1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "Error.h" 14 #include "InputFiles.h" 15 #include "LinkerScript.h" 16 #include "Memory.h" 17 #include "OutputSections.h" 18 #include "Relocations.h" 19 #include "SyntheticSections.h" 20 #include "Target.h" 21 #include "Thunks.h" 22 #include "llvm/Object/Decompressor.h" 23 #include "llvm/Support/Compression.h" 24 #include "llvm/Support/Endian.h" 25 #include <mutex> 26 27 using namespace llvm; 28 using namespace llvm::ELF; 29 using namespace llvm::object; 30 using namespace llvm::support; 31 using namespace llvm::support::endian; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 std::vector<InputSectionBase *> elf::InputSections; 37 38 // Returns a string to construct an error message. 39 std::string lld::toString(const InputSectionBase *Sec) { 40 // File can be absent if section is synthetic. 41 std::string FileName = Sec->File ? Sec->File->getName() : "<internal>"; 42 return (FileName + ":(" + Sec->Name + ")").str(); 43 } 44 45 template <class ELFT> 46 static ArrayRef<uint8_t> getSectionContents(elf::ObjectFile<ELFT> *File, 47 const typename ELFT::Shdr *Hdr) { 48 if (!File || Hdr->sh_type == SHT_NOBITS) 49 return makeArrayRef<uint8_t>(nullptr, Hdr->sh_size); 50 return check(File->getObj().getSectionContents(Hdr)); 51 } 52 53 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 54 uint32_t Type, uint64_t Entsize, 55 uint32_t Link, uint32_t Info, 56 uint32_t Alignment, ArrayRef<uint8_t> Data, 57 StringRef Name, Kind SectionKind) 58 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 59 Link), 60 File(File), Data(Data), Repl(this) { 61 Live = !Config->GcSections || !(Flags & SHF_ALLOC); 62 Assigned = false; 63 NumRelocations = 0; 64 AreRelocsRela = false; 65 66 // The ELF spec states that a value of 0 means the section has 67 // no alignment constraits. 68 uint32_t V = std::max<uint64_t>(Alignment, 1); 69 if (!isPowerOf2_64(V)) 70 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 71 this->Alignment = V; 72 } 73 74 template <class ELFT> 75 InputSectionBase::InputSectionBase(elf::ObjectFile<ELFT> *File, 76 const typename ELFT::Shdr *Hdr, 77 StringRef Name, Kind SectionKind) 78 : InputSectionBase(File, Hdr->sh_flags & ~SHF_INFO_LINK, Hdr->sh_type, 79 Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, 80 Hdr->sh_addralign, getSectionContents(File, Hdr), Name, 81 SectionKind) { 82 // We reject object files having insanely large alignments even though 83 // they are allowed by the spec. I think 4GB is a reasonable limitation. 84 // We might want to relax this in the future. 85 if (Hdr->sh_addralign > UINT32_MAX) 86 fatal(toString(File) + ": section sh_addralign is too large"); 87 } 88 89 size_t InputSectionBase::getSize() const { 90 if (auto *S = dyn_cast<SyntheticSection>(this)) 91 return S->getSize(); 92 93 return Data.size(); 94 } 95 96 uint64_t InputSectionBase::getOffsetInFile() const { 97 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 98 const uint8_t *SecStart = Data.begin(); 99 return SecStart - FileStart; 100 } 101 102 uint64_t SectionBase::getOffset(uint64_t Offset) const { 103 switch (kind()) { 104 case Output: { 105 auto *OS = cast<OutputSection>(this); 106 // For output sections we treat offset -1 as the end of the section. 107 return Offset == uint64_t(-1) ? OS->Size : Offset; 108 } 109 case Regular: 110 return cast<InputSection>(this)->OutSecOff + Offset; 111 case Synthetic: { 112 auto *IS = cast<InputSection>(this); 113 // For synthetic sections we treat offset -1 as the end of the section. 114 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 115 } 116 case EHFrame: 117 // The file crtbeginT.o has relocations pointing to the start of an empty 118 // .eh_frame that is known to be the first in the link. It does that to 119 // identify the start of the output .eh_frame. 