1bbb75554SSiva Chandra //===-- Single-precision sin function -------------------------------------===// 2bbb75554SSiva Chandra // 3bbb75554SSiva Chandra // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4bbb75554SSiva Chandra // See https://llvm.org/LICENSE.txt for license information. 5bbb75554SSiva Chandra // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6bbb75554SSiva Chandra // 7bbb75554SSiva Chandra //===----------------------------------------------------------------------===// 8bbb75554SSiva Chandra 9bbb75554SSiva Chandra #include "src/math/sinf.h" 10d883a4adSTue Ly #include "src/__support/FPUtil/BasicOperations.h" 11d883a4adSTue Ly #include "src/__support/FPUtil/FEnvImpl.h" 12d883a4adSTue Ly #include "src/__support/FPUtil/FPBits.h" 13d883a4adSTue Ly #include "src/__support/FPUtil/PolyEval.h" 14d883a4adSTue Ly #include "src/__support/FPUtil/except_value_utils.h" 15d883a4adSTue Ly #include "src/__support/FPUtil/multiply_add.h" 16bbb75554SSiva Chandra #include "src/__support/common.h" 17bbb75554SSiva Chandra 18d883a4adSTue Ly #include <errno.h> 19d883a4adSTue Ly 20d883a4adSTue Ly #if defined(LIBC_TARGET_HAS_FMA) 21d883a4adSTue Ly #include "range_reduction_fma.h" 22d883a4adSTue Ly // using namespace __llvm_libc::fma; 23d883a4adSTue Ly using __llvm_libc::fma::FAST_PASS_BOUND; 24d883a4adSTue Ly using __llvm_libc::fma::large_range_reduction; 25d883a4adSTue Ly using __llvm_libc::fma::LargeExcepts; 26d883a4adSTue Ly using __llvm_libc::fma::N_EXCEPT_LARGE; 27d883a4adSTue Ly using __llvm_libc::fma::N_EXCEPT_SMALL; 28d883a4adSTue Ly using __llvm_libc::fma::small_range_reduction; 29d883a4adSTue Ly using __llvm_libc::fma::SmallExcepts; 30d883a4adSTue Ly #else 31d883a4adSTue Ly #include "range_reduction.h" 32d883a4adSTue Ly // using namespace __llvm_libc::generic; 33d883a4adSTue Ly using __llvm_libc::generic::FAST_PASS_BOUND; 34d883a4adSTue Ly using __llvm_libc::generic::large_range_reduction; 35d883a4adSTue Ly using __llvm_libc::generic::LargeExcepts; 36d883a4adSTue Ly using __llvm_libc::generic::N_EXCEPT_LARGE; 37d883a4adSTue Ly using __llvm_libc::generic::N_EXCEPT_SMALL; 38d883a4adSTue Ly using __llvm_libc::generic::small_range_reduction; 39d883a4adSTue Ly using __llvm_libc::generic::SmallExcepts; 40d883a4adSTue Ly #endif 41bbb75554SSiva Chandra 42bbb75554SSiva Chandra namespace __llvm_libc { 43bbb75554SSiva Chandra 44d883a4adSTue Ly LLVM_LIBC_FUNCTION(float, sinf, (float x)) { 45d883a4adSTue Ly using FPBits = typename fputil::FPBits<float>; 46d883a4adSTue Ly FPBits xbits(x); 47bbb75554SSiva Chandra 48d883a4adSTue Ly uint32_t x_u = xbits.uintval(); 49d883a4adSTue Ly uint32_t x_abs = x_u & 0x7fff'ffffU; 50d883a4adSTue Ly double xd, y; 51bbb75554SSiva Chandra 52d883a4adSTue Ly // Range reduction: 53d883a4adSTue Ly // For |x| > pi/16, we perform range reduction as follows: 54d883a4adSTue Ly // Find k and y such that: 55d883a4adSTue Ly // x = (k + y) * pi 56d883a4adSTue Ly // k is an integer 57d883a4adSTue Ly // |y| < 0.5 58d883a4adSTue Ly // For small range (|x| < 2^50 when FMA instructions are available, 2^26 59d883a4adSTue Ly // otherwise), this is done by performing: 60d883a4adSTue Ly // k = round(x * 1/pi) 61d883a4adSTue Ly // y = x * 1/pi - k 62d883a4adSTue Ly // For large range, we will omit all the higher parts of 1/pi such that the 63d883a4adSTue Ly // least significant bits of their full products with x are larger than 1, 64d883a4adSTue Ly // since sin(x + i * 2pi) = sin(x). 