1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Symbols.h"
10 #include "SyntheticSections.h"
11 #include "Target.h"
12 #include "lld/Common/ErrorHandler.h"
13 #include "llvm/BinaryFormat/ELF.h"
14 #include "llvm/Support/Endian.h"
15
16 using namespace llvm;
17 using namespace llvm::support::endian;
18 using namespace llvm::ELF;
19 using namespace lld;
20 using namespace lld::elf;
21
22 namespace {
23 class ARM final : public TargetInfo {
24 public:
25 ARM();
26 uint32_t calcEFlags() const override;
27 RelExpr getRelExpr(RelType type, const Symbol &s,
28 const uint8_t *loc) const override;
29 RelType getDynRel(RelType type) const override;
30 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
31 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
32 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
33 void writePltHeader(uint8_t *buf) const override;
34 void writePlt(uint8_t *buf, const Symbol &sym,
35 uint64_t pltEntryAddr) const override;
36 void addPltSymbols(InputSection &isec, uint64_t off) const override;
37 void addPltHeaderSymbols(InputSection &isd) const override;
38 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
39 uint64_t branchAddr, const Symbol &s,
40 int64_t a) const override;
41 uint32_t getThunkSectionSpacing() const override;
42 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
43 void relocate(uint8_t *loc, const Relocation &rel,
44 uint64_t val) const override;
45 };
46 } // namespace
47
ARM()48 ARM::ARM() {
49 copyRel = R_ARM_COPY;
50 relativeRel = R_ARM_RELATIVE;
51 iRelativeRel = R_ARM_IRELATIVE;
52 gotRel = R_ARM_GLOB_DAT;
53 pltRel = R_ARM_JUMP_SLOT;
54 symbolicRel = R_ARM_ABS32;
55 tlsGotRel = R_ARM_TLS_TPOFF32;
56 tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
57 tlsOffsetRel = R_ARM_TLS_DTPOFF32;
58 pltHeaderSize = 32;
59 pltEntrySize = 16;
60 ipltEntrySize = 16;
61 trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
62 needsThunks = true;
63 defaultMaxPageSize = 65536;
64 }
65
calcEFlags() const66 uint32_t ARM::calcEFlags() const {
67 // The ABIFloatType is used by loaders to detect the floating point calling
68 // convention.
69 uint32_t abiFloatType = 0;
70 if (config->armVFPArgs == ARMVFPArgKind::Base ||
71 config->armVFPArgs == ARMVFPArgKind::Default)
72 abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
73 else if (config->armVFPArgs == ARMVFPArgKind::VFP)
74 abiFloatType = EF_ARM_ABI_FLOAT_HARD;
75
76 // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
77 // but we don't have any firm guarantees of conformance. Linux AArch64
78 // kernels (as of 2016) require an EABI version to be set.
79 return EF_ARM_EABI_VER5 | abiFloatType;
80 }
81
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const82 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
83 const uint8_t *loc) const {
84 switch (type) {
85 case R_ARM_ABS32:
86 case R_ARM_MOVW_ABS_NC:
87 case R_ARM_MOVT_ABS:
88 case R_ARM_THM_MOVW_ABS_NC:
89 case R_ARM_THM_MOVT_ABS:
90 return R_ABS;
91 case R_ARM_THM_JUMP8:
92 case R_ARM_THM_JUMP11:
93 return R_PC;
94 case R_ARM_CALL:
95 case R_ARM_JUMP24:
96 case R_ARM_PC24:
97 case R_ARM_PLT32:
98 case R_ARM_PREL31:
99 case R_ARM_THM_JUMP19:
100 case R_ARM_THM_JUMP24:
101 case R_ARM_THM_CALL:
102 return R_PLT_PC;
103 case R_ARM_GOTOFF32:
104 // (S + A) - GOT_ORG
105 return R_GOTREL;
106 case R_ARM_GOT_BREL:
107 // GOT(S) + A - GOT_ORG
108 return R_GOT_OFF;
109 case R_ARM_GOT_PREL:
110 case R_ARM_TLS_IE32:
111 // GOT(S) + A - P
112 return R_GOT_PC;
113 case R_ARM_SBREL32:
114 return R_ARM_SBREL;
115 case R_ARM_TARGET1:
116 return config->target1Rel ? R_PC : R_ABS;
117 case R_ARM_TARGET2:
118 if (config->target2 == Target2Policy::Rel)
119 return R_PC;
120 if (config->target2 == Target2Policy::Abs)
121 return R_ABS;
122 return R_GOT_PC;
123 case R_ARM_TLS_GD32:
124 return R_TLSGD_PC;
125 case R_ARM_TLS_LDM32:
126 return R_TLSLD_PC;
127 case R_ARM_TLS_LDO32:
128 return R_DTPREL;
129 case R_ARM_BASE_PREL:
130 // B(S) + A - P
131 // FIXME: currently B(S) assumed to be .got, this may not hold for all
132 // platforms.
