1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputSection.h"
11 #include "Config.h"
12 #include "EhFrame.h"
13 #include "InputFiles.h"
14 #include "LinkerScript.h"
15 #include "Memory.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "llvm/Object/Decompressor.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Path.h"
27 #include "llvm/Support/Threading.h"
28 #include "llvm/Support/xxhash.h"
29 #include <mutex>
30 
31 using namespace llvm;
32 using namespace llvm::ELF;
33 using namespace llvm::object;
34 using namespace llvm::support;
35 using namespace llvm::support::endian;
36 using namespace llvm::sys;
37 
38 using namespace lld;
39 using namespace lld::elf;
40 
41 std::vector<InputSectionBase *> elf::InputSections;
42 
43 // Returns a string to construct an error message.
44 std::string lld::toString(const InputSectionBase *Sec) {
45   return (toString(Sec->File) + ":(" + Sec->Name + ")").str();
46 }
47 
48 DenseMap<SectionBase *, int> elf::buildSectionOrder() {
49   DenseMap<SectionBase *, int> SectionOrder;
50   if (Config->SymbolOrderingFile.empty())
51     return SectionOrder;
52 
53   // Build a map from symbols to their priorities. Symbols that didn't
54   // appear in the symbol ordering file have the lowest priority 0.
55   // All explicitly mentioned symbols have negative (higher) priorities.
56   DenseMap<StringRef, int> SymbolOrder;
57   int Priority = -Config->SymbolOrderingFile.size();
58   for (StringRef S : Config->SymbolOrderingFile)
59     SymbolOrder.insert({S, Priority++});
60 
61   // Build a map from sections to their priorities.
62   for (InputFile *File : ObjectFiles) {
63     for (SymbolBody *Body : File->getSymbols()) {
64       auto *D = dyn_cast<DefinedRegular>(Body);
65       if (!D || !D->Section)
66         continue;
67       int &Priority = SectionOrder[D->Section];
68       Priority = std::min(Priority, SymbolOrder.lookup(D->getName()));
69     }
70   }
71   return SectionOrder;
72 }
73 
74 template <class ELFT>
75 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File,
76                                             const typename ELFT::Shdr *Hdr) {
77   if (!File || Hdr->sh_type == SHT_NOBITS)
78     return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size);
79   return check(File->getObj().getSectionContents(Hdr));
80 }
81 
82 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags,
83                                    uint32_t Type, uint64_t Entsize,
84                                    uint32_t Link, uint32_t Info,
85                                    uint32_t Alignment, ArrayRef<uint8_t> Data,
86                                    StringRef Name, Kind SectionKind)
87     : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info,
88                   Link),
89       File(File), Data(Data), Repl(this) {
90   Assigned = false;
91   NumRelocations = 0;
92   AreRelocsRela = false;
93 
94   // The ELF spec states that a value of 0 means the section has
95   // no alignment constraits.
96   uint32_t V = std::max<uint64_t>(Alignment, 1);
97   if (!isPowerOf2_64(V))
98     fatal(toString(File) + ": section sh_addralign is not a power of 2");
99   this->Alignment = V;
100 }
101 
102 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
103 // SHF_GROUP is a marker that a section belongs to some comdat group.
104 // That flag doesn't make sense in an executable.
105 static uint64_t getFlags(uint64_t Flags) {
106   Flags &= ~(uint64_t)SHF_INFO_LINK;
107   if (!Config->Relocatable)
108     Flags &= ~(uint64_t)SHF_GROUP;
109   return Flags;
110 }
111 
112 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
113 // March 2017) fail to infer section types for sections starting with
114 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
115 // SHF_INIT_ARRAY. As a result, the following assembler directive
116 // creates ".init_array.100" with SHT_PROGBITS, for example.
117 //
118 //   .section .init_array.100, "aw"
119 //
120 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
121 // incorrect inputs as if they were correct from the beginning.
122 static uint64_t getType(uint64_t Type, StringRef Name) {
123   if (Type == SHT_PROGBITS && Name.startswith(".init_array."))
124     return SHT_INIT_ARRAY;
125   if (Type == SHT_PROGBITS && Name.startswith(".fini_array."))
126     return SHT_FINI_ARRAY;
127   return Type;
128 }
129 
130 template <class ELFT>
131 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File,
132                                    const typename ELFT::Shdr *Hdr,
133                                    StringRef Name, Kind SectionKind)
134     : InputSectionBase(File, getFlags(Hdr->sh_flags),
135                        getType(Hdr->sh_type, Name), Hdr->sh_entsize,
136                        Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign,
137                        getSectionContents(File, Hdr), Name, SectionKind) {
138   // We reject object files having insanely large alignments even though
139   // they are allowed by the spec. I think 4GB is a reasonable limitation.
140   // We might want to relax this in the future.
