1 //===-- Single-precision sin function -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "src/math/sinf.h" 10 #include "src/__support/FPUtil/BasicOperations.h" 11 #include "src/__support/FPUtil/FEnvImpl.h" 12 #include "src/__support/FPUtil/FPBits.h" 13 #include "src/__support/FPUtil/PolyEval.h" 14 #include "src/__support/FPUtil/except_value_utils.h" 15 #include "src/__support/FPUtil/multiply_add.h" 16 #include "src/__support/common.h" 17 18 #include <errno.h> 19 20 #if defined(LIBC_TARGET_HAS_FMA) 21 #include "range_reduction_fma.h" 22 // using namespace __llvm_libc::fma; 23 using __llvm_libc::fma::FAST_PASS_BOUND; 24 using __llvm_libc::fma::large_range_reduction; 25 using __llvm_libc::fma::LargeExcepts; 26 using __llvm_libc::fma::N_EXCEPT_LARGE; 27 using __llvm_libc::fma::N_EXCEPT_SMALL; 28 using __llvm_libc::fma::small_range_reduction; 29 using __llvm_libc::fma::SmallExcepts; 30 #else 31 #include "range_reduction.h" 32 // using namespace __llvm_libc::generic; 33 using __llvm_libc::generic::FAST_PASS_BOUND; 34 using __llvm_libc::generic::large_range_reduction; 35 using __llvm_libc::generic::LargeExcepts; 36 using __llvm_libc::generic::N_EXCEPT_LARGE; 37 using __llvm_libc::generic::N_EXCEPT_SMALL; 38 using __llvm_libc::generic::small_range_reduction; 39 using __llvm_libc::generic::SmallExcepts; 40 #endif 41 42 namespace __llvm_libc { 43 44 LLVM_LIBC_FUNCTION(float, sinf, (float x)) { 45 using FPBits = typename fputil::FPBits<float>; 46 FPBits xbits(x); 47 48 uint32_t x_u = xbits.uintval(); 49 uint32_t x_abs = x_u & 0x7fff'ffffU; 50 double xd, y; 51 52 // Range reduction: 53 // For |x| > pi/16, we perform range reduction as follows: 54 // Find k and y such that: 55 // x = (k + y) * pi 56 // k is an integer 57 // |y| < 0.5 58 // For small range (|x| < 2^50 when FMA instructions are available, 2^26 59 // otherwise), this is done by performing: 60 // k = round(x * 1/pi) 61 // y = x * 1/pi - k 62 // For large range, we will omit all the higher parts of 1/pi such that the 63 // least significant bits of their full products with x are larger than 1, 64 // since sin(x + i * 2pi) = sin(x). 65 // 66 // When FMA instructions are not available, we store the digits of 1/pi in 67 // chunks of 28-bit precision. This will make sure that the products: 68 // x * ONE_OVER_PI_28[i] are all exact. 69 // When FMA instructions are available, we simply store the digits of 1/pi in 70 // chunks of doubles (53-bit of precision). 71 // So when multiplying by the largest values of single precision, the 72 // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the 73 // worst-case analysis of range reduction, |y| >= 2^-38, so this should give 74 // us more than 40 bits of accuracy. For the worst-case estimation of range 75 // reduction, see for instances: 76 // Elementary Functions by J-M. Muller, Chapter 11, 77 // Handbook of Floating-Point Arithmetic by J-M. Muller et. al., 78 // Chapter 10.2. 79 // 80 // Once k and y are computed, we then deduce the answer by the sine of sum 81 // formula: 82 // sin(x) = sin((k + y)*pi) 83 // = sin(y*pi) * cos(k*pi) + cos(y*pi) * sin(k*pi) 84 // = (-1)^(k & 1) * sin(y*pi) 85 // ~ (-1)^(k & 1) * y * P(y^2) 86 // where y*P(y^2) is a degree-15 minimax polynomial generated by Sollya 87 // with: > Q = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|], 88 // [|D...|], [0, 0.5]); 89 90 // |x| <= pi/16 91 if (x_abs <= 0x3e49'0fdbU) { 92 xd = static_cast<double>(x); 93 94 // |x| < 0x1.d12ed2p-12f 95 if (x_abs < 0x39e8'9769U) { 96 if (unlikely(x_abs == 0U)) { 97 // For signed zeros. 