65d883a4adSTue Ly // 66d883a4adSTue Ly // When FMA instructions are not available, we store the digits of 1/pi in 67d883a4adSTue Ly // chunks of 28-bit precision. This will make sure that the products: 68d883a4adSTue Ly // x * ONE_OVER_PI_28[i] are all exact. 69d883a4adSTue Ly // When FMA instructions are available, we simply store the digits of 1/pi in 70d883a4adSTue Ly // chunks of doubles (53-bit of precision). 71d883a4adSTue Ly // So when multiplying by the largest values of single precision, the 72d883a4adSTue Ly // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the 73d883a4adSTue Ly // worst-case analysis of range reduction, |y| >= 2^-38, so this should give 74d883a4adSTue Ly // us more than 40 bits of accuracy. For the worst-case estimation of range 75d883a4adSTue Ly // reduction, see for instances: 76d883a4adSTue Ly // Elementary Functions by J-M. Muller, Chapter 11, 77d883a4adSTue Ly // Handbook of Floating-Point Arithmetic by J-M. Muller et. al., 78d883a4adSTue Ly // Chapter 10.2. 79d883a4adSTue Ly // 80d883a4adSTue Ly // Once k and y are computed, we then deduce the answer by the sine of sum 81d883a4adSTue Ly // formula: 82d883a4adSTue Ly // sin(x) = sin((k + y)*pi) 83d883a4adSTue Ly // = sin(y*pi) * cos(k*pi) + cos(y*pi) * sin(k*pi) 84d883a4adSTue Ly // = (-1)^(k & 1) * sin(y*pi) 85d883a4adSTue Ly // ~ (-1)^(k & 1) * y * P(y^2) 86d883a4adSTue Ly // where y*P(y^2) is a degree-15 minimax polynomial generated by Sollya 87d883a4adSTue Ly // with: > Q = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|], 88d883a4adSTue Ly // [|D...|], [0, 0.5]); 89d883a4adSTue Ly 90d883a4adSTue Ly // |x| <= pi/16 91d883a4adSTue Ly if (x_abs <= 0x3e49'0fdbU) { 92d883a4adSTue Ly xd = static_cast<double>(x); 93d883a4adSTue Ly 94d883a4adSTue Ly // |x| < 0x1.d12ed2p-12f 95d883a4adSTue Ly if (x_abs < 0x39e8'9769U) { 96d883a4adSTue Ly if (unlikely(x_abs == 0U)) { 97d883a4adSTue Ly // For signed zeros. 98d883a4adSTue Ly return x; 99d883a4adSTue Ly } 100d883a4adSTue Ly // When |x| < 2^-12, the relative error of the approximation sin(x) ~ x 101d883a4adSTue Ly // is: 102d883a4adSTue Ly // |sin(x) - x| / |sin(x)| < |x^3| / (6|x|) 103d883a4adSTue Ly // = x^2 / 6 104d883a4adSTue Ly // < 2^-25 105d883a4adSTue Ly // < epsilon(1)/2. 106d883a4adSTue Ly // So the correctly rounded values of sin(x) are: 107d883a4adSTue Ly // = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, 108d883a4adSTue Ly // or (rounding mode = FE_UPWARD and x is 109d883a4adSTue Ly // negative), 110d883a4adSTue Ly // = x otherwise. 111d883a4adSTue Ly // To simplify the rounding decision and make it more efficient, we use 112d883a4adSTue Ly // fma(x, -2^-25, x) instead. 113d883a4adSTue Ly // An exhaustive test shows that this formula work correctly for all 114d883a4adSTue Ly // rounding modes up to |x| < 0x1.c555dep-11f. 115d883a4adSTue Ly // Note: to use the formula x - 2^-25*x to decide the correct rounding, we 116d883a4adSTue Ly // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when 117d883a4adSTue Ly // |x| < 2^-125. For targets without FMA instructions, we simply use 118d883a4adSTue Ly // double for intermediate results as it is more efficient than using an 119d883a4adSTue Ly // emulated version of FMA. 120d883a4adSTue Ly #if defined(LIBC_TARGET_HAS_FMA) 121d883a4adSTue Ly return fputil::multiply_add(x, -0x1.0p-25f, x); 122d883a4adSTue Ly #else 123d883a4adSTue Ly return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, xd)); 124d883a4adSTue Ly #endif // LIBC_TARGET_HAS_FMA 125bbb75554SSiva Chandra } 126bbb75554SSiva Chandra 127d883a4adSTue Ly // |x| < pi/16. 