1 //===- InputSection.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputSection.h" 11 #include "Config.h" 12 #include "EhFrame.h" 13 #include "InputFiles.h" 14 #include "LinkerScript.h" 15 #include "OutputSections.h" 16 #include "Relocations.h" 17 #include "Symbols.h" 18 #include "SyntheticSections.h" 19 #include "Target.h" 20 #include "Thunks.h" 21 #include "lld/Common/ErrorHandler.h" 22 #include "lld/Common/Memory.h" 23 #include "llvm/Object/Decompressor.h" 24 #include "llvm/Support/Compiler.h" 25 #include "llvm/Support/Compression.h" 26 #include "llvm/Support/Endian.h" 27 #include "llvm/Support/Threading.h" 28 #include "llvm/Support/xxhash.h" 29 #include <mutex> 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::support; 35 using namespace llvm::support::endian; 36 using namespace llvm::sys; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 std::vector<InputSectionBase *> elf::InputSections; 42 43 // Returns a string to construct an error message. 44 std::string lld::toString(const InputSectionBase *Sec) { 45 return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); 46 } 47 48 template <class ELFT> 49 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &File, 50 const typename ELFT::Shdr &Hdr) { 51 if (Hdr.sh_type == SHT_NOBITS) 52 return makeArrayRef<uint8_t>(nullptr, Hdr.sh_size); 53 return check(File.getObj().getSectionContents(&Hdr)); 54 } 55 56 InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, 57 uint32_t Type, uint64_t Entsize, 58 uint32_t Link, uint32_t Info, 59 uint32_t Alignment, ArrayRef<uint8_t> Data, 60 StringRef Name, Kind SectionKind) 61 : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, 62 Link), 63 File(File), Data(Data) { 64 // In order to reduce memory allocation, we assume that mergeable 65 // sections are smaller than 4 GiB, which is not an unreasonable 66 // assumption as of 2017. 67 if (SectionKind == SectionBase::Merge && Data.size() > UINT32_MAX) 68 error(toString(this) + ": section too large"); 69 70 NumRelocations = 0; 71 AreRelocsRela = false; 72 73 // The ELF spec states that a value of 0 means the section has 74 // no alignment constraits. 75 uint32_t V = std::max<uint64_t>(Alignment, 1); 76 if (!isPowerOf2_64(V)) 77 fatal(toString(File) + ": section sh_addralign is not a power of 2"); 78 this->Alignment = V; 79 } 80 81 // Drop SHF_GROUP bit unless we are producing a re-linkable object file. 82 // SHF_GROUP is a marker that a section belongs to some comdat group. 83 // That flag doesn't make sense in an executable. 84 static uint64_t getFlags(uint64_t Flags) { 85 Flags &= ~(uint64_t)SHF_INFO_LINK; 86 if (!Config->Relocatable) 87 Flags &= ~(uint64_t)SHF_GROUP; 88 return Flags; 89 } 90 91 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of 92 // March 2017) fail to infer section types for sections starting with 93 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of 94 // SHF_INIT_ARRAY. As a result, the following assembler directive 95 // creates ".init_array.100" with SHT_PROGBITS, for example. 96 // 97 // .section .init_array.100, "aw" 98 // 99 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle 100 // incorrect inputs as if they were correct from the beginning. 101 static uint64_t getType(uint64_t Type, StringRef Name) { 102 if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) 103 return SHT_INIT_ARRAY; 104 if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) 105 return SHT_FINI_ARRAY; 106 return Type; 107 } 108 109 template <class ELFT> 110 InputSectionBase::InputSectionBase(ObjFile<ELFT> &File, 111 const typename ELFT::Shdr &Hdr, 112 StringRef Name, Kind SectionKind) 113 : InputSectionBase(&File, getFlags(Hdr.sh_flags), 114 getType(Hdr.sh_type, Name), Hdr.sh_entsize, Hdr.sh_link, 115 Hdr.sh_info, Hdr.sh_addralign, 116 getSectionContents(File, Hdr), Name, SectionKind) { 117 // We reject object files having insanely large alignments even though 118 // they are allowed by the spec. I think 4GB is a reasonable limitation. 119 // We might want to relax this in the future. 120 if (Hdr.sh_addralign > UINT32_MAX) 121 fatal(toString(&File) + ": section sh_addralign is too large"); 122 } 123 124 size_t InputSectionBase::getSize() const { 125 if (auto *S = dyn_cast<SyntheticSection>(this)) 126 return S->getSize(); 127 128 return Data.size(); 129 } 130 131 uint64_t InputSectionBase::getOffsetInFile() const { 132 const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); 133 const uint8_t *SecStart = Data.begin(); 134 return SecStart - FileStart; 135 } 136 137 uint64_t SectionBase::getOffset(uint64_t Offset) const { 138 switch (kind()) { 139 case Output: { 140 auto *OS = cast<OutputSection>(this); 141 // For output sections we treat offset -1 as the end of the section. 