1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. That is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // On Windows, ICF is enabled by default.
15 //
16 // See ELF/ICF.cpp for the details about the algorithm.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "ICF.h"
21 #include "COFFLinkerContext.h"
22 #include "Chunks.h"
23 #include "Symbols.h"
24 #include "lld/Common/ErrorHandler.h"
25 #include "lld/Common/Timer.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Support/xxhash.h"
31 #include <algorithm>
32 #include <atomic>
33 #include <vector>
34
35 using namespace llvm;
36
37 namespace lld {
38 namespace coff {
39
40 class ICF {
41 public:
ICF(COFFLinkerContext & c,ICFLevel icfLevel)42 ICF(COFFLinkerContext &c, ICFLevel icfLevel) : icfLevel(icfLevel), ctx(c){};
43 void run();
44
45 private:
46 void segregate(size_t begin, size_t end, bool constant);
47
48 bool assocEquals(const SectionChunk *a, const SectionChunk *b);
49
50 bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
51 bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
52
53 bool isEligible(SectionChunk *c);
54
55 size_t findBoundary(size_t begin, size_t end);
56
57 void forEachClassRange(size_t begin, size_t end,
58 std::function<void(size_t, size_t)> fn);
59
60 void forEachClass(std::function<void(size_t, size_t)> fn);
61
62 std::vector<SectionChunk *> chunks;
63 int cnt = 0;
64 std::atomic<bool> repeat = {false};
65 ICFLevel icfLevel = ICFLevel::All;
66
67 COFFLinkerContext &ctx;
68 };
69
70 // Returns true if section S is subject of ICF.
71 //
72 // Microsoft's documentation
73 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
74 // 2017) says that /opt:icf folds both functions and read-only data.
75 // Despite that, the MSVC linker folds only functions. We found
76 // a few instances of programs that are not safe for data merging.
77 // Therefore, we merge only functions just like the MSVC tool. However, we also
78 // merge read-only sections in a couple of cases where the address of the
79 // section is insignificant to the user program and the behaviour matches that
80 // of the Visual C++ linker.
isEligible(SectionChunk * c)81 bool ICF::isEligible(SectionChunk *c) {
82 // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
83 bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
84 if (!c->isCOMDAT() || !c->live || writable)
85 return false;
86
87 // Under regular (not safe) ICF, all code sections are eligible.
88 if ((icfLevel == ICFLevel::All) &&
89 c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
90 return true;
91
92 // .pdata and .xdata unwind info sections are eligible.
93 StringRef outSecName = c->getSectionName().split('$').first;
94 if (outSecName == ".pdata" || outSecName == ".xdata")
95 return true;
96
97 // So are vtables.
98 if (c->sym && c->sym->getName().startswith("??_7"))
99 return true;
100
101 // Anything else not in an address-significance table is eligible.
102 return !c->keepUnique;
103 }
104
105 // Split an equivalence class into smaller classes.
segregate(size_t begin,size_t end,bool constant)106 void ICF::segregate(size_t begin, size_t end, bool constant) {
107 while (begin < end) {
108 // Divide [Begin, End) into two. Let Mid be the start index of the
109 // second group.
110 auto bound = std::stable_partition(
111 chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
112 if (constant)
113 return equalsConstant(chunks[begin], s);
114 return equalsVariable(chunks[begin], s);
115 });
116 size_t mid = bound - chunks.begin();
117
118 // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
119 // equivalence class ID because every group ends with a unique index.
120 for (size_t i = begin; i < mid; ++i)
121 chunks[i]->eqClass[(cnt + 1) % 2] = mid;
122
123 // If we created a group, we need to iterate the main loop again.
124 if (mid != end)
125 repeat = true;
126
127 begin = mid;
128 }
129 }
130
131 // Returns true if two sections' associative children are equal.
assocEquals(const SectionChunk * a,const SectionChunk * b)132 bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
133 // Ignore associated metadata sections that don't participate in ICF, such as
134 // debug info and CFGuard metadata.
135 auto considerForICF = [](const SectionChunk &assoc) {
136 StringRef Name = assoc.getSectionName();
137 return !(Name.startswith(".debug") || Name == ".gfids$y" ||
138 Name == ".giats$y" || Name == ".gljmp$y");
139 };
140 auto ra = make_filter_range(a->children(), considerForICF);
141 auto rb = make_filter_range(b->children(), considerForICF);
142 return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
143 [&](const SectionChunk &ia, const SectionChunk &ib) {
144 return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
145 });
146 }
147
148 // Compare "non-moving" part of two sections, namely everything
149 // except relocation targets.
equalsConstant(const SectionChunk * a,const SectionChunk * b)150 bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
151 if (a->relocsSize != b->relocsSize)
152 return false;
153
154 // Compare relocations.
155 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
156 if (r1.Type != r2.Type ||
157 r1.VirtualAddress != r2.VirtualAddress) {
158 return false;
159 }
160 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
161 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
162 if (b1 == b2)
163 return true;
164 if (auto *d1 = dyn_cast<DefinedRegular>(b1))
165 if (auto *d2 = dyn_cast<DefinedRegular>(b2))
166 return d1->getValue() == d2->getValue() &&
167 d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
168 return false;
169 };
170 if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
171 b->getRelocs().begin(), eq))
172 return false;
173
174 // Compare section attributes and contents.
