1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "InputFiles.h" 14 #include "LinkerScript.h" 15 #include "Memory.h" 16 #include "OutputSections.h" 17 #include "Relocations.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Compression.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/Threading.h" 28 #include "llvm/Support/xxhash.h" 29 #include <mutex> 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::support; 35 using namespace llvm::support::endian; 36 using namespace llvm::sys; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 std::vector<InputSectionBase *> elf::InputSections; 42 43 // Returns a string to construct an error message. 44 std::string lld::toString(const InputSectionBase *Sec) { 45 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 46 } 47 48 DenseMap<SectionBase *, int> elf::buildSectionOrder() { 49 DenseMap<SectionBase *, int> SectionOrder; 50 if (Config->SymbolOrderingFile.empty()) 51 return SectionOrder; 52 53 // Build a map from symbols to their priorities. Symbols that didn't 54 // appear in the symbol ordering file have the lowest priority 0. 55 // All explicitly mentioned symbols have negative (higher) priorities. 56 DenseMap<StringRef, int> SymbolOrder; 57 int Priority = -Config->SymbolOrderingFile.size(); 58 for (StringRef S : Config->SymbolOrderingFile) 59 SymbolOrder.insert({S, Priority++}); 60 61 // Build a map from sections to their priorities. 62 for (InputFile *File : ObjectFiles) { 63 for (SymbolBody *Body : File->getSymbols()) { 64 auto *D = dyn_cast<DefinedRegular>(Body); 65 if (!D || !D->Section) 66 continue; 67 int &Priority = SectionOrder[D->Section]; 68 Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); 69 } 70 } 71 return SectionOrder; 72 } 73 74 template <class ELFT> 75 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> *File, 76 const typename ELFT::Shdr *Hdr) { 77 if (!File || Hdr->sh_type == SHT_NOBITS) 78 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 79 return check(File->getObj().getSectionContents(Hdr)); 80 } 81 82 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 83 uint32_t Type, uint64_t Entsize, 84 uint32_t Link, uint32_t Info, 85 uint32_t Alignment, ArrayRef<uint8_t> Data, 86 StringRef Name, Kind SectionKind) 87 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 88 Link), 89 File(File), Data(Data), Repl(this) { 90 Assigned = false; 91 NumRelocations = 0; 92 AreRelocsRela = false; 93 94 // The ELF spec states that a value of 0 means the section has 95 // no alignment constraits. 96 uint32_t V = std::max<uint64_t>(Alignment, 1); 97 if (!isPowerOf2_64(V)) 98 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 99 this->Alignment = V; 100 } 101 102 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 103 // SHF_GROUP is a marker that a section belongs to some comdat group. 104 // That flag doesn't make sense in an executable. 105 static uint64_t getFlags(uint64_t Flags) { 106 Flags &= ~(uint64_t)SHF_INFO_LINK; 107 if (!Config->Relocatable) 108 Flags &= ~(uint64_t)SHF_GROUP; 109 return Flags; 110 } 111 112 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 113 // March 2017) fail to infer section types for sections starting with 114 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 115 // SHF_INIT_ARRAY. As a result, the following assembler directive 116 // creates ".init_array.100" with SHT_PROGBITS, for example. 117 // 118 // .section .init_array.100, "aw" 119 // 120 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 121 // incorrect inputs as if they were correct from the beginning. 122 static uint64_t getType(uint64_t Type, StringRef Name) { 123 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 124 return SHT_INIT_ARRAY; 125 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 126 return SHT_FINI_ARRAY; 127 return Type; 128 } 129 130 template <class ELFT> 131 InputSectionBase::InputSectionBase(ObjFile<ELFT> *File, 132 const typename ELFT::Shdr *Hdr, 133 StringRef Name, Kind SectionKind) 134 : InputSectionBase(File, getFlags(Hdr->sh_flags), 135 getType(Hdr->sh_type, Name), Hdr->sh_entsize, 136 Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, 137 getSectionContents(File, Hdr), Name, SectionKind) { 138 // We reject object files having insanely large alignments even though 139 // they are allowed by the spec. I think 4GB is a reasonable limitation. 140 // We might want to relax this in the future. 