1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Support/Memory.h" 22 #include "llvm/Support/Compression.h" 23 #include "llvm/Support/Endian.h" 24 #include <mutex> 25 26 using namespace llvm; 27 using namespace llvm::ELF; 28 using namespace llvm::object; 29 using namespace llvm::support; 30 using namespace llvm::support::endian; 31 32 using namespace lld; 33 using namespace lld::elf; 34 35 // Returns a string to construct an error message. 36 template <class ELFT> 37 std::string elf::toString(const InputSectionBase<ELFT> *Sec) { 38 return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str(); 39 } 40 41 template <class ELFT> 42 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, 43 const typename ELFT::Shdr *Hdr) { 44 if (!File || Hdr->sh_type == SHT_NOBITS) 45 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 46 return check(File->getObj().getSectionContents(Hdr)); 47 } 48 49 // ELF supports ZLIB-compressed section. Returns true if the section 50 // is compressed. 51 template <class ELFT> 52 static bool isCompressed(typename ELFT::uint Flags, StringRef Name) { 53 return (Flags & SHF_COMPRESSED) || Name.startswith(".zdebug"); 54 } 55 56 template <class ELFT> 57 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 58 uintX_t Flags, uint32_t Type, 59 uintX_t Entsize, uint32_t Link, 60 uint32_t Info, uintX_t Addralign, 61 ArrayRef<uint8_t> Data, StringRef Name, 62 Kind SectionKind) 63 : InputSectionData(SectionKind, Name, Data, isCompressed<ELFT>(Flags, Name), 64 !Config->GcSections || !(Flags & SHF_ALLOC)), 65 File(File), Flags(Flags), Entsize(Entsize), Type(Type), Link(Link), 66 Info(Info), Repl(this) { 67 NumRelocations = 0; 68 AreRelocsRela = false; 69 70 // The ELF spec states that a value of 0 means the section has 71 // no alignment constraits. 72 uint64_t V = std::max<uint64_t>(Addralign, 1); 73 if (!isPowerOf2_64(V)) 74 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 75 76 // We reject object files having insanely large alignments even though 77 // they are allowed by the spec. I think 4GB is a reasonable limitation. 78 // We might want to relax this in the future. 79 if (V > UINT32_MAX) 80 fatal(toString(File) + ": section sh_addralign is too large"); 81 Alignment = V; 82 83 // If it is not a mergeable section, overwrite the flag so that the flag 84 // is consistent with the class. This inconsistency could occur when 85 // string merging is disabled using -O0 flag. 86 if (!Config->Relocatable && !isa<MergeInputSection<ELFT>>(this)) 87 this->Flags &= ~(SHF_MERGE | SHF_STRINGS); 88 } 89 90 template <class ELFT> 91 InputSectionBase<ELFT>::InputSectionBase(elf::ObjectFile<ELFT> *File, 92 const Elf_Shdr *Hdr, StringRef Name, 93 Kind SectionKind) 94 : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type, 95 Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, 96 Hdr->sh_addralign, getSectionContents(File, Hdr), Name, 97 SectionKind) { 98 this->Offset = Hdr->sh_offset; 99 } 100 101 template <class ELFT> size_t InputSectionBase<ELFT>::getSize() const { 102 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) 103 return S->getSize(); 104 105 if (auto *D = dyn_cast<InputSection<ELFT>>(this)) 106 if (D->getThunksSize() > 0) 107 return D->getThunkOff() + D->getThunksSize(); 108 109 return Data.size(); 110 } 111 112 // Returns a string for an error message. 113 template <class SectionT> static std::string getName(SectionT *Sec) { 114 return (Sec->getFile()->getName() + ":(" + Sec->Name + ")").str(); 115 } 116 117 template <class ELFT> 118 typename ELFT::uint InputSectionBase<ELFT>::getOffset(uintX_t Offset) const { 119 switch (kind()) { 120 case Regular: 121 return cast<InputSection<ELFT>>(this)->OutSecOff + Offset; 122 case Synthetic: 123 // For synthetic sections we treat offset -1 as the end of the section. 