141   if (Hdr->sh_addralign > UINT32_MAX)
142     fatal(toString(File) + ": section sh_addralign is too large");
143 }
144 
145 size_t InputSectionBase::getSize() const {
146   if (auto *S = dyn_cast<SyntheticSection>(this))
147     return S->getSize();
148 
149   return Data.size();
150 }
151 
152 uint64_t InputSectionBase::getOffsetInFile() const {
153   const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart();
154   const uint8_t *SecStart = Data.begin();
155   return SecStart - FileStart;
156 }
157 
158 uint64_t SectionBase::getOffset(uint64_t Offset) const {
159   switch (kind()) {
160   case Output: {
161     auto *OS = cast<OutputSection>(this);
162     // For output sections we treat offset -1 as the end of the section.
163     return Offset == uint64_t(-1) ? OS->Size : Offset;
164   }
165   case Regular:
166     return cast<InputSection>(this)->OutSecOff + Offset;
167   case Synthetic: {
168     auto *IS = cast<InputSection>(this);
169     // For synthetic sections we treat offset -1 as the end of the section.
170     return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset);
171   }
172   case EHFrame:
173     // The file crtbeginT.o has relocations pointing to the start of an empty
174     // .eh_frame that is known to be the first in the link. It does that to
175     // identify the start of the output .eh_frame.
176     return Offset;
177   case Merge:
178     const MergeInputSection *MS = cast<MergeInputSection>(this);
179     if (InputSection *IS = MS->getParent())
180       return IS->OutSecOff + MS->getOffset(Offset);
181     return MS->getOffset(Offset);
182   }
183   llvm_unreachable("invalid section kind");
184 }
185 
186 OutputSection *SectionBase::getOutputSection() {
187   InputSection *Sec;
188   if (auto *IS = dyn_cast<InputSection>(this))
189     Sec = cast<InputSection>(IS->Repl);
190   else if (auto *MS = dyn_cast<MergeInputSection>(this))
191     Sec = MS->getParent();
192   else if (auto *EH = dyn_cast<EhInputSection>(this))
193     Sec = EH->getParent();
194   else
195     return cast<OutputSection>(this);
196   return Sec ? Sec->getParent() : nullptr;
197 }
198 
199 // Uncompress section contents if required. Note that this function
200 // is called from parallelForEach, so it must be thread-safe.
201 void InputSectionBase::maybeUncompress() {
202   if (UncompressBuf || !Decompressor::isCompressedELFSection(Flags, Name))
203     return;
204 
205   Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data),
206                                                 Config->IsLE, Config->Is64));
207 
208   size_t Size = Dec.getDecompressedSize();
209   UncompressBuf.reset(new char[Size]());
210   if (Error E = Dec.decompress({UncompressBuf.get(), Size}))
211     fatal(toString(this) +
212           ": decompress failed: " + llvm::toString(std::move(E)));
213 
214   this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size);
215   this->Flags &= ~(uint64_t)SHF_COMPRESSED;
216 }
217 
218 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const {
219   return getOffset(Sym.Value);
220 }
221 
222 InputSection *InputSectionBase::getLinkOrderDep() const {
223   if ((Flags & SHF_LINK_ORDER) && Link != 0) {
224     InputSectionBase *L = File->getSections()[Link];
225     if (auto *IS = dyn_cast<InputSection>(L))
226       return IS;
227     error("a section with SHF_LINK_ORDER should not refer a non-regular "
228           "section: " +
229           toString(L));
230   }
231   return nullptr;
232 }
233 
234 // Returns a source location string. Used to construct an error message.
235 template <class ELFT>
236 std::string InputSectionBase::getLocation(uint64_t Offset) {
237   // We don't have file for synthetic sections.
238   if (getFile<ELFT>() == nullptr)
239     return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")")
240         .str();
241 
242   // First check if we can get desired values from debugging information.
243   std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset);
244   if (!LineInfo.empty())
245     return LineInfo;
246 
247   // File->SourceFile contains STT_FILE symbol that contains a
248   // source file name. If it's missing, we use an object file name.
249   std::string SrcFile = getFile<ELFT>()->SourceFile;
250   if (SrcFile.empty())
251     SrcFile = toString(File);
252 
253   // Find a function symbol that encloses a given location.
254   for (SymbolBody *B : File->getSymbols())
255     if (auto *D = dyn_cast<DefinedRegular>(B))
256       if (D->Section == this && D->Type == STT_FUNC)
257         if (D->Value <= Offset && Offset < D->Value + D->Size)
258           return SrcFile + ":(function " + toString(*D) + ")";
259 
260   // If there's no symbol, print out the offset in the section.
261   return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str();
262 }
263 
264 // Concatenates arguments to construct a string representing an error location.
265 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
266   std::string Filename = path::filename(Path);
267   std::string Lineno = ":" + std::to_string(Line);
268   if (Filename == Path)
269     return Filename + Lineno;
270   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
271 }
272 
273 // This function is intended to be used for constructing an error message.
