1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Writer.h"
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
12 #include "Config.h"
13 #include "DLL.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
16 #include "MapFile.h"
17 #include "PDB.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/FileOutputBuffer.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/RandomNumberGenerator.h"
34 #include "llvm/Support/xxhash.h"
35 #include <algorithm>
36 #include <cstdio>
37 #include <map>
38 #include <memory>
39 #include <utility>
40
41 using namespace llvm;
42 using namespace llvm::COFF;
43 using namespace llvm::object;
44 using namespace llvm::support;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::coff;
48
49 /* To re-generate DOSProgram:
50 $ cat > /tmp/DOSProgram.asm
51 org 0
52 ; Copy cs to ds.
53 push cs
54 pop ds
55 ; Point ds:dx at the $-terminated string.
56 mov dx, str
57 ; Int 21/AH=09h: Write string to standard output.
58 mov ah, 0x9
59 int 0x21
60 ; Int 21/AH=4Ch: Exit with return code (in AL).
61 mov ax, 0x4C01
62 int 0x21
63 str:
64 db 'This program cannot be run in DOS mode.$'
65 align 8, db 0
66 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
67 $ xxd -i /tmp/DOSProgram.bin
68 */
69 static unsigned char dosProgram[] = {
70 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
71 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
72 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
73 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
74 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
75 };
76 static_assert(sizeof(dosProgram) % 8 == 0,
77 "DOSProgram size must be multiple of 8");
78
79 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
80 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
81
82 static const int numberOfDataDirectory = 16;
83
84 namespace {
85
86 class DebugDirectoryChunk : public NonSectionChunk {
87 public:
DebugDirectoryChunk(COFFLinkerContext & c,const std::vector<std::pair<COFF::DebugType,Chunk * >> & r,bool writeRepro)88 DebugDirectoryChunk(COFFLinkerContext &c,
89 const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
90 bool writeRepro)
91 : records(r), writeRepro(writeRepro), ctx(c) {}
92
getSize() const93 size_t getSize() const override {
94 return (records.size() + int(writeRepro)) * sizeof(debug_directory);
95 }
96
writeTo(uint8_t * b) const97 void writeTo(uint8_t *b) const override {
98 auto *d = reinterpret_cast<debug_directory *>(b);
99
100 for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
101 Chunk *c = record.second;
102 OutputSection *os = ctx.getOutputSection(c);
103 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
104 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
105 ++d;
106 }
107
108 if (writeRepro) {
109 // FIXME: The COFF spec allows either a 0-sized entry to just say
110 // "the timestamp field is really a hash", or a 4-byte size field
111 // followed by that many bytes containing a longer hash (with the
112 // lowest 4 bytes usually being the timestamp in little-endian order).
113 // Consider storing the full 8 bytes computed by xxHash64 here.
114 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
115 }
116 }
117
setTimeDateStamp(uint32_t timeDateStamp)118 void setTimeDateStamp(uint32_t timeDateStamp) {
119 for (support::ulittle32_t *tds : timeDateStamps)
120 *tds = timeDateStamp;
121 }
122
123 private:
fillEntry(debug_directory * d,COFF::DebugType debugType,size_t size,uint64_t rva,uint64_t offs) const124 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
125 uint64_t rva, uint64_t offs) const {
126 d->Characteristics = 0;
127 d->TimeDateStamp = 0;
128 d->MajorVersion = 0;
129 d->MinorVersion = 0;
130 d->Type = debugType;
131 d->SizeOfData = size;
132 d->AddressOfRawData = rva;
133 d->PointerToRawData = offs;
134
135 timeDateStamps.push_back(&d->TimeDateStamp);
136 }
137
138 mutable std::vector<support::ulittle32_t *> timeDateStamps;
139 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
140 bool writeRepro;
141
142 COFFLinkerContext &ctx;
143 };
144
145 class CVDebugRecordChunk : public NonSectionChunk {
146 public:
getSize() const147 size_t getSize() const override {
148 return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
149 }
150
writeTo(uint8_t * b) const151 void writeTo(uint8_t *b) const override {
152 // Save off the DebugInfo entry to backfill the file signature (build id)
153 // in Writer::writeBuildId
154 buildId = reinterpret_cast<codeview::DebugInfo *>(b);
155
156 // variable sized field (PDB Path)
157 char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
158 if (!config->pdbAltPath.empty())
159 memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
160 p[config->pdbAltPath.size()] = '\0';
161 }
162
163 mutable codeview::DebugInfo *buildId = nullptr;
164 };
165
166 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
167 public:
ExtendedDllCharacteristicsChunk(uint32_t c)168 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
169
getSize() const170 size_t getSize() const override { return 4; }
171
writeTo(uint8_t * buf) const172 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
173
174 uint32_t characteristics = 0;
175 };
176
177 // PartialSection represents a group of chunks that contribute to an
178 // OutputSection. Collating a collection of PartialSections of same name and
179 // characteristics constitutes the OutputSection.
180 class PartialSectionKey {
181 public:
182 StringRef name;
183 unsigned characteristics;
184
operator <(const PartialSectionKey & other) const185 bool operator<(const PartialSectionKey &other) const {
186 int c = name.compare(other.name);
187 if (c == 1)
188 return false;
189 if (c == 0)
190 return characteristics < other.characteristics;
191 return true;
192 }
193 };
194
195 // The writer writes a SymbolTable result to a file.
196 class Writer {
197 public:
Writer(COFFLinkerContext & c)198 Writer(COFFLinkerContext &c) : buffer(errorHandler().outputBuffer), ctx(c) {}
199 void run();
200
201 private:
202 void createSections();
203 void createMiscChunks();
204 void createImportTables();
205 void appendImportThunks();
206 void locateImportTables();
207 void createExportTable();
208 void mergeSections();
209 void removeUnusedSections();
210 void assignAddresses();
211 void finalizeAddresses();
212 void removeEmptySections();
213 void assignOutputSectionIndices();
214 void createSymbolAndStringTable();
215 void openFile(StringRef outputPath);
216 template <typename PEHeaderTy> void writeHeader();
217 void createSEHTable();
218 void createRuntimePseudoRelocs();
219 void insertCtorDtorSymbols();
220 void createGuardCFTables();
221 void markSymbolsForRVATable(ObjFile *file,
222 ArrayRef<SectionChunk *> symIdxChunks,
223 SymbolRVASet &tableSymbols);
224 void getSymbolsFromSections(ObjFile *file,
225 ArrayRef<SectionChunk *> symIdxChunks,
226 std::vector<Symbol *> &symbols);
227 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
228 StringRef countSym, bool hasFlag=false);
229 void setSectionPermissions();
230 void writeSections();
231 void writeBuildId();
232 void sortSections();
233 void sortExceptionTable();
234 void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
235 void addSyntheticIdata();
236 void fixPartialSectionChars(StringRef name, uint32_t chars);
237 bool fixGnuImportChunks();
238 void fixTlsAlignment();
239 PartialSection *createPartialSection(StringRef name, uint32_t outChars);
240 PartialSection *findPartialSection(StringRef name, uint32_t outChars);
241
242 llvm::Optional<coff_symbol16> createSymbol(Defined *d);
243 size_t addEntryToStringTable(StringRef str);
244
245 OutputSection *findSection(StringRef name);
246 void addBaserels();
247 void addBaserelBlocks(std::vector<Baserel> &v);
248
249 uint32_t getSizeOfInitializedData();
250
251 std::unique_ptr<FileOutputBuffer> &buffer;
252 std::map<PartialSectionKey, PartialSection *> partialSections;
253 std::vector<char> strtab;
254 std::vector<llvm::object::coff_symbol16> outputSymtab;
255 IdataContents idata;
256 Chunk *importTableStart = nullptr;
257 uint64_t importTableSize = 0;
258 Chunk *edataStart = nullptr;
259 Chunk *edataEnd = nullptr;
260 Chunk *iatStart = nullptr;
261 uint64_t iatSize = 0;
262 DelayLoadContents delayIdata;
263 EdataContents edata;
264 bool setNoSEHCharacteristic = false;
265 uint32_t tlsAlignment = 0;
266
267 DebugDirectoryChunk *debugDirectory = nullptr;
268 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
269 CVDebugRecordChunk *buildId = nullptr;
270 ArrayRef<uint8_t> sectionTable;
271
272 uint64_t fileSize;
273 uint32_t pointerToSymbolTable = 0;
274 uint64_t sizeOfImage;
275 uint64_t sizeOfHeaders;
276
277 OutputSection *textSec;
278 OutputSection *rdataSec;
279 OutputSection *buildidSec;
280 OutputSection *dataSec;
281 OutputSection *pdataSec;
282 OutputSection *idataSec;
283 OutputSection *edataSec;
284 OutputSection *didatSec;
285 OutputSection *rsrcSec;
286 OutputSection *relocSec;
287 OutputSection *ctorsSec;
288 OutputSection *dtorsSec;
289
290 // The first and last .pdata sections in the output file.
291 //
292 // We need to keep track of the location of .pdata in whichever section it
293 // gets merged into so that we can sort its contents and emit a correct data
294 // directory entry for the exception table. This is also the case for some
295 // other sections (such as .edata) but because the contents of those sections
296 // are entirely linker-generated we can keep track of their locations using
297 // the chunks that the linker creates. All .pdata chunks come from input
298 // files, so we need to keep track of them separately.