142 return Offset == uint64_t(-1) ? OS->Size : Offset; 143 } 144 case Regular: 145 return cast<InputSection>(this)->OutSecOff + Offset; 146 case Synthetic: { 147 auto *IS = cast<InputSection>(this); 148 // For synthetic sections we treat offset -1 as the end of the section. 149 return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); 150 } 151 case EHFrame: 152 // The file crtbeginT.o has relocations pointing to the start of an empty 153 // .eh_frame that is known to be the first in the link. It does that to 154 // identify the start of the output .eh_frame. 155 return Offset; 156 case Merge: 157 const MergeInputSection *MS = cast<MergeInputSection>(this); 158 if (InputSection *IS = MS->getParent()) 159 return IS->OutSecOff + MS->getOffset(Offset); 160 return MS->getOffset(Offset); 161 } 162 llvm_unreachable("invalid section kind"); 163 } 164 165 OutputSection *SectionBase::getOutputSection() { 166 InputSection *Sec; 167 if (auto *IS = dyn_cast<InputSection>(this)) 168 return IS->getParent(); 169 else if (auto *MS = dyn_cast<MergeInputSection>(this)) 170 Sec = MS->getParent(); 171 else if (auto *EH = dyn_cast<EhInputSection>(this)) 172 Sec = EH->getParent(); 173 else 174 return cast<OutputSection>(this); 175 return Sec ? Sec->getParent() : nullptr; 176 } 177 178 // Decompress section contents if required. Note that this function 179 // is called from parallelForEach, so it must be thread-safe. 180 void InputSectionBase::maybeDecompress() { 181 if (DecompressBuf) 182 return; 183 if (!(Flags & SHF_COMPRESSED) && !Name.startswith(".zdebug")) 184 return; 185 186 // Decompress a section. 187 Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), 188 Config->IsLE, Config->Is64)); 189 190 size_t Size = Dec.getDecompressedSize(); 191 DecompressBuf.reset(new char[Size + Name.size()]()); 192 if (Error E = Dec.decompress({DecompressBuf.get(), Size})) 193 fatal(toString(this) + 194 ": decompress failed: " + llvm::toString(std::move(E))); 195 196 Data = makeArrayRef((uint8_t *)DecompressBuf.get(), Size); 197 Flags &= ~(uint64_t)SHF_COMPRESSED; 198 199 // A section name may have been altered if compressed. If that's 200 // the case, restore the original name. (i.e. ".zdebug_" -> ".debug_") 201 if (Name.startswith(".zdebug")) { 202 DecompressBuf[Size] = '.'; 203 memcpy(&DecompressBuf[Size + 1], Name.data() + 2, Name.size() - 2); 204 Name = StringRef(&DecompressBuf[Size], Name.size() - 1); 205 } 206 } 207 208 InputSection *InputSectionBase::getLinkOrderDep() const { 209 assert(Link); 210 assert(Flags & SHF_LINK_ORDER); 211 return cast<InputSection>(File->getSections()[Link]); 212 } 213 214 // Returns a source location string. Used to construct an error message. 215 template <class ELFT> 216 std::string InputSectionBase::getLocation(uint64_t Offset) { 217 // We don't have file for synthetic sections. 218 if (getFile<ELFT>() == nullptr) 219 return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") 220 .str(); 221 222 // First check if we can get desired values from debugging information. 223 std::string LineInfo = getFile<ELFT>()->getLineInfo(this, Offset); 224 if (!LineInfo.empty()) 225 return LineInfo; 226 227 // File->SourceFile contains STT_FILE symbol that contains a 228 // source file name. If it's missing, we use an object file name. 229 std::string SrcFile = getFile<ELFT>()->SourceFile; 230 if (SrcFile.empty()) 231 SrcFile = toString(File); 232 233 // Find a function symbol that encloses a given location. 234 for (Symbol *B : File->getSymbols()) 235 if (auto *D = dyn_cast<Defined>(B)) 236 if (D->Section == this && D->Type == STT_FUNC) 237 if (D->Value <= Offset && Offset < D->Value + D->Size) 238 return SrcFile + ":(function " + toString(*D) + ")"; 239 240 // If there's no symbol, print out the offset in the section. 241 return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); 242 } 243 244 // This function is intended to be used for constructing an error message. 245 // The returned message looks like this: 246 // 247 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) 248 // 249 // Returns an empty string if there's no way to get line info. 250 std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { 251 // Synthetic sections don't have input files. 