1 //===-- lib/Evaluate/real.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "flang/Evaluate/real.h"
10 #include "int-power.h"
11 #include "flang/Common/idioms.h"
12 #include "flang/Decimal/decimal.h"
13 #include "flang/Parser/characters.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include <limits>
16
17 namespace Fortran::evaluate::value {
18
Compare(const Real & y) const19 template <typename W, int P> Relation Real<W, P>::Compare(const Real &y) const {
20 if (IsNotANumber() || y.IsNotANumber()) { // NaN vs x, x vs NaN
21 return Relation::Unordered;
22 } else if (IsInfinite()) {
23 if (y.IsInfinite()) {
24 if (IsNegative()) { // -Inf vs +/-Inf
25 return y.IsNegative() ? Relation::Equal : Relation::Less;
26 } else { // +Inf vs +/-Inf
27 return y.IsNegative() ? Relation::Greater : Relation::Equal;
28 }
29 } else { // +/-Inf vs finite
30 return IsNegative() ? Relation::Less : Relation::Greater;
31 }
32 } else if (y.IsInfinite()) { // finite vs +/-Inf
33 return y.IsNegative() ? Relation::Greater : Relation::Less;
34 } else { // two finite numbers
35 bool isNegative{IsNegative()};
36 if (isNegative != y.IsNegative()) {
37 if (word_.IOR(y.word_).IBCLR(bits - 1).IsZero()) {
38 return Relation::Equal; // +/-0.0 == -/+0.0
39 } else {
40 return isNegative ? Relation::Less : Relation::Greater;
41 }
42 } else {
43 // same sign
44 Ordering order{evaluate::Compare(Exponent(), y.Exponent())};
45 if (order == Ordering::Equal) {
46 order = GetSignificand().CompareUnsigned(y.GetSignificand());
47 }
48 if (isNegative) {
49 order = Reverse(order);
50 }
51 return RelationFromOrdering(order);
52 }
53 }
54 }
55
56 template <typename W, int P>
Add(const Real & y,Rounding rounding) const57 ValueWithRealFlags<Real<W, P>> Real<W, P>::Add(
58 const Real &y, Rounding rounding) const {
59 ValueWithRealFlags<Real> result;
60 if (IsNotANumber() || y.IsNotANumber()) {
61 result.value = NotANumber(); // NaN + x -> NaN
62 if (IsSignalingNaN() || y.IsSignalingNaN()) {
63 result.flags.set(RealFlag::InvalidArgument);
64 }
65 return result;
66 }
67 bool isNegative{IsNegative()};
68 bool yIsNegative{y.IsNegative()};
69 if (IsInfinite()) {
70 if (y.IsInfinite()) {
71 if (isNegative == yIsNegative) {
72 result.value = *this; // +/-Inf + +/-Inf -> +/-Inf
73 } else {
74 result.value = NotANumber(); // +/-Inf + -/+Inf -> NaN
75 result.flags.set(RealFlag::InvalidArgument);
76 }
77 } else {
78 result.value = *this; // +/-Inf + x -> +/-Inf
79 }
80 return result;
81 }
82 if (y.IsInfinite()) {
83 result.value = y; // x + +/-Inf -> +/-Inf
84 return result;
85 }
86 int exponent{Exponent()};
87 int yExponent{y.Exponent()};
88 if (exponent < yExponent) {
89 // y is larger in magnitude; simplify by reversing operands
90 return y.Add(*this, rounding);
91 }
92 if (exponent == yExponent && isNegative != yIsNegative) {
93 Ordering order{GetSignificand().CompareUnsigned(y.GetSignificand())};
94 if (order == Ordering::Less) {
95 // Same exponent, opposite signs, and y is larger in magnitude
96 return y.Add(*this, rounding);
97 }
98 if (order == Ordering::Equal) {
99 // x + (-x) -> +0.0 unless rounding is directed downwards
100 if (rounding.mode == common::RoundingMode::Down) {
101 result.value = NegativeZero();
102 }
103 return result;
104 }
105 }
106 // Our exponent is greater than y's, or the exponents match and y is not
107 // of the opposite sign and greater magnitude. So (x+y) will have the
108 // same sign as x.
109 Fraction fraction{GetFraction()};
110 Fraction yFraction{y.GetFraction()};
111 int rshift = exponent - yExponent;
112 if (exponent > 0 && yExponent == 0) {
113 --rshift; // correct overshift when only y is subnormal
114 }
115 RoundingBits roundingBits{yFraction, rshift};
116 yFraction = yFraction.SHIFTR(rshift);
117 bool carry{false};
118 if (isNegative != yIsNegative) {
119 // Opposite signs: subtract via addition of two's complement of y and
120 // the rounding bits.