141 if (Hdr->sh_addralign > UINT32_MAX) 142 fatal(toString(File) + ": section sh_addralign is too large"); 143 } 144 145 size_t InputSectionBase::getSize() const { 146 if (auto *S = dyn_cast<SyntheticSection>(this)) 147 return S->getSize(); 148 149 return Data.size(); 150 } 151 152 uint64_t InputSectionBase::getOffsetInFile() const { 153 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 154 const uint8_t *SecStart = Data.begin(); 155 return SecStart - FileStart; 156 } 157 158 uint64_t SectionBase::getOffset(uint64_t Offset) const { 159 switch (kind()) { 160 case Output: { 161 auto *OS = cast<OutputSection>(this); 162 // For output sections we treat offset -1 as the end of the section. 163 return Offset == uint64_t(-1) ? OS->Size : Offset; 164 } 165 case Regular: 166 return cast<InputSection>(this)->OutSecOff + Offset; 167 case Synthetic: { 168 auto *IS = cast<InputSection>(this); 169 // For synthetic sections we treat offset -1 as the end of the section. 170 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 171 } 172 case EHFrame: 173 // The file crtbeginT.o has relocations pointing to the start of an empty 174 // .eh_frame that is known to be the first in the link. It does that to 175 // identify the start of the output .eh_frame. 176 return Offset; 177 case Merge: 178 const MergeInputSection *MS = cast<MergeInputSection>(this); 179 if (InputSection *IS = MS->getParent()) 180 return IS->OutSecOff + MS->getOffset(Offset); 181 return MS->getOffset(Offset); 182 } 183 llvm_unreachable("invalid section kind"); 184 } 185 186 OutputSection *SectionBase::getOutputSection() { 187 InputSection *Sec; 188 if (auto *IS = dyn_cast<InputSection>(this)) 189 Sec = cast<InputSection>(IS->Repl); 190 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 191 Sec = MS->getParent(); 192 else if (auto *EH = dyn_cast<EhInputSection>(this)) 193 Sec = EH->getParent(); 194 else 195 return cast<OutputSection>(this); 196 return Sec ? Sec->getParent() : nullptr; 197 } 198 199 // Uncompress section contents if required. Note that this function 200 // is called from parallelForEach, so it must be thread-safe. 201 void InputSectionBase::maybeUncompress() { 202 if (UncompressBuf || !Decompressor::isCompressedELFSection(Flags, Name)) 203 return; 204 205 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 206 Config->IsLE, Config->Is64)); 207 208 size_t Size = Dec.getDecompressedSize(); 209 UncompressBuf.reset(new char[Size]()); 210 if (Error E = Dec.decompress({UncompressBuf.get(), Size})) 211 fatal(toString(this) + 212 ": decompress failed: " + llvm::toString(std::move(E))); 213 214 this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); 215 this->Flags &= ~(uint64_t)SHF_COMPRESSED; 216 } 217 218 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 219 return getOffset(Sym.Value); 220 } 221 222 InputSection *InputSectionBase::getLinkOrderDep() const { 223 if ((Flags & SHF_LINK_ORDER) && Link != 0) { 224 InputSectionBase *L = File->getSections()[Link]; 225 if (auto *IS = dyn_cast<InputSection>(L)) 226 return IS; 227 error("a section with SHF_LINK_ORDER should not refer a non-regular " 228 "section: " + 229 toString(L)); 230 } 231 return nullptr; 232 } 233 234 // Returns a source location string. Used to construct an error message. 235 template <class ELFT> 236 std::string InputSectionBase::getLocation(uint64_t Offset) { 237 // We don't have file for synthetic sections. 238 if (getFile<ELFT>() == nullptr) 239 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 240 .str(); 241 242 // First check if we can get desired values from debugging information. 243 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 244 if (!LineInfo.empty()) 245 return LineInfo; 246 247 // File->SourceFile contains STT_FILE symbol that contains a 248 // source file name. If it's missing, we use an object file name. 249 std::string SrcFile = getFile<ELFT>()->SourceFile; 250 if (SrcFile.empty()) 251 SrcFile = toString(File); 252 253 // Find a function symbol that encloses a given location. 254 for (SymbolBody *B : File->getSymbols()) 255 if (auto *D = dyn_cast<DefinedRegular>(B)) 256 if (D->Section == this && D->Type == STT_FUNC) 257 if (D->Value <= Offset && Offset < D->Value + D->Size) 258 return SrcFile + ":(function " + toString(*D) + ")"; 259 260 // If there's no symbol, print out the offset in the section. 261 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 262 } 263 264 // Concatenates arguments to construct a string representing an error location. 265 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 266 std::string Filename = path::filename(Path); 267 std::string Lineno = ":" + std::to_string(Line); 268 if (Filename == Path) 269 return Filename + Lineno; 270 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 271 } 272 273 // This function is intended to be used for constructing an error message. 