133 return R_GOTONLY_PC;
134 case R_ARM_MOVW_PREL_NC:
135 case R_ARM_MOVT_PREL:
136 case R_ARM_REL32:
137 case R_ARM_THM_MOVW_PREL_NC:
138 case R_ARM_THM_MOVT_PREL:
139 return R_PC;
140 case R_ARM_ALU_PC_G0:
141 case R_ARM_ALU_PC_G0_NC:
142 case R_ARM_ALU_PC_G1:
143 case R_ARM_ALU_PC_G1_NC:
144 case R_ARM_ALU_PC_G2:
145 case R_ARM_LDR_PC_G0:
146 case R_ARM_LDR_PC_G1:
147 case R_ARM_LDR_PC_G2:
148 case R_ARM_LDRS_PC_G0:
149 case R_ARM_LDRS_PC_G1:
150 case R_ARM_LDRS_PC_G2:
151 case R_ARM_THM_ALU_PREL_11_0:
152 case R_ARM_THM_PC8:
153 case R_ARM_THM_PC12:
154 return R_ARM_PCA;
155 case R_ARM_MOVW_BREL_NC:
156 case R_ARM_MOVW_BREL:
157 case R_ARM_MOVT_BREL:
158 case R_ARM_THM_MOVW_BREL_NC:
159 case R_ARM_THM_MOVW_BREL:
160 case R_ARM_THM_MOVT_BREL:
161 return R_ARM_SBREL;
162 case R_ARM_NONE:
163 return R_NONE;
164 case R_ARM_TLS_LE32:
165 return R_TPREL;
166 case R_ARM_V4BX:
167 // V4BX is just a marker to indicate there's a "bx rN" instruction at the
168 // given address. It can be used to implement a special linker mode which
169 // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
170 // not ARMv4 output, we can just ignore it.
171 return R_NONE;
172 default:
173 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
174 ") against symbol " + toString(s));
175 return R_NONE;
176 }
177 }
178
getDynRel(RelType type) const179 RelType ARM::getDynRel(RelType type) const {
180 if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
181 return R_ARM_ABS32;
182 return R_ARM_NONE;
183 }
184
writeGotPlt(uint8_t * buf,const Symbol &) const185 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
186 write32le(buf, in.plt->getVA());
187 }
188
writeIgotPlt(uint8_t * buf,const Symbol & s) const189 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
190 // An ARM entry is the address of the ifunc resolver function.
191 write32le(buf, s.getVA());
192 }
193
194 // Long form PLT Header that does not have any restrictions on the displacement
195 // of the .plt from the .plt.got.
writePltHeaderLong(uint8_t * buf)196 static void writePltHeaderLong(uint8_t *buf) {
197 const uint8_t pltData[] = {
198 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
199 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
200 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
201 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
202 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
203 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
204 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
205 0xd4, 0xd4, 0xd4, 0xd4};
206 memcpy(buf, pltData, sizeof(pltData));
207 uint64_t gotPlt = in.gotPlt->getVA();
208 uint64_t l1 = in.plt->getVA() + 8;
209 write32le(buf + 16, gotPlt - l1 - 8);
210 }
211
212 // The default PLT header requires the .plt.got to be within 128 Mb of the
213 // .plt in the positive direction.
writePltHeader(uint8_t * buf) const214 void ARM::writePltHeader(uint8_t *buf) const {
215 // Use a similar sequence to that in writePlt(), the difference is the calling
216 // conventions mean we use lr instead of ip. The PLT entry is responsible for
217 // saving lr on the stack, the dynamic loader is responsible for reloading
218 // it.
219 const uint32_t pltData[] = {
220 0xe52de004, // L1: str lr, [sp,#-4]!
221 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
222 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
223 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
224 };
225
226 uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
227 if (!llvm::isUInt<27>(offset)) {
228 // We cannot encode the Offset, use the long form.