124 // The same approach is used for synthetic symbols (DefinedSynthetic). 125 return cast<InputSection<ELFT>>(this)->OutSecOff + 126 (Offset == uintX_t(-1) ? getSize() : Offset); 127 case EHFrame: 128 // The file crtbeginT.o has relocations pointing to the start of an empty 129 // .eh_frame that is known to be the first in the link. It does that to 130 // identify the start of the output .eh_frame. 131 return Offset; 132 case Merge: 133 return cast<MergeInputSection<ELFT>>(this)->getOffset(Offset); 134 } 135 llvm_unreachable("invalid section kind"); 136 } 137 138 // Returns compressed data and its size when uncompressed. 139 template <class ELFT> 140 std::pair<ArrayRef<uint8_t>, uint64_t> 141 InputSectionBase<ELFT>::getElfCompressedData(ArrayRef<uint8_t> Data) { 142 // Compressed section with Elf_Chdr is the ELF standard. 143 if (Data.size() < sizeof(Elf_Chdr)) 144 fatal(toString(this) + ": corrupted compressed section"); 145 auto *Hdr = reinterpret_cast<const Elf_Chdr *>(Data.data()); 146 if (Hdr->ch_type != ELFCOMPRESS_ZLIB) 147 fatal(toString(this) + ": unsupported compression type"); 148 return {Data.slice(sizeof(*Hdr)), Hdr->ch_size}; 149 } 150 151 // Returns compressed data and its size when uncompressed. 152 template <class ELFT> 153 std::pair<ArrayRef<uint8_t>, uint64_t> 154 InputSectionBase<ELFT>::getRawCompressedData(ArrayRef<uint8_t> Data) { 155 // Compressed sections without Elf_Chdr header contain this header 156 // instead. This is a GNU extension. 157 struct ZlibHeader { 158 char Magic[4]; // Should be "ZLIB" 159 char Size[8]; // Uncompressed size in big-endian 160 }; 161 162 if (Data.size() < sizeof(ZlibHeader)) 163 fatal(toString(this) + ": corrupted compressed section"); 164 auto *Hdr = reinterpret_cast<const ZlibHeader *>(Data.data()); 165 if (memcmp(Hdr->Magic, "ZLIB", 4)) 166 fatal(toString(this) + ": broken ZLIB-compressed section"); 167 return {Data.slice(sizeof(*Hdr)), read64be(Hdr->Size)}; 168 } 169 170 // Uncompress section contents. Note that this function is called 171 // from parallel_for_each, so it must be thread-safe. 172 template <class ELFT> void InputSectionBase<ELFT>::uncompress() { 173 if (!zlib::isAvailable()) 174 fatal(toString(this) + 175 ": build lld with zlib to enable compressed sections support"); 176 177 // This section is compressed. Here we decompress it. Ideally, all 178 // compressed sections have SHF_COMPRESSED bit and their contents 179 // start with headers of Elf_Chdr type. However, sections whose 180 // names start with ".zdebug_" don't have the bit and contains a raw 181 // ZLIB-compressed data (which is a bad thing because section names 182 // shouldn't be significant in ELF.) We need to be able to read both. 183 ArrayRef<uint8_t> Buf; // Compressed data 184 size_t Size; // Uncompressed size 185 if (Flags & SHF_COMPRESSED) 186 std::tie(Buf, Size) = getElfCompressedData(Data); 187 else 188 std::tie(Buf, Size) = getRawCompressedData(Data); 189 190 // Uncompress Buf. 191 char *OutputBuf; 192 { 193 static std::mutex Mu; 194 std::lock_guard<std::mutex> Lock(Mu); 195 OutputBuf = BAlloc.Allocate<char>(Size); 196 } 197 if (zlib::uncompress(toStringRef(Buf), OutputBuf, Size) != zlib::StatusOK) 198 fatal(toString(this) + ": error while uncompressing section"); 199 Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 200 } 201 202 template <class ELFT> 203 typename ELFT::uint 204 InputSectionBase<ELFT>::getOffset(const DefinedRegular<ELFT> &Sym) const { 205 return getOffset(Sym.Value); 206 } 207 208 template <class ELFT> 209 InputSectionBase<ELFT> *InputSectionBase<ELFT>::getLinkOrderDep() const { 210 if ((Flags & SHF_LINK_ORDER) && Link != 0) 211 return getFile()->getSections()[Link]; 212 return nullptr; 213 } 214 215 // Returns a source location string. Used to construct an error message. 