274 // The returned message looks like this:
275 //
276 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
277 //
278 //  Returns an empty string if there's no way to get line info.
279 template <class ELFT>
280 std::string InputSectionBase::getSrcMsg(const SymbolBody &Sym,
281                                         uint64_t Offset) {
282   // Synthetic sections don't have input files.
283   ObjFile<ELFT> *File = getFile<ELFT>();
284   if (!File)
285     return "";
286 
287   // In DWARF, functions and variables are stored to different places.
288   // First, lookup a function for a given offset.
289   if (Optional<DILineInfo> Info = File->getDILineInfo(this, Offset))
290     return createFileLineMsg(Info->FileName, Info->Line);
291 
292   // If it failed, lookup again as a variable.
293   if (Optional<std::pair<std::string, unsigned>> FileLine =
294           File->getVariableLoc(Sym.getName()))
295     return createFileLineMsg(FileLine->first, FileLine->second);
296 
297   // File->SourceFile contains STT_FILE symbol, and that is a last resort.
298   return File->SourceFile;
299 }
300 
301 // Returns a filename string along with an optional section name. This
302 // function is intended to be used for constructing an error
303 // message. The returned message looks like this:
304 //
305 //   path/to/foo.o:(function bar)
306 //
307 // or
308 //
309 //   path/to/foo.o:(function bar) in archive path/to/bar.a
310 std::string InputSectionBase::getObjMsg(uint64_t Off) {
311   // Synthetic sections don't have input files.
312   if (!File)
313     return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str();
314   std::string Filename = File->getName();
315 
316   std::string Archive;
317   if (!File->ArchiveName.empty())
318     Archive = (" in archive " + File->ArchiveName).str();
319 
320   // Find a symbol that encloses a given location.
321   for (SymbolBody *B : File->getSymbols())
322     if (auto *D = dyn_cast<DefinedRegular>(B))
323       if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size)
324         return Filename + ":(" + toString(*D) + ")" + Archive;
325 
326   // If there's no symbol, print out the offset in the section.
327   return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive)
328       .str();
329 }
330 
331 InputSectionBase InputSectionBase::Discarded;
332 
333 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment,
334                            ArrayRef<uint8_t> Data, StringRef Name, Kind K)
335     : InputSectionBase(nullptr, Flags, Type,
336                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data,
337                        Name, K) {}
338 
339 template <class ELFT>
340 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header,
341                            StringRef Name)
342     : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {}
343 
344 bool InputSection::classof(const SectionBase *S) {
345   return S->kind() == SectionBase::Regular ||
346          S->kind() == SectionBase::Synthetic;
347 }
348 
349 OutputSection *InputSection::getParent() const {
350   return cast_or_null<OutputSection>(Parent);
351 }
352 
353 // Copy SHT_GROUP section contents. Used only for the -r option.
354 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) {
355   // ELFT::Word is the 32-bit integral type in the target endianness.
356   typedef typename ELFT::Word u32;
357   ArrayRef<u32> From = getDataAs<u32>();
358   auto *To = reinterpret_cast<u32 *>(Buf);
359 
360   // The first entry is not a section number but a flag.
361   *To++ = From[0];
362 
363   // Adjust section numbers because section numbers in an input object
364   // files are different in the output.
365   ArrayRef<InputSectionBase *> Sections = this->File->getSections();
366   for (uint32_t Idx : From.slice(1))
367     *To++ = Sections[Idx]->getOutputSection()->SectionIndex;
368 }
369 
370 InputSectionBase *InputSection::getRelocatedSection() {
371   assert(this->Type == SHT_RELA || this->Type == SHT_REL);
372   ArrayRef<InputSectionBase *> Sections = this->File->getSections();
373   return Sections[this->Info];
374 }
375 
376 // This is used for -r and --emit-relocs. We can't use memcpy to copy
377 // relocations because we need to update symbol table offset and section index
378 // for each relocation. So we copy relocations one by one.
379 template <class ELFT, class RelTy>
380 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) {
381   InputSectionBase *Sec = getRelocatedSection();
382 
383   for (const RelTy &Rel : Rels) {
384     RelType Type = Rel.getType(Config->IsMips64EL);
385     SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel);
386 
387     auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf);
388     Buf += sizeof(RelTy);
389 
390     if (Config->IsRela)
391       P->r_addend = getAddend<ELFT>(Rel);
392 
393     // Output section VA is zero for -r, so r_offset is an offset within the
394     // section, but for --emit-relocs it is an virtual address.
395     P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset);
396     P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type,
397                         Config->IsMips64EL);
398 
399     if (Body.Type == STT_SECTION) {
400       // We combine multiple section symbols into only one per
401       // section. This means we have to update the addend. That is
402       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
403       // section data. We do that by adding to the Relocation vector.
