1 //===-- Single-precision e^x - 1 function ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/expm1f.h"
10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FMA.h"
14 #include "src/__support/FPUtil/FPBits.h"
15 #include "src/__support/FPUtil/PolyEval.h"
16 #include "src/__support/FPUtil/multiply_add.h"
17 #include "src/__support/FPUtil/nearest_integer.h"
18 #include "src/__support/common.h"
19 
20 #include <errno.h>
21 
22 namespace __llvm_libc {
23 
24 LLVM_LIBC_FUNCTION(float, expm1f, (float x)) {
25   using FPBits = typename fputil::FPBits<float>;
26   FPBits xbits(x);
27 
28   uint32_t x_u = xbits.uintval();
29   uint32_t x_abs = x_u & 0x7fff'ffffU;
30 
31   // Exceptional value
32   if (unlikely(x_u == 0x3e35'bec5U)) { // x = 0x1.6b7d8ap-3f
33     int round_mode = fputil::get_round();
34     if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD)
35       return 0x1.8dbe64p-3f;
36     return 0x1.8dbe62p-3f;
37   }
38 
39 #if !defined(LIBC_TARGET_HAS_FMA)
40   if (unlikely(x_u == 0xbdc1'c6cbU)) { // x = -0x1.838d96p-4f
41     int round_mode = fputil::get_round();
42     if (round_mode == FE_TONEAREST || round_mode == FE_DOWNWARD)
43       return -0x1.71c884p-4f;
44     return -0x1.71c882p-4f;
45   }
46 #endif // LIBC_TARGET_HAS_FMA
47 
48   // When |x| > 25*log(2), or nan
49   if (unlikely(x_abs >= 0x418a'a123U)) {
50     // x < log(2^-25)
51     if (xbits.get_sign()) {
52       // exp(-Inf) = 0
53       if (xbits.is_inf())
54         return -1.0f;
55       // exp(nan) = nan
56       if (xbits.is_nan())
57         return x;
58       int round_mode = fputil::get_round();
59       if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO)
60         return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f
61       return -1.0f;
62     } else {
63       // x >= 89 or nan
64       if (xbits.uintval() >= 0x42b2'0000) {
65         if (xbits.uintval() < 0x7f80'0000U) {
66           int rounding = fputil::get_round();
67           if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
68             return static_cast<float>(FPBits(FPBits::MAX_NORMAL));
69 
70           errno = ERANGE;
71         }
72         return x + static_cast<float>(FPBits::inf());
73       }
74     }
75   }
76 
77   // |x| < 2^-4
78   if (x_abs < 0x3d80'0000U) {
79     // |x| < 2^-25
80     if (x_abs < 0x3300'0000U) {
81       // x = -0.0f
82       if (unlikely(xbits.uintval() == 0x8000'0000U))
83         return x;
84         // When |x| < 2^-25, the relative error of the approximation e^x - 1 ~ x
85         // is:
86         //   |(e^x - 1) - x| / |e^x - 1| < |x^2| / |x|
87         //                               = |x|
88         //                               < 2^-25
89         //                               < epsilon(1)/2.
90         // So the correctly rounded values of expm1(x) are:
91         //   = x + eps(x) if rounding mode = FE_UPWARD,
92         //                   or (rounding mode = FE_TOWARDZERO and x is
93         //                   negative),
94         //   = x otherwise.
95         // To simplify the rounding decision and make it more efficient, we use
96         //   fma(x, x, x) ~ x + x^2 instead.
97         // Note: to use the formula x + x^2 to decide the correct rounding, we
98         // do need fma(x, x, x) to prevent underflow caused by x*x when |x| <
99         // 2^-76. For targets without FMA instructions, we simply use double for
100         // intermediate results as it is more efficient than using an emulated
101         // version of FMA.
102 #if defined(LIBC_TARGET_HAS_FMA)
103       return fputil::fma(x, x, x);
104 #else
105       double xd = x;
106       return static_cast<float>(fputil::multiply_add(xd, xd, xd));
107 #endif // LIBC_TARGET_HAS_FMA
108     }
109 
110     // 2^-25 <= |x| < 2^-4
111     double xd = static_cast<double>(x);
112     double xsq = xd * xd;
113     // Degree-8 minimax polynomial generated by Sollya with:
114     // > display = hexadecimal;
115     // > P = fpminimax((expm1(x) - x)/x^2, 6, [|D...|], [-2^-4, 2^-4]);
116     double r =
117         fputil::polyeval(xd, 0x1p-1, 0x1.55555555557ddp-3, 0x1.55555555552fap-5,
118                          0x1.111110fcd58b7p-7, 0x1.6c16c1717660bp-10,
119                          0x1.a0241f0006d62p-13, 0x1.a01e3f8d3c06p-16);
120     return static_cast<float>(fputil::multiply_add(r, xsq, xd));
121   }
122 
123   // For -18 < x < 89, to compute expm1(x), we perform the following range
124   // reduction: find hi, mid, lo such that:
125   //   x = hi + mid + lo, in which
126   //     hi is an integer,
127   //     mid * 2^7 is an integer
128   //     -2^(-8) <= lo < 2^-8.
129   // In particular,
130   //   hi + mid = round(x * 2^7) * 2^(-7).
131   // Then,
132   //   expm1(x) = exp(hi + mid + lo) - 1 = exp(hi) * exp(mid) * exp(lo) - 1.
133   // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2
134   // respectively.  exp(lo) is computed using a degree-4 minimax polynomial
135   // generated by Sollya.
136 
137   // x_hi = hi + mid.
138   float kf = fputil::nearest_integer(x * 0x1.0p7f);
139   int x_hi = static_cast<int>(kf);
140   // Subtract (hi + mid) from x to get lo.
141   double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x));
142   x_hi += 104 << 7;
143   // hi = x_hi >> 7
144   double exp_hi = EXP_M1[x_hi >> 7];
145   // lo = x_hi & 0x0000'007fU;
146   double exp_mid = EXP_M2[x_hi & 0x7f];
147   double exp_hi_mid = exp_hi * exp_mid;
148   // Degree-4 minimax polynomial generated by Sollya with the following
149   // commands:
150   //   > display = hexadecimal;
151   //   > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]);
152   //   > Q;
153   double exp_lo =
154       fputil::polyeval(xd, 0x1.0p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1,
155                        0x1.555566668e5e7p-3, 0x1.55555555ef243p-5);
156   return static_cast<float>(fputil::multiply_add(exp_hi_mid, exp_lo, -1.0));
157 }
158 
159 } // namespace __llvm_libc
160