128d883a4adSTue Ly double xsq = xd * xd; 129bbb75554SSiva Chandra 130d883a4adSTue Ly // Degree-9 polynomial approximation: 131d883a4adSTue Ly // sin(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 132d883a4adSTue Ly // = x (1 + a_3 x^2 + ... + a_9 x^8) 133d883a4adSTue Ly // = x * P(x^2) 134d883a4adSTue Ly // generated by Sollya with the following commands: 135d883a4adSTue Ly // > display = hexadecimal; 136d883a4adSTue Ly // > Q = fpminimax(sin(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/16]); 137d883a4adSTue Ly double result = 138d883a4adSTue Ly fputil::polyeval(xsq, 1.0, -0x1.55555555554c6p-3, 0x1.1111111085e65p-7, 139d883a4adSTue Ly -0x1.a019f70fb4d4fp-13, 0x1.718d179815e74p-19); 140d883a4adSTue Ly return xd * result; 141bbb75554SSiva Chandra } 142bbb75554SSiva Chandra 143d883a4adSTue Ly bool x_sign = xbits.get_sign(); 144d883a4adSTue Ly 145d883a4adSTue Ly int64_t k; 146d883a4adSTue Ly xd = static_cast<double>(x); 147d883a4adSTue Ly 148d883a4adSTue Ly if (x_abs < FAST_PASS_BOUND) { 149d883a4adSTue Ly using ExceptChecker = 150d883a4adSTue Ly typename fputil::ExceptionChecker<float, N_EXCEPT_SMALL>; 151d883a4adSTue Ly { 152d883a4adSTue Ly float result; 153d883a4adSTue Ly if (ExceptChecker::check_odd_func(SmallExcepts, x_abs, x_sign, result)) { 154d883a4adSTue Ly return result; 155d883a4adSTue Ly } 156d883a4adSTue Ly } 157d883a4adSTue Ly 158d883a4adSTue Ly k = small_range_reduction(xd, y); 159d883a4adSTue Ly } else { 160d883a4adSTue Ly // x is inf or nan. 161d883a4adSTue Ly if (unlikely(x_abs >= 0x7f80'0000U)) { 162*83193a5eSTue Ly if (x_abs == 0x7f80'0000U) { 163d883a4adSTue Ly errno = EDOM; 164*83193a5eSTue Ly fputil::set_except(FE_INVALID); 165*83193a5eSTue Ly } 166d883a4adSTue Ly return x + 167d883a4adSTue Ly FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1)); 168d883a4adSTue Ly } 169d883a4adSTue Ly 170d883a4adSTue Ly using ExceptChecker = 171d883a4adSTue Ly typename fputil::ExceptionChecker<float, N_EXCEPT_LARGE>; 172d883a4adSTue Ly { 173d883a4adSTue Ly float result; 174d883a4adSTue Ly if (ExceptChecker::check_odd_func(LargeExcepts, x_abs, x_sign, result)) 175d883a4adSTue Ly return result; 176d883a4adSTue Ly } 177d883a4adSTue Ly 178d883a4adSTue Ly k = large_range_reduction(xd, xbits.get_exponent(), y); 179d883a4adSTue Ly } 180d883a4adSTue Ly 181d883a4adSTue Ly // After range reduction, k = round(x / pi) and y = (x/pi) - k. 182d883a4adSTue Ly // So k is an integer and -0.5 <= y <= 0.5. 183d883a4adSTue Ly // Then sin(x) = sin(y*pi + k*pi) 184d883a4adSTue Ly // = (-1)^(k & 1) * sin(y*pi) 185d883a4adSTue Ly // ~ (-1)^(k & 1) * y * P(y^2) 186d883a4adSTue Ly // where y*P(y^2) is a degree-15 minimax polynomial generated by Sollya 187d883a4adSTue Ly // with: > P = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|], 188d883a4adSTue Ly // [|D...|], [0, 0.5]); 189d883a4adSTue Ly 190d883a4adSTue Ly constexpr double SIGN[2] = {1.0, -1.0}; 191d883a4adSTue Ly 192d883a4adSTue Ly double ysq = y * y; 193d883a4adSTue Ly double result = 194d883a4adSTue Ly y * fputil::polyeval(ysq, 0x1.921fb54442d17p1, -0x1.4abbce625bd4bp2, 195d883a4adSTue Ly 0x1.466bc67750a3fp1, -0x1.32d2cce1612b5p-1, 196d883a4adSTue Ly 0x1.507832417bce6p-4, -0x1.e3062119b6071p-8, 197d883a4adSTue Ly 0x1.e89c7aa14122dp-12, -0x1.625b1709dece6p-16); 198d883a4adSTue Ly 199d883a4adSTue Ly return SIGN[k & 1] * result; 200d883a4adSTue Ly // } 201bbb75554SSiva Chandra } 202bbb75554SSiva Chandra 203bbb75554SSiva Chandra } // namespace __llvm_libc 204