404 
405       // .eh_frame is horribly special and can reference discarded sections. To
406       // avoid having to parse and recreate .eh_frame, we just replace any
407       // relocation in it pointing to discarded sections with R_*_NONE, which
408       // hopefully creates a frame that is ignored at runtime.
409       SectionBase *Section = cast<DefinedRegular>(Body).Section;
410       if (Section == &InputSection::Discarded) {
411         P->setSymbolAndType(0, 0, false);
412         continue;
413       }
414 
415       if (Config->IsRela) {
416         P->r_addend += Body.getVA() - Section->getOutputSection()->Addr;
417       } else if (Config->Relocatable) {
418         const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset;
419         Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset,
420                                     Target->getImplicitAddend(BufLoc, Type),
421                                     &Body});
422       }
423     }
424 
425   }
426 }
427 
428 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
429 // references specially. The general rule is that the value of the symbol in
430 // this context is the address of the place P. A further special case is that
431 // branch relocations to an undefined weak reference resolve to the next
432 // instruction.
433 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A,
434                                               uint32_t P) {
435   switch (Type) {
436   // Unresolved branch relocations to weak references resolve to next
437   // instruction, this will be either 2 or 4 bytes on from P.
438   case R_ARM_THM_JUMP11:
439     return P + 2 + A;
440   case R_ARM_CALL:
441   case R_ARM_JUMP24:
442   case R_ARM_PC24:
443   case R_ARM_PLT32:
444   case R_ARM_PREL31:
445   case R_ARM_THM_JUMP19:
446   case R_ARM_THM_JUMP24:
447     return P + 4 + A;
448   case R_ARM_THM_CALL:
449     // We don't want an interworking BLX to ARM
450     return P + 5 + A;
451   // Unresolved non branch pc-relative relocations
452   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
453   // targets a weak-reference.
454   case R_ARM_MOVW_PREL_NC:
455   case R_ARM_MOVT_PREL:
456   case R_ARM_REL32:
457   case R_ARM_THM_MOVW_PREL_NC:
458   case R_ARM_THM_MOVT_PREL:
459     return P + A;
460   }
461   llvm_unreachable("ARM pc-relative relocation expected\n");
462 }
463 
464 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
465 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A,
466                                                   uint64_t P) {
467   switch (Type) {
468   // Unresolved branch relocations to weak references resolve to next
469   // instruction, this is 4 bytes on from P.
470   case R_AARCH64_CALL26:
471   case R_AARCH64_CONDBR19:
472   case R_AARCH64_JUMP26:
473   case R_AARCH64_TSTBR14:
474     return P + 4 + A;
475   // Unresolved non branch pc-relative relocations
476   case R_AARCH64_PREL16:
477   case R_AARCH64_PREL32:
478   case R_AARCH64_PREL64:
479   case R_AARCH64_ADR_PREL_LO21:
480   case R_AARCH64_LD_PREL_LO19:
481     return P + A;
482   }
483   llvm_unreachable("AArch64 pc-relative relocation expected\n");
484 }
485 
486 // ARM SBREL relocations are of the form S + A - B where B is the static base
487 // The ARM ABI defines base to be "addressing origin of the output segment
488 // defining the symbol S". We defined the "addressing origin"/static base to be
489 // the base of the PT_LOAD segment containing the Body.
490 // The procedure call standard only defines a Read Write Position Independent
491 // RWPI variant so in practice we should expect the static base to be the base
492 // of the RW segment.
493 static uint64_t getARMStaticBase(const SymbolBody &Body) {
494   OutputSection *OS = Body.getOutputSection();
495   if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec)
496     fatal("SBREL relocation to " + Body.getName() + " without static base");
497   return OS->PtLoad->FirstSec->Addr;
498 }
499 
500 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P,
501                                  const SymbolBody &Body, RelExpr Expr) {
502   switch (Expr) {
503   case R_INVALID:
504     return 0;
505   case R_ABS:
506   case R_RELAX_GOT_PC_NOPIC:
507     return Body.getVA(A);
508   case R_ARM_SBREL:
509     return Body.getVA(A) - getARMStaticBase(Body);
510   case R_GOT:
511   case R_RELAX_TLS_GD_TO_IE_ABS:
512     return Body.getGotVA() + A;
513   case R_GOTONLY_PC:
514     return InX::Got->getVA() + A - P;
515   case R_GOTONLY_PC_FROM_END:
516     return InX::Got->getVA() + A - P + InX::Got->getSize();
517   case R_GOTREL:
518     return Body.getVA(A) - InX::Got->getVA();
519   case R_GOTREL_FROM_END:
520     return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize();
521   case R_GOT_FROM_END:
522   case R_RELAX_TLS_GD_TO_IE_END:
523     return Body.getGotOffset() + A - InX::Got->getSize();
524   case R_GOT_OFF:
525     return Body.getGotOffset() + A;
526   case R_GOT_PAGE_PC:
527   case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
528     return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P);
529   case R_GOT_PC:
530   case R_RELAX_TLS_GD_TO_IE:
531     return Body.getGotVA() + A - P;
532   case R_HINT:
533   case R_NONE:
534   case R_TLSDESC_CALL:
535     llvm_unreachable("cannot relocate hint relocs");
536   case R_MIPS_GOTREL:
537     return Body.getVA(A) - InX::MipsGot->getGp();
538   case R_MIPS_GOT_GP:
539     return InX::MipsGot->getGp() + A;
540   case R_MIPS_GOT_GP_PC: {
541     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
542     // is _gp_disp symbol. In that case we should use the following
543     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
544     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
545     uint64_t V = InX::MipsGot->getGp() + A - P;
546     if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16)
547       V += 4;
548     return V;
549   }
550   case R_MIPS_GOT_LOCAL_PAGE:
551     // If relocation against MIPS local symbol requires GOT entry, this entry
552     // should be initialized by 'page address'. This address is high 16-bits
553     // of sum the symbol's value and the addend.