216 template <class ELFT> 217 std::string InputSectionBase<ELFT>::getLocation(typename ELFT::uint Offset) { 218 // First check if we can get desired values from debugging information. 219 std::string LineInfo = File->getLineInfo(this, Offset); 220 if (!LineInfo.empty()) 221 return LineInfo; 222 223 // File->SourceFile contains STT_FILE symbol that contains a 224 // source file name. If it's missing, we use an object file name. 225 std::string SrcFile = File->SourceFile; 226 if (SrcFile.empty()) 227 SrcFile = toString(File); 228 229 // Find a function symbol that encloses a given location. 230 for (SymbolBody *B : File->getSymbols()) 231 if (auto *D = dyn_cast<DefinedRegular<ELFT>>(B)) 232 if (D->Section == this && D->Type == STT_FUNC) 233 if (D->Value <= Offset && Offset < D->Value + D->Size) 234 return SrcFile + ":(function " + toString(*D) + ")"; 235 236 // If there's no symbol, print out the offset in the section. 237 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 238 } 239 240 template <class ELFT> 241 InputSection<ELFT>::InputSection() : InputSectionBase<ELFT>() {} 242 243 template <class ELFT> 244 InputSection<ELFT>::InputSection(uintX_t Flags, uint32_t Type, 245 uintX_t Addralign, ArrayRef<uint8_t> Data, 246 StringRef Name, Kind K) 247 : InputSectionBase<ELFT>(nullptr, Flags, Type, 248 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Addralign, 249 Data, Name, K) {} 250 251 template <class ELFT> 252 InputSection<ELFT>::InputSection(elf::ObjectFile<ELFT> *F, 253 const Elf_Shdr *Header, StringRef Name) 254 : InputSectionBase<ELFT>(F, Header, Name, Base::Regular) {} 255 256 template <class ELFT> 257 bool InputSection<ELFT>::classof(const InputSectionData *S) { 258 return S->kind() == Base::Regular || S->kind() == Base::Synthetic; 259 } 260 261 template <class ELFT> 262 InputSectionBase<ELFT> *InputSection<ELFT>::getRelocatedSection() { 263 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 264 ArrayRef<InputSectionBase<ELFT> *> Sections = this->File->getSections(); 265 return Sections[this->Info]; 266 } 267 268 template <class ELFT> void InputSection<ELFT>::addThunk(const Thunk<ELFT> *T) { 269 Thunks.push_back(T); 270 } 271 272 template <class ELFT> uint64_t InputSection<ELFT>::getThunkOff() const { 273 return this->Data.size(); 274 } 275 276 template <class ELFT> uint64_t InputSection<ELFT>::getThunksSize() const { 277 uint64_t Total = 0; 278 for (const Thunk<ELFT> *T : Thunks) 279 Total += T->size(); 280 return Total; 281 } 282 283 // This is used for -r. We can't use memcpy to copy relocations because we need 284 // to update symbol table offset and section index for each relocation. So we 285 // copy relocations one by one. 286 template <class ELFT> 287 template <class RelTy> 288 void InputSection<ELFT>::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 289 InputSectionBase<ELFT> *RelocatedSection = getRelocatedSection(); 290 291 for (const RelTy &Rel : Rels) { 292 uint32_t Type = Rel.getType(Config->Mips64EL); 293 SymbolBody &Body = this->File->getRelocTargetSym(Rel); 294 295 Elf_Rela *P = reinterpret_cast<Elf_Rela *>(Buf); 296 Buf += sizeof(RelTy); 297 298 if (Config->Rela) 299 P->r_addend = getAddend<ELFT>(Rel); 300 P->r_offset = RelocatedSection->getOffset(Rel.r_offset); 301 P->setSymbolAndType(Body.DynsymIndex, Type, Config->Mips64EL); 302 } 303 } 304 305 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 306 uint32_t P) { 307 switch (Type) { 308 case R_ARM_THM_JUMP11: 309 return P + 2; 310 case R_ARM_CALL: 311 case R_ARM_JUMP24: 312 case R_ARM_PC24: 313 case R_ARM_PLT32: 314 case R_ARM_PREL31: 315 case R_ARM_THM_JUMP19: 316 case R_ARM_THM_JUMP24: 317 return P + 4; 318 case R_ARM_THM_CALL: 319 // We don't want an interworking BLX to ARM 320 return P + 5; 321 default: 322 return A; 323 } 324 } 325 326 