121 yFraction = yFraction.NOT();
122 carry = roundingBits.Negate();
123 }
124 auto sum{fraction.AddUnsigned(yFraction, carry)};
125 fraction = sum.value;
126 if (isNegative == yIsNegative && sum.carry) {
127 roundingBits.ShiftRight(sum.value.BTEST(0));
128 fraction = fraction.SHIFTR(1).IBSET(fraction.bits - 1);
129 ++exponent;
130 }
131 NormalizeAndRound(
132 result, isNegative, exponent, fraction, rounding, roundingBits);
133 return result;
134 }
135
136 template <typename W, int P>
Multiply(const Real & y,Rounding rounding) const137 ValueWithRealFlags<Real<W, P>> Real<W, P>::Multiply(
138 const Real &y, Rounding rounding) const {
139 ValueWithRealFlags<Real> result;
140 if (IsNotANumber() || y.IsNotANumber()) {
141 result.value = NotANumber(); // NaN * x -> NaN
142 if (IsSignalingNaN() || y.IsSignalingNaN()) {
143 result.flags.set(RealFlag::InvalidArgument);
144 }
145 } else {
146 bool isNegative{IsNegative() != y.IsNegative()};
147 if (IsInfinite() || y.IsInfinite()) {
148 if (IsZero() || y.IsZero()) {
149 result.value = NotANumber(); // 0 * Inf -> NaN
150 result.flags.set(RealFlag::InvalidArgument);
151 } else {
152 result.value = Infinity(isNegative);
153 }
154 } else {
155 auto product{GetFraction().MultiplyUnsigned(y.GetFraction())};
156 std::int64_t exponent{CombineExponents(y, false)};
157 if (exponent < 1) {
158 int rshift = 1 - exponent;
159 exponent = 1;
160 bool sticky{false};
161 if (rshift >= product.upper.bits + product.lower.bits) {
162 sticky = !product.lower.IsZero() || !product.upper.IsZero();
163 } else if (rshift >= product.lower.bits) {
164 sticky = !product.lower.IsZero() ||
165 !product.upper
166 .IAND(product.upper.MASKR(rshift - product.lower.bits))
167 .IsZero();
168 } else {
169 sticky = !product.lower.IAND(product.lower.MASKR(rshift)).IsZero();
170 }
171 product.lower = product.lower.SHIFTRWithFill(product.upper, rshift);
172 product.upper = product.upper.SHIFTR(rshift);
173 if (sticky) {
174 product.lower = product.lower.IBSET(0);
175 }
176 }
177 int leadz{product.upper.LEADZ()};
178 if (leadz >= product.upper.bits) {
179 leadz += product.lower.LEADZ();
180 }
181 int lshift{leadz};
182 if (lshift > exponent - 1) {
183 lshift = exponent - 1;
184 }
185 exponent -= lshift;
186 product.upper = product.upper.SHIFTLWithFill(product.lower, lshift);
187 product.lower = product.lower.SHIFTL(lshift);
188 RoundingBits roundingBits{product.lower, product.lower.bits};
189 NormalizeAndRound(result, isNegative, exponent, product.upper, rounding,
190 roundingBits, true /*multiply*/);
191 }
192 }
193 return result;
194 }
195
196 template <typename W, int P>
Divide(const Real & y,Rounding rounding) const197 ValueWithRealFlags<Real<W, P>> Real<W, P>::Divide(
198 const Real &y, Rounding rounding) const {
199 ValueWithRealFlags<Real> result;
200 if (IsNotANumber() || y.IsNotANumber()) {
201 result.value = NotANumber(); // NaN / x -> NaN, x / NaN -> NaN
202 if (IsSignalingNaN() || y.IsSignalingNaN()) {
203 result.flags.set(RealFlag::InvalidArgument);
204 }
205 } else {
206 bool isNegative{IsNegative() != y.IsNegative()};
207 if (IsInfinite()) {
208 if (y.IsInfinite()) {
209 result.value = NotANumber(); // Inf/Inf -> NaN
210 result.flags.set(RealFlag::InvalidArgument);
211 } else { // Inf/x -> Inf, Inf/0 -> Inf
212 result.value = Infinity(isNegative);
213 }
214 } else if (y.IsZero()) {
215 if (IsZero()) { // 0/0 -> NaN
216 result.value = NotANumber();
217 result.flags.set(RealFlag::InvalidArgument);
218 } else { // x/0 -> Inf, Inf/0 -> Inf
219 result.value = Infinity(isNegative);
220 result.flags.set(RealFlag::DivideByZero);
221 }
222 } else if (IsZero() || y.IsInfinite()) { // 0/x, x/Inf -> 0
223 if (isNegative) {
224 result.value = NegativeZero();
225 }
226 } else {
227 // dividend and divisor are both finite and nonzero numbers
228 Fraction top{GetFraction()}, divisor{y.GetFraction()};
229 std::int64_t exponent{CombineExponents(y, true)};
230 Fraction quotient;
231 bool msb{false};
232 if (!top.BTEST(top.bits - 1) || !divisor.BTEST(divisor.bits - 1)) {
233 // One or two subnormals