120 return Offset; 121 case Merge: 122 const MergeInputSection *MS = cast<MergeInputSection>(this); 123 if (MS->MergeSec) 124 return MS->MergeSec->OutSecOff + MS->getOffset(Offset); 125 return MS->getOffset(Offset); 126 } 127 llvm_unreachable("invalid section kind"); 128 } 129 130 OutputSection *SectionBase::getOutputSection() { 131 if (auto *IS = dyn_cast<InputSection>(this)) 132 return IS->OutSec; 133 if (auto *MS = dyn_cast<MergeInputSection>(this)) 134 return MS->MergeSec ? MS->MergeSec->OutSec : nullptr; 135 if (auto *EH = dyn_cast<EhInputSection>(this)) 136 return EH->EHSec->OutSec; 137 return cast<OutputSection>(this); 138 } 139 140 // Uncompress section contents. Note that this function is called 141 // from parallel_for_each, so it must be thread-safe. 142 void InputSectionBase::uncompress() { 143 Decompressor Dec = check(Decompressor::create( 144 Name, toStringRef(Data), Config->IsLE, Config->Wordsize == 8)); 145 146 size_t Size = Dec.getDecompressedSize(); 147 char *OutputBuf; 148 { 149 static std::mutex Mu; 150 std::lock_guard<std::mutex> Lock(Mu); 151 OutputBuf = BAlloc.Allocate<char>(Size); 152 } 153 154 if (Error E = Dec.decompress({OutputBuf, Size})) 155 fatal(toString(this) + 156 ": decompress failed: " + llvm::toString(std::move(E))); 157 Data = ArrayRef<uint8_t>((uint8_t *)OutputBuf, Size); 158 } 159 160 uint64_t SectionBase::getOffset(const DefinedRegular &Sym) const { 161 return getOffset(Sym.Value); 162 } 163 164 InputSectionBase *InputSectionBase::getLinkOrderDep() const { 165 if ((Flags & SHF_LINK_ORDER) && Link != 0) 166 return File->getSections()[Link]; 167 return nullptr; 168 } 169 170 // Returns a source location string. Used to construct an error message. 171 template <class ELFT> 172 std::string InputSectionBase::getLocation(uint64_t Offset) { 173 // We don't have file for synthetic sections. 174 if (getFile<ELFT>() == nullptr) 175 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 176 .str(); 177 178 // First check if we can get desired values from debugging information. 179 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 180 if (!LineInfo.empty()) 181 return LineInfo; 182 183 // File->SourceFile contains STT_FILE symbol that contains a 184 // source file name. If it's missing, we use an object file name. 185 std::string SrcFile = getFile<ELFT>()->SourceFile; 186 if (SrcFile.empty()) 187 SrcFile = toString(File); 188 189 // Find a function symbol that encloses a given location. 190 for (SymbolBody *B : getFile<ELFT>()->getSymbols()) 191 if (auto *D = dyn_cast<DefinedRegular>(B)) 192 if (D->Section == this && D->Type == STT_FUNC) 193 if (D->Value <= Offset && Offset < D->Value + D->Size) 194 return SrcFile + ":(function " + toString(*D) + ")"; 195 196 // If there's no symbol, print out the offset in the section. 197 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 198 } 199 200 InputSectionBase InputSectionBase::Discarded; 201 202 InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, 203 ArrayRef<uint8_t> Data, StringRef Name, Kind K) 204 : InputSectionBase(nullptr, Flags, Type, 205 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 206 Name, K) {} 207 208 template <class ELFT> 209 InputSection::InputSection(elf::ObjectFile<ELFT> *F, 210 const typename ELFT::Shdr *Header, StringRef Name) 211 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 212 213 bool InputSection::classof(const SectionBase *S) { 214 return S->kind() == SectionBase::Regular || 215 S->kind() == SectionBase::Synthetic; 216 } 217 218 bool InputSectionBase::classof(const SectionBase *S) { 219 return S->kind() != Output; 220 } 221 222 InputSectionBase *InputSection::getRelocatedSection() { 223 assert(this->Type == SHT_RELA || this->Type == SHT_REL); 224 ArrayRef<InputSectionBase *> Sections = this->File->getSections(); 225 return Sections[this->Info]; 226 } 227 228 // This is used for -r and --emit-relocs. We can't use memcpy to copy 229 // relocations because we need to update symbol table offset and section index 230 // for each relocation. So we copy relocations one by one. 231 template <class ELFT, class RelTy> 232 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 233 InputSectionBase *RelocatedSection = getRelocatedSection(); 234 235 // Loop is slow and have complexity O(N*M), where N - amount of 236 // relocations and M - amount of symbols in symbol table. 