252 if (!File) 253 return ""; 254 return File->getSrcMsg(Sym, *this, Offset); 255 } 256 257 // Returns a filename string along with an optional section name. This 258 // function is intended to be used for constructing an error 259 // message. The returned message looks like this: 260 // 261 // path/to/foo.o:(function bar) 262 // 263 // or 264 // 265 // path/to/foo.o:(function bar) in archive path/to/bar.a 266 std::string InputSectionBase::getObjMsg(uint64_t Off) { 267 // Synthetic sections don't have input files. 268 if (!File) 269 return ("<internal>:(" + Name + "+0x" + utohexstr(Off) + ")").str(); 270 std::string Filename = File->getName(); 271 272 std::string Archive; 273 if (!File->ArchiveName.empty()) 274 Archive = " in archive " + File->ArchiveName; 275 276 // Find a symbol that encloses a given location. 277 for (Symbol *B : File->getSymbols()) 278 if (auto *D = dyn_cast<Defined>(B)) 279 if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) 280 return Filename + ":(" + toString(*D) + ")" + Archive; 281 282 // If there's no symbol, print out the offset in the section. 283 return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) 284 .str(); 285 } 286 287 InputSection InputSection::Discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); 288 289 InputSection::InputSection(InputFile *F, uint64_t Flags, uint32_t Type, 290 uint32_t Alignment, ArrayRef<uint8_t> Data, 291 StringRef Name, Kind K) 292 : InputSectionBase(F, Flags, Type, 293 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, 294 Name, K) {} 295 296 template <class ELFT> 297 InputSection::InputSection(ObjFile<ELFT> &F, const typename ELFT::Shdr &Header, 298 StringRef Name) 299 : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} 300 301 bool InputSection::classof(const SectionBase *S) { 302 return S->kind() == SectionBase::Regular || 303 S->kind() == SectionBase::Synthetic; 304 } 305 306 OutputSection *InputSection::getParent() const { 307 return cast_or_null<OutputSection>(Parent); 308 } 309 310 // Copy SHT_GROUP section contents. Used only for the -r option. 311 template <class ELFT> void InputSection::copyShtGroup(uint8_t *Buf) { 312 // ELFT::Word is the 32-bit integral type in the target endianness. 313 typedef typename ELFT::Word u32; 314 ArrayRef<u32> From = getDataAs<u32>(); 315 auto *To = reinterpret_cast<u32 *>(Buf); 316 317 // The first entry is not a section number but a flag. 318 *To++ = From[0]; 319 320 // Adjust section numbers because section numbers in an input object 321 // files are different in the output. 322 ArrayRef<InputSectionBase *> Sections = File->getSections(); 323 for (uint32_t Idx : From.slice(1)) 324 *To++ = Sections[Idx]->getOutputSection()->SectionIndex; 325 } 326 327 InputSectionBase *InputSection::getRelocatedSection() { 328 assert(Type == SHT_RELA || Type == SHT_REL); 329 ArrayRef<InputSectionBase *> Sections = File->getSections(); 330 return Sections[Info]; 331 } 332 333 // This is used for -r and --emit-relocs. We can't use memcpy to copy 334 // relocations because we need to update symbol table offset and section index 335 // for each relocation. So we copy relocations one by one. 336 template <class ELFT, class RelTy> 337 void InputSection::copyRelocations(uint8_t *Buf, ArrayRef<RelTy> Rels) { 338 InputSectionBase *Sec = getRelocatedSection(); 339 340 for (const RelTy &Rel : Rels) { 341 RelType Type = Rel.getType(Config->IsMips64EL); 342 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 343 344 auto *P = reinterpret_cast<typename ELFT::Rela *>(Buf); 345 Buf += sizeof(RelTy); 346 347 if (RelTy::IsRela) 348 P->r_addend = getAddend<ELFT>(Rel); 349 350 // Output section VA is zero for -r, so r_offset is an offset within the 351 // section, but for --emit-relocs it is an virtual address. 352 P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset); 353 P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type, 354 Config->IsMips64EL); 355 356 if (Sym.Type == STT_SECTION) { 357 // We combine multiple section symbols into only one per 358 // section. This means we have to update the addend. That is 359 // trivial for Elf_Rela, but for Elf_Rel we have to write to the 360 // section data. We do that by adding to the Relocation vector. 361 362 // .eh_frame is horribly special and can reference discarded sections. To 363 // avoid having to parse and recreate .eh_frame, we just replace any 364 // relocation in it pointing to discarded sections with R_*_NONE, which 365 // hopefully creates a frame that is ignored at runtime. 