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 327 uint64_t P) { 328 switch (Type) { 329 case R_AARCH64_CALL26: 330 case R_AARCH64_CONDBR19: 331 case R_AARCH64_JUMP26: 332 case R_AARCH64_TSTBR14: 333 return P + 4; 334 default: 335 return A; 336 } 337 } 338 339 template <class ELFT> 340 static typename ELFT::uint 341 getRelocTargetVA(uint32_t Type, typename ELFT::uint A, typename ELFT::uint P, 342 const SymbolBody &Body, RelExpr Expr) { 343 switch (Expr) { 344 case R_HINT: 345 case R_TLSDESC_CALL: 346 llvm_unreachable("cannot relocate hint relocs"); 347 case R_TLSLD: 348 return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize(); 349 case R_TLSLD_PC: 350 return In<ELFT>::Got->getTlsIndexVA() + A - P; 351 case R_THUNK_ABS: 352 return Body.getThunkVA<ELFT>() + A; 353 case R_THUNK_PC: 354 case R_THUNK_PLT_PC: 355 return Body.getThunkVA<ELFT>() + A - P; 356 case R_PPC_TOC: 357 return getPPC64TocBase() + A; 358 case R_TLSGD: 359 return In<ELFT>::Got->getGlobalDynOffset(Body) + A - 360 In<ELFT>::Got->getSize(); 361 case R_TLSGD_PC: 362 return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 363 case R_TLSDESC: 364 return In<ELFT>::Got->getGlobalDynAddr(Body) + A; 365 case R_TLSDESC_PAGE: 366 return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) - 367 getAArch64Page(P); 368 case R_PLT: 369 return Body.getPltVA<ELFT>() + A; 370 case R_PLT_PC: 371 case R_PPC_PLT_OPD: 372 return Body.getPltVA<ELFT>() + A - P; 373 case R_SIZE: 374 return Body.getSize<ELFT>() + A; 375 case R_GOTREL: 376 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA(); 377 case R_GOTREL_FROM_END: 378 return Body.getVA<ELFT>(A) - In<ELFT>::Got->getVA() - 379 In<ELFT>::Got->getSize(); 380 case R_RELAX_TLS_GD_TO_IE_END: 381 case R_GOT_FROM_END: 382 return Body.getGotOffset<ELFT>() + A - In<ELFT>::Got->getSize(); 383 case R_RELAX_TLS_GD_TO_IE_ABS: 384 case R_GOT: 385 return Body.getGotVA<ELFT>() + A; 386 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 387 case R_GOT_PAGE_PC: 388 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 389 case R_RELAX_TLS_GD_TO_IE: 390 case R_GOT_PC: 391 return Body.getGotVA<ELFT>() + A - P; 392 case R_GOTONLY_PC: 393 return In<ELFT>::Got->getVA() + A - P; 394 case R_GOTONLY_PC_FROM_END: 395 return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize(); 396 case R_RELAX_TLS_LD_TO_LE: 397 case R_RELAX_TLS_IE_TO_LE: 398 case R_RELAX_TLS_GD_TO_LE: 399 case R_TLS: 400 // A weak undefined TLS symbol resolves to the base of the TLS 401 // block, i.e. gets a value of zero. If we pass --gc-sections to 402 // lld and .tbss is not referenced, it gets reclaimed and we don't 403 // create a TLS program header. Therefore, we resolve this 404 // statically to zero. 405 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 406 Body.symbol()->isWeak()) 407 return 0; 408 if (Target->TcbSize) 409 return Body.getVA<ELFT>(A) + 410 alignTo(Target->TcbSize, Out<ELFT>::TlsPhdr->p_align); 411 return Body.getVA<ELFT>(A) - Out<ELFT>::TlsPhdr->p_memsz; 412 case R_RELAX_TLS_GD_TO_LE_NEG: 413 case R_NEG_TLS: 414 return Out<ELF32LE>::TlsPhdr->p_memsz - Body.getVA<ELFT>(A); 415 case R_ABS: 416 case R_RELAX_GOT_PC_NOPIC: 417 return Body.getVA<ELFT>(A); 418 case R_GOT_OFF: 419 return Body.getGotOffset<ELFT>() + A; 420 case R_MIPS_GOT_LOCAL_PAGE: 421 // If relocation against MIPS local symbol requires GOT entry, this entry 422 // should be initialized by 'page address'. This address is high 16-bits 423 // of sum the symbol's value and the addend. 424 return In<ELFT>::MipsGot->getVA() + 425 In<ELFT>::MipsGot->getPageEntryOffset(Body, A) - 426 In<ELFT>::MipsGot->getGp(); 427 case R_MIPS_GOT_OFF: 428 case R_MIPS_GOT_OFF32: 429 // In case of MIPS if a GOT relocation has non-zero addend this addend 430 // should be applied to the GOT entry content not to the GOT entry offset. 