229 writePltHeaderLong(buf);
230 return;
231 }
232 write32le(buf + 0, pltData[0]);
233 write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
234 write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
235 write32le(buf + 12, pltData[3] | (offset & 0xfff));
236 memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
237 memcpy(buf + 20, trapInstr.data(), 4);
238 memcpy(buf + 24, trapInstr.data(), 4);
239 memcpy(buf + 28, trapInstr.data(), 4);
240 }
241
addPltHeaderSymbols(InputSection & isec) const242 void ARM::addPltHeaderSymbols(InputSection &isec) const {
243 addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
244 addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
245 }
246
247 // Long form PLT entries that do not have any restrictions on the displacement
248 // of the .plt from the .plt.got.
writePltLong(uint8_t * buf,uint64_t gotPltEntryAddr,uint64_t pltEntryAddr)249 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
250 uint64_t pltEntryAddr) {
251 const uint8_t pltData[] = {
252 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
253 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
254 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
255 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
256 };
257 memcpy(buf, pltData, sizeof(pltData));
258 uint64_t l1 = pltEntryAddr + 4;
259 write32le(buf + 12, gotPltEntryAddr - l1 - 8);
260 }
261
262 // The default PLT entries require the .plt.got to be within 128 Mb of the
263 // .plt in the positive direction.
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const264 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
265 uint64_t pltEntryAddr) const {
266 // The PLT entry is similar to the example given in Appendix A of ELF for
267 // the Arm Architecture. Instead of using the Group Relocations to find the
268 // optimal rotation for the 8-bit immediate used in the add instructions we
269 // hard code the most compact rotations for simplicity. This saves a load
270 // instruction over the long plt sequences.
271 const uint32_t pltData[] = {
272 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8
273 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8
274 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
275 };
276
277 uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
278 if (!llvm::isUInt<27>(offset)) {
279 // We cannot encode the Offset, use the long form.
280 writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
281 return;
282 }
283 write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
284 write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
285 write32le(buf + 8, pltData[2] | (offset & 0xfff));
286 memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
287 }
288
addPltSymbols(InputSection & isec,uint64_t off) const289 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
290 addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
291 addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
292 }
293
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const294 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
295 uint64_t branchAddr, const Symbol &s,
296 int64_t a) const {
297 // If s is an undefined weak symbol and does not have a PLT entry then it will
298 // be resolved as a branch to the next instruction. If it is hidden, its
299 // binding has been converted to local, so we just check isUndefined() here. A
300 // undefined non-weak symbol will have been errored.
301 if (s.isUndefined() && !s.isInPlt())
302 return false;
303 // A state change from ARM to Thumb and vice versa must go through an
304 // interworking thunk if the relocation type is not R_ARM_CALL or
305 // R_ARM_THM_CALL.
306 switch (type) {
307 case R_ARM_PC24:
308 case R_ARM_PLT32:
309 case R_ARM_JUMP24:
310 // Source is ARM, all PLT entries are ARM so no interworking required.
311 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
312 if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
313 return true;
314 LLVM_FALLTHROUGH;
315 case R_ARM_CALL: {
316 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
317 return !inBranchRange(type, branchAddr, dst + a);
318 }
319 case R_ARM_THM_JUMP19:
320 case R_ARM_THM_JUMP24:
321 // Source is Thumb, all PLT entries are ARM so interworking is required.
322 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
323 if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
324 return true;
325 LLVM_FALLTHROUGH;
326 case R_ARM_THM_CALL: {
327 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
328 return !inBranchRange(type, branchAddr, dst + a);
329 }
330 }
331 return false;
332 }
333
getThunkSectionSpacing() const334 uint32_t ARM::getThunkSectionSpacing() const {
335 // The placing of pre-created ThunkSections is controlled by the value
336 // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
337 // place the ThunkSection such that all branches from the InputSections
338 // prior to the ThunkSection can reach a Thunk placed at the end of the
339 // ThunkSection. Graphically:
340 // | up to thunkSectionSpacing .text input sections |
341 // | ThunkSection |
342 // | up to thunkSectionSpacing .text input sections |
343 // | ThunkSection |
344
345 // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
346 // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
347 // B.W:
348 // ARM B, BL, BLX range +/- 32MiB
349 // Thumb B.W, BL, BLX range +/- 16MiB
350 // Thumb B<cc>.W range +/- 1MiB
351 // If a branch cannot reach a pre-created ThunkSection a new one will be
352 // created so we can handle the rare cases of a Thumb 2 conditional branch.