274 // The returned message looks like this: 275 // 276 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 277 // 278 // Returns an empty string if there's no way to get line info. 279 template <class ELFT> 280 std::string InputSectionBase::getSrcMsg(const SymbolBody &Sym, 281 uint64_t Offset) { 282 // Synthetic sections don't have input files. 283 ObjFile<ELFT> *File = getFile<ELFT>(); 284 if (!File) 285 return ""; 286 287 // In DWARF, functions and variables are stored to different places. 288 // First, lookup a function for a given offset. 289 if (Optional<DILineInfo> Info = File->getDILineInfo(this, Offset)) 290 return createFileLineMsg(Info->FileName, Info->Line); 291 292 // If it failed, lookup again as a variable. 293 if (Optional<std::pair<std::string, unsigned>> FileLine = 294 File->getVariableLoc(Sym.getName())) 295 return createFileLineMsg(FileLine->first, FileLine->second); 296 297 // File->SourceFile contains STT_FILE symbol, and that is a last resort. 298 return File->SourceFile; 299 } 300 301 // Returns a filename string along with an optional section name. This 302 // function is intended to be used for constructing an error 303 // message. The returned message looks like this: 304 // 305 // path/to/foo.o:(function bar) 306 // 307 // or 308 // 309 // path/to/foo.o:(function bar) in archive path/to/bar.a 310 std::string InputSectionBase::getObjMsg(uint64_t Off) { 311 // Synthetic sections don't have input files. 312 if (!File) 313 return ("(internal):(" + Name + "+0x" + utohexstr(Off) + ")").str(); 314 std::string Filename = File->getName(); 315 316 std::string Archive; 317 if (!File->ArchiveName.empty()) 318 Archive = (" in archive " + File->ArchiveName).str(); 319 320 // Find a symbol that encloses a given location. 321 for (SymbolBody *B : File->getSymbols()) 322 if (auto *D = dyn_cast<DefinedRegular>(B)) 323 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 324 return Filename + ":(" + toString(*D) + ")" + Archive; 325 326 // If there's no symbol, print out the offset in the section. 327 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 328 .str(); 329 } 330 331 InputSectionBase InputSectionBase::Discarded; 332 333 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 334 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 335 : InputSectionBase(nullptr, Flags, Type, 336 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 337 Name, K) {} 338 339 template <class ELFT> 340 InputSection::InputSection(ObjFile<ELFT> *F, const typename ELFT::Shdr *Header, 341 StringRef Name) 342 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 343 344 bool InputSection::classof(const SectionBase *S) { 345 return S->kind() == SectionBase::Regular || 346 S->kind() == SectionBase::Synthetic; 347 } 348 349 OutputSection *InputSection::getParent() const { 350 return cast_or_null<OutputSection>(Parent); 351 } 352 353 // Copy SHT_GROUP section contents. Used only for the -r option. 354 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 355 // ELFT::Word is the 32-bit integral type in the target endianness. 356 typedef typename ELFT::Word u32; 357 ArrayRef<u32> From = getDataAs<u32>(); 358 auto *To = reinterpret_cast<u32 *>(Buf); 359 360 // The first entry is not a section number but a flag. 361 *To++ = From[0]; 362 363 // Adjust section numbers because section numbers in an input object 364 // files are different in the output. 365 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 366 for (uint32_t Idx : From.slice(1)) 367 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 368 } 369 370 InputSectionBase *InputSection::getRelocatedSection() { 371 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 372 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 373 return Sections[this->Info]; 374 } 375 376 // This is used for -r and --emit-relocs. We can't use memcpy to copy 377 // relocations because we need to update symbol table offset and section index 378 // for each relocation. So we copy relocations one by one. 379 template <class ELFT, class RelTy> 380 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 381 InputSectionBase *Sec = getRelocatedSection(); 382 383 for (const RelTy &Rel : Rels) { 384 RelType Type = Rel.getType(Config->IsMips64EL); 385 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 386 387 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 388 Buf += sizeof(RelTy); 389 390 if (Config->IsRela) 391 P->r_addend = getAddend<ELFT>(Rel); 392 393 // Output section VA is zero for -r, so r_offset is an offset within the 394 // section, but for --emit-relocs it is an virtual address. 