366 auto *D = dyn_cast<Defined>(&Sym); 367 if (!D) { 368 error("STT_SECTION symbol should be defined"); 369 continue; 370 } 371 SectionBase *Section = D->Section; 372 if (Section == &InputSection::Discarded) { 373 P->setSymbolAndType(0, 0, false); 374 continue; 375 } 376 377 if (RelTy::IsRela) { 378 P->r_addend = 379 Sym.getVA(getAddend<ELFT>(Rel)) - Section->getOutputSection()->Addr; 380 } else if (Config->Relocatable) { 381 const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset; 382 Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, 383 Target->getImplicitAddend(BufLoc, Type), 384 &Sym}); 385 } 386 } 387 388 } 389 } 390 391 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak 392 // references specially. The general rule is that the value of the symbol in 393 // this context is the address of the place P. A further special case is that 394 // branch relocations to an undefined weak reference resolve to the next 395 // instruction. 396 static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, 397 uint32_t P) { 398 switch (Type) { 399 // Unresolved branch relocations to weak references resolve to next 400 // instruction, this will be either 2 or 4 bytes on from P. 401 case R_ARM_THM_JUMP11: 402 return P + 2 + A; 403 case R_ARM_CALL: 404 case R_ARM_JUMP24: 405 case R_ARM_PC24: 406 case R_ARM_PLT32: 407 case R_ARM_PREL31: 408 case R_ARM_THM_JUMP19: 409 case R_ARM_THM_JUMP24: 410 return P + 4 + A; 411 case R_ARM_THM_CALL: 412 // We don't want an interworking BLX to ARM 413 return P + 5 + A; 414 // Unresolved non branch pc-relative relocations 415 // R_ARM_TARGET2 which can be resolved relatively is not present as it never 416 // targets a weak-reference. 417 case R_ARM_MOVW_PREL_NC: 418 case R_ARM_MOVT_PREL: 419 case R_ARM_REL32: 420 case R_ARM_THM_MOVW_PREL_NC: 421 case R_ARM_THM_MOVT_PREL: 422 return P + A; 423 } 424 llvm_unreachable("ARM pc-relative relocation expected\n"); 425 } 426 427 // The comment above getARMUndefinedRelativeWeakVA applies to this function. 428 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, 429 uint64_t P) { 430 switch (Type) { 431 // Unresolved branch relocations to weak references resolve to next 432 // instruction, this is 4 bytes on from P. 433 case R_AARCH64_CALL26: 434 case R_AARCH64_CONDBR19: 435 case R_AARCH64_JUMP26: 436 case R_AARCH64_TSTBR14: 437 return P + 4 + A; 438 // Unresolved non branch pc-relative relocations 439 case R_AARCH64_PREL16: 440 case R_AARCH64_PREL32: 441 case R_AARCH64_PREL64: 442 case R_AARCH64_ADR_PREL_LO21: 443 case R_AARCH64_LD_PREL_LO19: 444 return P + A; 445 } 446 llvm_unreachable("AArch64 pc-relative relocation expected\n"); 447 } 448 449 // ARM SBREL relocations are of the form S + A - B where B is the static base 450 // The ARM ABI defines base to be "addressing origin of the output segment 451 // defining the symbol S". We defined the "addressing origin"/static base to be 452 // the base of the PT_LOAD segment containing the Sym. 453 // The procedure call standard only defines a Read Write Position Independent 454 // RWPI variant so in practice we should expect the static base to be the base 455 // of the RW segment. 456 static uint64_t getARMStaticBase(const Symbol &Sym) { 457 OutputSection *OS = Sym.getOutputSection(); 458 if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) 459 fatal("SBREL relocation to " + Sym.getName() + " without static base"); 460 return OS->PtLoad->FirstSec->Addr; 461 } 462 463 static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P, 464 const Symbol &Sym, RelExpr Expr) { 465 switch (Expr) { 466 case R_INVALID: 467 return 0; 468 case R_ABS: 469 case R_RELAX_GOT_PC_NOPIC: 470 return Sym.getVA(A); 471 case R_ADDEND: 472 return A; 473 case R_ARM_SBREL: 474 return Sym.getVA(A) - getARMStaticBase(Sym); 475 case R_GOT: 476 case R_RELAX_TLS_GD_TO_IE_ABS: 477 return Sym.getGotVA() + A; 478 case R_GOTONLY_PC: 479 return InX::Got->getVA() + A - P; 480 case R_GOTONLY_PC_FROM_END: 481 return InX::Got->getVA() + A - P + InX::Got->getSize(); 482 case R_GOTREL: 483 return Sym.getVA(A) - InX::Got->getVA(); 484 case R_GOTREL_FROM_END: 485 return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); 486 case R_GOT_FROM_END: 487 case R_RELAX_TLS_GD_TO_IE_END: 488 return Sym.getGotOffset() + A - InX::Got->getSize(); 489 case R_GOT_OFF: 490 return Sym.getGotOffset() + A; 491 case R_GOT_PAGE_PC: 492 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 493 return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); 494 case R_GOT_PC: 495 case R_RELAX_TLS_GD_TO_IE: 496 return Sym.getGotVA() + A - P; 497 case R_HINT: 498 case R_NONE: 499 case R_TLSDESC_CALL: 500 llvm_unreachable("cannot relocate hint relocs"); 501 case R_MIPS_GOTREL: 502 return Sym.getVA(A) - InX::MipsGot->getGp(); 503 case R_MIPS_GOT_GP: 504 return InX::MipsGot->getGp() + A; 505 case R_MIPS_GOT_GP_PC: { 506 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target 507 // is _gp_disp symbol. In that case we should use the following 508 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at 509 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 510 // microMIPS variants of these relocations use slightly different 511 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() 512 // to correctly handle less-sugnificant bit of the microMIPS symbol. 