299 Chunk *firstPdata = nullptr;
300 Chunk *lastPdata;
301
302 COFFLinkerContext &ctx;
303 };
304 } // anonymous namespace
305
writeResult(COFFLinkerContext & ctx)306 void lld::coff::writeResult(COFFLinkerContext &ctx) { Writer(ctx).run(); }
307
addChunk(Chunk * c)308 void OutputSection::addChunk(Chunk *c) {
309 chunks.push_back(c);
310 }
311
insertChunkAtStart(Chunk * c)312 void OutputSection::insertChunkAtStart(Chunk *c) {
313 chunks.insert(chunks.begin(), c);
314 }
315
setPermissions(uint32_t c)316 void OutputSection::setPermissions(uint32_t c) {
317 header.Characteristics &= ~permMask;
318 header.Characteristics |= c;
319 }
320
merge(OutputSection * other)321 void OutputSection::merge(OutputSection *other) {
322 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
323 other->chunks.clear();
324 contribSections.insert(contribSections.end(), other->contribSections.begin(),
325 other->contribSections.end());
326 other->contribSections.clear();
327 }
328
329 // Write the section header to a given buffer.
writeHeaderTo(uint8_t * buf)330 void OutputSection::writeHeaderTo(uint8_t *buf) {
331 auto *hdr = reinterpret_cast<coff_section *>(buf);
332 *hdr = header;
333 if (stringTableOff) {
334 // If name is too long, write offset into the string table as a name.
335 encodeSectionName(hdr->Name, stringTableOff);
336 } else {
337 assert(!config->debug || name.size() <= COFF::NameSize ||
338 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
339 strncpy(hdr->Name, name.data(),
340 std::min(name.size(), (size_t)COFF::NameSize));
341 }
342 }
343
addContributingPartialSection(PartialSection * sec)344 void OutputSection::addContributingPartialSection(PartialSection *sec) {
345 contribSections.push_back(sec);
346 }
347
348 // Check whether the target address S is in range from a relocation
349 // of type relType at address P.
isInRange(uint16_t relType,uint64_t s,uint64_t p,int margin)350 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
351 if (config->machine == ARMNT) {
352 int64_t diff = AbsoluteDifference(s, p + 4) + margin;
353 switch (relType) {
354 case IMAGE_REL_ARM_BRANCH20T:
355 return isInt<21>(diff);
356 case IMAGE_REL_ARM_BRANCH24T:
357 case IMAGE_REL_ARM_BLX23T:
358 return isInt<25>(diff);
359 default:
360 return true;
361 }
362 } else if (config->machine == ARM64) {
363 int64_t diff = AbsoluteDifference(s, p) + margin;
364 switch (relType) {
365 case IMAGE_REL_ARM64_BRANCH26:
366 return isInt<28>(diff);
367 case IMAGE_REL_ARM64_BRANCH19:
368 return isInt<21>(diff);
369 case IMAGE_REL_ARM64_BRANCH14:
370 return isInt<16>(diff);
371 default:
372 return true;
373 }
374 } else {
375 llvm_unreachable("Unexpected architecture");
376 }
377 }
378
379 // Return the last thunk for the given target if it is in range,
380 // or create a new one.
381 static std::pair<Defined *, bool>
getThunk(DenseMap<uint64_t,Defined * > & lastThunks,Defined * target,uint64_t p,uint16_t type,int margin)382 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
383 uint16_t type, int margin) {
384 Defined *&lastThunk = lastThunks[target->getRVA()];
385 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
386 return {lastThunk, false};
387 Chunk *c;
388 switch (config->machine) {
389 case ARMNT:
390 c = make<RangeExtensionThunkARM>(target);
391 break;
392 case ARM64:
393 c = make<RangeExtensionThunkARM64>(target);
394 break;
395 default:
396 llvm_unreachable("Unexpected architecture");
397 }
398 Defined *d = make<DefinedSynthetic>("range_extension_thunk", c);
399 lastThunk = d;
400 return {d, true};
401 }
402
403 // This checks all relocations, and for any relocation which isn't in range
404 // it adds a thunk after the section chunk that contains the relocation.
405 // If the latest thunk for the specific target is in range, that is used
406 // instead of creating a new thunk. All range checks are done with the
407 // specified margin, to make sure that relocations that originally are in
408 // range, but only barely, also get thunks - in case other added thunks makes
409 // the target go out of range.
410 //
411 // After adding thunks, we verify that all relocations are in range (with
412 // no extra margin requirements). If this failed, we restart (throwing away
413 // the previously created thunks) and retry with a wider margin.
createThunks(OutputSection * os,int margin)414 static bool createThunks(OutputSection *os, int margin) {
415 bool addressesChanged = false;
416 DenseMap<uint64_t, Defined *> lastThunks;
417 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
418 size_t thunksSize = 0;
419 // Recheck Chunks.size() each iteration, since we can insert more
420 // elements into it.
421 for (size_t i = 0; i != os->chunks.size(); ++i) {
422 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
423 if (!sc)
424 continue;
425 size_t thunkInsertionSpot = i + 1;
426
427 // Try to get a good enough estimate of where new thunks will be placed.
428 // Offset this by the size of the new thunks added so far, to make the
429 // estimate slightly better.
430 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
431 ObjFile *file = sc->file;
432 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
433 ArrayRef<coff_relocation> originalRelocs =
434 file->getCOFFObj()->getRelocations(sc->header);
435 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
436 const coff_relocation &rel = originalRelocs[j];
437 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
438
439 // The estimate of the source address P should be pretty accurate,
440 // but we don't know whether the target Symbol address should be
441 // offset by thunksSize or not (or by some of thunksSize but not all of
442 // it), giving us some uncertainty once we have added one thunk.
443 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
444
445 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
446 if (!sym)
447 continue;
448
449 uint64_t s = sym->getRVA();
450
451 if (isInRange(rel.Type, s, p, margin))
452 continue;
453
454 // If the target isn't in range, hook it up to an existing or new
455 // thunk.
456 Defined *thunk;
457 bool wasNew;
458 std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
459 if (wasNew) {
460 Chunk *thunkChunk = thunk->getChunk();
461 thunkChunk->setRVA(
462 thunkInsertionRVA); // Estimate of where it will be located.
463 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
464 thunkInsertionSpot++;
465 thunksSize += thunkChunk->getSize();
466 thunkInsertionRVA += thunkChunk->getSize();
467 addressesChanged = true;
468 }
469
470 // To redirect the relocation, add a symbol to the parent object file's
471 // symbol table, and replace the relocation symbol table index with the
472 // new index.
473 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
474 uint32_t &thunkSymbolIndex = insertion.first->second;
475 if (insertion.second)
476 thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
477 relocReplacements.push_back({j, thunkSymbolIndex});
478 }
479
480 // Get a writable copy of this section's relocations so they can be
481 // modified. If the relocations point into the object file, allocate new
482 // memory. Otherwise, this must be previously allocated memory that can be
483 // modified in place.
484 ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
485 MutableArrayRef<coff_relocation> newRelocs;
486 if (originalRelocs.data() == curRelocs.data()) {
487 newRelocs = makeMutableArrayRef(
488 bAlloc().Allocate<coff_relocation>(originalRelocs.size()),
489 originalRelocs.size());
490 } else {
491 newRelocs = makeMutableArrayRef(
492 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
493 }
494
495 // Copy each relocation, but replace the symbol table indices which need
496 // thunks.
497 auto nextReplacement = relocReplacements.begin();
498 auto endReplacement = relocReplacements.end();
499 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
500 newRelocs[i] = originalRelocs[i];
501 if (nextReplacement != endReplacement && nextReplacement->first == i) {
502 newRelocs[i].SymbolTableIndex = nextReplacement->second;
503 ++nextReplacement;
504 }
505 }
506
507 sc->setRelocs(newRelocs);
508 }
509 return addressesChanged;
510 }
511
512 // Verify that all relocations are in range, with no extra margin requirements.
verifyRanges(const std::vector<Chunk * > chunks)513 static bool verifyRanges(const std::vector<Chunk *> chunks) {
514 for (Chunk *c : chunks) {
515 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
516 if (!sc)
517 continue;
518
519 ArrayRef<coff_relocation> relocs = sc->getRelocs();
520 for (size_t j = 0, e = relocs.size(); j < e; ++j) {
521 const coff_relocation &rel = relocs[j];
522 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
523
524 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
525 if (!sym)
526 continue;
527
528 uint64_t p = sc->getRVA() + rel.VirtualAddress;
529 uint64_t s = sym->getRVA();
530
531 if (!isInRange(rel.Type, s, p, 0))
532 return false;
533 }
534 }
535 return true;
536 }
537
538 // Assign addresses and add thunks if necessary.
finalizeAddresses()539 void Writer::finalizeAddresses() {
540 assignAddresses();
541 if (config->machine != ARMNT && config->machine != ARM64)
542 return;
543
544 size_t origNumChunks = 0;
545 for (OutputSection *sec : ctx.outputSections) {
546 sec->origChunks = sec->chunks;
547 origNumChunks += sec->chunks.size();
548 }
549
550 int pass = 0;
551 int margin = 1024 * 100;
552 while (true) {
553 // First check whether we need thunks at all, or if the previous pass of
554 // adding them turned out ok.
