1105 unsigned &RelocI) { 1106 // Start search from RelocI for fast access. That works because the 1107 // relocations are sorted in .eh_frame. 1108 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 1109 const RelTy &Rel = Rels[RelocI]; 1110 if (Rel.r_offset < Begin) 1111 continue; 1112 1113 if (Rel.r_offset < Begin + Size) 1114 return RelocI; 1115 return -1; 1116 } 1117 return -1; 1118 } 1119 1120 // .eh_frame is a sequence of CIE or FDE records. 1121 // This function splits an input section into records and returns them. 1122 template <class ELFT> void EhInputSection::split() { 1123 if (AreRelocsRela) 1124 split<ELFT>(relas<ELFT>()); 1125 else 1126 split<ELFT>(rels<ELFT>()); 1127 } 1128 1129 template <class ELFT, class RelTy> 1130 void EhInputSection::split(ArrayRef<RelTy> Rels) { 1131 unsigned RelI = 0; 1132 for (size_t Off = 0, End = data().size(); Off != End;) { 1133 size_t Size = readEhRecordSize(this, Off); 1134 Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 1135 // The empty record is the end marker. 1136 if (Size == 4) 1137 break; 1138 Off += Size; 1139 } 1140 } 1141 1142 static size_t findNull(StringRef S, size_t EntSize) { 1143 // Optimize the common case. 1144 if (EntSize == 1) 1145 return S.find(0); 1146 1147 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 1148 const char *B = S.begin() + I; 1149 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 1150 return I; 1151 } 1152 return StringRef::npos; 1153 } 1154 1155 SyntheticSection *MergeInputSection::getParent() const { 1156 return cast_or_null<SyntheticSection>(Parent); 1157 } 1158 1159 // Split SHF_STRINGS section. Such section is a sequence of 1160 // null-terminated strings. 1161 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 1162 size_t Off = 0; 1163 bool IsAlloc = Flags & SHF_ALLOC; 1164 StringRef S = toStringRef(Data); 1165 1166 while (!S.empty()) { 1167 size_t End = findNull(S, EntSize); 1168 if (End == StringRef::npos) 1169 fatal(toString(this) + ": string is not null terminated"); 1170 size_t Size = End + EntSize; 1171 1172 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 1173 S = S.substr(Size); 1174 Off += Size; 1175 } 1176 } 1177 1178 // Split non-SHF_STRINGS section. Such section is a sequence of 1179 // fixed size records. 1180 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 1181 size_t EntSize) { 1182 size_t Size = Data.size(); 1183 assert((Size % EntSize) == 0); 1184 bool IsAlloc = Flags & SHF_ALLOC; 1185 1186 for (size_t I = 0; I != Size; I += EntSize) 1187 Pieces.emplace_back(I, xxHash64(Data.slice(I, EntSize)), !IsAlloc); 1188 } 1189 1190 template <class ELFT> 1191 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F, 1192 const typename ELFT::Shdr &Header, 1193 StringRef Name) 1194 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 1195 1196 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type, 1197 uint64_t Entsize, ArrayRef<uint8_t> Data, 1198 StringRef Name) 1199 : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0, 1200 /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {} 1201 1202 // This function is called after we obtain a complete list of input sections 1203 // that need to be linked. This is responsible to split section contents 1204 // into small chunks for further processing. 1205 // 1206 // Note that this function is called from parallelForEach. This must be 1207 // thread-safe (i.e. no memory allocation from the pools). 1208 void MergeInputSection::splitIntoPieces() { 1209 assert(Pieces.empty()); 1210 1211 if (Flags & SHF_STRINGS) 1212 splitStrings(data(), Entsize); 1213 else 1214 splitNonStrings(data(), Entsize); 1215 } 1216 1217 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 1218 if (this->data().size() <= Offset) 1219 fatal(toString(this) + ": offset is outside the section"); 1220 1221 // If Offset is not at beginning of a section piece, it is not in the map. 1222 // In that case we need to do a binary search of the original section piece vector. 1223 auto It2 = 1224 llvm::upper_bound(Pieces, Offset, [](uint64_t Offset, SectionPiece P) { 1225 return Offset < P.InputOff; 1226 }); 1227 return &It2[-1]; 1228 } 1229 1230 // Returns the offset in an output section for a given input offset. 1231 // Because contents of a mergeable section is not contiguous in output, 1232 // it is not just an addition to a base output offset. 1233 uint64_t MergeInputSection::getParentOffset(uint64_t Offset) const { 1234 // If Offset is not at beginning of a section piece, it is not in the map. 1235 // In that case we need to search from the original section piece vector. 1236 const SectionPiece &Piece = 1237 *(const_cast<MergeInputSection *>(this)->getSectionPiece (Offset)); 1238 uint64_t Addend = Offset - Piece.InputOff; 1239 return Piece.OutputOff + Addend; 1240 } 1241 1242 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 1243 StringRef); 1244 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 1245 StringRef); 1246 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 1247 StringRef); 1248 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 1249 StringRef); 1250 1251 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1252 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1253 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1254 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1255 1256 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1257 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1258 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1259 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1260 1261 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1262 const ELF32LE::Shdr &, StringRef); 1263 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1264 const ELF32BE::Shdr &, StringRef); 1265 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1266 const ELF64LE::Shdr &, StringRef); 1267 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1268 const ELF64BE::Shdr &, StringRef); 1269 1270 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1271 const ELF32LE::Shdr &, StringRef); 1272 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1273 const ELF32BE::Shdr &, StringRef); 1274 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1275 const ELF64LE::Shdr &, StringRef); 1276 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1277 const ELF64BE::Shdr &, StringRef); 1278 1279 template void EhInputSection::split<ELF32LE>(); 1280 template void EhInputSection::split<ELF32BE>(); 1281 template void EhInputSection::split<ELF64LE>(); 1282 template void EhInputSection::split<ELF64BE>(); 1283