353 // We intentionally use a lower size for thunkSectionSpacing than the maximum
354 // branch range so the end of the ThunkSection is more likely to be within
355 // range of the branch instruction that is furthest away. The value we shorten
356 // thunkSectionSpacing by is set conservatively to allow us to create 16,384
357 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
358 // one of the Thunks going out of range.
359
360 // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
361 // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
362 // ARMv6T2) the range is +/- 4MiB.
363
364 return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
365 : 0x400000 - 0x7500;
366 }
367
inBranchRange(RelType type,uint64_t src,uint64_t dst) const368 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
369 if ((dst & 0x1) == 0)
370 // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
371 // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
372 // destination will be 4 byte aligned.
373 src &= ~0x3;
374 else
375 // Bit 0 == 1 denotes Thumb state, it is not part of the range.
376 dst &= ~0x1;
377
378 int64_t offset = dst - src;
379 switch (type) {
380 case R_ARM_PC24:
381 case R_ARM_PLT32:
382 case R_ARM_JUMP24:
383 case R_ARM_CALL:
384 return llvm::isInt<26>(offset);
385 case R_ARM_THM_JUMP19:
386 return llvm::isInt<21>(offset);
387 case R_ARM_THM_JUMP24:
388 case R_ARM_THM_CALL:
389 return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
390 : llvm::isInt<23>(offset);
391 default:
392 return true;
393 }
394 }
395
396 // Helper to produce message text when LLD detects that a CALL relocation to
397 // a non STT_FUNC symbol that may result in incorrect interworking between ARM
398 // or Thumb.
stateChangeWarning(uint8_t * loc,RelType relt,const Symbol & s)399 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
400 assert(!s.isFunc());
401 const ErrorPlace place = getErrorPlace(loc);
402 std::string hint;
403 if (!place.srcLoc.empty())
404 hint = "; " + place.srcLoc;
405 if (s.isSection()) {
406 // Section symbols must be defined and in a section. Users cannot change
407 // the type. Use the section name as getName() returns an empty string.
408 warn(place.loc + "branch and link relocation: " + toString(relt) +
409 " to STT_SECTION symbol " + cast<Defined>(s).section->name +
410 " ; interworking not performed" + hint);
411 } else {
412 // Warn with hint on how to alter the symbol type.
413 warn(getErrorLocation(loc) + "branch and link relocation: " +
414 toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
415 " interworking not performed; consider using directive '.type " +
416 s.getName() +
417 ", %function' to give symbol type STT_FUNC if interworking between "
418 "ARM and Thumb is required" +
419 hint);
420 }
421 }
422
423 // Rotate a 32-bit unsigned value right by a specified amt of bits.
rotr32(uint32_t val,uint32_t amt)424 static uint32_t rotr32(uint32_t val, uint32_t amt) {
425 assert(amt < 32 && "Invalid rotate amount");
426 return (val >> amt) | (val << ((32 - amt) & 31));
427 }
428
getRemAndLZForGroup(unsigned group,uint32_t val)429 static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
430 uint32_t val) {
431 uint32_t rem, lz;
432 do {
433 lz = llvm::countLeadingZeros(val) & ~1;
434 rem = val;
435 if (lz == 32) // implies rem == 0
436 break;
437 val &= 0xffffff >> lz;
438 } while (group--);
439 return {rem, lz};
440 }
441
encodeAluGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group,bool check)442 static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
443 int group, bool check) {
444 // ADD/SUB (immediate) add = bit23, sub = bit22
445 // immediate field carries is a 12-bit modified immediate, made up of a 4-bit
446 // even rotate right and an 8-bit immediate.
447 uint32_t opcode = 0x00800000;
448 if (val >> 63) {
449 opcode = 0x00400000;
450 val = -val;
451 }
452 uint32_t imm, lz;
453 std::tie(imm, lz) = getRemAndLZForGroup(group, val);
454 uint32_t rot = 0;
455 if (lz < 24) {
456 imm = rotr32(imm, 24 - lz);
457 rot = (lz + 8) << 7;
458 }
459 if (check && imm > 0xff)
460 error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
461 " for relocation " + toString(rel.type));
462 write32le(loc, (read32le(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
463 }
464
encodeLdrGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group)465 static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
466 int group) {
467 // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
468 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
469 // bottom bit to recover S + A - P.