237 // That happens because getSymbolIndex(...) call below performs 238 // simple linear search. 239 for (const RelTy &Rel : Rels) { 240 uint32_t Type = Rel.getType(Config->IsMips64EL); 241 SymbolBody &Body = this->getFile<ELFT>()->getRelocTargetSym(Rel); 242 243 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 244 Buf += sizeof(RelTy); 245 246 if (Config->IsRela) 247 P->r_addend = getAddend<ELFT>(Rel); 248 249 // Output section VA is zero for -r, so r_offset is an offset within the 250 // section, but for --emit-relocs it is an virtual address. 251 P->r_offset = RelocatedSection->OutSec->Addr + 252 RelocatedSection->getOffset(Rel.r_offset); 253 P->setSymbolAndType(In<ELFT>::SymTab->getSymbolIndex(&Body), Type, 254 Config->IsMips64EL); 255 256 if (Body.Type == STT_SECTION) { 257 // We combine multiple section symbols into only one per 258 // section. This means we have to update the addend. That is 259 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 260 // section data. We do that by adding to the Relocation vector. 261 262 // .eh_frame is horribly special and can reference discarded sections. To 263 // avoid having to parse and recreate .eh_frame, we just replace any 264 // relocation in it pointing to discarded sections with R_*_NONE, which 265 // hopefully creates a frame that is ignored at runtime. 266 SectionBase *Section = cast<DefinedRegular>(Body).Section; 267 if (Section == &InputSection::Discarded) { 268 P->setSymbolAndType(0, 0, false); 269 continue; 270 } 271 272 if (Config->IsRela) { 273 P->r_addend += Body.getVA() - Section->getOutputSection()->Addr; 274 } else if (Config->Relocatable) { 275 const uint8_t *BufLoc = RelocatedSection->Data.begin() + Rel.r_offset; 276 RelocatedSection->Relocations.push_back( 277 {R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), 278 &Body}); 279 } 280 } 281 282 } 283 } 284 285 static uint32_t getARMUndefinedRelativeWeakVA(uint32_t Type, uint32_t A, 286 uint32_t P) { 287 switch (Type) { 288 case R_ARM_THM_JUMP11: 289 return P + 2; 290 case R_ARM_CALL: 291 case R_ARM_JUMP24: 292 case R_ARM_PC24: 293 case R_ARM_PLT32: 294 case R_ARM_PREL31: 295 case R_ARM_THM_JUMP19: 296 case R_ARM_THM_JUMP24: 297 return P + 4; 298 case R_ARM_THM_CALL: 299 // We don't want an interworking BLX to ARM 300 return P + 5; 301 default: 302 return A; 303 } 304 } 305 306 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 307 uint64_t P) { 308 switch (Type) { 309 case R_AARCH64_CALL26: 310 case R_AARCH64_CONDBR19: 311 case R_AARCH64_JUMP26: 312 case R_AARCH64_TSTBR14: 313 return P + 4; 314 default: 315 return A; 316 } 317 } 318 319 template <class ELFT> 320 static typename ELFT::uint 321 getRelocTargetVA(uint32_t Type, int64_t A, typename ELFT::uint P, 322 const SymbolBody &Body, RelExpr Expr) { 323 switch (Expr) { 324 case R_HINT: 325 case R_NONE: 326 case R_TLSDESC_CALL: 327 llvm_unreachable("cannot relocate hint relocs"); 328 case R_TLSLD: 329 return In<ELFT>::Got->getTlsIndexOff() + A - In<ELFT>::Got->getSize(); 330 case R_TLSLD_PC: 331 return In<ELFT>::Got->getTlsIndexVA() + A - P; 332 case R_PPC_TOC: 333 return getPPC64TocBase() + A; 334 case R_TLSGD: 335 return In<ELFT>::Got->getGlobalDynOffset(Body) + A - 336 In<ELFT>::Got->getSize(); 337 case R_TLSGD_PC: 338 return In<ELFT>::Got->getGlobalDynAddr(Body) + A - P; 339 