513 uint64_t V = InX::MipsGot->getGp() + A - P; 514 if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) 515 V += 4; 516 if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) 517 V -= 1; 518 return V; 519 } 520 case R_MIPS_GOT_LOCAL_PAGE: 521 // If relocation against MIPS local symbol requires GOT entry, this entry 522 // should be initialized by 'page address'. This address is high 16-bits 523 // of sum the symbol's value and the addend. 524 return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Sym, A) - 525 InX::MipsGot->getGp(); 526 case R_MIPS_GOT_OFF: 527 case R_MIPS_GOT_OFF32: 528 // In case of MIPS if a GOT relocation has non-zero addend this addend 529 // should be applied to the GOT entry content not to the GOT entry offset. 530 // That is why we use separate expression type. 531 return InX::MipsGot->getVA() + InX::MipsGot->getSymEntryOffset(Sym, A) - 532 InX::MipsGot->getGp(); 533 case R_MIPS_TLSGD: 534 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 535 InX::MipsGot->getGlobalDynOffset(Sym) - InX::MipsGot->getGp(); 536 case R_MIPS_TLSLD: 537 return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + 538 InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); 539 case R_PAGE_PC: 540 case R_PLT_PAGE_PC: { 541 uint64_t Dest; 542 if (Sym.isUndefWeak()) 543 Dest = getAArch64Page(A); 544 else 545 Dest = getAArch64Page(Sym.getVA(A)); 546 return Dest - getAArch64Page(P); 547 } 548 case R_PC: { 549 uint64_t Dest; 550 if (Sym.isUndefWeak()) { 551 // On ARM and AArch64 a branch to an undefined weak resolves to the 552 // next instruction, otherwise the place. 553 if (Config->EMachine == EM_ARM) 554 Dest = getARMUndefinedRelativeWeakVA(Type, A, P); 555 else if (Config->EMachine == EM_AARCH64) 556 Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); 557 else 558 Dest = Sym.getVA(A); 559 } else { 560 Dest = Sym.getVA(A); 561 } 562 return Dest - P; 563 } 564 case R_PLT: 565 return Sym.getPltVA() + A; 566 case R_PLT_PC: 567 case R_PPC_PLT_OPD: 568 return Sym.getPltVA() + A - P; 569 case R_PPC_OPD: { 570 uint64_t SymVA = Sym.getVA(A); 571 // If we have an undefined weak symbol, we might get here with a symbol 572 // address of zero. That could overflow, but the code must be unreachable, 573 // so don't bother doing anything at all. 574 if (!SymVA) 575 return 0; 576 if (Out::Opd) { 577 // If this is a local call, and we currently have the address of a 578 // function-descriptor, get the underlying code address instead. 579 uint64_t OpdStart = Out::Opd->Addr; 580 uint64_t OpdEnd = OpdStart + Out::Opd->Size; 581 bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; 582 if (InOpd) 583 SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); 584 } 585 return SymVA - P; 586 } 587 case R_PPC_TOC: 588 return getPPC64TocBase() + A; 589 case R_RELAX_GOT_PC: 590 return Sym.getVA(A) - P; 591 case R_RELAX_TLS_GD_TO_LE: 592 case R_RELAX_TLS_IE_TO_LE: 593 case R_RELAX_TLS_LD_TO_LE: 594 case R_TLS: 595 // A weak undefined TLS symbol resolves to the base of the TLS 596 // block, i.e. gets a value of zero. If we pass --gc-sections to 597 // lld and .tbss is not referenced, it gets reclaimed and we don't 598 // create a TLS program header. Therefore, we resolve this 599 // statically to zero. 600 if (Sym.isTls() && Sym.isUndefWeak()) 601 return 0; 602 if (Target->TcbSize) 603 return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); 604 return Sym.getVA(A) - Out::TlsPhdr->p_memsz; 605 case R_RELAX_TLS_GD_TO_LE_NEG: 606 case R_NEG_TLS: 607 return Out::TlsPhdr->p_memsz - Sym.getVA(A); 608 case R_SIZE: 609 return Sym.getSize() + A; 610 case R_TLSDESC: 611 return InX::Got->getGlobalDynAddr(Sym) + A; 612 case R_TLSDESC_PAGE: 613 return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) - 614 getAArch64Page(P); 615 case R_TLSGD: 616 return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize(); 617 case R_TLSGD_PC: 618 return InX::Got->getGlobalDynAddr(Sym) + A - P; 619 case R_TLSLD: 620 return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); 621 case R_TLSLD_PC: 622 return InX::Got->getTlsIndexVA() + A - P; 623 } 624 llvm_unreachable("Invalid expression"); 625 } 626 627 // This function applies relocations to sections without SHF_ALLOC bit. 628 // Such sections are never mapped to memory at runtime. Debug sections are 629 // an example. Relocations in non-alloc sections are much easier to 630 // handle than in allocated sections because it will never need complex 631 // treatement such as GOT or PLT (because at runtime no one refers them). 