555 bool rangesOk = true;
556 size_t numChunks = 0;
557 for (OutputSection *sec : ctx.outputSections) {
558 if (!verifyRanges(sec->chunks)) {
559 rangesOk = false;
560 break;
561 }
562 numChunks += sec->chunks.size();
563 }
564 if (rangesOk) {
565 if (pass > 0)
566 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
567 "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
568 return;
569 }
570
571 if (pass >= 10)
572 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
573
574 if (pass > 0) {
575 // If the previous pass didn't work out, reset everything back to the
576 // original conditions before retrying with a wider margin. This should
577 // ideally never happen under real circumstances.
578 for (OutputSection *sec : ctx.outputSections)
579 sec->chunks = sec->origChunks;
580 margin *= 2;
581 }
582
583 // Try adding thunks everywhere where it is needed, with a margin
584 // to avoid things going out of range due to the added thunks.
585 bool addressesChanged = false;
586 for (OutputSection *sec : ctx.outputSections)
587 addressesChanged |= createThunks(sec, margin);
588 // If the verification above thought we needed thunks, we should have
589 // added some.
590 assert(addressesChanged);
591 (void)addressesChanged;
592
593 // Recalculate the layout for the whole image (and verify the ranges at
594 // the start of the next round).
595 assignAddresses();
596
597 pass++;
598 }
599 }
600
601 // The main function of the writer.
run()602 void Writer::run() {
603 ScopedTimer t1(ctx.codeLayoutTimer);
604
605 createImportTables();
606 createSections();
607 appendImportThunks();
608 // Import thunks must be added before the Control Flow Guard tables are added.
609 createMiscChunks();
610 createExportTable();
611 mergeSections();
612 removeUnusedSections();
613 finalizeAddresses();
614 removeEmptySections();
615 assignOutputSectionIndices();
616 setSectionPermissions();
617 createSymbolAndStringTable();
618
619 if (fileSize > UINT32_MAX)
620 fatal("image size (" + Twine(fileSize) + ") " +
621 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
622
623 openFile(config->outputFile);
624 if (config->is64()) {
625 writeHeader<pe32plus_header>();
626 } else {
627 writeHeader<pe32_header>();
628 }
629 writeSections();
630 sortExceptionTable();
631
632 // Fix up the alignment in the TLS Directory's characteristic field,
633 // if a specific alignment value is needed
634 if (tlsAlignment)
635 fixTlsAlignment();
636
637 t1.stop();
638
639 if (!config->pdbPath.empty() && config->debug) {
640 assert(buildId);
641 createPDB(ctx, sectionTable, buildId->buildId);
642 }
643 writeBuildId();
644
645 writeLLDMapFile(ctx);
646 writeMapFile(ctx);
647
648 if (errorCount())
649 return;
650
651 ScopedTimer t2(ctx.outputCommitTimer);
652 if (auto e = buffer->commit())
653 fatal("failed to write the output file: " + toString(std::move(e)));
654 }
655
getOutputSectionName(StringRef name)656 static StringRef getOutputSectionName(StringRef name) {
657 StringRef s = name.split('$').first;
658
659 // Treat a later period as a separator for MinGW, for sections like
660 // ".ctors.01234".
661 return s.substr(0, s.find('.', 1));
662 }
663
664 // For /order.
sortBySectionOrder(std::vector<Chunk * > & chunks)665 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
666 auto getPriority = [](const Chunk *c) {
667 if (auto *sec = dyn_cast<SectionChunk>(c))
668 if (sec->sym)
669 return config->order.lookup(sec->sym->getName());
670 return 0;
671 };
672
673 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
674 return getPriority(a) < getPriority(b);
675 });
676 }
677
678 // Change the characteristics of existing PartialSections that belong to the
679 // section Name to Chars.
fixPartialSectionChars(StringRef name,uint32_t chars)680 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
681 for (auto it : partialSections) {
682 PartialSection *pSec = it.second;
683 StringRef curName = pSec->name;
684 if (!curName.consume_front(name) ||
685 (!curName.empty() && !curName.startswith("$")))
686 continue;
687 if (pSec->characteristics == chars)
688 continue;
689 PartialSection *destSec = createPartialSection(pSec->name, chars);
690 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
691 pSec->chunks.end());
692 pSec->chunks.clear();
693 }
694 }
695
696 // Sort concrete section chunks from GNU import libraries.
697 //
698 // GNU binutils doesn't use short import files, but instead produces import
699 // libraries that consist of object files, with section chunks for the .idata$*
700 // sections. These are linked just as regular static libraries. Each import
701 // library consists of one header object, one object file for every imported
702 // symbol, and one trailer object. In order for the .idata tables/lists to
703 // be formed correctly, the section chunks within each .idata$* section need
704 // to be grouped by library, and sorted alphabetically within each library
705 // (which makes sure the header comes first and the trailer last).
fixGnuImportChunks()706 bool Writer::fixGnuImportChunks() {
707 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
708
709 // Make sure all .idata$* section chunks are mapped as RDATA in order to
710 // be sorted into the same sections as our own synthesized .idata chunks.
711 fixPartialSectionChars(".idata", rdata);
712
713 bool hasIdata = false;
714 // Sort all .idata$* chunks, grouping chunks from the same library,
715 // with alphabetical ordering of the object files within a library.
716 for (auto it : partialSections) {
717 PartialSection *pSec = it.second;
718 if (!pSec->name.startswith(".idata"))
719 continue;
720
721 if (!pSec->chunks.empty())
722 hasIdata = true;
723 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
724 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
725 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
726 if (!sc1 || !sc2) {
727 // if SC1, order them ascending. If SC2 or both null,
728 // S is not less than T.
729 return sc1 != nullptr;
730 }
731 // Make a string with "libraryname/objectfile" for sorting, achieving
732 // both grouping by library and sorting of objects within a library,
733 // at once.
734 std::string key1 =
735 (sc1->file->parentName + "/" + sc1->file->getName()).str();
736 std::string key2 =
737 (sc2->file->parentName + "/" + sc2->file->getName()).str();
738 return key1 < key2;
739 });
740 }
741 return hasIdata;
742 }
743
744 // Add generated idata chunks, for imported symbols and DLLs, and a
745 // terminator in .idata$2.
addSyntheticIdata()746 void Writer::addSyntheticIdata() {
747 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
748 idata.create();
749
750 // Add the .idata content in the right section groups, to allow
751 // chunks from other linked in object files to be grouped together.
752 // See Microsoft PE/COFF spec 5.4 for details.
753 auto add = [&](StringRef n, std::vector<Chunk *> &v) {
754 PartialSection *pSec = createPartialSection(n, rdata);
755 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
756 };
757
758 // The loader assumes a specific order of data.
759 // Add each type in the correct order.
760 add(".idata$2", idata.dirs);
761 add(".idata$4", idata.lookups);
762 add(".idata$5", idata.addresses);
763 if (!idata.hints.empty())
764 add(".idata$6", idata.hints);
765 add(".idata$7", idata.dllNames);
766 }
767
768 // Locate the first Chunk and size of the import directory list and the
769 // IAT.
locateImportTables()770 void Writer::locateImportTables() {
771 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
772
773 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
774 if (!importDirs->chunks.empty())
775 importTableStart = importDirs->chunks.front();
776 for (Chunk *c : importDirs->chunks)
777 importTableSize += c->getSize();
778 }
779
780 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
781 if (!importAddresses->chunks.empty())
782 iatStart = importAddresses->chunks.front();
783 for (Chunk *c : importAddresses->chunks)
784 iatSize += c->getSize();
785 }
786 }
787
788 // Return whether a SectionChunk's suffix (the dollar and any trailing
789 // suffix) should be removed and sorted into the main suffixless
790 // PartialSection.
shouldStripSectionSuffix(SectionChunk * sc,StringRef name)791 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
792 // On MinGW, comdat groups are formed by putting the comdat group name
793 // after the '$' in the section name. For .eh_frame$<symbol>, that must
794 // still be sorted before the .eh_frame trailer from crtend.o, thus just
795 // strip the section name trailer. For other sections, such as
796 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
797 // ".tls$"), they must be strictly sorted after .tls. And for the
798 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
799 // suffix for sorting. Thus, to play it safe, only strip the suffix for
800 // the standard sections.
801 if (!config->mingw)
802 return false;
803 if (!sc || !sc->isCOMDAT())
804 return false;
805 return name.startswith(".text$") || name.startswith(".data$") ||
806 name.startswith(".rdata$") || name.startswith(".pdata$") ||
807 name.startswith(".xdata$") || name.startswith(".eh_frame$");
808 }
809
sortSections()810 void Writer::sortSections() {
811 if (!config->callGraphProfile.empty()) {
812 DenseMap<const SectionChunk *, int> order =
813 computeCallGraphProfileOrder(ctx);
814 for (auto it : order) {
815 if (DefinedRegular *sym = it.first->sym)
816 config->order[sym->getName()] = it.second;
817 }
818 }
819 if (!config->order.empty())
820 for (auto it : partialSections)
821 sortBySectionOrder(it.second->chunks);
822 }
823
824 // Create output section objects and add them to OutputSections.
createSections()825 void Writer::createSections() {
826 // First, create the builtin sections.
827 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
828 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
829 const uint32_t code = IMAGE_SCN_CNT_CODE;
830 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
831 const uint32_t r = IMAGE_SCN_MEM_READ;
832 const uint32_t w = IMAGE_SCN_MEM_WRITE;
833 const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
834
835 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
836 auto createSection = [&](StringRef name, uint32_t outChars) {
837 OutputSection *&sec = sections[{name, outChars}];
838 if (!sec) {
839 sec = make<OutputSection>(name, outChars);
840 ctx.outputSections.push_back(sec);
841 }
842 return sec;
843 };
844
845 // Try to match the section order used by link.exe.