470 if (rel.sym->isFunc())
471 val &= ~0x1;
472 // LDR (literal) u = bit23
473 uint32_t opcode = 0x00800000;
474 if (val >> 63) {
475 opcode = 0x0;
476 val = -val;
477 }
478 uint32_t imm = getRemAndLZForGroup(group, val).first;
479 checkUInt(loc, imm, 12, rel);
480 write32le(loc, (read32le(loc) & 0xff7ff000) | opcode | imm);
481 }
482
encodeLdrsGroup(uint8_t * loc,const Relocation & rel,uint64_t val,int group)483 static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
484 int group) {
485 // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
486 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
487 // bottom bit to recover S + A - P.
488 if (rel.sym->isFunc())
489 val &= ~0x1;
490 // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
491 uint32_t opcode = 0x00800000;
492 if (val >> 63) {
493 opcode = 0x0;
494 val = -val;
495 }
496 uint32_t imm = getRemAndLZForGroup(group, val).first;
497 checkUInt(loc, imm, 8, rel);
498 write32le(loc, (read32le(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
499 (imm & 0xf));
500 }
501
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const502 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
503 switch (rel.type) {
504 case R_ARM_ABS32:
505 case R_ARM_BASE_PREL:
506 case R_ARM_GOTOFF32:
507 case R_ARM_GOT_BREL:
508 case R_ARM_GOT_PREL:
509 case R_ARM_REL32:
510 case R_ARM_RELATIVE:
511 case R_ARM_SBREL32:
512 case R_ARM_TARGET1:
513 case R_ARM_TARGET2:
514 case R_ARM_TLS_GD32:
515 case R_ARM_TLS_IE32:
516 case R_ARM_TLS_LDM32:
517 case R_ARM_TLS_LDO32:
518 case R_ARM_TLS_LE32:
519 case R_ARM_TLS_TPOFF32:
520 case R_ARM_TLS_DTPOFF32:
521 write32le(loc, val);
522 break;
523 case R_ARM_PREL31:
524 checkInt(loc, val, 31, rel);
525 write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
526 break;
527 case R_ARM_CALL: {
528 // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
529 // STT_FUNC we choose whether to write a BL or BLX depending on the
530 // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
531 // not of type STT_FUNC then we must preserve the original instruction.
532 // PLT entries are always ARM state so we know we don't need to interwork.
533 assert(rel.sym); // R_ARM_CALL is always reached via relocate().
534 bool bit0Thumb = val & 1;
535 bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
536 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
537 // even when type not STT_FUNC.
538 if (!rel.sym->isFunc() && isBlx != bit0Thumb)
539 stateChangeWarning(loc, rel.type, *rel.sym);
540 if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
541 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
542 checkInt(loc, val, 26, rel);
543 write32le(loc, 0xfa000000 | // opcode
544 ((val & 2) << 23) | // H
545 ((val >> 2) & 0x00ffffff)); // imm24
546 break;
547 }
548 // BLX (always unconditional) instruction to an ARM Target, select an
549 // unconditional BL.
550 write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
551 // fall through as BL encoding is shared with B
552 }
553 LLVM_FALLTHROUGH;
554 case R_ARM_JUMP24:
555 case R_ARM_PC24:
556 case R_ARM_PLT32:
557 checkInt(loc, val, 26, rel);
558 write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
559 break;
560 case R_ARM_THM_JUMP8:
561 // We do a 9 bit check because val is right-shifted by 1 bit.
562 checkInt(loc, val, 9, rel);
563 write16le(loc, (read32le(loc) & 0xff00) | ((val >> 1) & 0x00ff));
564 break;
565 case R_ARM_THM_JUMP11:
566 // We do a 12 bit check because val is right-shifted by 1 bit.
567 checkInt(loc, val, 12, rel);
568 write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
569 break;
570 case R_ARM_THM_JUMP19:
571 // Encoding T3: Val = S:J2:J1:imm6:imm11:0
572 checkInt(loc, val, 21, rel);
573 write16le(loc,
574 (read16le(loc) & 0xfbc0) | // opcode cond
575 ((val >> 10) & 0x0400) | // S
576 ((val >> 12) & 0x003f)); // imm6
577 write16le(loc + 2,
578 0x8000 | // opcode
579 ((val >> 8) & 0x0800) | // J2
580 ((val >> 5) & 0x2000) | // J1
581 ((val >> 1) & 0x07ff)); // imm11
582 break;
583 case R_ARM_THM_CALL: {
584 // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
585 // STT_FUNC we choose whether to write a BL or BLX depending on the
586 // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
587 // not of type STT_FUNC then we must preserve the original instruction.
588 // PLT entries are always ARM state so we know we need to interwork.