554     return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) -
555            InX::MipsGot->getGp();
556   case R_MIPS_GOT_OFF:
557   case R_MIPS_GOT_OFF32:
558     // In case of MIPS if a GOT relocation has non-zero addend this addend
559     // should be applied to the GOT entry content not to the GOT entry offset.
560     // That is why we use separate expression type.
561     return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) -
562            InX::MipsGot->getGp();
563   case R_MIPS_TLSGD:
564     return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() +
565            InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp();
566   case R_MIPS_TLSLD:
567     return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() +
568            InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp();
569   case R_PAGE_PC:
570   case R_PLT_PAGE_PC: {
571     uint64_t Dest;
572     if (Body.isUndefWeak())
573       Dest = getAArch64Page(A);
574     else
575       Dest = getAArch64Page(Body.getVA(A));
576     return Dest - getAArch64Page(P);
577   }
578   case R_PC: {
579     uint64_t Dest;
580     if (Body.isUndefWeak()) {
581       // On ARM and AArch64 a branch to an undefined weak resolves to the
582       // next instruction, otherwise the place.
583       if (Config->EMachine == EM_ARM)
584         Dest = getARMUndefinedRelativeWeakVA(Type, A, P);
585       else if (Config->EMachine == EM_AARCH64)
586         Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P);
587       else
588         Dest = Body.getVA(A);
589     } else {
590       Dest = Body.getVA(A);
591     }
592     return Dest - P;
593   }
594   case R_PLT:
595     return Body.getPltVA() + A;
596   case R_PLT_PC:
597   case R_PPC_PLT_OPD:
598     return Body.getPltVA() + A - P;
599   case R_PPC_OPD: {
600     uint64_t SymVA = Body.getVA(A);
601     // If we have an undefined weak symbol, we might get here with a symbol
602     // address of zero. That could overflow, but the code must be unreachable,
603     // so don't bother doing anything at all.
604     if (!SymVA)
605       return 0;
606     if (Out::Opd) {
607       // If this is a local call, and we currently have the address of a
608       // function-descriptor, get the underlying code address instead.
609       uint64_t OpdStart = Out::Opd->Addr;
610       uint64_t OpdEnd = OpdStart + Out::Opd->Size;
611       bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd;
612       if (InOpd)
613         SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]);
614     }
615     return SymVA - P;
616   }
617   case R_PPC_TOC:
618     return getPPC64TocBase() + A;
619   case R_RELAX_GOT_PC:
620     return Body.getVA(A) - P;
621   case R_RELAX_TLS_GD_TO_LE:
622   case R_RELAX_TLS_IE_TO_LE:
623   case R_RELAX_TLS_LD_TO_LE:
624   case R_TLS:
625     // A weak undefined TLS symbol resolves to the base of the TLS
626     // block, i.e. gets a value of zero. If we pass --gc-sections to
627     // lld and .tbss is not referenced, it gets reclaimed and we don't
628     // create a TLS program header. Therefore, we resolve this
629     // statically to zero.
630     if (Body.isTls() && Body.isUndefWeak())
631       return 0;
632     if (Target->TcbSize)
633       return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align);
634     return Body.getVA(A) - Out::TlsPhdr->p_memsz;
635   case R_RELAX_TLS_GD_TO_LE_NEG:
636   case R_NEG_TLS:
637     return Out::TlsPhdr->p_memsz - Body.getVA(A);
638   case R_SIZE:
639     return A; // Body.getSize was already folded into the addend.
640   case R_TLSDESC:
641     return InX::Got->getGlobalDynAddr(Body) + A;
642   case R_TLSDESC_PAGE:
643     return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) -
644            getAArch64Page(P);
645   case R_TLSGD:
646     return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize();
647   case R_TLSGD_PC:
648     return InX::Got->getGlobalDynAddr(Body) + A - P;
649   case R_TLSLD:
650     return InX::Got->getTlsIndexOff() + A - InX::Got->getSize();
651   case R_TLSLD_PC:
652     return InX::Got->getTlsIndexVA() + A - P;
653   }
654   llvm_unreachable("Invalid expression");
655 }
656 
657 // This function applies relocations to sections without SHF_ALLOC bit.