846 textSec = createSection(".text", code | r | x);
847 createSection(".bss", bss | r | w);
848 rdataSec = createSection(".rdata", data | r);
849 buildidSec = createSection(".buildid", data | r);
850 dataSec = createSection(".data", data | r | w);
851 pdataSec = createSection(".pdata", data | r);
852 idataSec = createSection(".idata", data | r);
853 edataSec = createSection(".edata", data | r);
854 didatSec = createSection(".didat", data | r);
855 rsrcSec = createSection(".rsrc", data | r);
856 relocSec = createSection(".reloc", data | discardable | r);
857 ctorsSec = createSection(".ctors", data | r | w);
858 dtorsSec = createSection(".dtors", data | r | w);
859
860 // Then bin chunks by name and output characteristics.
861 for (Chunk *c : ctx.symtab.getChunks()) {
862 auto *sc = dyn_cast<SectionChunk>(c);
863 if (sc && !sc->live) {
864 if (config->verbose)
865 sc->printDiscardedMessage();
866 continue;
867 }
868 StringRef name = c->getSectionName();
869 if (shouldStripSectionSuffix(sc, name))
870 name = name.split('$').first;
871
872 if (name.startswith(".tls"))
873 tlsAlignment = std::max(tlsAlignment, c->getAlignment());
874
875 PartialSection *pSec = createPartialSection(name,
876 c->getOutputCharacteristics());
877 pSec->chunks.push_back(c);
878 }
879
880 fixPartialSectionChars(".rsrc", data | r);
881 fixPartialSectionChars(".edata", data | r);
882 // Even in non MinGW cases, we might need to link against GNU import
883 // libraries.
884 bool hasIdata = fixGnuImportChunks();
885 if (!idata.empty())
886 hasIdata = true;
887
888 if (hasIdata)
889 addSyntheticIdata();
890
891 sortSections();
892
893 if (hasIdata)
894 locateImportTables();
895
896 // Then create an OutputSection for each section.
897 // '$' and all following characters in input section names are
898 // discarded when determining output section. So, .text$foo
899 // contributes to .text, for example. See PE/COFF spec 3.2.
900 for (auto it : partialSections) {
901 PartialSection *pSec = it.second;
902 StringRef name = getOutputSectionName(pSec->name);
903 uint32_t outChars = pSec->characteristics;
904
905 if (name == ".CRT") {
906 // In link.exe, there is a special case for the I386 target where .CRT
907 // sections are treated as if they have output characteristics DATA | R if
908 // their characteristics are DATA | R | W. This implements the same
909 // special case for all architectures.
910 outChars = data | r;
911
912 log("Processing section " + pSec->name + " -> " + name);
913
914 sortCRTSectionChunks(pSec->chunks);
915 }
916
917 OutputSection *sec = createSection(name, outChars);
918 for (Chunk *c : pSec->chunks)
919 sec->addChunk(c);
920
921 sec->addContributingPartialSection(pSec);
922 }
923
924 // Finally, move some output sections to the end.
925 auto sectionOrder = [&](const OutputSection *s) {
926 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
927 // because the loader cannot handle holes. Stripping can remove other
928 // discardable ones than .reloc, which is first of them (created early).
929 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) {
930 // Move discardable sections named .debug_ to the end, after other
931 // discardable sections. Stripping only removes the sections named
932 // .debug_* - thus try to avoid leaving holes after stripping.
933 if (s->name.startswith(".debug_"))
934 return 3;
935 return 2;
936 }
937 // .rsrc should come at the end of the non-discardable sections because its
938 // size may change by the Win32 UpdateResources() function, causing
939 // subsequent sections to move (see https://crbug.com/827082).
940 if (s == rsrcSec)
941 return 1;
942 return 0;
943 };
944 llvm::stable_sort(ctx.outputSections,
945 [&](const OutputSection *s, const OutputSection *t) {
946 return sectionOrder(s) < sectionOrder(t);
947 });
948 }
949
createMiscChunks()950 void Writer::createMiscChunks() {
951 for (MergeChunk *p : ctx.mergeChunkInstances) {
952 if (p) {
953 p->finalizeContents();
954 rdataSec->addChunk(p);
955 }
956 }
957
958 // Create thunks for locally-dllimported symbols.
959 if (!ctx.symtab.localImportChunks.empty()) {
960 for (Chunk *c : ctx.symtab.localImportChunks)
961 rdataSec->addChunk(c);
962 }
963
964 // Create Debug Information Chunks
965 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
966 if (config->debug || config->repro || config->cetCompat) {
967 debugDirectory =
968 make<DebugDirectoryChunk>(ctx, debugRecords, config->repro);
969 debugDirectory->setAlignment(4);
970 debugInfoSec->addChunk(debugDirectory);
971 }
972
973 if (config->debug) {
974 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
975 // output a PDB no matter what, and this chunk provides the only means of
976 // allowing a debugger to match a PDB and an executable. So we need it even
977 // if we're ultimately not going to write CodeView data to the PDB.
978 buildId = make<CVDebugRecordChunk>();
979 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
980 }
981
982 if (config->cetCompat) {
983 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
984 make<ExtendedDllCharacteristicsChunk>(
985 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)});
986 }
987
988 // Align and add each chunk referenced by the debug data directory.
989 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
990 r.second->setAlignment(4);
991 debugInfoSec->addChunk(r.second);
992 }
993
994 // Create SEH table. x86-only.
995 if (config->safeSEH)
996 createSEHTable();
997
998 // Create /guard:cf tables if requested.
999 if (config->guardCF != GuardCFLevel::Off)
1000 createGuardCFTables();
1001
1002 if (config->autoImport)
1003 createRuntimePseudoRelocs();
1004
1005 if (config->mingw)
1006 insertCtorDtorSymbols();
1007 }
1008
1009 // Create .idata section for the DLL-imported symbol table.
1010 // The format of this section is inherently Windows-specific.
1011 // IdataContents class abstracted away the details for us,
1012 // so we just let it create chunks and add them to the section.
createImportTables()1013 void Writer::createImportTables() {
1014 // Initialize DLLOrder so that import entries are ordered in
1015 // the same order as in the command line. (That affects DLL
1016 // initialization order, and this ordering is MSVC-compatible.)
1017 for (ImportFile *file : ctx.importFileInstances) {
1018 if (!file->live)
1019 continue;
1020
1021 std::string dll = StringRef(file->dllName).lower();
1022 if (config->dllOrder.count(dll) == 0)
1023 config->dllOrder[dll] = config->dllOrder.size();
1024
1025 if (file->impSym && !isa<DefinedImportData>(file->impSym))
1026 fatal(toString(*file->impSym) + " was replaced");
1027 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1028 if (config->delayLoads.count(StringRef(file->dllName).lower())) {
1029 if (!file->thunkSym)
1030 fatal("cannot delay-load " + toString(file) +
1031 " due to import of data: " + toString(*impSym));
1032 delayIdata.add(impSym);
1033 } else {
1034 idata.add(impSym);
1035 }
1036 }
1037 }
1038
appendImportThunks()1039 void Writer::appendImportThunks() {
1040 if (ctx.importFileInstances.empty())
1041 return;
1042
1043 for (ImportFile *file : ctx.importFileInstances) {
1044 if (!file->live)
1045 continue;
1046
1047 if (!file->thunkSym)
1048 continue;
1049
1050 if (!isa<DefinedImportThunk>(file->thunkSym))
1051 fatal(toString(*file->thunkSym) + " was replaced");
1052 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1053 if (file->thunkLive)
1054 textSec->addChunk(thunk->getChunk());
1055 }
1056
1057 if (!delayIdata.empty()) {
1058 Defined *helper = cast<Defined>(config->delayLoadHelper);
1059 delayIdata.create(ctx, helper);
1060 for (Chunk *c : delayIdata.getChunks())
1061 didatSec->addChunk(c);
1062 for (Chunk *c : delayIdata.getDataChunks())
1063 dataSec->addChunk(c);
1064 for (Chunk *c : delayIdata.getCodeChunks())
1065 textSec->addChunk(c);
1066 }
1067 }
1068
createExportTable()1069 void Writer::createExportTable() {
1070 if (!edataSec->chunks.empty()) {
1071 // Allow using a custom built export table from input object files, instead
1072 // of having the linker synthesize the tables.
1073 if (config->hadExplicitExports)
1074 warn("literal .edata sections override exports");
1075 } else if (!config->exports.empty()) {
1076 for (Chunk *c : edata.chunks)
1077 edataSec->addChunk(c);
1078 }
1079 if (!edataSec->chunks.empty()) {
1080 edataStart = edataSec->chunks.front();
1081 edataEnd = edataSec->chunks.back();
1082 }
1083 // Warn on exported deleting destructor.
1084 for (auto e : config->exports)
1085 if (e.sym && e.sym->getName().startswith("??_G"))
1086 warn("export of deleting dtor: " + toString(*e.sym));
1087 }
1088
removeUnusedSections()1089 void Writer::removeUnusedSections() {
1090 // Remove sections that we can be sure won't get content, to avoid
1091 // allocating space for their section headers.
1092 auto isUnused = [this](OutputSection *s) {
1093 if (s == relocSec)
1094 return false; // This section is populated later.
1095 // MergeChunks have zero size at this point, as their size is finalized
1096 // later. Only remove sections that have no Chunks at all.
