1 //===-- runtime/time-intrinsic.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Implements time-related intrinsic subroutines.
10 
11 #include "flang/Runtime/time-intrinsic.h"
12 #include "terminator.h"
13 #include "tools.h"
14 #include "flang/Runtime/cpp-type.h"
15 #include "flang/Runtime/descriptor.h"
16 #include <algorithm>
17 #include <cstdint>
18 #include <cstdio>
19 #include <cstdlib>
20 #include <cstring>
21 #include <ctime>
22 #ifndef _WIN32
23 #include <sys/time.h> // gettimeofday
24 #endif
25 
26 // CPU_TIME (Fortran 2018 16.9.57)
27 // SYSTEM_CLOCK (Fortran 2018 16.9.168)
28 //
29 // We can use std::clock() from the <ctime> header as a fallback implementation
30 // that should be available everywhere. This may not provide the best resolution
31 // and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
32 // is defined as 10^6 regardless of the actual precision of std::clock().
33 // Therefore, we will usually prefer platform-specific alternatives when they
34 // are available.
35 //
36 // We can use SFINAE to choose a platform-specific alternative. To do so, we
37 // introduce a helper function template, whose overload set will contain only
38 // implementations relying on interfaces which are actually available. Each
39 // overload will have a dummy parameter whose type indicates whether or not it
40 // should be preferred. Any other parameters required for SFINAE should have
41 // default values provided.
42 namespace {
43 // Types for the dummy parameter indicating the priority of a given overload.
44 // We will invoke our helper with an integer literal argument, so the overload
45 // with the highest priority should have the type int.
46 using fallback_implementation = double;
47 using preferred_implementation = int;
48 
49 // This is the fallback implementation, which should work everywhere.
GetCpuTime(fallback_implementation)50 template <typename Unused = void> double GetCpuTime(fallback_implementation) {
51   std::clock_t timestamp{std::clock()};
52   if (timestamp != static_cast<std::clock_t>(-1)) {
53     return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
54   }
55   // Return some negative value to represent failure.
56   return -1.0;
57 }
58 
59 #if defined CLOCK_PROCESS_CPUTIME_ID
60 #define CLOCKID CLOCK_PROCESS_CPUTIME_ID
61 #elif defined CLOCK_THREAD_CPUTIME_ID
62 #define CLOCKID CLOCK_THREAD_CPUTIME_ID
63 #elif defined CLOCK_MONOTONIC
64 #define CLOCKID CLOCK_MONOTONIC
65 #elif defined CLOCK_REALTIME
66 #define CLOCKID CLOCK_REALTIME
67 #else
68 #undef CLOCKID
69 #endif
70 
71 #ifdef CLOCKID
72 // POSIX implementation using clock_gettime. This is only enabled where
73 // clock_gettime is available.
74 template <typename T = int, typename U = struct timespec>
GetCpuTime(preferred_implementation,T ClockId=0,U * Timespec=nullptr,decltype(clock_gettime (ClockId,Timespec)) * Enabled=nullptr)75 double GetCpuTime(preferred_implementation,
76     // We need some dummy parameters to pass to decltype(clock_gettime).
77     T ClockId = 0, U *Timespec = nullptr,
78     decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
79   struct timespec tspec;
80   if (clock_gettime(CLOCKID, &tspec) == 0) {
81     return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
82   }
83   // Return some negative value to represent failure.
84   return -1.0;
85 }
86 #endif
87 
88 using count_t = std::int64_t;
89 using unsigned_count_t = std::uint64_t;
90 
91 // Computes HUGE(INT(0,kind)) as an unsigned integer value.
GetHUGE(int kind)92 static constexpr inline unsigned_count_t GetHUGE(int kind) {
93   if (kind > 8) {
94     kind = 8;
95   }
96   return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
97 }
98 
99 // This is the fallback implementation, which should work everywhere. Note that
100 // in general we can't recover after std::clock has reached its maximum value.
101 template <typename Unused = void>
GetSystemClockCount(int kind,fallback_implementation)102 count_t GetSystemClockCount(int kind, fallback_implementation) {
103   std::clock_t timestamp{std::clock()};
104   if (timestamp == static_cast<std::clock_t>(-1)) {
105     // Return -HUGE(COUNT) to represent failure.