case R_TLSDESC: 340 return In<ELFT>::Got->getGlobalDynAddr(Body) + A; 341 case R_TLSDESC_PAGE: 342 return getAArch64Page(In<ELFT>::Got->getGlobalDynAddr(Body) + A) - 343 getAArch64Page(P); 344 case R_PLT: 345 return Body.getPltVA() + A; 346 case R_PLT_PC: 347 case R_PPC_PLT_OPD: 348 return Body.getPltVA() + A - P; 349 case R_SIZE: 350 return Body.getSize<ELFT>() + A; 351 case R_GOTREL: 352 return Body.getVA(A) - In<ELFT>::Got->getVA(); 353 case R_GOTREL_FROM_END: 354 return Body.getVA(A) - In<ELFT>::Got->getVA() - In<ELFT>::Got->getSize(); 355 case R_RELAX_TLS_GD_TO_IE_END: 356 case R_GOT_FROM_END: 357 return Body.getGotOffset() + A - In<ELFT>::Got->getSize(); 358 case R_RELAX_TLS_GD_TO_IE_ABS: 359 case R_GOT: 360 return Body.getGotVA<ELFT>() + A; 361 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 362 case R_GOT_PAGE_PC: 363 return getAArch64Page(Body.getGotVA<ELFT>() + A) - getAArch64Page(P); 364 case R_RELAX_TLS_GD_TO_IE: 365 case R_GOT_PC: 366 return Body.getGotVA<ELFT>() + A - P; 367 case R_GOTONLY_PC: 368 return In<ELFT>::Got->getVA() + A - P; 369 case R_GOTONLY_PC_FROM_END: 370 return In<ELFT>::Got->getVA() + A - P + In<ELFT>::Got->getSize(); 371 case R_RELAX_TLS_LD_TO_LE: 372 case R_RELAX_TLS_IE_TO_LE: 373 case R_RELAX_TLS_GD_TO_LE: 374 case R_TLS: 375 // A weak undefined TLS symbol resolves to the base of the TLS 376 // block, i.e. gets a value of zero. If we pass --gc-sections to 377 // lld and .tbss is not referenced, it gets reclaimed and we don't 378 // create a TLS program header. Therefore, we resolve this 379 // statically to zero. 380 if (Body.isTls() && (Body.isLazy() || Body.isUndefined()) && 381 Body.symbol()->isWeak()) 382 return 0; 383 if (Target->TcbSize) 384 return Body.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 385 return Body.getVA(A) - Out::TlsPhdr->p_memsz; 386 case R_RELAX_TLS_GD_TO_LE_NEG: 387 case R_NEG_TLS: 388 return Out::TlsPhdr->p_memsz - Body.getVA(A); 389 case R_ABS: 390 case R_RELAX_GOT_PC_NOPIC: 391 return Body.getVA(A); 392 case R_GOT_OFF: 393 return Body.getGotOffset() + A; 394 case R_MIPS_GOT_LOCAL_PAGE: 395 // If relocation against MIPS local symbol requires GOT entry, this entry 396 // should be initialized by 'page address'. This address is high 16-bits 397 // of sum the symbol's value and the addend. 398 return In<ELFT>::MipsGot->getVA() + 399 In<ELFT>::MipsGot->getPageEntryOffset(Body, A) - 400 In<ELFT>::MipsGot->getGp(); 401 case R_MIPS_GOT_OFF: 402 case R_MIPS_GOT_OFF32: 403 // In case of MIPS if a GOT relocation has non-zero addend this addend 404 // should be applied to the GOT entry content not to the GOT entry offset. 405 // That is why we use separate expression type. 406 return In<ELFT>::MipsGot->getVA() + 407 In<ELFT>::MipsGot->getBodyEntryOffset(Body, A) - 408 In<ELFT>::MipsGot->getGp(); 409 case R_MIPS_GOTREL: 410 return Body.getVA(A) - In<ELFT>::MipsGot->getGp(); 411 case R_MIPS_GOT_GP: 412 return In<ELFT>::MipsGot->getGp() + A; 413 case R_MIPS_GOT_GP_PC: { 414 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 415 // is _gp_disp symbol. In that case we should use the following 416 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 417 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 418 uint64_t V = In<ELFT>::MipsGot->getGp() + A - P; 419 if (Type == R_MIPS_LO16) 420 V += 4; 421 return V; 422 } 423 case R_MIPS_TLSGD: 424 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 425 In<ELFT>::MipsGot->getGlobalDynOffset(Body) - 426 In<ELFT>::MipsGot->getGp(); 427 case R_MIPS_TLSLD: 428 return In<ELFT>::MipsGot->getVA() + In<ELFT>::MipsGot->getTlsOffset() + 429 In<ELFT>::MipsGot->getTlsIndexOff() - In<ELFT>::MipsGot->getGp(); 430 case R_PPC_OPD: { 431 uint64_t SymVA = Body.getVA(A); 432 // If we have an undefined weak symbol, we might get here with a symbol 433 // address of zero. That could overflow, but the code must be unreachable, 434 // so don't bother doing anything at all. 435 if (!SymVA) 436 return 0; 437 if (Out::Opd) { 438 // If this is a local call, and we currently have the address of a 439 // function-descriptor, get the underlying code address instead. 