1097 return s->chunks.empty();
1098 };
1099 llvm::erase_if(ctx.outputSections, isUnused);
1100 }
1101
1102 // The Windows loader doesn't seem to like empty sections,
1103 // so we remove them if any.
removeEmptySections()1104 void Writer::removeEmptySections() {
1105 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1106 llvm::erase_if(ctx.outputSections, isEmpty);
1107 }
1108
assignOutputSectionIndices()1109 void Writer::assignOutputSectionIndices() {
1110 // Assign final output section indices, and assign each chunk to its output
1111 // section.
1112 uint32_t idx = 1;
1113 for (OutputSection *os : ctx.outputSections) {
1114 os->sectionIndex = idx;
1115 for (Chunk *c : os->chunks)
1116 c->setOutputSectionIdx(idx);
1117 ++idx;
1118 }
1119
1120 // Merge chunks are containers of chunks, so assign those an output section
1121 // too.
1122 for (MergeChunk *mc : ctx.mergeChunkInstances)
1123 if (mc)
1124 for (SectionChunk *sc : mc->sections)
1125 if (sc && sc->live)
1126 sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1127 }
1128
addEntryToStringTable(StringRef str)1129 size_t Writer::addEntryToStringTable(StringRef str) {
1130 assert(str.size() > COFF::NameSize);
1131 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1132 strtab.insert(strtab.end(), str.begin(), str.end());
1133 strtab.push_back('\0');
1134 return offsetOfEntry;
1135 }
1136
createSymbol(Defined * def)1137 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1138 coff_symbol16 sym;
1139 switch (def->kind()) {
1140 case Symbol::DefinedAbsoluteKind:
1141 sym.Value = def->getRVA();
1142 sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1143 break;
1144 case Symbol::DefinedSyntheticKind:
1145 // Relative symbols are unrepresentable in a COFF symbol table.
1146 return None;
1147 default: {
1148 // Don't write symbols that won't be written to the output to the symbol
1149 // table.
1150 Chunk *c = def->getChunk();
1151 if (!c)
1152 return None;
1153 OutputSection *os = ctx.getOutputSection(c);
1154 if (!os)
1155 return None;
1156
1157 sym.Value = def->getRVA() - os->getRVA();
1158 sym.SectionNumber = os->sectionIndex;
1159 break;
1160 }
1161 }
1162
1163 // Symbols that are runtime pseudo relocations don't point to the actual
1164 // symbol data itself (as they are imported), but points to the IAT entry
1165 // instead. Avoid emitting them to the symbol table, as they can confuse
1166 // debuggers.
1167 if (def->isRuntimePseudoReloc)
1168 return None;
1169
1170 StringRef name = def->getName();
1171 if (name.size() > COFF::NameSize) {
1172 sym.Name.Offset.Zeroes = 0;
1173 sym.Name.Offset.Offset = addEntryToStringTable(name);
1174 } else {
1175 memset(sym.Name.ShortName, 0, COFF::NameSize);
1176 memcpy(sym.Name.ShortName, name.data(), name.size());
1177 }
1178
1179 if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1180 COFFSymbolRef ref = d->getCOFFSymbol();
1181 sym.Type = ref.getType();
1182 sym.StorageClass = ref.getStorageClass();
1183 } else {
1184 sym.Type = IMAGE_SYM_TYPE_NULL;
1185 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1186 }
1187 sym.NumberOfAuxSymbols = 0;
1188 return sym;
1189 }
1190
createSymbolAndStringTable()1191 void Writer::createSymbolAndStringTable() {
1192 // PE/COFF images are limited to 8 byte section names. Longer names can be
1193 // supported by writing a non-standard string table, but this string table is
1194 // not mapped at runtime and the long names will therefore be inaccessible.
1195 // link.exe always truncates section names to 8 bytes, whereas binutils always
1196 // preserves long section names via the string table. LLD adopts a hybrid
1197 // solution where discardable sections have long names preserved and
1198 // non-discardable sections have their names truncated, to ensure that any
1199 // section which is mapped at runtime also has its name mapped at runtime.
1200 for (OutputSection *sec : ctx.outputSections) {
1201 if (sec->name.size() <= COFF::NameSize)
1202 continue;
1203 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1204 continue;
1205 if (config->warnLongSectionNames) {
1206 warn("section name " + sec->name +
1207 " is longer than 8 characters and will use a non-standard string "
1208 "table");
1209 }
1210 sec->setStringTableOff(addEntryToStringTable(sec->name));
1211 }
1212
1213 if (config->debugDwarf || config->debugSymtab) {
1214 for (ObjFile *file : ctx.objFileInstances) {
1215 for (Symbol *b : file->getSymbols()) {
1216 auto *d = dyn_cast_or_null<Defined>(b);
1217 if (!d || d->writtenToSymtab)
1218 continue;
1219 d->writtenToSymtab = true;
1220 if (auto *dc = dyn_cast_or_null<DefinedCOFF>(d)) {
1221 COFFSymbolRef symRef = dc->getCOFFSymbol();
1222 if (symRef.isSectionDefinition() ||
1223 symRef.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL)
1224 continue;
1225 }
1226
1227 if (Optional<coff_symbol16> sym = createSymbol(d))
1228 outputSymtab.push_back(*sym);
1229 }
1230 }
1231 }
1232
1233 if (outputSymtab.empty() && strtab.empty())
1234 return;
1235
1236 // We position the symbol table to be adjacent to the end of the last section.
1237 uint64_t fileOff = fileSize;
1238 pointerToSymbolTable = fileOff;
1239 fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1240 fileOff += 4 + strtab.size();
1241 fileSize = alignTo(fileOff, config->fileAlign);
1242 }
1243
mergeSections()1244 void Writer::mergeSections() {
1245 if (!pdataSec->chunks.empty()) {
1246 firstPdata = pdataSec->chunks.front();
1247 lastPdata = pdataSec->chunks.back();
1248 }
1249
1250 for (auto &p : config->merge) {
1251 StringRef toName = p.second;
1252 if (p.first == toName)
1253 continue;
1254 StringSet<> names;
1255 while (true) {
1256 if (!names.insert(toName).second)
1257 fatal("/merge: cycle found for section '" + p.first + "'");
1258 auto i = config->merge.find(toName);
1259 if (i == config->merge.end())
1260 break;
1261 toName = i->second;
1262 }
1263 OutputSection *from = findSection(p.first);
1264 OutputSection *to = findSection(toName);
1265 if (!from)
1266 continue;
1267 if (!to) {
1268 from->name = toName;
1269 continue;
1270 }
1271 to->merge(from);
1272 }
1273 }
1274
1275 // Visits all sections to assign incremental, non-overlapping RVAs and
1276 // file offsets.
assignAddresses()1277 void Writer::assignAddresses() {
1278 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1279 sizeof(data_directory) * numberOfDataDirectory +
1280 sizeof(coff_section) * ctx.outputSections.size();
1281 sizeOfHeaders +=
1282 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1283 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1284 fileSize = sizeOfHeaders;
1285
1286 // The first page is kept unmapped.
1287 uint64_t rva = alignTo(sizeOfHeaders, config->align);
1288
1289 for (OutputSection *sec : ctx.outputSections) {
1290 if (sec == relocSec)
1291 addBaserels();
1292 uint64_t rawSize = 0, virtualSize = 0;
1293 sec->header.VirtualAddress = rva;
1294
1295 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1296 // hotpatchable image.
1297 const bool isCodeSection =
1298 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1299 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1300 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1301 uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1302
1303 for (Chunk *c : sec->chunks) {
1304 if (padding && c->isHotPatchable())
1305 virtualSize += padding;
1306 virtualSize = alignTo(virtualSize, c->getAlignment());
1307 c->setRVA(rva + virtualSize);
1308 virtualSize += c->getSize();
1309 if (c->hasData)
1310 rawSize = alignTo(virtualSize, config->fileAlign);
1311 }
1312 if (virtualSize > UINT32_MAX)
1313 error("section larger than 4 GiB: " + sec->name);
1314 sec->header.VirtualSize = virtualSize;
1315 sec->header.SizeOfRawData = rawSize;
1316 if (rawSize != 0)
1317 sec->header.PointerToRawData = fileSize;
1318 rva += alignTo(virtualSize, config->align);
1319 fileSize += alignTo(rawSize, config->fileAlign);
1320 }
1321 sizeOfImage = alignTo(rva, config->align);
1322
1323 // Assign addresses to sections in MergeChunks.
1324 for (MergeChunk *mc : ctx.mergeChunkInstances)
1325 if (mc)
1326 mc->assignSubsectionRVAs();
1327 }
1328
writeHeader()1329 template <typename PEHeaderTy> void Writer::writeHeader() {
1330 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1331 // executable consists of an MS-DOS MZ executable. If the executable is run
1332 // under DOS, that program gets run (usually to just print an error message).
1333 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1334 // the PE header instead.
1335 uint8_t *buf = buffer->getBufferStart();
1336 auto *dos = reinterpret_cast<dos_header *>(buf);
1337 buf += sizeof(dos_header);
1338 dos->Magic[0] = 'M';
1339 dos->Magic[1] = 'Z';
1340 dos->UsedBytesInTheLastPage = dosStubSize % 512;
1341 dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1342 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1343
1344 dos->AddressOfRelocationTable = sizeof(dos_header);
1345 dos->AddressOfNewExeHeader = dosStubSize;
1346
1347 // Write DOS program.