395 P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset); 396 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Body), Type, 397 Config->IsMips64EL); 398 399 if (Body.Type == STT_SECTION) { 400 // We combine multiple section symbols into only one per 401 // section. This means we have to update the addend. That is 402 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 403 // section data. We do that by adding to the Relocation vector. 404 405 // .eh_frame is horribly special and can reference discarded sections. To 406 // avoid having to parse and recreate .eh_frame, we just replace any 407 // relocation in it pointing to discarded sections with R_*_NONE, which 408 // hopefully creates a frame that is ignored at runtime. 409 SectionBase *Section = cast<DefinedRegular>(Body).Section; 410 if (Section == &InputSection::Discarded) { 411 P->setSymbolAndType(0, 0, false); 412 continue; 413 } 414 415 if (Config->IsRela) { 416 P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; 417 } else if (Config->Relocatable) { 418 const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset; 419 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, 420 Target->getImplicitAddend(BufLoc, Type), 421 &Body}); 422 } 423 } 424 425 } 426 } 427 428 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 429 // references specially. The general rule is that the value of the symbol in 430 // this context is the address of the place P. A further special case is that 431 // branch relocations to an undefined weak reference resolve to the next 432 // instruction. 433 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 434 uint32_t P) { 435 switch (Type) { 436 // Unresolved branch relocations to weak references resolve to next 437 // instruction, this will be either 2 or 4 bytes on from P. 438 case R_ARM_THM_JUMP11: 439 return P + 2 + A; 440 case R_ARM_CALL: 441 case R_ARM_JUMP24: 442 case R_ARM_PC24: 443 case R_ARM_PLT32: 444 case R_ARM_PREL31: 445 case R_ARM_THM_JUMP19: 446 case R_ARM_THM_JUMP24: 447 return P + 4 + A; 448 case R_ARM_THM_CALL: 449 // We don't want an interworking BLX to ARM 450 return P + 5 + A; 451 // Unresolved non branch pc-relative relocations 452 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 453 // targets a weak-reference. 454 case R_ARM_MOVW_PREL_NC: 455 case R_ARM_MOVT_PREL: 456 case R_ARM_REL32: 457 case R_ARM_THM_MOVW_PREL_NC: 458 case R_ARM_THM_MOVT_PREL: 459 return P + A; 460 } 461 llvm_unreachable("ARM pc-relative relocation expected\n"); 462 } 463 464 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 465 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 466 uint64_t P) { 467 switch (Type) { 468 // Unresolved branch relocations to weak references resolve to next 469 // instruction, this is 4 bytes on from P. 470 case R_AARCH64_CALL26: 471 case R_AARCH64_CONDBR19: 472 case R_AARCH64_JUMP26: 473 case R_AARCH64_TSTBR14: 474 return P + 4 + A; 475 // Unresolved non branch pc-relative relocations 476 case R_AARCH64_PREL16: 477 case R_AARCH64_PREL32: 478 case R_AARCH64_PREL64: 479 case R_AARCH64_ADR_PREL_LO21: 480 case R_AARCH64_LD_PREL_LO19: 481 return P + A; 482 } 483 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 484 } 485 486 // ARM SBREL relocations are of the form S + A - B where B is the static base 487 // The ARM ABI defines base to be "addressing origin of the output segment 488 // defining the symbol S". We defined the "addressing origin"/static base to be 489 // the base of the PT_LOAD segment containing the Body. 490 // The procedure call standard only defines a Read Write Position Independent 491 // RWPI variant so in practice we should expect the static base to be the base 492 // of the RW segment. 493 static uint64_t getARMStaticBase(const SymbolBody &Body) { 494 OutputSection *OS = Body.getOutputSection(); 495 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 496 fatal("SBREL relocation to " + Body.getName() + " without static base"); 497 return OS->PtLoad->FirstSec->Addr; 498 } 499 500 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P, 501 const SymbolBody &Body, RelExpr Expr) { 502 switch (Expr) { 503 case R_INVALID: 504 return 0; 505 case R_ABS: 506 case R_RELAX_GOT_PC_NOPIC: 507 return Body.getVA(A); 508 case R_ARM_SBREL: 509 return Body.getVA(A) - getARMStaticBase(Body); 510 case R_GOT: 511 case R_RELAX_TLS_GD_TO_IE_ABS: 512 return Body.getGotVA() + A; 513 case R_GOTONLY_PC: 514 return InX::Got->getVA() + A - P; 515 case R_GOTONLY_PC_FROM_END: 516 return InX::Got->getVA() + A - P + InX::Got->getSize(); 517 case R_GOTREL: 518 return Body.getVA(A) - InX::Got->getVA(); 519 case R_GOTREL_FROM_END: 520 return Body.