440 uint64_t OpdStart = Out::Opd->Addr; 441 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 442 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 443 if (InOpd) 444 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 445 } 446 return SymVA - P; 447 } 448 case R_PC: 449 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) { 450 // On ARM and AArch64 a branch to an undefined weak resolves to the 451 // next instruction, otherwise the place. 452 if (Config->EMachine == EM_ARM) 453 return getARMUndefinedRelativeWeakVA(Type, A, P); 454 if (Config->EMachine == EM_AARCH64) 455 return getAArch64UndefinedRelativeWeakVA(Type, A, P); 456 } 457 case R_RELAX_GOT_PC: 458 return Body.getVA(A) - P; 459 case R_PLT_PAGE_PC: 460 case R_PAGE_PC: 461 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak()) 462 return getAArch64Page(A); 463 return getAArch64Page(Body.getVA(A)) - getAArch64Page(P); 464 } 465 llvm_unreachable("Invalid expression"); 466 } 467 468 // This function applies relocations to sections without SHF_ALLOC bit. 469 // Such sections are never mapped to memory at runtime. Debug sections are 470 // an example. Relocations in non-alloc sections are much easier to 471 // handle than in allocated sections because it will never need complex 472 // treatement such as GOT or PLT (because at runtime no one refers them). 473 // So, we handle relocations for non-alloc sections directly in this 474 // function as a performance optimization. 475 template <class ELFT, class RelTy> 476 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 477 typedef typename ELFT::uint uintX_t; 478 for (const RelTy &Rel : Rels) { 479 uint32_t Type = Rel.getType(Config->IsMips64EL); 480 uint64_t Offset = getOffset(Rel.r_offset); 481 uint8_t *BufLoc = Buf + Offset; 482 int64_t Addend = getAddend<ELFT>(Rel); 483 if (!RelTy::IsRela) 484 Addend += Target->getImplicitAddend(BufLoc, Type); 485 486 SymbolBody &Sym = this->getFile<ELFT>()->getRelocTargetSym(Rel); 487 RelExpr Expr = Target->getRelExpr(Type, Sym); 488 if (Expr == R_NONE) 489 continue; 490 if (Expr != R_ABS) { 491 error(this->getLocation<ELFT>(Offset) + ": has non-ABS reloc"); 492 return; 493 } 494 495 uintX_t AddrLoc = this->OutSec->Addr + Offset; 496 uint64_t SymVA = 0; 497 if (!Sym.isTls() || Out::TlsPhdr) 498 SymVA = SignExtend64<sizeof(uintX_t) * 8>( 499 getRelocTargetVA<ELFT>(Type, Addend, AddrLoc, Sym, R_ABS)); 500 Target->relocateOne(BufLoc, Type, SymVA); 501 } 502 } 503 504 template <class ELFT> elf::ObjectFile<ELFT> *InputSectionBase::getFile() const { 505 return cast_or_null<elf::ObjectFile<ELFT>>(File); 506 } 507 508 template <class ELFT> 509 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 510 // scanReloc function in Writer.cpp constructs Relocations 511 // vector only for SHF_ALLOC'ed sections. For other sections, 512 // we handle relocations directly here. 513 auto *IS = dyn_cast<InputSection>(this); 514 if (IS && !(IS->Flags & SHF_ALLOC)) { 515 if (IS->AreRelocsRela) 516 IS->relocateNonAlloc<ELFT>(Buf, IS->template relas<ELFT>()); 517 else 518 IS->relocateNonAlloc<ELFT>(Buf, IS->template rels<ELFT>()); 519 return; 520 } 521 522 typedef typename ELFT::uint uintX_t; 523 const unsigned Bits = sizeof(uintX_t) * 8; 524 for (const Relocation &Rel : Relocations) { 525 uint64_t Offset = getOffset(Rel.Offset); 526 uint8_t *BufLoc = Buf + Offset; 527 uint32_t Type = Rel.Type; 528 529 uintX_t AddrLoc = getOutputSection()->Addr + Offset; 530 RelExpr Expr = Rel.Expr; 531 uint64_t TargetVA = SignExtend64<Bits>( 532 