164af346bSTue Ly //===-- Single-precision e^x - 1 function ---------------------------------===// 24e5f8b4dSTue Ly // 34e5f8b4dSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 44e5f8b4dSTue Ly // See https://llvm.org/LICENSE.txt for license information. 54e5f8b4dSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 64e5f8b4dSTue Ly // 74e5f8b4dSTue Ly //===----------------------------------------------------------------------===// 84e5f8b4dSTue Ly 94e5f8b4dSTue Ly #include "src/math/expm1f.h" 1064af346bSTue Ly #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. 11c120edc7SMichael Jones #include "src/__support/FPUtil/BasicOperations.h" 1264af346bSTue Ly #include "src/__support/FPUtil/FEnvImpl.h" 1364af346bSTue Ly #include "src/__support/FPUtil/FMA.h" 1464af346bSTue Ly #include "src/__support/FPUtil/FPBits.h" 15c120edc7SMichael Jones #include "src/__support/FPUtil/PolyEval.h" 16*628fbbefSTue Ly #include "src/__support/FPUtil/multiply_add.h" 17*628fbbefSTue Ly #include "src/__support/FPUtil/nearest_integer.h" 184e5f8b4dSTue Ly #include "src/__support/common.h" 1964af346bSTue Ly 2064af346bSTue Ly #include <errno.h> 214e5f8b4dSTue Ly 224e5f8b4dSTue Ly namespace __llvm_libc { 234e5f8b4dSTue Ly 244e5f8b4dSTue Ly LLVM_LIBC_FUNCTION(float, expm1f, (float x)) { 2564af346bSTue Ly using FPBits = typename fputil::FPBits<float>; 2664af346bSTue Ly FPBits xbits(x); 274e5f8b4dSTue Ly 28a5466f04STue Ly uint32_t x_u = xbits.uintval(); 29a5466f04STue Ly uint32_t x_abs = x_u & 0x7fff'ffffU; 30a5466f04STue Ly 31a5466f04STue Ly // Exceptional value 32a5466f04STue Ly if (unlikely(x_u == 0x3e35'bec5U)) { // x = 0x1.6b7d8ap-3f 33a5466f04STue Ly int round_mode = fputil::get_round(); 34a5466f04STue Ly if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD) 35a5466f04STue Ly return 0x1.8dbe64p-3f; 36a5466f04STue Ly return 0x1.8dbe62p-3f; 37a5466f04STue Ly } 38a5466f04STue Ly 39484319f4STue Ly #if !defined(LIBC_TARGET_HAS_FMA) 40484319f4STue Ly if (unlikely(x_u == 0xbdc1'c6cbU)) { // x = -0x1.838d96p-4f 41484319f4STue Ly int round_mode = fputil::get_round(); 42484319f4STue Ly if (round_mode == FE_TONEAREST || round_mode == FE_DOWNWARD) 43484319f4STue Ly return -0x1.71c884p-4f; 44484319f4STue Ly return -0x1.71c882p-4f; 45484319f4STue Ly } 46484319f4STue Ly #endif // LIBC_TARGET_HAS_FMA 47484319f4STue Ly 48a5466f04STue Ly // When |x| > 25*log(2), or nan 49a5466f04STue Ly if (unlikely(x_abs >= 0x418a'a123U)) { 50a5466f04STue Ly // x < log(2^-25) 51a5466f04STue Ly if (xbits.get_sign()) { 5264af346bSTue Ly // exp(-Inf) = 0 5364af346bSTue Ly if (xbits.is_inf()) 5464af346bSTue Ly return -1.0f; 5564af346bSTue Ly // exp(nan) = nan 5664af346bSTue Ly if (xbits.is_nan()) 5764af346bSTue Ly return x; 5864af346bSTue Ly int round_mode = fputil::get_round(); 5964af346bSTue Ly if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO) 6064af346bSTue Ly return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f 6164af346bSTue Ly return -1.0f; 62a5466f04STue Ly } else { 6364af346bSTue Ly // x >= 89 or nan 64a5466f04STue Ly if (xbits.uintval() >= 0x42b2'0000) { 6564af346bSTue Ly if (xbits.uintval() < 0x7f80'0000U) { 6664af346bSTue Ly int rounding = fputil::get_round(); 6764af346bSTue Ly if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) 6864af346bSTue Ly return static_cast<float>(FPBits(FPBits::MAX_NORMAL)); 6964af346bSTue Ly 7064af346bSTue Ly errno = ERANGE; 714e5f8b4dSTue Ly } 7264af346bSTue Ly return x + static_cast<float>(FPBits::inf()); 734e5f8b4dSTue Ly } 74a5466f04STue Ly } 75a5466f04STue Ly } 7664af346bSTue Ly 7764af346bSTue Ly // |x| < 2^-4 78a5466f04STue Ly if (x_abs < 0x3d80'0000U) { 7964af346bSTue Ly // |x| < 2^-25 80a5466f04STue Ly if (x_abs < 0x3300'0000U) { 8164af346bSTue Ly // x = -0.0f 8264af346bSTue Ly if (unlikely(xbits.uintval() == 0x8000'0000U)) 8364af346bSTue Ly return x; 84a5466f04STue Ly // When |x| < 2^-25, the relative error of the approximation e^x - 1 ~ x 85a5466f04STue Ly // is: 86a5466f04STue Ly // |(e^x - 1) - x| / |e^x - 1| < |x^2| / |x| 87a5466f04STue Ly // = |x| 88a5466f04STue Ly // < 2^-25 89a5466f04STue Ly // < epsilon(1)/2. 