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 521 case R_GOT_FROM_END: 522 case R_RELAX_TLS_GD_TO_IE_END: 523 return Body.getGotOffset() + A - InX::Got->getSize(); 524 case R_GOT_OFF: 525 return Body.getGotOffset() + A; 526 case R_GOT_PAGE_PC: 527 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 528 return getAArch64Page(Body.getGotVA() + A) - getAArch64Page(P); 529 case R_GOT_PC: 530 case R_RELAX_TLS_GD_TO_IE: 531 return Body.getGotVA() + A - P; 532 case R_HINT: 533 case R_NONE: 534 case R_TLSDESC_CALL: 535 llvm_unreachable("cannot relocate hint relocs"); 536 case R_MIPS_GOTREL: 537 return Body.getVA(A) - InX::MipsGot->getGp(); 538 case R_MIPS_GOT_GP: 539 return InX::MipsGot->getGp() + A; 540 case R_MIPS_GOT_GP_PC: { 541 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 542 // is _gp_disp symbol. In that case we should use the following 543 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 544 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 545 uint64_t V = InX::MipsGot->getGp() + A - P; 546 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 547 V += 4; 548 return V; 549 } 550 case R_MIPS_GOT_LOCAL_PAGE: 551 // If relocation against MIPS local symbol requires GOT entry, this entry 552 // should be initialized by 'page address'. This address is high 16-bits 553 // of sum the symbol's value and the addend. 554 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Body, A) - 555 InX::MipsGot->getGp(); 556 case R_MIPS_GOT_OFF: 557 case R_MIPS_GOT_OFF32: 558 // In case of MIPS if a GOT relocation has non-zero addend this addend 559 // should be applied to the GOT entry content not to the GOT entry offset. 560 // That is why we use separate expression type. 561 return InX::MipsGot->getVA() + InX::MipsGot->getBodyEntryOffset(Body, A) - 562 InX::MipsGot->getGp(); 563 case R_MIPS_TLSGD: 564 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 565 InX::MipsGot->getGlobalDynOffset(Body) - InX::MipsGot->getGp(); 566 case R_MIPS_TLSLD: 567 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 568 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 569 case R_PAGE_PC: 570 case R_PLT_PAGE_PC: { 571 uint64_t Dest; 572 if (Body.isUndefWeak()) 573 Dest = getAArch64Page(A); 574 else 575 Dest = getAArch64Page(Body.getVA(A)); 576 return Dest - getAArch64Page(P); 577 } 578 case R_PC: { 579 uint64_t Dest; 580 if (Body.isUndefWeak()) { 581 // On ARM and AArch64 a branch to an undefined weak resolves to the 582 // next instruction, otherwise the place. 583 if (Config->EMachine == EM_ARM) 584 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 585 else if (Config->EMachine == EM_AARCH64) 586 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 587 else 588 Dest = Body.getVA(A); 589 } else { 590 Dest = Body.getVA(A); 591 } 592 return Dest - P; 593 } 594 case R_PLT: 595 return Body.getPltVA() + A; 596 case R_PLT_PC: 597 case R_PPC_PLT_OPD: 598 return Body.getPltVA() + A - P; 599 case R_PPC_OPD: { 600 uint64_t SymVA = Body.getVA(A); 601 // If we have an undefined weak symbol, we might get here with a symbol 602 // address of zero. That could overflow, but the code must be unreachable, 603 // so don't bother doing anything at all. 604 if (!SymVA) 605 return 0; 606 if (Out::Opd) { 607 // If this is a local call, and we currently have the address of a 608 // function-descriptor, get the underlying code address instead. 609 uint64_t OpdStart = Out::Opd->Addr; 610 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 611 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 612 if (InOpd) 613 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 614 } 615 return SymVA - P; 616 } 617 case R_PPC_TOC: 618 return getPPC64TocBase() + A; 619 case R_RELAX_GOT_PC: 620 return Body.getVA(A) - P; 621 case R_RELAX_TLS_GD_TO_LE: 622 case R_RELAX_TLS_IE_TO_LE: 623 case R_RELAX_TLS_LD_TO_LE: 624 case R_TLS: 625 // A weak undefined TLS symbol resolves to the base of the TLS 626 // block, i.e. gets a value of zero. If we pass --gc-sections to 627 // lld and .tbss is not referenced, it gets reclaimed and we don't 628 // create a TLS program header. Therefore, we resolve this 629 // statically to zero. 630 if (Body.isTls() && Body.isUndefWeak()) 631 return 0; 632 if (Target->TcbSize) 633 return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 634 return Body.getVA(A) - Out::TlsPhdr->p_memsz; 635 case R_RELAX_TLS_GD_TO_LE_NEG: 636 case R_NEG_TLS: 637 return Out::TlsPhdr->p_memsz - Body.getVA(A); 638 case R_SIZE: 639 return A; // Body.getSize was already folded into the addend. 