431 // That is why we use separate expression type. 432 return In<ELFT>::MipsGot->getVA() + 433 In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) - 434 In<ELFT>::MipsGot->getGp(); 435 case R_MIPS_GOTREL: 436 return Body.getVA<ELFT>(A) - In<ELFT>::MipsGot->getGp(); 437 case R_MIPS_TLSGD: 438 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 439 In<ELFT>::MipsGot->getGlobalDynOffset(Body) - 440 In<ELFT>::MipsGot->getGp(); 441 case R_MIPS_TLSLD: 442 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 443 In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp(); 444 case R_PPC_OPD: { 445 uint64_t SymVA = Body.getVA<ELFT>(A); 446 // If we have an undefined weak symbol, we might get here with a symbol 447 // address of zero. That could overflow, but the code must be unreachable, 448 // so don't bother doing anything at all. 449 if (!SymVA) 450 return 0; 451 if (Out<ELF64BE>::Opd) { 452 // If this is a local call, and we currently have the address of a 453 // function-descriptor, get the underlying code address instead. 454 uint64_t OpdStart = Out<ELF64BE>::Opd->Addr; 455 uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->Size; 456 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 457 if (InOpd) 458 SymVA = read64be(&Out<ELF64BE>::OpdBuf[SymVA - OpdStart]); 459 } 460 return SymVA - P; 461 } 462 case R_PC: 463 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 464 // On ARM and AArch64 a branch to an undefined weak resolves to the 465 // next instruction, otherwise the place. 466 if (Config->EMachine == EM_ARM) 467 return getARMUndefinedRelativeWeakVA(Type, A, P); 468 if (Config->EMachine == EM_AARCH64) 469 return getAArch64UndefinedRelativeWeakVA(Type, A, P); 470 } 471 case R_RELAX_GOT_PC: 472 return Body.getVA<ELFT>(A) - P; 473 case R_PLT_PAGE_PC: 474 case R_PAGE_PC: 475 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 476 return getAArch64Page(A); 477 return getAArch64Page(Body.getVA<ELFT>(A)) - getAArch64Page(P); 478 } 479 llvm_unreachable("Invalid expression"); 480 } 481 482 // This function applies relocations to sections without SHF_ALLOC bit. 483 // Such sections are never mapped to memory at runtime. Debug sections are 484 // an example. Relocations in non-alloc sections are much easier to 485 // handle than in allocated sections because it will never need complex 486 // treatement such as GOT or PLT (because at runtime no one refers them). 487 // So, we handle relocations for non-alloc sections directly in this 488 // function as a performance optimization. 489 template <class ELFT> 490 template <class RelTy> 491 void InputSection<ELFT>::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 492 for (const RelTy &Rel : Rels) { 493 uint32_t Type = Rel.getType(Config->Mips64EL); 494 uintX_t Offset = this->getOffset(Rel.r_offset); 495 uint8_t *BufLoc = Buf + Offset; 496 uintX_t Addend = getAddend<ELFT>(Rel); 497 if (!RelTy::IsRela) 498 Addend += Target->getImplicitAddend(BufLoc, Type); 499 500 SymbolBody &Sym = this->File->getRelocTargetSym(Rel); 501 if (Target->getRelExpr(Type, Sym) != R_ABS) { 502 error(this->getLocation(Offset) + ": has non-ABS reloc"); 503 return; 504 } 505 506 uintX_t AddrLoc = this->OutSec->Addr + Offset; 507 uint64_t SymVA = 0; 508 if (!Sym.isTls() || Out<ELFT>::TlsPhdr) 509 SymVA = SignExtend64<sizeof(uintX_t) * 8>( 510 getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS)); 511 Target->relocateOne(BufLoc, Type, SymVA); 512 } 513 } 514 515 template <class ELFT> 516 void InputSectionBase<ELFT>::relocate(uint8_t *Buf, uint8_t *BufEnd) { 517 // scanReloc function in Writer.cpp constructs Relocations 518 // vector only for SHF_ALLOC'ed sections. For other sections, 519 // we handle relocations directly here. 520 auto *IS = dyn_cast<InputSection<ELFT>>(this); 521 if (IS && !