175 return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
176 a->getSectionName() == b->getSectionName() &&
177 a->header->SizeOfRawData == b->header->SizeOfRawData &&
178 a->checksum == b->checksum && a->getContents() == b->getContents() &&
179 assocEquals(a, b);
180 }
181
182 // Compare "moving" part of two sections, namely relocation targets.
equalsVariable(const SectionChunk * a,const SectionChunk * b)183 bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
184 // Compare relocations.
185 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
186 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
187 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
188 if (b1 == b2)
189 return true;
190 if (auto *d1 = dyn_cast<DefinedRegular>(b1))
191 if (auto *d2 = dyn_cast<DefinedRegular>(b2))
192 return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
193 return false;
194 };
195 return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
196 b->getRelocs().begin(), eq) &&
197 assocEquals(a, b);
198 }
199
200 // Find the first Chunk after Begin that has a different class from Begin.
findBoundary(size_t begin,size_t end)201 size_t ICF::findBoundary(size_t begin, size_t end) {
202 for (size_t i = begin + 1; i < end; ++i)
203 if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
204 return i;
205 return end;
206 }
207
forEachClassRange(size_t begin,size_t end,std::function<void (size_t,size_t)> fn)208 void ICF::forEachClassRange(size_t begin, size_t end,
209 std::function<void(size_t, size_t)> fn) {
210 while (begin < end) {
211 size_t mid = findBoundary(begin, end);
212 fn(begin, mid);
213 begin = mid;
214 }
215 }
216
217 // Call Fn on each class group.
forEachClass(std::function<void (size_t,size_t)> fn)218 void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
219 // If the number of sections are too small to use threading,
220 // call Fn sequentially.
221 if (chunks.size() < 1024) {
222 forEachClassRange(0, chunks.size(), fn);
223 ++cnt;
224 return;
225 }
226
227 // Shard into non-overlapping intervals, and call Fn in parallel.
228 // The sharding must be completed before any calls to Fn are made
229 // so that Fn can modify the Chunks in its shard without causing data
230 // races.
231 const size_t numShards = 256;
232 size_t step = chunks.size() / numShards;
233 size_t boundaries[numShards + 1];
234 boundaries[0] = 0;
235 boundaries[numShards] = chunks.size();
236 parallelFor(1, numShards, [&](size_t i) {
237 boundaries[i] = findBoundary((i - 1) * step, chunks.size());
238 });
239 parallelFor(1, numShards + 1, [&](size_t i) {
240 if (boundaries[i - 1] < boundaries[i]) {
241 forEachClassRange(boundaries[i - 1], boundaries[i], fn);
242 }
243 });
244 ++cnt;
245 }
246
247 // Merge identical COMDAT sections.
248 // Two sections are considered the same if their section headers,
249 // contents and relocations are all the same.
run()250 void ICF::run() {
251 ScopedTimer t(ctx.icfTimer);
252
253 // Collect only mergeable sections and group by hash value.
254 uint32_t nextId = 1;
255 for (Chunk *c : ctx.symtab.getChunks()) {
256 if (auto *sc = dyn_cast<SectionChunk>(c)) {
257 if (isEligible(sc))
258 chunks.push_back(sc);
259 else
260 sc->eqClass[0] = nextId++;
261 }
262 }
263
264 // Make sure that ICF doesn't merge sections that are being handled by string
265 // tail merging.
266 for (MergeChunk *mc : ctx.mergeChunkInstances)
267 if (mc)
268 for (SectionChunk *sc : mc->sections)
269 sc->eqClass[0] = nextId++;
270
271 // Initially, we use hash values to partition sections.
272 parallelForEach(chunks, [&](SectionChunk *sc) {
273 sc->eqClass[0] = xxHash64(sc->getContents());
274 });
275
276 // Combine the hashes of the sections referenced by each section into its
277 // hash.
278 for (unsigned cnt = 0; cnt != 2; ++cnt) {
279 parallelForEach(chunks, [&](SectionChunk *sc) {
280 uint32_t hash = sc->eqClass[cnt % 2];
281 for (Symbol *b : sc->symbols())
282 if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
283 hash += sym->getChunk()->eqClass[cnt % 2];
284 // Set MSB to 1 to avoid collisions with non-hash classes.
285 sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
286 });
287 }
288
289 // From now on, sections in Chunks are ordered so that sections in
290 // the same group are consecutive in the vector.
291 llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
292 return a->eqClass[0] < b->eqClass[0];
293 });
294
295 // Compare static contents and assign unique IDs for each static content.
296 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
297
298 // Split groups by comparing relocations until convergence is obtained.
299 do {
300 repeat = false;
301 forEachClass(
302 [&](size_t begin, size_t end) { segregate(begin, end, false); });
303 } while (repeat);
304
305 log("ICF needed " + Twine(cnt) + " iterations");
306
307 // Merge sections in the same classes.
308 forEachClass([&](size_t begin, size_t end) {
309 if (end - begin == 1)
310 return;
311
312 log("Selected " + chunks[begin]->getDebugName());
313 for (size_t i = begin + 1; i < end; ++i) {
314 log(" Removed " + chunks[i]->getDebugName());
315 chunks[begin]->replace(chunks[i]);
316 }
317 });
318 }
319
320 // Entry point to ICF.
doICF(COFFLinkerContext & ctx,ICFLevel icfLevel)321 void doICF(COFFLinkerContext &ctx, ICFLevel icfLevel) {
322 ICF(ctx, icfLevel).run();
323 }
324
325 } // namespace coff
326 } // namespace lld
327