640 case R_TLSDESC: 641 return InX::Got->getGlobalDynAddr(Body) + A; 642 case R_TLSDESC_PAGE: 643 return getAArch64Page(InX::Got->getGlobalDynAddr(Body) + A) - 644 getAArch64Page(P); 645 case R_TLSGD: 646 return InX::Got->getGlobalDynOffset(Body) + A - InX::Got->getSize(); 647 case R_TLSGD_PC: 648 return InX::Got->getGlobalDynAddr(Body) + A - P; 649 case R_TLSLD: 650 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 651 case R_TLSLD_PC: 652 return InX::Got->getTlsIndexVA() + A - P; 653 } 654 llvm_unreachable("Invalid expression"); 655 } 656 657 // This function applies relocations to sections without SHF_ALLOC bit. 658 // Such sections are never mapped to memory at runtime. Debug sections are 659 // an example. Relocations in non-alloc sections are much easier to 660 // handle than in allocated sections because it will never need complex 661 // treatement such as GOT or PLT (because at runtime no one refers them). 662 // So, we handle relocations for non-alloc sections directly in this 663 // function as a performance optimization. 664 template <class ELFT, class RelTy> 665 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 666 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 667 668 for (const RelTy &Rel : Rels) { 669 RelType Type = Rel.getType(Config->IsMips64EL); 670 uint64_t Offset = getOffset(Rel.r_offset); 671 uint8_t *BufLoc = Buf + Offset; 672 int64_t Addend = getAddend<ELFT>(Rel); 673 if (!RelTy::IsRela) 674 Addend += Target->getImplicitAddend(BufLoc, Type); 675 676 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 677 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 678 if (Expr == R_NONE) 679 continue; 680 if (Expr != R_ABS) { 681 // GCC 8.0 or earlier have a bug that it emits R_386_GOTPC relocations 682 // against _GLOBAL_OFFSET_TABLE for .debug_info. The bug seems to have 683 // been fixed in 2017: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630, 684 // but we need to keep this bug-compatible code for a while. 685 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 686 continue; 687 688 error(this->getLocation<ELFT>(Offset) + ": has non-ABS relocation " + 689 toString(Type) + " against symbol '" + toString(Sym) + "'"); 690 return; 691 } 692 693 if (Sym.isTls() && !Out::TlsPhdr) 694 Target->relocateOne(BufLoc, Type, 0); 695 else 696 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 697 } 698 } 699 700 template <class ELFT> 701 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 702 if (Flags & SHF_ALLOC) { 703 relocateAlloc(Buf, BufEnd); 704 return; 705 } 706 707 auto *Sec = cast<InputSection>(this); 708 if (Sec->AreRelocsRela) 709 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 710 else 711 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 712 } 713 714 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 715 assert(Flags & SHF_ALLOC); 716 const unsigned Bits = Config->Wordsize * 8; 717 718 for (const Relocation &Rel : Relocations) { 719 uint64_t Offset = getOffset(Rel.Offset); 720 uint8_t *BufLoc = Buf + Offset; 721 RelType Type = Rel.Type; 722 723 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 724 RelExpr Expr = Rel.Expr; 725 uint64_t TargetVA = SignExtend64( 726 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 727 728 switch (Expr) { 729 case R_RELAX_GOT_PC: 730 case R_RELAX_GOT_PC_NOPIC: 731 Target->relaxGot(BufLoc, TargetVA); 732 break; 733 case R_RELAX_TLS_IE_TO_LE: 734 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 735 break; 736 case R_RELAX_TLS_LD_TO_LE: 737 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 738 break; 739 case R_RELAX_TLS_GD_TO_LE: 740 case R_RELAX_TLS_GD_TO_LE_NEG: 741 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 742 break; 743 case R_RELAX_TLS_GD_TO_IE: 744 case R_RELAX_TLS_GD_TO_IE_ABS: 745 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 746 case R_RELAX_TLS_GD_TO_IE_END: 747 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 748 break; 749 case R_PPC_PLT_OPD: 750 // Patch a nop (0x60000000) to a ld. 751 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 752 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 753 LLVM_FALLTHROUGH; 754 default: 755 Target->relocateOne(BufLoc, Type, TargetVA); 756 break; 757 } 758 } 759 } 760 761 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 762 if (this->Type == SHT_NOBITS) 763 return; 764 765 if (auto *S = dyn_cast<SyntheticSection>(this)) { 766 S->writeTo(Buf + OutSecOff); 767 return; 768 } 769 770 // If -r or --emit-relocs is given, then an InputSection 771 // may be a relocation section. 772 if (this->Type == SHT_RELA) { 773 copyRelocations<ELFT>(Buf + OutSecOff, 774 this->template getDataAs<typename ELFT::Rela>()); 775 return; 776 } 777 if (this->Type == SHT_REL) { 778 copyRelocations<ELFT>(Buf + OutSecOff, 779 this->template getDataAs<typename ELFT::Rel>()); 780 return; 781 } 782 783 // If -r is given, we may have a SHT_GROUP section. 784 if (this->Type == SHT_GROUP) { 785 copyShtGroup<ELFT>(Buf + OutSecOff); 786 return; 787 } 788 789 // Copy section contents from source object file to output file 790 // and then apply relocations. 