getRelocTargetVA<ELFT>(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr)); 533 534 switch (Expr) { 535 case R_RELAX_GOT_PC: 536 case R_RELAX_GOT_PC_NOPIC: 537 Target->relaxGot(BufLoc, TargetVA); 538 break; 539 case R_RELAX_TLS_IE_TO_LE: 540 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 541 break; 542 case R_RELAX_TLS_LD_TO_LE: 543 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 544 break; 545 case R_RELAX_TLS_GD_TO_LE: 546 case R_RELAX_TLS_GD_TO_LE_NEG: 547 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 548 break; 549 case R_RELAX_TLS_GD_TO_IE: 550 case R_RELAX_TLS_GD_TO_IE_ABS: 551 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 552 case R_RELAX_TLS_GD_TO_IE_END: 553 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 554 break; 555 case R_PPC_PLT_OPD: 556 // Patch a nop (0x60000000) to a ld. 557 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 558 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 559 // fallthrough 560 default: 561 Target->relocateOne(BufLoc, Type, TargetVA); 562 break; 563 } 564 } 565 } 566 567 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 568 if (this->Type == SHT_NOBITS) 569 return; 570 571 if (auto *S = dyn_cast<SyntheticSection>(this)) { 572 S->writeTo(Buf + OutSecOff); 573 return; 574 } 575 576 // If -r or --emit-relocs is given, then an InputSection 577 // may be a relocation section. 578 if (this->Type == SHT_RELA) { 579 copyRelocations<ELFT>(Buf + OutSecOff, 580 this->template getDataAs<typename ELFT::Rela>()); 581 return; 582 } 583 if (this->Type == SHT_REL) { 584 copyRelocations<ELFT>(Buf + OutSecOff, 585 this->template getDataAs<typename ELFT::Rel>()); 586 return; 587 } 588 589 // Copy section contents from source object file to output file. 590 ArrayRef<uint8_t> Data = this->Data; 591 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 592 593 // Iterate over all relocation sections that apply to this section. 594 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 595 this->relocate<ELFT>(Buf, BufEnd); 596 } 597 598 void InputSection::replace(InputSection *Other) { 599 this->Alignment = std::max(this->Alignment, Other->Alignment); 600 Other->Repl = this->Repl; 601 Other->Live = false; 602 } 603 604 template <class ELFT> 605 EhInputSection::EhInputSection(elf::ObjectFile<ELFT> *F, 606 const typename ELFT::Shdr *Header, 607 StringRef Name) 608 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) { 609 // Mark .eh_frame sections as live by default because there are 610 // usually no relocations that point to .eh_frames. Otherwise, 611 // the garbage collector would drop all .eh_frame sections. 612 this->Live = true; 613 } 614 615 bool EhInputSection::classof(const SectionBase *S) { 616 return S->kind() == InputSectionBase::EHFrame; 617 } 618 619 // Returns the index of the first relocation that points to a region between 620 // Begin and Begin+Size. 621 template <class IntTy, class RelTy> 622 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 623 unsigned &RelocI) { 624 // Start search from RelocI for fast access. That works because the 625 // relocations are sorted in .eh_frame. 626 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 627 const RelTy &Rel = Rels[RelocI]; 628 if (Rel.r_offset < Begin) 629 continue; 630 631 if (Rel.r_offset < Begin + Size) 632 return RelocI; 633 return -1; 634 } 635 return -1; 636 } 637 638 // .eh_frame is a sequence of CIE or FDE records. 639 // This function splits an input section into records and returns them. 640 template <class ELFT> void EhInputSection::split() { 641 // Early exit if already split. 