1 //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
10 #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
11 
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/NormalFloat.h"
14 #include "utils/UnitTest/FPMatcher.h"
15 #include "utils/UnitTest/Test.h"
16 
17 #include <limits.h>
18 #include <math.h>
19 #include <stdint.h>
20 
21 template <typename T>
22 class LdExpTestTemplate : public __llvm_libc::testing::Test {
23   using FPBits = __llvm_libc::fputil::FPBits<T>;
24   using NormalFloat = __llvm_libc::fputil::NormalFloat<T>;
25   using UIntType = typename FPBits::UIntType;
26   static constexpr UIntType MANTISSA_WIDTH =
27       __llvm_libc::fputil::MantissaWidth<T>::VALUE;
28   // A normalized mantissa to be used with tests.
29   static constexpr UIntType MANTISSA = NormalFloat::ONE + 0x1234;
30 
31   const T zero = T(__llvm_libc::fputil::FPBits<T>::zero());
32   const T neg_zero = T(__llvm_libc::fputil::FPBits<T>::neg_zero());
33   const T inf = T(__llvm_libc::fputil::FPBits<T>::inf());
34   const T neg_inf = T(__llvm_libc::fputil::FPBits<T>::neg_inf());
35   const T nan = T(__llvm_libc::fputil::FPBits<T>::build_nan(1));
36 
37 public:
38   typedef T (*LdExpFunc)(T, int);
39 
testSpecialNumbers(LdExpFunc func)40   void testSpecialNumbers(LdExpFunc func) {
41     int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX};
42     for (int exp : exp_array) {
43       ASSERT_FP_EQ(zero, func(zero, exp));
44       ASSERT_FP_EQ(neg_zero, func(neg_zero, exp));
45       ASSERT_FP_EQ(inf, func(inf, exp));
46       ASSERT_FP_EQ(neg_inf, func(neg_inf, exp));
47       ASSERT_FP_EQ(nan, func(nan, exp));
48     }
49   }
50 
testPowersOfTwo(LdExpFunc func)51   void testPowersOfTwo(LdExpFunc func) {
52     int32_t exp_array[5] = {1, 2, 3, 4, 5};
53     int32_t val_array[6] = {1, 2, 4, 8, 16, 32};
54     for (int32_t exp : exp_array) {
55       for (int32_t val : val_array) {
56         ASSERT_FP_EQ(T(val << exp), func(T(val), exp));
57         ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp));
58       }
59     }
60   }
61 
testOverflow(LdExpFunc func)62   void testOverflow(LdExpFunc func) {
63     NormalFloat x(FPBits::MAX_EXPONENT - 10, NormalFloat::ONE + 0xF00BA, 0);
64     for (int32_t exp = 10; exp < 100; ++exp) {
65       ASSERT_FP_EQ(inf, func(T(x), exp));
66       ASSERT_FP_EQ(neg_inf, func(-T(x), exp));
67     }
68   }
69 
testUnderflowToZeroOnNormal(LdExpFunc func)70   void testUnderflowToZeroOnNormal(LdExpFunc func) {
71     // In this test, we pass a normal nubmer to func and expect zero
72     // to be returned due to underflow.
73     int32_t base_exponent = FPBits::EXPONENT_BIAS + MANTISSA_WIDTH;
74     int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
75                            base_exponent + 3, base_exponent + 2,
76                            base_exponent + 1};
77     T x = NormalFloat(0, MANTISSA, 0);
78     for (int32_t exp : exp_array) {
79       ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
80     }
81   }
82 
testUnderflowToZeroOnSubnormal(LdExpFunc func)83   void testUnderflowToZeroOnSubnormal(LdExpFunc func) {
84     // In this test, we pass a normal nubmer to func and expect zero
85     // to be returned due to underflow.
86     int32_t base_exponent = FPBits::EXPONENT_BIAS + MANTISSA_WIDTH;
87     int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
88                            base_exponent + 3, base_exponent + 2,
89                            base_exponent + 1};
90     T x = NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 0);
91     for (int32_t exp : exp_array) {
92       ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
93     }
94   }
95 
testNormalOperation(LdExpFunc func)96   void testNormalOperation(LdExpFunc func) {
97     T val_array[] = {
98         // Normal numbers
99         NormalFloat(100, MANTISSA, 0), NormalFloat(-100, MANTISSA, 0),
100         NormalFloat(100, MANTISSA, 1), NormalFloat(-100, MANTISSA, 1),
101         // Subnormal numbers
102         NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 0),
103         NormalFloat(-FPBits::EXPONENT_BIAS, MANTISSA, 1)};
104     for (int32_t exp = 0; exp <= static_cast<int32_t>(MANTISSA_WIDTH); ++exp) {
105       for (T x : val_array) {
106         // We compare the result of ldexp with the result
107         // of the native multiplication/division instruction.
108         ASSERT_FP_EQ(func(x, exp), x * (UIntType(1) << exp));
109         ASSERT_FP_EQ(func(x, -exp), x / (UIntType(1) << exp));
110       }
111     }
112 
113     // Normal which trigger mantissa overflow.
114     T x = NormalFloat(-FPBits::EXPONENT_BIAS + 1, 2 * NormalFloat::ONE - 1, 0);
115     ASSERT_FP_EQ(func(x, -1), x / 2);
116     ASSERT_FP_EQ(func(-x, -1), -x / 2);
117 
118     // Start with a normal number high exponent but pass a very low number for
119     // exp. The result should be a subnormal number.
120     x = NormalFloat(FPBits::EXPONENT_BIAS, NormalFloat::ONE, 0);
121     int exp = -FPBits::MAX_EXPONENT - 5;
122     T result = func(x, exp);
123     FPBits result_bits(result);
124     ASSERT_FALSE(result_bits.is_zero());
125     // Verify that the result is indeed subnormal.
126     ASSERT_EQ(result_bits.get_unbiased_exponent(), uint16_t(0));
127     // But if the exp is so less that normalization leads to zero, then
128     // the result should be zero.
129     result = func(x, -FPBits::MAX_EXPONENT - int(MANTISSA_WIDTH) - 5);
130     ASSERT_TRUE(FPBits(result).is_zero());
131 
132     // Start with a subnormal number but pass a very high number for exponent.
133     // The result should not be infinity.
134     x = NormalFloat(-FPBits::EXPONENT_BIAS + 1, NormalFloat::ONE >> 10, 0);
135     exp = FPBits::MAX_EXPONENT + 5;
136     ASSERT_FALSE(FPBits(func(x, exp)).is_inf());
137     // But if the exp is large enough to oversome than the normalization shift,
138     // then it should result in infinity.
139     exp = FPBits::MAX_EXPONENT + 15;
140     ASSERT_FP_EQ(func(x, exp), inf);
141   }
142 };
143 
144 #define LIST_LDEXP_TESTS(T, func)                                              \
145   using LlvmLibcLdExpTest = LdExpTestTemplate<T>;                              \
146   TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); }     \
147   TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); }           \
148   TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); }                 \
149   TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) {                         \
150     testUnderflowToZeroOnNormal(&func);                                        \
151   }                                                                            \
152   TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) {                      \
153     testUnderflowToZeroOnSubnormal(&func);                                     \
154   }                                                                            \
155   TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); }
156 
157 #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
158