1348 memcpy(buf, dosProgram, sizeof(dosProgram));
1349 buf += sizeof(dosProgram);
1350
1351 // Write PE magic
1352 memcpy(buf, PEMagic, sizeof(PEMagic));
1353 buf += sizeof(PEMagic);
1354
1355 // Write COFF header
1356 auto *coff = reinterpret_cast<coff_file_header *>(buf);
1357 buf += sizeof(*coff);
1358 coff->Machine = config->machine;
1359 coff->NumberOfSections = ctx.outputSections.size();
1360 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1361 if (config->largeAddressAware)
1362 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1363 if (!config->is64())
1364 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1365 if (config->dll)
1366 coff->Characteristics |= IMAGE_FILE_DLL;
1367 if (config->driverUponly)
1368 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1369 if (!config->relocatable)
1370 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1371 if (config->swaprunCD)
1372 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1373 if (config->swaprunNet)
1374 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1375 coff->SizeOfOptionalHeader =
1376 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1377
1378 // Write PE header
1379 auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1380 buf += sizeof(*pe);
1381 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1382
1383 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1384 // reason signing the resulting PE file with Authenticode produces a
1385 // signature that fails to validate on Windows 7 (but is OK on 10).
1386 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1387 // that problem.
1388 pe->MajorLinkerVersion = 14;
1389 pe->MinorLinkerVersion = 0;
1390
1391 pe->ImageBase = config->imageBase;
1392 pe->SectionAlignment = config->align;
1393 pe->FileAlignment = config->fileAlign;
1394 pe->MajorImageVersion = config->majorImageVersion;
1395 pe->MinorImageVersion = config->minorImageVersion;
1396 pe->MajorOperatingSystemVersion = config->majorOSVersion;
1397 pe->MinorOperatingSystemVersion = config->minorOSVersion;
1398 pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1399 pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1400 pe->Subsystem = config->subsystem;
1401 pe->SizeOfImage = sizeOfImage;
1402 pe->SizeOfHeaders = sizeOfHeaders;
1403 if (!config->noEntry) {
1404 Defined *entry = cast<Defined>(config->entry);
1405 pe->AddressOfEntryPoint = entry->getRVA();
1406 // Pointer to thumb code must have the LSB set, so adjust it.
1407 if (config->machine == ARMNT)
1408 pe->AddressOfEntryPoint |= 1;
1409 }
1410 pe->SizeOfStackReserve = config->stackReserve;
1411 pe->SizeOfStackCommit = config->stackCommit;
1412 pe->SizeOfHeapReserve = config->heapReserve;
1413 pe->SizeOfHeapCommit = config->heapCommit;
1414 if (config->appContainer)
1415 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1416 if (config->driverWdm)
1417 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1418 if (config->dynamicBase)
1419 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1420 if (config->highEntropyVA)
1421 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1422 if (!config->allowBind)
1423 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1424 if (config->nxCompat)
1425 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1426 if (!config->allowIsolation)
1427 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1428 if (config->guardCF != GuardCFLevel::Off)
1429 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1430 if (config->integrityCheck)
1431 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1432 if (setNoSEHCharacteristic || config->noSEH)
1433 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1434 if (config->terminalServerAware)
1435 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1436 pe->NumberOfRvaAndSize = numberOfDataDirectory;
1437 if (textSec->getVirtualSize()) {
1438 pe->BaseOfCode = textSec->getRVA();
1439 pe->SizeOfCode = textSec->getRawSize();
1440 }
1441 pe->SizeOfInitializedData = getSizeOfInitializedData();
1442
1443 // Write data directory
1444 auto *dir = reinterpret_cast<data_directory *>(buf);
1445 buf += sizeof(*dir) * numberOfDataDirectory;
1446 if (edataStart) {
1447 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1448 dir[EXPORT_TABLE].Size =
1449 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1450 }
1451 if (importTableStart) {
1452 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1453 dir[IMPORT_TABLE].Size = importTableSize;
1454 }
1455 if (iatStart) {
1456 dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1457 dir[IAT].Size = iatSize;
1458 }
1459 if (rsrcSec->getVirtualSize()) {
1460 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1461 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1462 }
1463 if (firstPdata) {
1464 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1465 dir[EXCEPTION_TABLE].Size =
1466 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1467 }
1468 if (relocSec->getVirtualSize()) {
1469 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1470 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1471 }
1472 if (Symbol *sym = ctx.symtab.findUnderscore("_tls_used")) {
1473 if (Defined *b = dyn_cast<Defined>(sym)) {
1474 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1475 dir[TLS_TABLE].Size = config->is64()
1476 ? sizeof(object::coff_tls_directory64)
1477 : sizeof(object::coff_tls_directory32);
1478 }
1479 }
1480 if (debugDirectory) {
1481 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1482 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1483 }
1484 if (Symbol *sym = ctx.symtab.findUnderscore("_load_config_used")) {
1485 if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1486 SectionChunk *sc = b->getChunk();
1487 assert(b->getRVA() >= sc->getRVA());
1488 uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1489 if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1490 fatal("_load_config_used is malformed");
1491
1492 ArrayRef<uint8_t> secContents = sc->getContents();
1493 uint32_t loadConfigSize =
1494 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1495 if (offsetInChunk + loadConfigSize > sc->getSize())
1496 fatal("_load_config_used is too large");
1497 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1498 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1499 }
1500 }
1501 if (!delayIdata.empty()) {
1502 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1503 delayIdata.getDirRVA();
1504 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1505 }
1506
1507 // Write section table
1508 for (OutputSection *sec : ctx.outputSections) {
1509 sec->writeHeaderTo(buf);
1510 buf += sizeof(coff_section);
1511 }
1512 sectionTable = ArrayRef<uint8_t>(
1513 buf - ctx.outputSections.size() * sizeof(coff_section), buf);
1514
1515 if (outputSymtab.empty() && strtab.empty())
1516 return;
1517
1518 coff->PointerToSymbolTable = pointerToSymbolTable;
1519 uint32_t numberOfSymbols = outputSymtab.size();
1520 coff->NumberOfSymbols = numberOfSymbols;
1521 auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1522 buffer->getBufferStart() + coff->PointerToSymbolTable);
1523 for (size_t i = 0; i != numberOfSymbols; ++i)
1524 symbolTable[i] = outputSymtab[i];
1525 // Create the string table, it follows immediately after the symbol table.
1526 // The first 4 bytes is length including itself.
1527 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1528 write32le(buf, strtab.size() + 4);
1529 if (!strtab.empty())
1530 memcpy(buf + 4, strtab.data(), strtab.size());
1531 }
1532
openFile(StringRef path)1533 void Writer::openFile(StringRef path) {
1534 buffer = CHECK(
1535 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1536 "failed to open " + path);
1537 }
1538
createSEHTable()1539 void Writer::createSEHTable() {
1540 SymbolRVASet handlers;
1541 for (ObjFile *file : ctx.objFileInstances) {
1542 if (!file->hasSafeSEH())
1543 error("/safeseh: " + file->getName() + " is not compatible with SEH");
1544 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1545 }
1546
1547 // Set the "no SEH" characteristic if there really were no handlers, or if
1548 // there is no load config object to point to the table of handlers.
1549 setNoSEHCharacteristic =
1550 handlers.empty() || !ctx.symtab.findUnderscore("_load_config_used");
1551
1552 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1553 "__safe_se_handler_count");
1554 }
1555
1556 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1557 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1558 // symbol's offset into that Chunk.
addSymbolToRVASet(SymbolRVASet & rvaSet,Defined * s)1559 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1560 Chunk *c = s->getChunk();
1561 if (auto *sc = dyn_cast<SectionChunk>(c))
1562 c = sc->repl; // Look through ICF replacement.
1563 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1564 rvaSet.insert({c, off});
1565 }
1566
1567 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1568 // symbol in an executable section.
maybeAddAddressTakenFunction(SymbolRVASet & addressTakenSyms,Symbol * s)1569 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1570 Symbol *s) {
1571 if (!s)
1572 return;
1573
1574 switch (s->kind()) {
1575 case Symbol::DefinedLocalImportKind:
1576 case Symbol::DefinedImportDataKind:
1577 // Defines an __imp_ pointer, so it is data, so it is ignored.
1578 break;
1579 case Symbol::DefinedCommonKind:
1580 // Common is always data, so it is ignored.
1581 break;
1582 case Symbol::DefinedAbsoluteKind:
1583 case Symbol::DefinedSyntheticKind:
1584 // Absolute is never code, synthetic generally isn't and usually isn't
1585 // determinable.
1586 break;
1587 case Symbol::LazyArchiveKind:
1588 case Symbol::LazyObjectKind:
1589 case Symbol::LazyDLLSymbolKind:
1590 case Symbol::UndefinedKind:
1591 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1592 // symbols shouldn't have relocations.
1593 break;
1594
1595 case Symbol::DefinedImportThunkKind:
1596 // Thunks are always code, include them.
1597 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1598 break;
1599
1600 case Symbol::DefinedRegularKind: {
1601 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1602 // address taken if the symbol type is function and it's in an executable
1603 // section.