106     return -static_cast<count_t>(GetHUGE(kind));
107   }
108   // Convert the timestamp to std::uint64_t with wrap-around. The timestamp is
109   // most likely a floating-point value (since C'11), so compute the modulus
110   // carefully when one is required.
111   constexpr auto maxUnsignedCount{std::numeric_limits<unsigned_count_t>::max()};
112   if constexpr (std::numeric_limits<std::clock_t>::max() > maxUnsignedCount) {
113     timestamp -= maxUnsignedCount * std::floor(timestamp / maxUnsignedCount);
114   }
115   unsigned_count_t unsignedCount{static_cast<unsigned_count_t>(timestamp)};
116   // Return the modulus of the unsigned integral count with HUGE(COUNT)+1.
117   // The result is a signed integer but never negative.
118   return static_cast<count_t>(unsignedCount % (GetHUGE(kind) + 1));
119 }
120 
121 template <typename Unused = void>
GetSystemClockCountRate(int kind,fallback_implementation)122 count_t GetSystemClockCountRate(int kind, fallback_implementation) {
123   return CLOCKS_PER_SEC;
124 }
125 
126 template <typename Unused = void>
GetSystemClockCountMax(int kind,fallback_implementation)127 count_t GetSystemClockCountMax(int kind, fallback_implementation) {
128   constexpr auto max_clock_t{std::numeric_limits<std::clock_t>::max()};
129   unsigned_count_t maxCount{GetHUGE(kind)};
130   return max_clock_t <= maxCount ? static_cast<count_t>(max_clock_t)
131                                  : static_cast<count_t>(maxCount);
132 }
133 
134 // POSIX implementation using clock_gettime where available.  The clock_gettime
135 // result is in nanoseconds, which is converted as necessary to
136 //  - deciseconds for kind 1
137 //  - milliseconds for kinds 2, 4
138 //  - nanoseconds for kinds 8, 16
139 constexpr unsigned_count_t DS_PER_SEC{10u};
140 constexpr unsigned_count_t MS_PER_SEC{1'000u};
141 constexpr unsigned_count_t NS_PER_SEC{1'000'000'000u};
142 
143 #ifdef CLOCKID
144 template <typename T = int, typename U = struct timespec>
GetSystemClockCount(int kind,preferred_implementation,T ClockId=0,U * Timespec=nullptr,decltype(clock_gettime (ClockId,Timespec)) * Enabled=nullptr)145 count_t GetSystemClockCount(int kind, preferred_implementation,
146     // We need some dummy parameters to pass to decltype(clock_gettime).
147     T ClockId = 0, U *Timespec = nullptr,
148     decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
149   struct timespec tspec;
150   const unsigned_count_t huge{GetHUGE(kind)};
151   if (clock_gettime(CLOCKID, &tspec) != 0) {
152     return -huge; // failure
153   }
154   unsigned_count_t sec{static_cast<unsigned_count_t>(tspec.tv_sec)};
155   unsigned_count_t nsec{static_cast<unsigned_count_t>(tspec.tv_nsec)};
156   if (kind >= 8) {
157     return (sec * NS_PER_SEC + nsec) % (huge + 1);
158   } else if (kind >= 2) {
159     return (sec * MS_PER_SEC + (nsec / (NS_PER_SEC / MS_PER_SEC))) % (huge + 1);
160   } else { // kind == 1
161     return (sec * DS_PER_SEC + (nsec / (NS_PER_SEC / DS_PER_SEC))) % (huge + 1);
162   }
163 }
164 #endif
165 
166 template <typename T = int, typename U = struct timespec>
GetSystemClockCountRate(int kind,preferred_implementation,T ClockId=0,U * Timespec=nullptr,decltype(clock_gettime (ClockId,Timespec)) * Enabled=nullptr)167 count_t GetSystemClockCountRate(int kind, preferred_implementation,
168     // We need some dummy parameters to pass to decltype(clock_gettime).