589 assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
590 bool bit0Thumb = val & 1;
591 bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
592 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
593 // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
594 if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
595 stateChangeWarning(loc, rel.type, *rel.sym);
596 if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
597 // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
598 // the BLX instruction may only be two byte aligned. This must be done
599 // before overflow check.
600 val = alignTo(val, 4);
601 write16le(loc + 2, read16le(loc + 2) & ~0x1000);
602 } else {
603 write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
604 }
605 if (!config->armJ1J2BranchEncoding) {
606 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
607 // different encoding rules and range due to J1 and J2 always being 1.
608 checkInt(loc, val, 23, rel);
609 write16le(loc,
610 0xf000 | // opcode
611 ((val >> 12) & 0x07ff)); // imm11
612 write16le(loc + 2,
613 (read16le(loc + 2) & 0xd000) | // opcode
614 0x2800 | // J1 == J2 == 1
615 ((val >> 1) & 0x07ff)); // imm11
616 break;
617 }
618 }
619 // Fall through as rest of encoding is the same as B.W
620 LLVM_FALLTHROUGH;
621 case R_ARM_THM_JUMP24:
622 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
623 checkInt(loc, val, 25, rel);
624 write16le(loc,
625 0xf000 | // opcode
626 ((val >> 14) & 0x0400) | // S
627 ((val >> 12) & 0x03ff)); // imm10
628 write16le(loc + 2,
629 (read16le(loc + 2) & 0xd000) | // opcode
630 (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
631 (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
632 ((val >> 1) & 0x07ff)); // imm11
633 break;
634 case R_ARM_MOVW_ABS_NC:
635 case R_ARM_MOVW_PREL_NC:
636 case R_ARM_MOVW_BREL_NC:
637 write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
638 (val & 0x0fff));
639 break;
640 case R_ARM_MOVT_ABS:
641 case R_ARM_MOVT_PREL:
642 case R_ARM_MOVT_BREL:
643 write32le(loc, (read32le(loc) & ~0x000f0fff) |
644 (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
645 break;
646 case R_ARM_THM_MOVT_ABS:
647 case R_ARM_THM_MOVT_PREL:
648 case R_ARM_THM_MOVT_BREL:
649 // Encoding T1: A = imm4:i:imm3:imm8
650 write16le(loc,
651 0xf2c0 | // opcode
652 ((val >> 17) & 0x0400) | // i
653 ((val >> 28) & 0x000f)); // imm4
654 write16le(loc + 2,
655 (read16le(loc + 2) & 0x8f00) | // opcode
656 ((val >> 12) & 0x7000) | // imm3
657 ((val >> 16) & 0x00ff)); // imm8
658 break;
659 case R_ARM_THM_MOVW_ABS_NC:
660 case R_ARM_THM_MOVW_PREL_NC:
661 case R_ARM_THM_MOVW_BREL_NC:
662 // Encoding T3: A = imm4:i:imm3:imm8
663 write16le(loc,
664 0xf240 | // opcode
665 ((val >> 1) & 0x0400) | // i
666 ((val >> 12) & 0x000f)); // imm4
667 write16le(loc + 2,
668 (read16le(loc + 2) & 0x8f00) | // opcode
669 ((val << 4) & 0x7000) | // imm3
670 (val & 0x00ff)); // imm8
671 break;
672 case R_ARM_ALU_PC_G0:
673 encodeAluGroup(loc, rel, val, 0, true);
674 break;
675 case R_ARM_ALU_PC_G0_NC:
676 encodeAluGroup(loc, rel, val, 0, false);
677 break;
678 case R_ARM_ALU_PC_G1:
679 encodeAluGroup(loc, rel, val, 1, true);
680 break;
681 case R_ARM_ALU_PC_G1_NC:
682 encodeAluGroup(loc, rel, val, 1, false);
683 break;
684 case R_ARM_ALU_PC_G2:
685 encodeAluGroup(loc, rel, val, 2, true);
686 break;
687 case R_ARM_LDR_PC_G0:
688 encodeLdrGroup(loc, rel, val, 0);
689 break;
690 case R_ARM_LDR_PC_G1:
691 encodeLdrGroup(loc, rel, val, 1);
692 break;
693 case R_ARM_LDR_PC_G2:
694 encodeLdrGroup(loc, rel, val, 2);
695 break;
696 case R_ARM_LDRS_PC_G0:
697 encodeLdrsGroup(loc, rel, val, 0);
698 break;
699 case R_ARM_LDRS_PC_G1:
700 encodeLdrsGroup(loc, rel, val, 1);
701 break;
702 case R_ARM_LDRS_PC_G2:
703 encodeLdrsGroup(loc, rel, val, 2);
704 break;
705 case R_ARM_THM_ALU_PREL_11_0: {
706 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
707 int64_t imm = val;
708 uint16_t sub = 0;
709 if (imm < 0) {
710 imm = -imm;
711 sub = 0x00a0;
712 }
713 checkUInt(loc, imm, 12, rel);
714 write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
715 write16le(loc + 2,
716 (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
717 break;
718 }
719 case R_ARM_THM_PC8:
720 // ADR and LDR literal encoding T1 positive offset only imm8:00
721 // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
722 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
723 // bottom bit to recover S + A - Pa.