642 if (!this->Pieces.empty()) 643 return; 644 645 if (this->NumRelocations) { 646 if (this->AreRelocsRela) 647 split<ELFT>(this->relas<ELFT>()); 648 else 649 split<ELFT>(this->rels<ELFT>()); 650 return; 651 } 652 split<ELFT>(makeArrayRef<typename ELFT::Rela>(nullptr, nullptr)); 653 } 654 655 template <class ELFT, class RelTy> 656 void EhInputSection::split(ArrayRef<RelTy> Rels) { 657 ArrayRef<uint8_t> Data = this->Data; 658 unsigned RelI = 0; 659 for (size_t Off = 0, End = Data.size(); Off != End;) { 660 size_t Size = readEhRecordSize<ELFT>(this, Off); 661 this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 662 // The empty record is the end marker. 663 if (Size == 4) 664 break; 665 Off += Size; 666 } 667 } 668 669 static size_t findNull(ArrayRef<uint8_t> A, size_t EntSize) { 670 // Optimize the common case. 671 StringRef S((const char *)A.data(), A.size()); 672 if (EntSize == 1) 673 return S.find(0); 674 675 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 676 const char *B = S.begin() + I; 677 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 678 return I; 679 } 680 return StringRef::npos; 681 } 682 683 // Split SHF_STRINGS section. Such section is a sequence of 684 // null-terminated strings. 685 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 686 size_t Off = 0; 687 bool IsAlloc = this->Flags & SHF_ALLOC; 688 while (!Data.empty()) { 689 size_t End = findNull(Data, EntSize); 690 if (End == StringRef::npos) 691 fatal(toString(this) + ": string is not null terminated"); 692 size_t Size = End + EntSize; 693 Pieces.emplace_back(Off, !IsAlloc); 694 Hashes.push_back(hash_value(toStringRef(Data.slice(0, Size)))); 695 Data = Data.slice(Size); 696 Off += Size; 697 } 698 } 699 700 // Split non-SHF_STRINGS section. Such section is a sequence of 701 // fixed size records. 702 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 703 size_t EntSize) { 704 size_t Size = Data.size(); 705 assert((Size % EntSize) == 0); 706 bool IsAlloc = this->Flags & SHF_ALLOC; 707 for (unsigned I = 0, N = Size; I != N; I += EntSize) { 708 Hashes.push_back(hash_value(toStringRef(Data.slice(I, EntSize)))); 709 Pieces.emplace_back(I, !IsAlloc); 710 } 711 } 712 713 template <class ELFT> 714 MergeInputSection::MergeInputSection(elf::ObjectFile<ELFT> *F, 715 const typename ELFT::Shdr *Header, 716 StringRef Name) 717 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 718 719 // This function is called after we obtain a complete list of input sections 720 // that need to be linked. This is responsible to split section contents 721 // into small chunks for further processing. 722 // 723 // Note that this function is called from parallel_for_each. This must be 724 // thread-safe (i.e. no memory allocation from the pools). 725 void MergeInputSection::splitIntoPieces() { 726 ArrayRef<uint8_t> Data = this->Data; 727 uint64_t EntSize = this->Entsize; 728 if (this->Flags & SHF_STRINGS) 729 splitStrings(Data, EntSize); 730 else 731 splitNonStrings(Data, EntSize); 732 733 if (Config->GcSections && (this->Flags & SHF_ALLOC)) 734 for (uint64_t Off : LiveOffsets) 735 this->getSectionPiece(Off)->Live = true; 736 } 737 738 bool MergeInputSection::classof(const SectionBase *S) { 739 return S->kind() == InputSectionBase::Merge; 740 } 741 742 // Do binary search to get a section piece at a given input offset. 743 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 744 auto *This = static_cast<const MergeInputSection *>(this); 745 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 746 } 747 748 template <class It, class T, class Compare> 749 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 750 size_t Size = std::distance(First, Last); 751 assert(Size != 0); 752 while (Size != 1) { 753 size_t H = Size / 2; 754 const It MI = First + H; 755 Size -= H; 756 First = Comp(Value, *MI) ? First : First + H; 757 } 758 return Comp(Value, *First) ? First : First + 1; 759 } 760 761 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 762 uint64_t Size = this->Data.size(); 763 if (Offset >= Size) 764 fatal(toString(this) + ": entry is past the end of the section"); 765 766 // Find the element this offset points to. 767 auto I = fastUpperBound( 768 Pieces.begin(), Pieces.end(), Offset, 769 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 770 --I; 771 return &*I; 772 } 773 774 // Returns the offset in an output section for a given input offset. 