632 // So, we handle relocations for non-alloc sections directly in this 633 // function as a performance optimization. 634 template <class ELFT, class RelTy> 635 void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef<RelTy> Rels) { 636 const unsigned Bits = sizeof(typename ELFT::uint) * 8; 637 638 for (const RelTy &Rel : Rels) { 639 RelType Type = Rel.getType(Config->IsMips64EL); 640 641 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations 642 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed 643 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we 644 // need to keep this bug-compatible code for a while. 645 if (Config->EMachine == EM_386 && Type == R_386_GOTPC) 646 continue; 647 648 uint64_t Offset = getOffset(Rel.r_offset); 649 uint8_t *BufLoc = Buf + Offset; 650 int64_t Addend = getAddend<ELFT>(Rel); 651 if (!RelTy::IsRela) 652 Addend += Target->getImplicitAddend(BufLoc, Type); 653 654 Symbol &Sym = getFile<ELFT>()->getRelocTargetSym(Rel); 655 RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); 656 if (Expr == R_NONE) 657 continue; 658 659 if (Expr != R_ABS) { 660 std::string Msg = getLocation<ELFT>(Offset) + 661 ": has non-ABS relocation " + toString(Type) + 662 " against symbol '" + toString(Sym) + "'"; 663 if (Expr != R_PC) { 664 error(Msg); 665 return; 666 } 667 668 // If the control reaches here, we found a PC-relative relocation in a 669 // non-ALLOC section. Since non-ALLOC section is not loaded into memory 670 // at runtime, the notion of PC-relative doesn't make sense here. So, 671 // this is a usage error. However, GNU linkers historically accept such 672 // relocations without any errors and relocate them as if they were at 673 // address 0. For bug-compatibilty, we accept them with warnings. We 674 // know Steel Bank Common Lisp as of 2018 have this bug. 675 warn(Msg); 676 Target->relocateOne(BufLoc, Type, 677 SignExtend64<Bits>(Sym.getVA(Addend - Offset))); 678 continue; 679 } 680 681 if (Sym.isTls() && !Out::TlsPhdr) 682 Target->relocateOne(BufLoc, Type, 0); 683 else 684 Target->relocateOne(BufLoc, Type, SignExtend64<Bits>(Sym.getVA(Addend))); 685 } 686 } 687 688 template <class ELFT> 689 void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { 690 if (Flags & SHF_ALLOC) { 691 relocateAlloc(Buf, BufEnd); 692 return; 693 } 694 695 auto *Sec = cast<InputSection>(this); 696 if (Sec->AreRelocsRela) 697 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template relas<ELFT>()); 698 else 699 Sec->relocateNonAlloc<ELFT>(Buf, Sec->template rels<ELFT>()); 700 } 701 702 void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { 703 assert(Flags & SHF_ALLOC); 704 const unsigned Bits = Config->Wordsize * 8; 705 706 for (const Relocation &Rel : Relocations) { 707 uint64_t Offset = getOffset(Rel.Offset); 708 uint8_t *BufLoc = Buf + Offset; 709 RelType Type = Rel.Type; 710 711 uint64_t AddrLoc = getOutputSection()->Addr + Offset; 712 RelExpr Expr = Rel.Expr; 713 uint64_t TargetVA = SignExtend64( 714 getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); 715 716 switch (Expr) { 717 case R_RELAX_GOT_PC: 718 case R_RELAX_GOT_PC_NOPIC: 719 Target->relaxGot(BufLoc, TargetVA); 720 break; 721 case R_RELAX_TLS_IE_TO_LE: 722 Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); 723 break; 724 case R_RELAX_TLS_LD_TO_LE: 725 Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); 726 break; 727 case R_RELAX_TLS_GD_TO_LE: 728 case R_RELAX_TLS_GD_TO_LE_NEG: 729 Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); 730 break; 731 case R_RELAX_TLS_GD_TO_IE: 732 case R_RELAX_TLS_GD_TO_IE_ABS: 733 case R_RELAX_TLS_GD_TO_IE_PAGE_PC: 734 case R_RELAX_TLS_GD_TO_IE_END: 735 Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); 736 break; 737 case R_PPC_PLT_OPD: 738 // Patch a nop (0x60000000) to a ld. 739 if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) 740 write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) 741 LLVM_FALLTHROUGH; 742 default: 743 Target->relocateOne(BufLoc, Type, TargetVA); 744 break; 745 } 746 } 747 } 748 749 template <class ELFT> void InputSection::writeTo(uint8_t *Buf) { 750 if (Type == SHT_NOBITS) 751 return; 752 753 if (auto *S = dyn_cast<SyntheticSection>(this)) { 754 S->writeTo(Buf + OutSecOff); 755 return; 756 } 757 758 // If -r or --emit-relocs is given, then an InputSection 759 // may be a relocation section. 