(IS->Flags & SHF_ALLOC)) { 522 if (IS->AreRelocsRela) 523 IS->relocateNonAlloc(Buf, IS->relas()); 524 else 525 IS->relocateNonAlloc(Buf, IS->rels()); 526 return; 527 } 528 529 const unsigned Bits = sizeof(uintX_t) * 8; 530 for (const Relocation &Rel : Relocations) { 531 uintX_t Offset = getOffset(Rel.Offset); 532 uint8_t *BufLoc = Buf + Offset; 533 uint32_t Type = Rel.Type; 534 uintX_t A = Rel.Addend; 535 536 uintX_t AddrLoc = OutSec->Addr + Offset; 537 RelExpr Expr = Rel.Expr; 538 uint64_t TargetVA = SignExtend64<Bits>( 539 getRelocTargetVA<ELFT>(Type, A, AddrLoc, *Rel.Sym, Expr)); 540 541 switch (Expr) { 542 case R_RELAX_GOT_PC: 543 case R_RELAX_GOT_PC_NOPIC: 544 Target->relaxGot(BufLoc, TargetVA); 545 break; 546 case R_RELAX_TLS_IE_TO_LE: 547 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 548 break; 549 case R_RELAX_TLS_LD_TO_LE: 550 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 551 break; 552 case R_RELAX_TLS_GD_TO_LE: 553 case R_RELAX_TLS_GD_TO_LE_NEG: 554 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 555 break; 556 case R_RELAX_TLS_GD_TO_IE: 557 case R_RELAX_TLS_GD_TO_IE_ABS: 558 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 559 case R_RELAX_TLS_GD_TO_IE_END: 560 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 561 break; 562 case R_PPC_PLT_OPD: 563 // Patch a nop (0x60000000) to a ld. 564 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 565 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 566 // fallthrough 567 default: 568 Target->relocateOne(BufLoc, Type, TargetVA); 569 break; 570 } 571 } 572 } 573 574 template <class ELFT> void InputSection<ELFT>::writeTo(uint8_t *Buf) { 575 if (this->Type == SHT_NOBITS) 576 return; 577 578 if (auto *S = dyn_cast<SyntheticSection<ELFT>>(this)) { 579 S->writeTo(Buf + OutSecOff); 580 return; 581 } 582 583 // If -r is given, then an InputSection may be a relocation section. 584 if (this->Type == SHT_RELA) { 585 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rela>()); 586 return; 587 } 588 if (this->Type == SHT_REL) { 589 copyRelocations(Buf + OutSecOff, this->template getDataAs<Elf_Rel>()); 590 return; 591 } 592 593 // Copy section contents from source object file to output file. 594 ArrayRef<uint8_t> Data = this->Data; 595 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 596 597 // Iterate over all relocation sections that apply to this section. 598 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 599 this->relocate(Buf, BufEnd); 600 601 // The section might have a data/code generated by the linker and need 602 // to be written after the section. Usually these are thunks - small piece 603 // of code used to jump between "incompatible" functions like PIC and non-PIC 604 // or if the jump target too far and its address does not fit to the short 605 // jump istruction. 606 if (!Thunks.empty()) { 607 Buf += OutSecOff + getThunkOff(); 608 for (const Thunk<ELFT> *T : Thunks) { 609 T->writeTo(Buf); 610 Buf += T->size(); 611 } 612 } 613 } 614 615 template <class ELFT> 616 void InputSection<ELFT>::replace(InputSection<ELFT> *Other) { 617 this->Alignment = std::max(this->Alignment, Other->Alignment); 618 Other->Repl = this->Repl; 619 Other->Live = false; 620 } 621 622 template <class ELFT> 623 EhInputSection<ELFT>::EhInputSection(elf::ObjectFile<ELFT> *F, 624 const Elf_Shdr *Header, StringRef Name) 625 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::EHFrame) { 626 // Mark .eh_frame sections as live by default because there are 627 // usually no relocations that point to .eh_frames. Otherwise, 628 // the garbage collector would drop all .eh_frame sections. 