658 // Such sections are never mapped to memory at runtime. Debug sections are
659 // an example. Relocations in non-alloc sections are much easier to
660 // handle than in allocated sections because it will never need complex
661 // treatement such as GOT or PLT (because at runtime no one refers them).
662 // So, we handle relocations for non-alloc sections directly in this
663 // function as a performance optimization.
664 template <class ELFT, class RelTy>
665 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) {
666   const unsigned Bits = sizeof(typename ELFT::uint) * 8;
667 
668   for (const RelTy &Rel : Rels) {
669     RelType Type = Rel.getType(Config->IsMips64EL);
670     uint64_t Offset = getOffset(Rel.r_offset);
671     uint8_t *BufLoc = Buf + Offset;
672     int64_t Addend = getAddend<ELFT>(Rel);
673     if (!RelTy::IsRela)
674       Addend += Target->getImplicitAddend(BufLoc, Type);
675 
676     SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel);
677     RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc);
678     if (Expr == R_NONE)
679       continue;
680     if (Expr != R_ABS) {
681       // GCC 8.0 or earlier have a bug that it emits R_386_GOTPC relocations
682       // against _GLOBAL_OFFSET_TABLE for .debug_info. The bug seems to have
683       // been fixed in 2017: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630,
684       // but we need to keep this bug-compatible code for a while.
685       if (Config->EMachine == EM_386 && Type == R_386_GOTPC)
686         continue;
687 
688       error(this->getLocation<ELFT>(Offset) + ": has non-ABS relocation " +
689             toString(Type) + " against symbol '" + toString(Sym) + "'");
690       return;
691     }
692 
693     if (Sym.isTls() && !Out::TlsPhdr)
694       Target->relocateOne(BufLoc, Type, 0);
695     else
696       Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend)));
697   }
698 }
699 
700 template <class ELFT>
701 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) {
702   if (Flags & SHF_ALLOC) {
703     relocateAlloc(Buf, BufEnd);
704     return;
705   }
706 
707   auto *Sec = cast<InputSection>(this);
708   if (Sec->AreRelocsRela)
709     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>());
710   else
711     Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>());
712 }
713 
714 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) {
715   assert(Flags & SHF_ALLOC);
716   const unsigned Bits = Config->Wordsize * 8;
717 
718   for (const Relocation &Rel : Relocations) {
719     uint64_t Offset = getOffset(Rel.Offset);
720     uint8_t *BufLoc = Buf + Offset;
721     RelType Type = Rel.Type;
722 
723     uint64_t AddrLoc = getOutputSection()->Addr + Offset;
724     RelExpr Expr = Rel.Expr;
725     uint64_t TargetVA = SignExtend64(
726         getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits);
727 
728     switch (Expr) {
729     case R_RELAX_GOT_PC:
730     case R_RELAX_GOT_PC_NOPIC:
731       Target->relaxGot(BufLoc, TargetVA);
732       break;
733     case R_RELAX_TLS_IE_TO_LE:
734       Target->relaxTlsIeToLe(BufLoc, Type, TargetVA);
735       break;
736     case R_RELAX_TLS_LD_TO_LE:
737       Target->relaxTlsLdToLe(BufLoc, Type, TargetVA);
738       break;
739     case R_RELAX_TLS_GD_TO_LE:
740     case R_RELAX_TLS_GD_TO_LE_NEG:
741       Target->relaxTlsGdToLe(BufLoc, Type, TargetVA);
742       break;
743     case R_RELAX_TLS_GD_TO_IE:
744     case R_RELAX_TLS_GD_TO_IE_ABS:
745     case R_RELAX_TLS_GD_TO_IE_PAGE_PC:
746     case R_RELAX_TLS_GD_TO_IE_END:
747       Target->relaxTlsGdToIe(BufLoc, Type, TargetVA);
748       break;
749     case R_PPC_PLT_OPD:
750       // Patch a nop (0x60000000) to a ld.
751       if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000)
752         write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1)
753       LLVM_FALLTHROUGH;
754     default:
755       Target->relocateOne(BufLoc, Type, TargetVA);
756       break;
757     }
758   }
759 }
760 
761 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) {
762   if (this->Type == SHT_NOBITS)
763     return;
764 
765   if (auto *S = dyn_cast<SyntheticSection>(this)) {
766     S->writeTo(Buf + OutSecOff);
767     return;
768   }
769 
770   // If -r or --emit-relocs is given, then an InputSection
771   // may be a relocation section.