1604 auto *d = cast<DefinedRegular>(s);
1605 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1606 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1607 if (sc && sc->live &&
1608 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1609 addSymbolToRVASet(addressTakenSyms, d);
1610 }
1611 break;
1612 }
1613 }
1614 }
1615
1616 // Visit all relocations from all section contributions of this object file and
1617 // mark the relocation target as address-taken.
markSymbolsWithRelocations(ObjFile * file,SymbolRVASet & usedSymbols)1618 static void markSymbolsWithRelocations(ObjFile *file,
1619 SymbolRVASet &usedSymbols) {
1620 for (Chunk *c : file->getChunks()) {
1621 // We only care about live section chunks. Common chunks and other chunks
1622 // don't generally contain relocations.
1623 SectionChunk *sc = dyn_cast<SectionChunk>(c);
1624 if (!sc || !sc->live)
1625 continue;
1626
1627 for (const coff_relocation &reloc : sc->getRelocs()) {
1628 if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1629 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1630 // since they're also used to compute absolute addresses.
1631 continue;
1632
1633 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1634 maybeAddAddressTakenFunction(usedSymbols, ref);
1635 }
1636 }
1637 }
1638
1639 // Create the guard function id table. This is a table of RVAs of all
1640 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1641 // table.
createGuardCFTables()1642 void Writer::createGuardCFTables() {
1643 SymbolRVASet addressTakenSyms;
1644 SymbolRVASet giatsRVASet;
1645 std::vector<Symbol *> giatsSymbols;
1646 SymbolRVASet longJmpTargets;
1647 SymbolRVASet ehContTargets;
1648 for (ObjFile *file : ctx.objFileInstances) {
1649 // If the object was compiled with /guard:cf, the address taken symbols
1650 // are in .gfids$y sections, the longjmp targets are in .gljmp$y sections,
1651 // and ehcont targets are in .gehcont$y sections. If the object was not
1652 // compiled with /guard:cf, we assume there were no setjmp and ehcont
1653 // targets, and that all code symbols with relocations are possibly
1654 // address-taken.
1655 if (file->hasGuardCF()) {
1656 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1657 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1658 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1659 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1660 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
1661 } else {
1662 markSymbolsWithRelocations(file, addressTakenSyms);
1663 }
1664 }
1665
1666 // Mark the image entry as address-taken.
1667 if (config->entry)
1668 maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1669
1670 // Mark exported symbols in executable sections as address-taken.
1671 for (Export &e : config->exports)
1672 maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1673
1674 // For each entry in the .giats table, check if it has a corresponding load
1675 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1676 // so, add the load thunk to the address taken (.gfids) table.
1677 for (Symbol *s : giatsSymbols) {
1678 if (auto *di = dyn_cast<DefinedImportData>(s)) {
1679 if (di->loadThunkSym)
1680 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1681 }
1682 }
1683
1684 // Ensure sections referenced in the gfid table are 16-byte aligned.
1685 for (const ChunkAndOffset &c : addressTakenSyms)
1686 if (c.inputChunk->getAlignment() < 16)
1687 c.inputChunk->setAlignment(16);
1688
1689 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1690 "__guard_fids_count");
1691
1692 // Add the Guard Address Taken IAT Entry Table (.giats).
1693 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1694 "__guard_iat_count");
1695
1696 // Add the longjmp target table unless the user told us not to.
1697 if (config->guardCF & GuardCFLevel::LongJmp)
1698 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1699 "__guard_longjmp_count");
1700
1701 // Add the ehcont target table unless the user told us not to.
1702 if (config->guardCF & GuardCFLevel::EHCont)
1703 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
1704 "__guard_eh_cont_count", true);
1705
1706 // Set __guard_flags, which will be used in the load config to indicate that
1707 // /guard:cf was enabled.
1708 uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1709 uint32_t(coff_guard_flags::HasFidTable);
1710 if (config->guardCF & GuardCFLevel::LongJmp)
1711 guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1712 if (config->guardCF & GuardCFLevel::EHCont)
1713 guardFlags |= uint32_t(coff_guard_flags::HasEHContTable);
1714 Symbol *flagSym = ctx.symtab.findUnderscore("__guard_flags");
1715 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1716 }
1717
1718 // Take a list of input sections containing symbol table indices and add those
1719 // symbols to a vector. The challenge is that symbol RVAs are not known and
1720 // depend on the table size, so we can't directly build a set of integers.
getSymbolsFromSections(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,std::vector<Symbol * > & symbols)1721 void Writer::getSymbolsFromSections(ObjFile *file,
1722 ArrayRef<SectionChunk *> symIdxChunks,
1723 std::vector<Symbol *> &symbols) {
1724 for (SectionChunk *c : symIdxChunks) {
1725 // Skip sections discarded by linker GC. This comes up when a .gfids section
1726 // is associated with something like a vtable and the vtable is discarded.
1727 // In this case, the associated gfids section is discarded, and we don't
1728 // mark the virtual member functions as address-taken by the vtable.
1729 if (!c->live)
1730 continue;
1731
1732 // Validate that the contents look like symbol table indices.
1733 ArrayRef<uint8_t> data = c->getContents();
1734 if (data.size() % 4 != 0) {
1735 warn("ignoring " + c->getSectionName() +
1736 " symbol table index section in object " + toString(file));
1737 continue;
1738 }
1739
1740 // Read each symbol table index and check if that symbol was included in the
1741 // final link. If so, add it to the vector of symbols.
1742 ArrayRef<ulittle32_t> symIndices(
1743 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1744 ArrayRef<Symbol *> objSymbols = file->getSymbols();
1745 for (uint32_t symIndex : symIndices) {
1746 if (symIndex >= objSymbols.size()) {
1747 warn("ignoring invalid symbol table index in section " +
1748 c->getSectionName() + " in object " + toString(file));
1749 continue;
1750 }
1751 if (Symbol *s = objSymbols[symIndex]) {
1752 if (s->isLive())
1753 symbols.push_back(cast<Symbol>(s));
1754 }
1755 }
1756 }
1757 }
1758
1759 // Take a list of input sections containing symbol table indices and add those
1760 // symbols to an RVA table.
markSymbolsForRVATable(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,SymbolRVASet & tableSymbols)1761 void Writer::markSymbolsForRVATable(ObjFile *file,
1762 ArrayRef<SectionChunk *> symIdxChunks,
1763 SymbolRVASet &tableSymbols) {
1764 std::vector<Symbol *> syms;
1765 getSymbolsFromSections(file, symIdxChunks, syms);
1766
1767 for (Symbol *s : syms)
1768 addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1769 }
1770
1771 // Replace the absolute table symbol with a synthetic symbol pointing to
1772 // tableChunk so that we can emit base relocations for it and resolve section
1773 // relative relocations.
maybeAddRVATable(SymbolRVASet tableSymbols,StringRef tableSym,StringRef countSym,bool hasFlag)1774 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1775 StringRef countSym, bool hasFlag) {
1776 if (tableSymbols.empty())
1777 return;
1778
1779 NonSectionChunk *tableChunk;
1780 if (hasFlag)
1781 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
1782 else
1783 tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1784 rdataSec->addChunk(tableChunk);
1785
1786 Symbol *t = ctx.symtab.findUnderscore(tableSym);
1787 Symbol *c = ctx.symtab.findUnderscore(countSym);
1788 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1789 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
1790 }
1791
1792 // MinGW specific. Gather all relocations that are imported from a DLL even
1793 // though the code didn't expect it to, produce the table that the runtime
1794 // uses for fixing them up, and provide the synthetic symbols that the
1795 // runtime uses for finding the table.
createRuntimePseudoRelocs()1796 void Writer::createRuntimePseudoRelocs() {
1797 std::vector<RuntimePseudoReloc> rels;
1798
1799 for (Chunk *c : ctx.symtab.getChunks()) {
1800 auto *sc = dyn_cast<SectionChunk>(c);
1801 if (!sc || !sc->live)
1802 continue;
1803 sc->getRuntimePseudoRelocs(rels);
1804 }
1805
1806 if (!config->pseudoRelocs) {
1807 // Not writing any pseudo relocs; if some were needed, error out and
1808 // indicate what required them.
1809 for (const RuntimePseudoReloc &rpr : rels)
1810 error("automatic dllimport of " + rpr.sym->getName() + " in " +
1811 toString(rpr.target->file) + " requires pseudo relocations");
1812 return;
1813 }
1814
1815 if (!rels.empty())
1816 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1817 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1818 rdataSec->addChunk(table);
1819 EmptyChunk *endOfList = make<EmptyChunk>();
1820 rdataSec->addChunk(endOfList);
1821
1822 Symbol *headSym = ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1823 Symbol *endSym =
1824 ctx.symtab.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1825 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1826 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1827 }
1828
1829 // MinGW specific.
1830 // The MinGW .ctors and .dtors lists have sentinels at each end;
1831 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1832 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1833 // and __DTOR_LIST__ respectively.
insertCtorDtorSymbols()1834 void Writer::insertCtorDtorSymbols() {
1835 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1836 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1837 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1838 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1839 ctorsSec->insertChunkAtStart(ctorListHead);
1840 ctorsSec->addChunk(ctorListEnd);
1841 dtorsSec->insertChunkAtStart(dtorListHead);
1842 dtorsSec->addChunk(dtorListEnd);
1843
1844 Symbol *ctorListSym = ctx.symtab.findUnderscore("__CTOR_LIST__");
1845 Symbol *dtorListSym = ctx.symtab.findUnderscore("__DTOR_LIST__");
1846 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1847 ctorListHead);
1848 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1849 dtorListHead);
1850 }
1851
1852 // Handles /section options to allow users to overwrite
1853 // section attributes.
setSectionPermissions()1854 void Writer::setSectionPermissions() {
1855 for (auto &p : config->section) {
1856 StringRef name = p.first;
1857 uint32_t perm = p.second;
1858 for (OutputSection *sec : ctx.outputSections)
1859 if (sec->name == name)
1860 sec->setPermissions(perm);
1861 }
1862 }
1863
1864 // Write section contents to a mmap'ed file.
writeSections()1865 void Writer::writeSections() {
1866 // Record the number of sections to apply section index relocations
1867 // against absolute symbols. See applySecIdx in Chunks.cpp..