169     T ClockId = 0, U *Timespec = nullptr,
170     decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
171   return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
172 }
173 
174 template <typename T = int, typename U = struct timespec>
GetSystemClockCountMax(int kind,preferred_implementation,T ClockId=0,U * Timespec=nullptr,decltype(clock_gettime (ClockId,Timespec)) * Enabled=nullptr)175 count_t GetSystemClockCountMax(int kind, preferred_implementation,
176     // We need some dummy parameters to pass to decltype(clock_gettime).
177     T ClockId = 0, U *Timespec = nullptr,
178     decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
179   return GetHUGE(kind);
180 }
181 
182 // DATE_AND_TIME (Fortran 2018 16.9.59)
183 
184 // Helper to set an integer value to -HUGE
185 template <int KIND> struct StoreNegativeHugeAt {
operator ()__anon51d16fc90111::StoreNegativeHugeAt186   void operator()(
187       const Fortran::runtime::Descriptor &result, std::size_t at) const {
188     *result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
189         Fortran::common::TypeCategory::Integer, KIND>>(at) =
190         -std::numeric_limits<Fortran::runtime::CppTypeFor<
191             Fortran::common::TypeCategory::Integer, KIND>>::max();
192   }
193 };
194 
195 // Default implementation when date and time information is not available (set
196 // strings to blanks and values to -HUGE as defined by the standard).
DateAndTimeUnavailable(Fortran::runtime::Terminator & terminator,char * date,std::size_t dateChars,char * time,std::size_t timeChars,char * zone,std::size_t zoneChars,const Fortran::runtime::Descriptor * values)197 static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
198     char *date, std::size_t dateChars, char *time, std::size_t timeChars,
199     char *zone, std::size_t zoneChars,
200     const Fortran::runtime::Descriptor *values) {
201   if (date) {
202     std::memset(date, static_cast<int>(' '), dateChars);
203   }
204   if (time) {
205     std::memset(time, static_cast<int>(' '), timeChars);
206   }
207   if (zone) {
208     std::memset(zone, static_cast<int>(' '), zoneChars);
209   }
210   if (values) {
211     auto typeCode{values->type().GetCategoryAndKind()};
212     RUNTIME_CHECK(terminator,
213         values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
214             typeCode &&
215             typeCode->first == Fortran::common::TypeCategory::Integer);
216     // DATE_AND_TIME values argument must have decimal range > 4. Do not accept
217     // KIND 1 here.
218     int kind{typeCode->second};
219     RUNTIME_CHECK(terminator, kind != 1);
220     for (std::size_t i = 0; i < 8; ++i) {
221       Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
222           kind, terminator, *values, i);
223     }
224   }
225 }
226 
227 #ifndef _WIN32
228 
229 // SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
230 // field.
231 template <int KIND, typename TM = struct tm>
232 Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
233 GetGmtOffset(const TM &tm, preferred_implementation,
234     decltype(tm.tm_gmtoff) *Enabled = nullptr) {
235   // Returns the GMT offset in minutes.
236   return tm.tm_gmtoff / 60;
237 }
238 template <int KIND, typename TM = struct tm>
239 Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
GetGmtOffset(const TM & tm,fallback_implementation)240 GetGmtOffset(const TM &tm, fallback_implementation) {
241   // tm.tm_gmtoff is not available, there may be platform dependent alternatives
242   // (such as using timezone from <time.h> when available), but so far just
243   // return -HUGE to report that this information is not available.
244   return -std::numeric_limits<Fortran::runtime::CppTypeFor<
245       Fortran::common::TypeCategory::Integer, KIND>>::max();
246 }
247 template <typename TM = struct tm> struct GmtOffsetHelper {
248   template <int KIND> struct StoreGmtOffset {
operator ()__anon51d16fc90111::GmtOffsetHelper::StoreGmtOffset249     void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
250         TM &tm) const {
251       *result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
252           Fortran::common::TypeCategory::Integer, KIND>>(at) =
253           GetGmtOffset<KIND>(tm, 0);
254     }
255   };
256 };
257 
258 // Dispatch to posix implementation where gettimeofday and localtime_r are
259 // available.