772   if (this->Type == SHT_RELA) {
773     copyRelocations<ELFT>(Buf + OutSecOff,
774                           this->template getDataAs<typename ELFT::Rela>());
775     return;
776   }
777   if (this->Type == SHT_REL) {
778     copyRelocations<ELFT>(Buf + OutSecOff,
779                           this->template getDataAs<typename ELFT::Rel>());
780     return;
781   }
782 
783   // If -r is given, we may have a SHT_GROUP section.
784   if (this->Type == SHT_GROUP) {
785     copyShtGroup<ELFT>(Buf + OutSecOff);
786     return;
787   }
788 
789   // Copy section contents from source object file to output file
790   // and then apply relocations.
791   memcpy(Buf + OutSecOff, Data.data(), Data.size());
792   uint8_t *BufEnd = Buf + OutSecOff + Data.size();
793   this->relocate<ELFT>(Buf, BufEnd);
794 }
795 
796 void InputSection::replace(InputSection *Other) {
797   this->Alignment = std::max(this->Alignment, Other->Alignment);
798   Other->Repl = this->Repl;
799   Other->Live = false;
800 }
801 
802 template <class ELFT>
803 EhInputSection::EhInputSection(ObjFile<ELFT> *F,
804                                const typename ELFT::Shdr *Header,
805                                StringRef Name)
806     : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {
807   // Mark .eh_frame sections as live by default because there are
808   // usually no relocations that point to .eh_frames. Otherwise,
809   // the garbage collector would drop all .eh_frame sections.
810   this->Live = true;
811 }
812 
813 SyntheticSection *EhInputSection::getParent() const {
814   return cast_or_null<SyntheticSection>(Parent);
815 }
816 
817 // Returns the index of the first relocation that points to a region between
818 // Begin and Begin+Size.
819 template <class IntTy, class RelTy>
820 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels,
821                          unsigned &RelocI) {
822   // Start search from RelocI for fast access. That works because the
823   // relocations are sorted in .eh_frame.
824   for (unsigned N = Rels.size(); RelocI < N; ++RelocI) {
825     const RelTy &Rel = Rels[RelocI];
826     if (Rel.r_offset < Begin)
827       continue;
828 
829     if (Rel.r_offset < Begin + Size)
830       return RelocI;
831     return -1;
832   }
833   return -1;
834 }
835 
836 // .eh_frame is a sequence of CIE or FDE records.
837 // This function splits an input section into records and returns them.
838 template <class ELFT> void EhInputSection::split() {
839   // Early exit if already split.
840   if (!this->Pieces.empty())
841     return;
842 
843   if (this->AreRelocsRela)
844     split<ELFT>(this->relas<ELFT>());
845   else
846     split<ELFT>(this->rels<ELFT>());
847 }
848 
849 template <class ELFT, class RelTy>
850 void EhInputSection::split(ArrayRef<RelTy> Rels) {
851   ArrayRef<uint8_t> Data = this->Data;
852   unsigned RelI = 0;
853   for (size_t Off = 0, End = Data.size(); Off != End;) {
854     size_t Size = readEhRecordSize(this, Off);
855     this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI));
856     // The empty record is the end marker.
857     if (Size == 4)
858       break;
859     Off += Size;
860   }
861 }
862 
863 static size_t findNull(StringRef S, size_t EntSize) {
864   // Optimize the common case.
865   if (EntSize == 1)
866     return S.find(0);
867 
868   for (unsigned I = 0, N = S.size(); I != N; I += EntSize) {
869     const char *B = S.begin() + I;
870     if (std::all_of(B, B + EntSize, [](char C) { return C == 0; }))
871       return I;
872   }
873   return StringRef::npos;
874 }
875 
876 SyntheticSection *MergeInputSection::getParent() const {
877   return cast_or_null<SyntheticSection>(Parent);
878 }
879 
880 // Split SHF_STRINGS section. Such section is a sequence of
881 // null-terminated strings.
882 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) {
883   size_t Off = 0;
884   bool IsAlloc = this->Flags & SHF_ALLOC;
885   StringRef S = toStringRef(Data);
886 
887   while (!S.empty()) {
888     size_t End = findNull(S, EntSize);
889     if (End == StringRef::npos)
890       fatal(toString(this) + ": string is not null terminated");
891     size_t Size = End + EntSize;
892 
893     Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc);
894     S = S.substr(Size);
895     Off += Size;
896   }
897 }
898 
899 // Split non-SHF_STRINGS section. Such section is a sequence of
900 // fixed size records.
901 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data,
902                                         size_t EntSize) {
903   size_t Size = Data.size();
904   assert((Size % EntSize) == 0);
905   bool IsAlloc = this->Flags & SHF_ALLOC;
906 
907   for (size_t I = 0; I != Size; I += EntSize)
908     Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))),
909                         !IsAlloc);
910 }
911 
912 template <class ELFT>
913 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F,
914                                      const typename ELFT::Shdr *Header,
915                                      StringRef Name)
916     : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {
917   // In order to reduce memory allocation, we assume that mergeable
918   // sections are smaller than 4 GiB, which is not an unreasonable
919   // assumption as of 2017.