760 if (Type == SHT_RELA) { 761 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rela>()); 762 return; 763 } 764 if (Type == SHT_REL) { 765 copyRelocations<ELFT>(Buf + OutSecOff, getDataAs<typename ELFT::Rel>()); 766 return; 767 } 768 769 // If -r is given, we may have a SHT_GROUP section. 770 if (Type == SHT_GROUP) { 771 copyShtGroup<ELFT>(Buf + OutSecOff); 772 return; 773 } 774 775 // Copy section contents from source object file to output file 776 // and then apply relocations. 777 memcpy(Buf + OutSecOff, Data.data(), Data.size()); 778 uint8_t *BufEnd = Buf + OutSecOff + Data.size(); 779 relocate<ELFT>(Buf, BufEnd); 780 } 781 782 void InputSection::replace(InputSection *Other) { 783 Alignment = std::max(Alignment, Other->Alignment); 784 Other->Repl = Repl; 785 Other->Live = false; 786 } 787 788 template <class ELFT> 789 EhInputSection::EhInputSection(ObjFile<ELFT> &F, 790 const typename ELFT::Shdr &Header, 791 StringRef Name) 792 : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} 793 794 SyntheticSection *EhInputSection::getParent() const { 795 return cast_or_null<SyntheticSection>(Parent); 796 } 797 798 // Returns the index of the first relocation that points to a region between 799 // Begin and Begin+Size. 800 template <class IntTy, class RelTy> 801 static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef<RelTy> &Rels, 802 unsigned &RelocI) { 803 // Start search from RelocI for fast access. That works because the 804 // relocations are sorted in .eh_frame. 805 for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { 806 const RelTy &Rel = Rels[RelocI]; 807 if (Rel.r_offset < Begin) 808 continue; 809 810 if (Rel.r_offset < Begin + Size) 811 return RelocI; 812 return -1; 813 } 814 return -1; 815 } 816 817 // .eh_frame is a sequence of CIE or FDE records. 818 // This function splits an input section into records and returns them. 819 template <class ELFT> void EhInputSection::split() { 820 // Early exit if already split. 821 if (!Pieces.empty()) 822 return; 823 824 if (AreRelocsRela) 825 split<ELFT>(relas<ELFT>()); 826 else 827 split<ELFT>(rels<ELFT>()); 828 } 829 830 template <class ELFT, class RelTy> 831 void EhInputSection::split(ArrayRef<RelTy> Rels) { 832 unsigned RelI = 0; 833 for (size_t Off = 0, End = Data.size(); Off != End;) { 834 size_t Size = readEhRecordSize(this, Off); 835 Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); 836 // The empty record is the end marker. 837 if (Size == 4) 838 break; 839 Off += Size; 840 } 841 } 842 843 static size_t findNull(StringRef S, size_t EntSize) { 844 // Optimize the common case. 845 if (EntSize == 1) 846 return S.find(0); 847 848 for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { 849 const char *B = S.begin() + I; 850 if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) 851 return I; 852 } 853 return StringRef::npos; 854 } 855 856 SyntheticSection *MergeInputSection::getParent() const { 857 return cast_or_null<SyntheticSection>(Parent); 858 } 859 860 // Split SHF_STRINGS section. Such section is a sequence of 861 // null-terminated strings. 862 void MergeInputSection::splitStrings(ArrayRef<uint8_t> Data, size_t EntSize) { 863 size_t Off = 0; 864 bool IsAlloc = Flags & SHF_ALLOC; 865 StringRef S = toStringRef(Data); 866 867 while (!S.empty()) { 868 size_t End = findNull(S, EntSize); 869 if (End == StringRef::npos) 870 fatal(toString(this) + ": string is not null terminated"); 871 size_t Size = End + EntSize; 872 873 Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); 874 S = S.substr(Size); 875 Off += Size; 876 } 877 } 878 879 // Split non-SHF_STRINGS section. Such section is a sequence of 880 // fixed size records. 881 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> Data, 882 size_t EntSize) { 883 size_t Size = Data.size(); 884 assert((Size % EntSize) == 0); 885 bool IsAlloc = Flags & SHF_ALLOC; 886 887 for (size_t I = 0; I != Size; I += EntSize) 888 Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))), 889 !IsAlloc); 890 } 891 892 template <class ELFT> 893 MergeInputSection::MergeInputSection(ObjFile<ELFT> &F, 894 const typename ELFT::Shdr &Header, 895 StringRef Name) 896 : InputSectionBase(F, Header, Name, InputSectionBase::Merge) {} 897 898 MergeInputSection::MergeInputSection(uint64_t Flags, uint32_t Type, 899 uint64_t Entsize, ArrayRef<uint8_t> Data, 900 StringRef Name) 901 : InputSectionBase(nullptr, Flags, Type, Entsize, /*Link*/ 0, /*Info*/ 0, 902 /*Alignment*/ Entsize, Data, Name, SectionBase::Merge) {} 903 904 // This function is called after we obtain a complete list of input sections 905 // that need to be linked. This is responsible to split section contents 906 // into small chunks for further processing. 