791 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 792 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 793 this->relocate<ELFT>(Buf, BufEnd); 794 } 795 796 void InputSection::replace(InputSection *Other) { 797 this->Alignment = std::max(this->Alignment, Other->Alignment); 798 Other->Repl = this->Repl; 799 Other->Live = false; 800 } 801 802 template <class ELFT> 803 EhInputSection::EhInputSection(ObjFile<ELFT> *F, 804 const typename ELFT::Shdr *Header, 805 StringRef Name) 806 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 807 // Mark .eh_frame sections as live by default because there are 808 // usually no relocations that point to .eh_frames. Otherwise, 809 // the garbage collector would drop all .eh_frame sections. 810 this->Live = true; 811 } 812 813 SyntheticSection *EhInputSection::getParent() const { 814 return cast_or_null<SyntheticSection>(Parent); 815 } 816 817 // Returns the index of the first relocation that points to a region between 818 // Begin and Begin+Size. 819 template <class IntTy, class RelTy> 820 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 821 unsigned &RelocI) { 822 // Start search from RelocI for fast access. That works because the 823 // relocations are sorted in .eh_frame. 824 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 825 const RelTy &Rel = Rels[RelocI]; 826 if (Rel.r_offset < Begin) 827 continue; 828 829 if (Rel.r_offset < Begin + Size) 830 return RelocI; 831 return -1; 832 } 833 return -1; 834 } 835 836 // .eh_frame is a sequence of CIE or FDE records. 837 // This function splits an input section into records and returns them. 838 template <class ELFT> void EhInputSection::split() { 839 // Early exit if already split. 840 if (!this->Pieces.empty()) 841 return; 842 843 if (this->AreRelocsRela) 844 split<ELFT>(this->relas<ELFT>()); 845 else 846 split<ELFT>(this->rels<ELFT>()); 847 } 848 849 template <class ELFT, class RelTy> 850 void EhInputSection::split(ArrayRef<RelTy> Rels) { 851 ArrayRef<uint8_t> Data = this->Data; 852 unsigned RelI = 0; 853 for (size_t Off = 0, End = Data.size(); Off != End;) { 854 size_t Size = readEhRecordSize(this, Off); 855 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 856 // The empty record is the end marker. 857 if (Size == 4) 858 break; 859 Off += Size; 860 } 861 } 862 863 static size_t findNull(StringRef S, size_t EntSize) { 864 // Optimize the common case. 865 if (EntSize == 1) 866 return S.find(0); 867 868 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 869 const char *B = S.begin() + I; 870 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 871 return I; 872 } 873 return StringRef::npos; 874 } 875 876 SyntheticSection *MergeInputSection::getParent() const { 877 return cast_or_null<SyntheticSection>(Parent); 878 } 879 880 // Split SHF_STRINGS section. Such section is a sequence of 881 // null-terminated strings. 882 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 883 size_t Off = 0; 884 bool IsAlloc = this->Flags & SHF_ALLOC; 885 StringRef S = toStringRef(Data); 886 887 while (!S.empty()) { 888 size_t End = findNull(S, EntSize); 889 if (End == StringRef::npos) 890 fatal(toString(this) + ": string is not null terminated"); 891 size_t Size = End + EntSize; 892 893 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 894 S = S.substr(Size); 895 Off += Size; 896 } 897 } 898 899 // Split non-SHF_STRINGS section. Such section is a sequence of 900 // fixed size records. 901 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 902 size_t EntSize) { 903 size_t Size = Data.size(); 904 assert((Size % EntSize) == 0); 905 bool IsAlloc = this->Flags & SHF_ALLOC; 906 907 for (size_t I = 0; I != Size; I += EntSize) 908 Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))), 909 !IsAlloc); 910 } 911 912 template <class ELFT> 913 MergeInputSection::MergeInputSection(ObjFile<ELFT> *F, 914 const typename ELFT::Shdr *Header, 915 StringRef Name) 916 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) { 917 // In order to reduce memory allocation, we assume that mergeable 918 // sections are smaller than 4 GiB, which is not an unreasonable 919 // assumption as of 2017. 920 if (Data.size() > UINT32_MAX) 921 error(toString(this) + ": section too large"); 922 } 923 924 // This function is called after we obtain a complete list of input sections 925 // that need to be linked. This is responsible to split section contents 926 // into small chunks for further processing. 927 // 928 // Note that this function is called from parallelForEach. This must be 929 // thread-safe (i.e. no memory allocation from the pools). 