724 if (rel.sym->isFunc())
725 val &= ~0x1;
726 checkUInt(loc, val, 10, rel);
727 checkAlignment(loc, val, 4, rel);
728 write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
729 break;
730 case R_ARM_THM_PC12: {
731 // LDR (literal) encoding T2, add = (U == '1') imm12
732 // imm12 is unsigned
733 // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
734 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
735 // bottom bit to recover S + A - Pa.
736 if (rel.sym->isFunc())
737 val &= ~0x1;
738 int64_t imm12 = val;
739 uint16_t u = 0x0080;
740 if (imm12 < 0) {
741 imm12 = -imm12;
742 u = 0;
743 }
744 checkUInt(loc, imm12, 12, rel);
745 write16le(loc, read16le(loc) | u);
746 write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
747 break;
748 }
749 default:
750 llvm_unreachable("unknown relocation");
751 }
752 }
753
getImplicitAddend(const uint8_t * buf,RelType type) const754 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
755 switch (type) {
756 default:
757 internalLinkerError(getErrorLocation(buf),
758 "cannot read addend for relocation " + toString(type));
759 return 0;
760 case R_ARM_ABS32:
761 case R_ARM_BASE_PREL:
762 case R_ARM_GLOB_DAT:
763 case R_ARM_GOTOFF32:
764 case R_ARM_GOT_BREL:
765 case R_ARM_GOT_PREL:
766 case R_ARM_IRELATIVE:
767 case R_ARM_REL32:
768 case R_ARM_RELATIVE:
769 case R_ARM_SBREL32:
770 case R_ARM_TARGET1:
771 case R_ARM_TARGET2:
772 case R_ARM_TLS_DTPMOD32:
773 case R_ARM_TLS_DTPOFF32:
774 case R_ARM_TLS_GD32:
775 case R_ARM_TLS_IE32:
776 case R_ARM_TLS_LDM32:
777 case R_ARM_TLS_LE32:
778 case R_ARM_TLS_LDO32:
779 case R_ARM_TLS_TPOFF32:
780 return SignExtend64<32>(read32le(buf));
781 case R_ARM_PREL31:
782 return SignExtend64<31>(read32le(buf));
783 case R_ARM_CALL:
784 case R_ARM_JUMP24:
785 case R_ARM_PC24:
786 case R_ARM_PLT32:
787 return SignExtend64<26>(read32le(buf) << 2);
788 case R_ARM_THM_JUMP8:
789 return SignExtend64<9>(read16le(buf) << 1);
790 case R_ARM_THM_JUMP11:
791 return SignExtend64<12>(read16le(buf) << 1);
792 case R_ARM_THM_JUMP19: {
793 // Encoding T3: A = S:J2:J1:imm10:imm6:0
794 uint16_t hi = read16le(buf);
795 uint16_t lo = read16le(buf + 2);
796 return SignExtend64<20>(((hi & 0x0400) << 10) | // S
797 ((lo & 0x0800) << 8) | // J2
798 ((lo & 0x2000) << 5) | // J1
799 ((hi & 0x003f) << 12) | // imm6
800 ((lo & 0x07ff) << 1)); // imm11:0
801 }
802 case R_ARM_THM_CALL:
803 if (!config->armJ1J2BranchEncoding) {
804 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
805 // different encoding rules and range due to J1 and J2 always being 1.