920   if (Data.size() > UINT32_MAX)
921     error(toString(this) + ": section too large");
922 }
923 
924 // This function is called after we obtain a complete list of input sections
925 // that need to be linked. This is responsible to split section contents
926 // into small chunks for further processing.
927 //
928 // Note that this function is called from parallelForEach. This must be
929 // thread-safe (i.e. no memory allocation from the pools).
930 void MergeInputSection::splitIntoPieces() {
931   assert(Pieces.empty());
932 
933   if (this->Flags & SHF_STRINGS)
934     splitStrings(Data, Entsize);
935   else
936     splitNonStrings(Data, Entsize);
937 
938   if (Config->GcSections && (this->Flags & SHF_ALLOC))
939     for (uint64_t Off : LiveOffsets)
940       this->getSectionPiece(Off)->Live = true;
941 }
942 
943 // Do binary search to get a section piece at a given input offset.
944 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) {
945   auto *This = static_cast<const MergeInputSection *>(this);
946   return const_cast<SectionPiece *>(This->getSectionPiece(Offset));
947 }
948 
949 template <class It, class T, class Compare>
950 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) {
951   size_t Size = std::distance(First, Last);
952   assert(Size != 0);
953   while (Size != 1) {
954     size_t H = Size / 2;
955     const It MI = First + H;
956     Size -= H;
957     First = Comp(Value, *MI) ? First : First + H;
958   }
959   return Comp(Value, *First) ? First : First + 1;
960 }
961 
962 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const {
963   if (Data.size() <= Offset)
964     fatal(toString(this) + ": entry is past the end of the section");
965 
966   // Find the element this offset points to.
967   auto I = fastUpperBound(
968       Pieces.begin(), Pieces.end(), Offset,
969       [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; });
970   --I;
971   return &*I;
972 }
973 
974 // Returns the offset in an output section for a given input offset.
975 // Because contents of a mergeable section is not contiguous in output,
976 // it is not just an addition to a base output offset.
977 uint64_t MergeInputSection::getOffset(uint64_t Offset) const {
978   if (!Live)
979     return 0;
980 
981   // Initialize OffsetMap lazily.
982   llvm::call_once(InitOffsetMap, [&] {
983     OffsetMap.reserve(Pieces.size());
984     for (size_t I = 0; I < Pieces.size(); ++I)
985       OffsetMap[Pieces[I].InputOff] = I;
986   });
987 
988   // Find a string starting at a given offset.
989   auto It = OffsetMap.find(Offset);
990   if (It != OffsetMap.end())
991     return Pieces[It->second].OutputOff;
992 
993   // If Offset is not at beginning of a section piece, it is not in the map.
994   // In that case we need to search from the original section piece vector.
995   const SectionPiece &Piece = *this->getSectionPiece(Offset);
996   if (!Piece.Live)
997     return 0;
998 
999   uint64_t Addend = Offset - Piece.InputOff;
1000   return Piece.OutputOff + Addend;
1001 }
1002 
1003 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *,
1004                                     StringRef);
1005 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *,
1006                                     StringRef);
1007 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *,
1008                                     StringRef);
1009 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *,
1010                                     StringRef);
1011 
1012 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1013 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1014 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1015 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1016 
1017 template std::string InputSectionBase::getSrcMsg<ELF32LE>(const SymbolBody &,
1018                                                           uint64_t);
1019 template std::string InputSectionBase::getSrcMsg<ELF32BE>(const SymbolBody &,
1020                                                           uint64_t);
1021 template std::string InputSectionBase::getSrcMsg<ELF64LE>(const SymbolBody &,
1022                                                           uint64_t);
1023 template std::string InputSectionBase::getSrcMsg<ELF64BE>(const SymbolBody &,
1024                                                           uint64_t);
1025 
1026 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1027 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1028 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1029 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1030 
1031 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *,
1032                                               const ELF32LE::Shdr *, StringRef);
1033 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *,
1034                                               const ELF32BE::Shdr *, StringRef);
1035 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *,
1036                                               const ELF64LE::Shdr *, StringRef);
1037 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *,
1038                                               const ELF64BE::Shdr *, StringRef);
1039 
1040 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *,
1041                                         const ELF32LE::Shdr *, StringRef);
1042 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *,
1043                                         const ELF32BE::Shdr *, StringRef);
1044 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *,
1045                                         const ELF64LE::Shdr *, StringRef);
1046 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *,
1047                                         const ELF64BE::Shdr *, StringRef);
1048 
1049 template void EhInputSection::split<ELF32LE>();
1050 template void EhInputSection::split<ELF32BE>();
1051 template void EhInputSection::split<ELF64LE>();
1052 template void EhInputSection::split<ELF64BE>();
1053