775 // Because contents of a mergeable section is not contiguous in output, 776 // it is not just an addition to a base output offset. 777 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 778 // Initialize OffsetMap lazily. 779 std::call_once(InitOffsetMap, [&] { 780 OffsetMap.reserve(Pieces.size()); 781 for (const SectionPiece &Piece : Pieces) 782 OffsetMap[Piece.InputOff] = Piece.OutputOff; 783 }); 784 785 // Find a string starting at a given offset. 786 auto It = OffsetMap.find(Offset); 787 if (It != OffsetMap.end()) 788 return It->second; 789 790 if (!this->Live) 791 return 0; 792 793 // If Offset is not at beginning of a section piece, it is not in the map. 794 // In that case we need to search from the original section piece vector. 795 const SectionPiece &Piece = *this->getSectionPiece(Offset); 796 if (!Piece.Live) 797 return 0; 798 799 uint64_t Addend = Offset - Piece.InputOff; 800 return Piece.OutputOff + Addend; 801 } 802 803 template InputSection::InputSection(elf::ObjectFile<ELF32LE> *F, 804 const ELF32LE::Shdr *Header, 805 StringRef Name); 806 template InputSection::InputSection(elf::ObjectFile<ELF32BE> *F, 807 const ELF32BE::Shdr *Header, 808 StringRef Name); 809 template InputSection::InputSection(elf::ObjectFile<ELF64LE> *F, 810 const ELF64LE::Shdr *Header, 811 StringRef Name); 812 template InputSection::InputSection(elf::ObjectFile<ELF64BE> *F, 813 const ELF64BE::Shdr *Header, 814 StringRef Name); 815 816 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t Offset); 817 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t Offset); 818 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t Offset); 819 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t Offset); 820 821 template void InputSection::writeTo<ELF32LE>(uint8_t *Buf); 822 template void InputSection::writeTo<ELF32BE>(uint8_t *Buf); 823 template void InputSection::writeTo<ELF64LE>(uint8_t *Buf); 824 template void InputSection::writeTo<ELF64BE>(uint8_t *Buf); 825 826 template elf::ObjectFile<ELF32LE> *InputSectionBase::getFile<ELF32LE>() const; 827 template elf::ObjectFile<ELF32BE> *InputSectionBase::getFile<ELF32BE>() const; 828 template elf::ObjectFile<ELF64LE> *InputSectionBase::getFile<ELF64LE>() const; 829 template elf::ObjectFile<ELF64BE> *InputSectionBase::getFile<ELF64BE>() const; 830 831 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32LE> *F, 832 const ELF32LE::Shdr *Header, 833 StringRef Name); 834 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF32BE> *F, 835 const ELF32BE::Shdr *Header, 836 StringRef Name); 837 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64LE> *F, 838 const ELF64LE::Shdr *Header, 839 StringRef Name); 840 template MergeInputSection::MergeInputSection(elf::ObjectFile<ELF64BE> *F, 841 const ELF64BE::Shdr *Header, 842 StringRef Name); 843 844 template EhInputSection::EhInputSection(elf::ObjectFile<ELF32LE> *F, 845 const ELF32LE::Shdr *Header, 846 StringRef Name); 847 template EhInputSection::EhInputSection(elf::ObjectFile<ELF32BE> *F, 848 const ELF32BE::Shdr *Header, 849 StringRef Name); 850 template EhInputSection::EhInputSection(elf::ObjectFile<ELF64LE> *F, 851 const ELF64LE::Shdr *Header, 852 StringRef Name); 853 template EhInputSection::EhInputSection(elf::ObjectFile<ELF64BE> *F, 854 const ELF64BE::Shdr *Header, 855 StringRef Name); 856 857 template void EhInputSection::split<ELF32LE>(); 858 template void EhInputSection::split<ELF32BE>(); 859 template void EhInputSection::split<ELF64LE>(); 860 template void EhInputSection::split<ELF64BE>(); 861