9064af346bSTue Ly // So the correctly rounded values of expm1(x) are: 9164af346bSTue Ly // = x + eps(x) if rounding mode = FE_UPWARD, 92484319f4STue Ly // or (rounding mode = FE_TOWARDZERO and x is 93484319f4STue Ly // negative), 9464af346bSTue Ly // = x otherwise. 9564af346bSTue Ly // To simplify the rounding decision and make it more efficient, we use 9664af346bSTue Ly // fma(x, x, x) ~ x + x^2 instead. 97484319f4STue Ly // Note: to use the formula x + x^2 to decide the correct rounding, we 98484319f4STue Ly // do need fma(x, x, x) to prevent underflow caused by x*x when |x| < 99484319f4STue Ly // 2^-76. For targets without FMA instructions, we simply use double for 100484319f4STue Ly // intermediate results as it is more efficient than using an emulated 101484319f4STue Ly // version of FMA. 102484319f4STue Ly #if defined(LIBC_TARGET_HAS_FMA) 103484319f4STue Ly return fputil::fma(x, x, x); 104484319f4STue Ly #else 105484319f4STue Ly double xd = x; 106484319f4STue Ly return static_cast<float>(fputil::multiply_add(xd, xd, xd)); 107484319f4STue Ly #endif // LIBC_TARGET_HAS_FMA 10864af346bSTue Ly } 109a5466f04STue Ly 11064af346bSTue Ly // 2^-25 <= |x| < 2^-4 11164af346bSTue Ly double xd = static_cast<double>(x); 11264af346bSTue Ly double xsq = xd * xd; 11364af346bSTue Ly // Degree-8 minimax polynomial generated by Sollya with: 11464af346bSTue Ly // > display = hexadecimal; 115a5466f04STue Ly // > P = fpminimax((expm1(x) - x)/x^2, 6, [|D...|], [-2^-4, 2^-4]); 11664af346bSTue Ly double r = 117a5466f04STue Ly fputil::polyeval(xd, 0x1p-1, 0x1.55555555557ddp-3, 0x1.55555555552fap-5, 118a5466f04STue Ly 0x1.111110fcd58b7p-7, 0x1.6c16c1717660bp-10, 119a5466f04STue Ly 0x1.a0241f0006d62p-13, 0x1.a01e3f8d3c06p-16); 120c5f8a0a1STue Ly return static_cast<float>(fputil::multiply_add(r, xsq, xd)); 12164af346bSTue Ly } 12264af346bSTue Ly 123a5466f04STue Ly // For -18 < x < 89, to compute expm1(x), we perform the following range 12464af346bSTue Ly // reduction: find hi, mid, lo such that: 12564af346bSTue Ly // x = hi + mid + lo, in which 12664af346bSTue Ly // hi is an integer, 12764af346bSTue Ly // mid * 2^7 is an integer 12864af346bSTue Ly // -2^(-8) <= lo < 2^-8. 12964af346bSTue Ly // In particular, 13064af346bSTue Ly // hi + mid = round(x * 2^7) * 2^(-7). 13164af346bSTue Ly // Then, 132a5466f04STue Ly // expm1(x) = exp(hi + mid + lo) - 1 = exp(hi) * exp(mid) * exp(lo) - 1. 13364af346bSTue Ly // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2 134a5466f04STue Ly // respectively. exp(lo) is computed using a degree-4 minimax polynomial 13564af346bSTue Ly // generated by Sollya. 13664af346bSTue Ly 13764af346bSTue Ly // x_hi = hi + mid. 138*628fbbefSTue Ly float kf = fputil::nearest_integer(x * 0x1.0p7f); 139*628fbbefSTue Ly int x_hi = static_cast<int>(kf); 14064af346bSTue Ly // Subtract (hi + mid) from x to get lo. 141*628fbbefSTue Ly double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x)); 14264af346bSTue Ly x_hi += 104 << 7; 14364af346bSTue Ly // hi = x_hi >> 7 14464af346bSTue Ly double exp_hi = EXP_M1[x_hi >> 7]; 14564af346bSTue Ly // lo = x_hi & 0x0000'007fU; 14664af346bSTue Ly double exp_mid = EXP_M2[x_hi & 0x7f]; 14764af346bSTue Ly double exp_hi_mid = exp_hi * exp_mid; 148a5466f04STue Ly // Degree-4 minimax polynomial generated by Sollya with the following 14964af346bSTue Ly // commands: 15064af346bSTue Ly // > display = hexadecimal; 151a5466f04STue Ly // > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]); 15264af346bSTue Ly // > Q; 153a5466f04STue Ly double exp_lo = 154a5466f04STue Ly fputil::polyeval(xd, 0x1.0p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1, 155a5466f04STue Ly 0x1.555566668e5e7p-3, 0x1.55555555ef243p-5); 156c5f8a0a1STue Ly return static_cast<float>(fputil::multiply_add(exp_hi_mid, exp_lo, -1.0)); 1574e5f8b4dSTue Ly } 1584e5f8b4dSTue Ly 1594e5f8b4dSTue Ly } // namespace __llvm_libc 160