629 this->Live = true; 630 } 631 632 template <class ELFT> 633 bool EhInputSection<ELFT>::classof(const InputSectionData *S) { 634 return S->kind() == InputSectionBase<ELFT>::EHFrame; 635 } 636 637 // Returns the index of the first relocation that points to a region between 638 // Begin and Begin+Size. 639 template <class IntTy, class RelTy> 640 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 641 unsigned &RelocI) { 642 // Start search from RelocI for fast access. That works because the 643 // relocations are sorted in .eh_frame. 644 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 645 const RelTy &Rel = Rels[RelocI]; 646 if (Rel.r_offset < Begin) 647 continue; 648 649 if (Rel.r_offset < Begin + Size) 650 return RelocI; 651 return -1; 652 } 653 return -1; 654 } 655 656 // .eh_frame is a sequence of CIE or FDE records. 657 // This function splits an input section into records and returns them. 658 template <class ELFT> void EhInputSection<ELFT>::split() { 659 // Early exit if already split. 660 if (!this->Pieces.empty()) 661 return; 662 663 if (this->NumRelocations) { 664 if (this->AreRelocsRela) 665 split(this->relas()); 666 else 667 split(this->rels()); 668 return; 669 } 670 split(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 671 } 672 673 template <class ELFT> 674 template <class RelTy> 675 void EhInputSection<ELFT>::split(ArrayRef<RelTy> Rels) { 676 ArrayRef<uint8_t> Data = this->Data; 677 unsigned RelI = 0; 678 for (size_t Off = 0, End = Data.size(); Off != End;) { 679 size_t Size = readEhRecordSize<ELFT>(this, Off); 680 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 681 // The empty record is the end marker. 682 if (Size == 4) 683 break; 684 Off += Size; 685 } 686 } 687 688 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 689 // Optimize the common case. 690 StringRef S((const char *)A.data(), A.size()); 691 if (EntSize == 1) 692 return S.find(0); 693 694 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 695 const char *B = S.begin() + I; 696 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 697 return I; 698 } 699 return StringRef::npos; 700 } 701 702 // Split SHF_STRINGS section. Such section is a sequence of 703 // null-terminated strings. 704 template <class ELFT> 705 void MergeInputSection<ELFT>::splitStrings(ArrayRef<uint8_t> Data, 706 size_t EntSize) { 707 size_t Off = 0; 708 bool IsAlloc = this->Flags & SHF_ALLOC; 709 while (!Data.empty()) { 710 size_t End = findNull(Data, EntSize); 711 if (End == StringRef::npos) 712 fatal(toString(this) + ": string is not null terminated"); 713 size_t Size = End + EntSize; 714 Pieces.emplace_back(Off, !IsAlloc); 715 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 716 Data = Data.slice(Size); 717 Off += Size; 718 } 719 } 720 721 // Split non-SHF_STRINGS section. Such section is a sequence of 722 // fixed size records. 723 template <class ELFT> 724 void MergeInputSection<ELFT>::splitNonStrings(ArrayRef<uint8_t> Data, 725 size_t EntSize) { 726 size_t Size = Data.size(); 727 assert((Size % EntSize) == 0); 728 bool IsAlloc = this->Flags & SHF_ALLOC; 729 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 730 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 731 Pieces.emplace_back(I, !IsAlloc); 732 } 733 } 734 735 template <class ELFT> 736 MergeInputSection<ELFT>::MergeInputSection(elf::ObjectFile<ELFT> *F, 737 const Elf_Shdr *Header, 738 StringRef Name) 739 : InputSectionBase<ELFT>(F, Header, Name, InputSectionBase<ELFT>::Merge) {} 740 741 // This function is called after we obtain a complete list of input sections 742 // that need to be linked. This is responsible to split section contents 743 // into small chunks for further processing. 744 // 745 // Note that this function is called from parallel_for_each. This must be 746 // thread-safe (i.e. no memory allocation from the pools). 