907 // 908 // Note that this function is called from parallelForEach. This must be 909 // thread-safe (i.e. no memory allocation from the pools). 910 void MergeInputSection::splitIntoPieces() { 911 assert(Pieces.empty()); 912 913 if (Flags & SHF_STRINGS) 914 splitStrings(Data, Entsize); 915 else 916 splitNonStrings(Data, Entsize); 917 918 if (Config->GcSections && (Flags & SHF_ALLOC)) 919 for (uint64_t Off : LiveOffsets) 920 getSectionPiece(Off)->Live = true; 921 } 922 923 // Do binary search to get a section piece at a given input offset. 924 SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { 925 auto *This = static_cast<const MergeInputSection *>(this); 926 return const_cast<SectionPiece *>(This->getSectionPiece(Offset)); 927 } 928 929 template <class It, class T, class Compare> 930 static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { 931 size_t Size = std::distance(First, Last); 932 assert(Size != 0); 933 while (Size != 1) { 934 size_t H = Size / 2; 935 const It MI = First + H; 936 Size -= H; 937 First = Comp(Value, *MI) ? First : First + H; 938 } 939 return Comp(Value, *First) ? First : First + 1; 940 } 941 942 const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { 943 if (Data.size() <= Offset) 944 fatal(toString(this) + ": entry is past the end of the section"); 945 946 // Find the element this offset points to. 947 auto I = fastUpperBound( 948 Pieces.begin(), Pieces.end(), Offset, 949 [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); 950 --I; 951 return &*I; 952 } 953 954 // Returns the offset in an output section for a given input offset. 955 // Because contents of a mergeable section is not contiguous in output, 956 // it is not just an addition to a base output offset. 957 uint64_t MergeInputSection::getOffset(uint64_t Offset) const { 958 if (!Live) 959 return 0; 960 961 // Initialize OffsetMap lazily. 962 llvm::call_once(InitOffsetMap, [&] { 963 OffsetMap.reserve(Pieces.size()); 964 for (size_t I = 0; I < Pieces.size(); ++I) 965 OffsetMap[Pieces[I].InputOff] = I; 966 }); 967 968 // Find a string starting at a given offset. 969 auto It = OffsetMap.find(Offset); 970 if (It != OffsetMap.end()) 971 return Pieces[It->second].OutputOff; 972 973 // If Offset is not at beginning of a section piece, it is not in the map. 974 // In that case we need to search from the original section piece vector. 975 const SectionPiece &Piece = *getSectionPiece(Offset); 976 if (!Piece.Live) 977 return 0; 978 979 uint64_t Addend = Offset - Piece.InputOff; 980 return Piece.OutputOff + Addend; 981 } 982 983 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, 984 StringRef); 985 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, 986 StringRef); 987 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, 988 StringRef); 989 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, 990 StringRef); 991 992 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); 993 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); 994 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); 995 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); 996 997 template void InputSection::writeTo<ELF32LE>(uint8_t *); 998 template void InputSection::writeTo<ELF32BE>(uint8_t *); 999 template void InputSection::writeTo<ELF64LE>(uint8_t *); 1000 template void InputSection::writeTo<ELF64BE>(uint8_t *); 1001 1002 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, 1003 const ELF32LE::Shdr &, StringRef); 1004 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, 1005 const ELF32BE::Shdr &, StringRef); 1006 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, 1007 const ELF64LE::Shdr &, StringRef); 1008 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, 1009 const ELF64BE::Shdr &, StringRef); 1010 1011 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, 1012 const ELF32LE::Shdr &, StringRef); 1013 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, 1014 const ELF32BE::Shdr &, StringRef); 1015 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, 1016 const ELF64LE::Shdr &, StringRef); 1017 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, 1018 const ELF64BE::Shdr &, StringRef); 1019 1020 template void EhInputSection::split<ELF32LE>(); 1021 template void EhInputSection::split<ELF32BE>(); 1022 template void EhInputSection::split<ELF64LE>(); 1023 template void EhInputSection::split<ELF64BE>(); 1024