1868 DefinedAbsolute::numOutputSections = ctx.outputSections.size();
1869
1870 uint8_t *buf = buffer->getBufferStart();
1871 for (OutputSection *sec : ctx.outputSections) {
1872 uint8_t *secBuf = buf + sec->getFileOff();
1873 // Fill gaps between functions in .text with INT3 instructions
1874 // instead of leaving as NUL bytes (which can be interpreted as
1875 // ADD instructions).
1876 if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1877 memset(secBuf, 0xCC, sec->getRawSize());
1878 parallelForEach(sec->chunks, [&](Chunk *c) {
1879 c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1880 });
1881 }
1882 }
1883
writeBuildId()1884 void Writer::writeBuildId() {
1885 // There are two important parts to the build ID.
1886 // 1) If building with debug info, the COFF debug directory contains a
1887 // timestamp as well as a Guid and Age of the PDB.
1888 // 2) In all cases, the PE COFF file header also contains a timestamp.
1889 // For reproducibility, instead of a timestamp we want to use a hash of the
1890 // PE contents.
1891 if (config->debug) {
1892 assert(buildId && "BuildId is not set!");
1893 // BuildId->BuildId was filled in when the PDB was written.
1894 }
1895
1896 // At this point the only fields in the COFF file which remain unset are the
1897 // "timestamp" in the COFF file header, and the ones in the coff debug
1898 // directory. Now we can hash the file and write that hash to the various
1899 // timestamp fields in the file.
1900 StringRef outputFileData(
1901 reinterpret_cast<const char *>(buffer->getBufferStart()),
1902 buffer->getBufferSize());
1903
1904 uint32_t timestamp = config->timestamp;
1905 uint64_t hash = 0;
1906 bool generateSyntheticBuildId =
1907 config->mingw && config->debug && config->pdbPath.empty();
1908
1909 if (config->repro || generateSyntheticBuildId)
1910 hash = xxHash64(outputFileData);
1911
1912 if (config->repro)
1913 timestamp = static_cast<uint32_t>(hash);
1914
1915 if (generateSyntheticBuildId) {
1916 // For MinGW builds without a PDB file, we still generate a build id
1917 // to allow associating a crash dump to the executable.
1918 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1919 buildId->buildId->PDB70.Age = 1;
1920 memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1921 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1922 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1923 }
1924
1925 if (debugDirectory)
1926 debugDirectory->setTimeDateStamp(timestamp);
1927
1928 uint8_t *buf = buffer->getBufferStart();
1929 buf += dosStubSize + sizeof(PEMagic);
1930 object::coff_file_header *coffHeader =
1931 reinterpret_cast<coff_file_header *>(buf);
1932 coffHeader->TimeDateStamp = timestamp;
1933 }
1934
1935 // Sort .pdata section contents according to PE/COFF spec 5.5.
sortExceptionTable()1936 void Writer::sortExceptionTable() {
1937 if (!firstPdata)
1938 return;
1939 // We assume .pdata contains function table entries only.
1940 auto bufAddr = [&](Chunk *c) {
1941 OutputSection *os = ctx.getOutputSection(c);
1942 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1943 os->getRVA();
1944 };
1945 uint8_t *begin = bufAddr(firstPdata);
1946 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1947 if (config->machine == AMD64) {
1948 struct Entry { ulittle32_t begin, end, unwind; };
1949 if ((end - begin) % sizeof(Entry) != 0) {
1950 fatal("unexpected .pdata size: " + Twine(end - begin) +
1951 " is not a multiple of " + Twine(sizeof(Entry)));
1952 }
1953 parallelSort(
1954 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1955 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1956 return;
1957 }
1958 if (config->machine == ARMNT || config->machine == ARM64) {
1959 struct Entry { ulittle32_t begin, unwind; };
1960 if ((end - begin) % sizeof(Entry) != 0) {
1961 fatal("unexpected .pdata size: " + Twine(end - begin) +
1962 " is not a multiple of " + Twine(sizeof(Entry)));
1963 }
1964 parallelSort(
1965 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1966 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1967 return;
1968 }
1969 lld::errs() << "warning: don't know how to handle .pdata.\n";
1970 }
1971
1972 // The CRT section contains, among other things, the array of function
1973 // pointers that initialize every global variable that is not trivially
1974 // constructed. The CRT calls them one after the other prior to invoking
1975 // main().
1976 //
1977 // As per C++ spec, 3.6.2/2.3,
1978 // "Variables with ordered initialization defined within a single
1979 // translation unit shall be initialized in the order of their definitions
1980 // in the translation unit"
1981 //
1982 // It is therefore critical to sort the chunks containing the function
1983 // pointers in the order that they are listed in the object file (top to
1984 // bottom), otherwise global objects might not be initialized in the
1985 // correct order.
sortCRTSectionChunks(std::vector<Chunk * > & chunks)1986 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1987 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1988 auto sa = dyn_cast<SectionChunk>(a);
1989 auto sb = dyn_cast<SectionChunk>(b);
1990 assert(sa && sb && "Non-section chunks in CRT section!");
1991
1992 StringRef sAObj = sa->file->mb.getBufferIdentifier();
1993 StringRef sBObj = sb->file->mb.getBufferIdentifier();
1994
1995 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
1996 };
1997 llvm::stable_sort(chunks, sectionChunkOrder);
1998
1999 if (config->verbose) {
2000 for (auto &c : chunks) {
2001 auto sc = dyn_cast<SectionChunk>(c);
2002 log(" " + sc->file->mb.getBufferIdentifier().str() +
2003 ", SectionID: " + Twine(sc->getSectionNumber()));
2004 }
2005 }
2006 }
2007
findSection(StringRef name)2008 OutputSection *Writer::findSection(StringRef name) {
2009 for (OutputSection *sec : ctx.outputSections)
2010 if (sec->name == name)
2011 return sec;
2012 return nullptr;
2013 }
2014
getSizeOfInitializedData()2015 uint32_t Writer::getSizeOfInitializedData() {
2016 uint32_t res = 0;
2017 for (OutputSection *s : ctx.outputSections)
2018 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2019 res += s->getRawSize();
2020 return res;
2021 }
2022
2023 // Add base relocations to .reloc section.
addBaserels()2024 void Writer::addBaserels() {
2025 if (!config->relocatable)
2026 return;
2027 relocSec->chunks.clear();
2028 std::vector<Baserel> v;
2029 for (OutputSection *sec : ctx.outputSections) {
2030 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2031 continue;
2032 // Collect all locations for base relocations.
2033 for (Chunk *c : sec->chunks)
2034 c->getBaserels(&v);
2035 // Add the addresses to .reloc section.
2036 if (!v.empty())
2037 addBaserelBlocks(v);
2038 v.clear();
2039 }
2040 }
2041
2042 // Add addresses to .reloc section. Note that addresses are grouped by page.
addBaserelBlocks(std::vector<Baserel> & v)2043 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2044 const uint32_t mask = ~uint32_t(pageSize - 1);
2045 uint32_t page = v[0].rva & mask;
2046 size_t i = 0, j = 1;
2047 for (size_t e = v.size(); j < e; ++j) {
2048 uint32_t p = v[j].rva & mask;
2049 if (p == page)
2050 continue;
2051 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2052 i = j;
2053 page = p;
2054 }
2055 if (i == j)
2056 return;
2057 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2058 }
2059
createPartialSection(StringRef name,uint32_t outChars)2060 PartialSection *Writer::createPartialSection(StringRef name,
2061 uint32_t outChars) {
2062 PartialSection *&pSec = partialSections[{name, outChars}];
2063 if (pSec)
2064 return pSec;
2065 pSec = make<PartialSection>(name, outChars);
2066 return pSec;
2067 }
2068
findPartialSection(StringRef name,uint32_t outChars)2069 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2070 auto it = partialSections.find({name, outChars});
2071 if (it != partialSections.end())
2072 return it->second;
2073 return nullptr;
2074 }
2075
fixTlsAlignment()2076 void Writer::fixTlsAlignment() {
2077 Defined *tlsSym =
2078 dyn_cast_or_null<Defined>(ctx.symtab.findUnderscore("_tls_used"));
2079 if (!tlsSym)
2080 return;
2081
2082 OutputSection *sec = ctx.getOutputSection(tlsSym->getChunk());
2083 assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2084 "no output section for _tls_used");
2085
2086 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2087 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2088 uint64_t directorySize = config->is64()
2089 ? sizeof(object::coff_tls_directory64)
2090 : sizeof(object::coff_tls_directory32);
2091
2092 if (tlsOffset + directorySize > sec->getRawSize())
2093 fatal("_tls_used sym is malformed");
2094
2095 if (config->is64()) {
2096 object::coff_tls_directory64 *tlsDir =
2097 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2098 tlsDir->setAlignment(tlsAlignment);
2099 } else {
2100 object::coff_tls_directory32 *tlsDir =
2101 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2102 tlsDir->setAlignment(tlsAlignment);
2103 }
2104 }
2105