747 template <class ELFT> void MergeInputSection<ELFT>::splitIntoPieces() { 748 ArrayRef<uint8_t> Data = this->Data; 749 uintX_t EntSize = this->Entsize; 750 if (this->Flags & SHF_STRINGS) 751 splitStrings(Data, EntSize); 752 else 753 splitNonStrings(Data, EntSize); 754 755 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 756 for (uintX_t Off : LiveOffsets) 757 this->getSectionPiece(Off)->Live = true; 758 } 759 760 template <class ELFT> 761 bool MergeInputSection<ELFT>::classof(const InputSectionData *S) { 762 return S->kind() == InputSectionBase<ELFT>::Merge; 763 } 764 765 // Do binary search to get a section piece at a given input offset. 766 template <class ELFT> 767 SectionPiece *MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) { 768 auto *This = static_cast<const MergeInputSection<ELFT> *>(this); 769 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 770 } 771 772 template <class It, class T, class Compare> 773 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 774 size_t Size = std::distance(First, Last); 775 assert(Size != 0); 776 while (Size != 1) { 777 size_t H = Size / 2; 778 const It MI = First + H; 779 Size -= H; 780 First = Comp(Value, *MI) ? First : First + H; 781 } 782 return Comp(Value, *First) ? First : First + 1; 783 } 784 785 template <class ELFT> 786 const SectionPiece * 787 MergeInputSection<ELFT>::getSectionPiece(uintX_t Offset) const { 788 uintX_t Size = this->Data.size(); 789 if (Offset >= Size) 790 fatal(toString(this) + ": entry is past the end of the section"); 791 792 // Find the element this offset points to. 793 auto I = fastUpperBound( 794 Pieces.begin(), Pieces.end(), Offset, 795 [](const uintX_t &A, const SectionPiece &B) { return A < B.InputOff; }); 796 --I; 797 return &*I; 798 } 799 800 // Returns the offset in an output section for a given input offset. 801 // Because contents of a mergeable section is not contiguous in output, 802 // it is not just an addition to a base output offset. 803 template <class ELFT> 804 typename ELFT::uint MergeInputSection<ELFT>::getOffset(uintX_t Offset) const { 805 // Initialize OffsetMap lazily. 806 std::call_once(InitOffsetMap, [&] { 807 OffsetMap.reserve(Pieces.size()); 808 for (const SectionPiece &Piece : Pieces) 809 OffsetMap[Piece.InputOff] = Piece.OutputOff; 810 }); 811 812 // Find a string starting at a given offset. 813 auto It = OffsetMap.find(Offset); 814 if (It != OffsetMap.end()) 815 return It->second; 816 817 if (!this->Live) 818 return 0; 819 820 // If Offset is not at beginning of a section piece, it is not in the map. 821 // In that case we need to search from the original section piece vector. 822 const SectionPiece &Piece = *this->getSectionPiece(Offset); 823 if (!Piece.Live) 824 return 0; 825 826 uintX_t Addend = Offset - Piece.InputOff; 827 return Piece.OutputOff + Addend; 828 } 829 830 template class elf::InputSectionBase<ELF32LE>; 831 template class elf::InputSectionBase<ELF32BE>; 832 template class elf::InputSectionBase<ELF64LE>; 833 template class elf::InputSectionBase<ELF64BE>; 834 835 template class elf::InputSection<ELF32LE>; 836 template class elf::InputSection<ELF32BE>; 837 template class elf::InputSection<ELF64LE>; 838 template class elf::InputSection<ELF64BE>; 839 840 template class elf::EhInputSection<ELF32LE>; 841 template class elf::EhInputSection<ELF32BE>; 842 template class elf::EhInputSection<ELF64LE>; 843 template class elf::EhInputSection<ELF64BE>; 844 845 template class elf::MergeInputSection<ELF32LE>; 846 template class elf::MergeInputSection<ELF32BE>; 847 template class elf::MergeInputSection<ELF64LE>; 848 template class elf::MergeInputSection<ELF64BE>; 849 850 template std::string elf::toString(const InputSectionBase<ELF32LE> *); 851 template std::string elf::toString(const InputSectionBase<ELF32BE> *); 852 template std::string elf::toString(const InputSectionBase<ELF64LE> *); 853 template std::string elf::toString(const InputSectionBase<ELF64BE> *); 854