930 void MergeInputSection::splitIntoPieces() { 931 assert(Pieces.empty()); 932 933 if (this->Flags & SHF_STRINGS) 934 splitStrings(Data, Entsize); 935 else 936 splitNonStrings(Data, Entsize); 937 938 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 939 for (uint64_t Off : LiveOffsets) 940 this->getSectionPiece(Off)->Live = true; 941 } 942 943 // Do binary search to get a section piece at a given input offset. 944 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 945 auto *This = static_cast<const MergeInputSection *>(this); 946 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 947 } 948 949 template <class It, class T, class Compare> 950 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 951 size_t Size = std::distance(First, Last); 952 assert(Size != 0); 953 while (Size != 1) { 954 size_t H = Size / 2; 955 const It MI = First + H; 956 Size -= H; 957 First = Comp(Value, *MI) ? First : First + H; 958 } 959 return Comp(Value, *First) ? First : First + 1; 960 } 961 962 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 963 if (Data.size() <= Offset) 964 fatal(toString(this) + ": entry is past the end of the section"); 965 966 // Find the element this offset points to. 967 auto I = fastUpperBound( 968 Pieces.begin(), Pieces.end(), Offset, 969 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 970 --I; 971 return &*I; 972 } 973 974 // Returns the offset in an output section for a given input offset. 975 // Because contents of a mergeable section is not contiguous in output, 976 // it is not just an addition to a base output offset. 977 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 978 if (!Live) 979 return 0; 980 981 // Initialize OffsetMap lazily. 982 llvm::call_once(InitOffsetMap, [&] { 983 OffsetMap.reserve(Pieces.size()); 984 for (size_t I = 0; I < Pieces.size(); ++I) 985 OffsetMap[Pieces[I].InputOff] = I; 986 }); 987 988 // Find a string starting at a given offset. 989 auto It = OffsetMap.find(Offset); 990 if (It != OffsetMap.end()) 991 return Pieces[It->second].OutputOff; 992 993 // If Offset is not at beginning of a section piece, it is not in the map. 994 // In that case we need to search from the original section piece vector. 995 const SectionPiece &Piece = *this->getSectionPiece(Offset); 996 if (!Piece.Live) 997 return 0; 998 999 uint64_t Addend = Offset - Piece.InputOff; 1000 return Piece.OutputOff + Addend; 1001 } 1002 1003 template InputSection::InputSection(ObjFile<ELF32LE> *, const ELF32LE::Shdr *, 1004 StringRef); 1005 template InputSection::InputSection(ObjFile<ELF32BE> *, const ELF32BE::Shdr *, 1006 StringRef); 1007 template InputSection::InputSection(ObjFile<ELF64LE> *, const ELF64LE::Shdr *, 1008 StringRef); 1009 template InputSection::InputSection(ObjFile<ELF64BE> *, const ELF64BE::Shdr *, 1010 StringRef); 1011 1012 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 1013 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 1014 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 1015 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 1016 1017 template std::string InputSectionBase::getSrcMsg<ELF32LE>(const SymbolBody &, 1018 uint64_t); 1019 template std::string InputSectionBase::getSrcMsg<ELF32BE>(const SymbolBody &, 1020 uint64_t); 1021 template std::string InputSectionBase::getSrcMsg<ELF64LE>(const SymbolBody &, 1022 uint64_t); 1023 template std::string InputSectionBase::getSrcMsg<ELF64BE>(const SymbolBody &, 1024 uint64_t); 1025 1026 template void InputSection::writeTo<ELF32LE>(uint8_t *); 1027 template void InputSection::writeTo<ELF32BE>(uint8_t *); 1028 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1029 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1030 1031 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> *, 1032 const ELF32LE::Shdr *, StringRef); 1033 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> *, 1034 const ELF32BE::Shdr *, StringRef); 1035 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> *, 1036 const ELF64LE::Shdr *, StringRef); 1037 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> *, 1038 const ELF64BE::Shdr *, StringRef); 1039 1040 template EhInputSection::EhInputSection(ObjFile<ELF32LE> *, 1041 const ELF32LE::Shdr *, StringRef); 1042 template EhInputSection::EhInputSection(ObjFile<ELF32BE> *, 1043 const ELF32BE::Shdr *, StringRef); 1044 template EhInputSection::EhInputSection(ObjFile<ELF64LE> *, 1045 const ELF64LE::Shdr *, StringRef); 1046 template EhInputSection::EhInputSection(ObjFile<ELF64BE> *, 1047 const ELF64BE::Shdr *, StringRef); 1048 1049 template void EhInputSection::split<ELF32LE>(); 1050 template void EhInputSection::split<ELF32BE>(); 1051 template void EhInputSection::split<ELF64LE>(); 1052 template void EhInputSection::split<ELF64BE>(); 1053