806 uint16_t hi = read16le(buf);
807 uint16_t lo = read16le(buf + 2);
808 return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
809 ((lo & 0x7ff) << 1)); // imm11:0
810 break;
811 }
812 LLVM_FALLTHROUGH;
813 case R_ARM_THM_JUMP24: {
814 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
815 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
816 uint16_t hi = read16le(buf);
817 uint16_t lo = read16le(buf + 2);
818 return SignExtend64<24>(((hi & 0x0400) << 14) | // S
819 (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
820 (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
821 ((hi & 0x003ff) << 12) | // imm0
822 ((lo & 0x007ff) << 1)); // imm11:0
823 }
824 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
825 // MOVT is in the range -32768 <= A < 32768
826 case R_ARM_MOVW_ABS_NC:
827 case R_ARM_MOVT_ABS:
828 case R_ARM_MOVW_PREL_NC:
829 case R_ARM_MOVT_PREL:
830 case R_ARM_MOVW_BREL_NC:
831 case R_ARM_MOVT_BREL: {
832 uint64_t val = read32le(buf) & 0x000f0fff;
833 return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
834 }
835 case R_ARM_THM_MOVW_ABS_NC:
836 case R_ARM_THM_MOVT_ABS:
837 case R_ARM_THM_MOVW_PREL_NC:
838 case R_ARM_THM_MOVT_PREL:
839 case R_ARM_THM_MOVW_BREL_NC:
840 case R_ARM_THM_MOVT_BREL: {
841 // Encoding T3: A = imm4:i:imm3:imm8
842 uint16_t hi = read16le(buf);
843 uint16_t lo = read16le(buf + 2);
844 return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
845 ((hi & 0x0400) << 1) | // i
846 ((lo & 0x7000) >> 4) | // imm3
847 (lo & 0x00ff)); // imm8
848 }
849 case R_ARM_ALU_PC_G0:
850 case R_ARM_ALU_PC_G0_NC:
851 case R_ARM_ALU_PC_G1:
852 case R_ARM_ALU_PC_G1_NC:
853 case R_ARM_ALU_PC_G2: {
854 // 12-bit immediate is a modified immediate made up of a 4-bit even
855 // right rotation and 8-bit constant. After the rotation the value
856 // is zero-extended. When bit 23 is set the instruction is an add, when
857 // bit 22 is set it is a sub.
858 uint32_t instr = read32le(buf);
859 uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
860 return (instr & 0x00400000) ? -val : val;
861 }
862 case R_ARM_LDR_PC_G0:
863 case R_ARM_LDR_PC_G1:
864 case R_ARM_LDR_PC_G2: {
865 // ADR (literal) add = bit23, sub = bit22
866 // LDR (literal) u = bit23 unsigned imm12
867 bool u = read32le(buf) & 0x00800000;
868 uint32_t imm12 = read32le(buf) & 0xfff;
869 return u ? imm12 : -imm12;
870 }
871 case R_ARM_LDRS_PC_G0:
872 case R_ARM_LDRS_PC_G1:
873 case R_ARM_LDRS_PC_G2: {
874 // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
875 uint32_t opcode = read32le(buf);
876 bool u = opcode & 0x00800000;
877 uint32_t imm4l = opcode & 0xf;
878 uint32_t imm4h = (opcode & 0xf00) >> 4;
879 return u ? (imm4h | imm4l) : -(imm4h | imm4l);
880 }
881 case R_ARM_THM_ALU_PREL_11_0: {
882 // Thumb2 ADR, which is an alias for a sub or add instruction with an
883 // unsigned immediate.
884 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
885 uint16_t hi = read16le(buf);
886 uint16_t lo = read16le(buf + 2);
887 uint64_t imm = (hi & 0x0400) << 1 | // i
888 (lo & 0x7000) >> 4 | // imm3
889 (lo & 0x00ff); // imm8
890 // For sub, addend is negative, add is positive.
891 return (hi & 0x00f0) ? -imm : imm;
892 }
893 case R_ARM_THM_PC8:
894 // ADR and LDR (literal) encoding T1
895 // From ELF for the ARM Architecture the initial signed addend is formed
896 // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
897 // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
898 return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
899 case R_ARM_THM_PC12: {
900 // LDR (literal) encoding T2, add = (U == '1') imm12
901 bool u = read16le(buf) & 0x0080;
902 uint64_t imm12 = read16le(buf + 2) & 0x0fff;
903 return u ? imm12 : -imm12;
904 }
905 case R_ARM_NONE:
906 case R_ARM_V4BX:
907 case R_ARM_JUMP_SLOT:
908 // These relocations are defined as not having an implicit addend.
909 return 0;
910 }
911 }
912
getARMTargetInfo()913 TargetInfo *elf::getARMTargetInfo() {
914 static ARM target;
915 return ⌖
916 }
917