98 return x; 99 } 100 // When |x| < 2^-12, the relative error of the approximation sin(x) ~ x 101 // is: 102 // |sin(x) - x| / |sin(x)| < |x^3| / (6|x|) 103 // = x^2 / 6 104 // < 2^-25 105 // < epsilon(1)/2. 106 // So the correctly rounded values of sin(x) are: 107 // = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, 108 // or (rounding mode = FE_UPWARD and x is 109 // negative), 110 // = x otherwise. 111 // To simplify the rounding decision and make it more efficient, we use 112 // fma(x, -2^-25, x) instead. 113 // An exhaustive test shows that this formula work correctly for all 114 // rounding modes up to |x| < 0x1.c555dep-11f. 115 // Note: to use the formula x - 2^-25*x to decide the correct rounding, we 116 // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when 117 // |x| < 2^-125. For targets without FMA instructions, we simply use 118 // double for intermediate results as it is more efficient than using an 119 // emulated version of FMA. 120 #if defined(LIBC_TARGET_HAS_FMA) 121 return fputil::multiply_add(x, -0x1.0p-25f, x); 122 #else 123 return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, xd)); 124 #endif // LIBC_TARGET_HAS_FMA 125 } 126 127 // |x| < pi/16. 128 double xsq = xd * xd; 129 130 // Degree-9 polynomial approximation: 131 // sin(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 132 // = x (1 + a_3 x^2 + ... + a_9 x^8) 133 // = x * P(x^2) 134 // generated by Sollya with the following commands: 135 // > display = hexadecimal; 136 // > Q = fpminimax(sin(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/16]); 137 double result = 138 fputil::polyeval(xsq, 1.0, -0x1.55555555554c6p-3, 0x1.1111111085e65p-7, 139 -0x1.a019f70fb4d4fp-13, 0x1.718d179815e74p-19); 140 return xd * result; 141 } 142 143 bool x_sign = xbits.get_sign(); 144 145 int64_t k; 146 xd = static_cast<double>(x); 147 148 if (x_abs < FAST_PASS_BOUND) { 149 using ExceptChecker = 150 typename fputil::ExceptionChecker<float, N_EXCEPT_SMALL>; 151 { 152 float result; 153 if (ExceptChecker::check_odd_func(SmallExcepts, x_abs, x_sign, result)) { 154 return result; 155 } 156 } 157 158 k = small_range_reduction(xd, y); 159 } else { 160 // x is inf or nan. 161 if (unlikely(x_abs >= 0x7f80'0000U)) { 162 if (x_abs == 0x7f80'0000U) { 163 errno = EDOM; 164 fputil::set_except(FE_INVALID); 165 } 166 return x + 167 FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1)); 168 } 169 170 using ExceptChecker = 171 typename fputil::ExceptionChecker<float, N_EXCEPT_LARGE>; 172 { 173 float result; 174 if (ExceptChecker::check_odd_func(LargeExcepts, x_abs, x_sign, result)) 175 return result; 176 } 177 178 k = large_range_reduction(xd, xbits.get_exponent(), y); 179 } 180 181 // After range reduction, k = round(x / pi) and y = (x/pi) - k. 182 // So k is an integer and -0.5 <= y <= 0.5. 183 // Then sin(x) = sin(y*pi + k*pi) 184 // = (-1)^(k & 1) * sin(y*pi) 185 // ~ (-1)^(k & 1) * y * P(y^2) 186 // where y*P(y^2) is a degree-15 minimax polynomial generated by Sollya 187 // with: > P = fpminimax(sin(x*pi)/x, [|0, 2, 4, 6, 8, 10, 12, 14|], 188 // [|D...|], [0, 0.5]); 189 190 constexpr double SIGN[2] = {1.0, -1.0}; 191 192 double ysq = y * y; 193 double result = 194 y * fputil::polyeval(ysq, 0x1.921fb54442d17p1, -0x1.4abbce625bd4bp2, 195 0x1.466bc67750a3fp1, -0x1.32d2cce1612b5p-1, 196 0x1.507832417bce6p-4, -0x1.e3062119b6071p-8, 197 0x1.e89c7aa14122dp-12, -0x1.625b1709dece6p-16); 198 199 return SIGN[k & 1] * result; 200 // } 201 } 202 203 } // namespace __llvm_libc 204