GetDateAndTime(Fortran::runtime::Terminator & terminator,char * date,std::size_t dateChars,char * time,std::size_t timeChars,char * zone,std::size_t zoneChars,const Fortran::runtime::Descriptor * values)260 static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
261     std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
262     std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
263 
264   timeval t;
265   if (gettimeofday(&t, nullptr) != 0) {
266     DateAndTimeUnavailable(
267         terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
268     return;
269   }
270   time_t timer{t.tv_sec};
271   tm localTime;
272   localtime_r(&timer, &localTime);
273   std::intmax_t ms{t.tv_usec / 1000};
274 
275   static constexpr std::size_t buffSize{16};
276   char buffer[buffSize];
277   auto copyBufferAndPad{
278       [&](char *dest, std::size_t destChars, std::size_t len) {
279         auto copyLen{std::min(len, destChars)};
280         std::memcpy(dest, buffer, copyLen);
281         for (auto i{copyLen}; i < destChars; ++i) {
282           dest[i] = ' ';
283         }
284       }};
285   if (date) {
286     auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
287     copyBufferAndPad(date, dateChars, len);
288   }
289   if (time) {
290     auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
291         localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
292     copyBufferAndPad(time, timeChars, len);
293   }
294   if (zone) {
295     // Note: this may leave the buffer empty on many platforms. Classic flang
296     // has a much more complex way of doing this (see __io_timezone in classic
297     // flang).
298     auto len{std::strftime(buffer, buffSize, "%z", &localTime)};
299     copyBufferAndPad(zone, zoneChars, len);
300   }
301   if (values) {
302     auto typeCode{values->type().GetCategoryAndKind()};
303     RUNTIME_CHECK(terminator,
304         values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
305             typeCode &&
306             typeCode->first == Fortran::common::TypeCategory::Integer);
307     // DATE_AND_TIME values argument must have decimal range > 4. Do not accept
308     // KIND 1 here.
309     int kind{typeCode->second};
310     RUNTIME_CHECK(terminator, kind != 1);
311     auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
312       Fortran::runtime::ApplyIntegerKind<Fortran::runtime::StoreIntegerAt,
313           void>(kind, terminator, *values, atIndex, value);
314     };
315     storeIntegerAt(0, localTime.tm_year + 1900);
316     storeIntegerAt(1, localTime.tm_mon + 1);
317     storeIntegerAt(2, localTime.tm_mday);
318     Fortran::runtime::ApplyIntegerKind<
319         GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
320         kind, terminator, *values, 3, localTime);
321     storeIntegerAt(4, localTime.tm_hour);
322     storeIntegerAt(5, localTime.tm_min);
323     storeIntegerAt(6, localTime.tm_sec);
324     storeIntegerAt(7, ms);
325   }
326 }
327 
328 #else
329 // Fallback implementation where gettimeofday or localtime_r are not both
330 // available (e.g. windows).
GetDateAndTime(Fortran::runtime::Terminator & terminator,char * date,std::size_t dateChars,char * time,std::size_t timeChars,char * zone,std::size_t zoneChars,const Fortran::runtime::Descriptor * values)331 static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
332     std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
333     std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
334   // TODO: An actual implementation for non Posix system should be added.
335   // So far, implement as if the date and time is not available on those
336   // platforms.
337   DateAndTimeUnavailable(
338       terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
339 }
340 #endif
341 } // namespace
342 
343 namespace Fortran::runtime {
344 extern "C" {
345 
RTNAME(CpuTime)346 double RTNAME(CpuTime)() { return GetCpuTime(0); }
347 
RTNAME(SystemClockCount)348 std::int64_t RTNAME(SystemClockCount)(int kind) {
349   return GetSystemClockCount(kind, 0);
350 }
351 
RTNAME(SystemClockCountRate)352 std::int64_t RTNAME(SystemClockCountRate)(int kind) {
353   return GetSystemClockCountRate(kind, 0);
354 }
355 
RTNAME(SystemClockCountMax)356 std::int64_t RTNAME(SystemClockCountMax)(int kind) {
357   return GetSystemClockCountMax(kind, 0);
358 }
359 
RTNAME(DateAndTime)360 void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
361     std::size_t timeChars, char *zone, std::size_t zoneChars,
362     const char *source, int line, const Descriptor *values) {
363   Fortran::runtime::Terminator terminator{source, line};
364   return GetDateAndTime(
365       terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
366 }
367 
368 } // extern "C"
369 } // namespace Fortran::runtime
370