234 int topLshift{top.LEADZ()};
235 top = top.SHIFTL(topLshift);
236 int divisorLshift{divisor.LEADZ()};
237 divisor = divisor.SHIFTL(divisorLshift);
238 exponent += divisorLshift - topLshift;
239 }
240 for (int j{1}; j <= quotient.bits; ++j) {
241 if (NextQuotientBit(top, msb, divisor)) {
242 quotient = quotient.IBSET(quotient.bits - j);
243 }
244 }
245 bool guard{NextQuotientBit(top, msb, divisor)};
246 bool round{NextQuotientBit(top, msb, divisor)};
247 bool sticky{msb || !top.IsZero()};
248 RoundingBits roundingBits{guard, round, sticky};
249 if (exponent < 1) {
250 std::int64_t rshift{1 - exponent};
251 for (; rshift > 0; --rshift) {
252 roundingBits.ShiftRight(quotient.BTEST(0));
253 quotient = quotient.SHIFTR(1);
254 }
255 exponent = 1;
256 }
257 NormalizeAndRound(
258 result, isNegative, exponent, quotient, rounding, roundingBits);
259 }
260 }
261 return result;
262 }
263
264 template <typename W, int P>
SQRT(Rounding rounding) const265 ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const {
266 ValueWithRealFlags<Real> result;
267 if (IsNotANumber()) {
268 result.value = NotANumber();
269 if (IsSignalingNaN()) {
270 result.flags.set(RealFlag::InvalidArgument);
271 }
272 } else if (IsNegative()) {
273 if (IsZero()) {
274 // SQRT(-0) == -0 in IEEE-754.
275 result.value = NegativeZero();
276 } else {
277 result.flags.set(RealFlag::InvalidArgument);
278 result.value = NotANumber();
279 }
280 } else if (IsInfinite()) {
281 // SQRT(+Inf) == +Inf
282 result.value = Infinity(false);
283 } else if (IsZero()) {
284 result.value = PositiveZero();
285 } else {
286 int expo{UnbiasedExponent()};
287 if (expo < -1 || expo > 1) {
288 // Reduce the range to [0.5 .. 4.0) by dividing by an integral power
289 // of four to avoid trouble with very large and very small values
290 // (esp. truncation of subnormals).
291 // SQRT(2**(2a) * x) = SQRT(2**(2a)) * SQRT(x) = 2**a * SQRT(x)
292 Real scaled;
293 int adjust{expo / 2};
294 scaled.Normalize(false, expo - 2 * adjust + exponentBias, GetFraction());
295 result = scaled.SQRT(rounding);
296 result.value.Normalize(false,
297 result.value.UnbiasedExponent() + adjust + exponentBias,
298 result.value.GetFraction());
299 return result;
300 }
301 // (-1) <= expo <= 1; use it as a shift to set the desired square.
302 using Extended = typename value::Integer<(binaryPrecision + 2)>;
303 Extended goal{
304 Extended::ConvertUnsigned(GetFraction()).value.SHIFTL(expo + 1)};
305 // Calculate the exact square root by maximizing a value whose square
306 // does not exceed the goal. Use two extra bits of precision for
307 // rounding.
308 bool sticky{true};
309 Extended extFrac{};
310 for (int bit{Extended::bits - 1}; bit >= 0; --bit) {
311 Extended next{extFrac.IBSET(bit)};
312 auto squared{next.MultiplyUnsigned(next)};
313 auto cmp{squared.upper.CompareUnsigned(goal)};
314 if (cmp == Ordering::Less) {
315 extFrac = next;
316 } else if (cmp == Ordering::Equal && squared.lower.IsZero()) {
317 extFrac = next;
318 sticky = false;
319 break; // exact result
320 }
321 }
322 RoundingBits roundingBits{extFrac.BTEST(1), extFrac.BTEST(0), sticky};
323 NormalizeAndRound(result, false, exponentBias,
324 Fraction::ConvertUnsigned(extFrac.SHIFTR(2)).value, rounding,
325 roundingBits);
326 }
327 return result;
328 }
329
330 template <typename W, int P>
NEAREST(bool upward) const331 ValueWithRealFlags<Real<W, P>> Real<W, P>::NEAREST(bool upward) const {
332 ValueWithRealFlags<Real> result;
333 if (IsFinite()) {
334 Fraction fraction{GetFraction()};
335 int expo{Exponent()};
336 Fraction one{1};
337 Fraction nearest;
338 bool isNegative{IsNegative()};
339 if (upward != isNegative) { // upward in magnitude
340 auto next{fraction.AddUnsigned(one)};
341 if (next.carry) {
342 ++expo;
343 nearest = Fraction::Least(); // MSB only
344 } else {
345 nearest = next.value;
346 }
347 } else { // downward in magnitude
348 if (IsZero()) {
349 nearest = 1; // smallest magnitude negative subnormal
350 isNegative = !isNegative;
351 } else {
352 auto sub1{fraction.SubtractSigned(one)};
353 if (sub1.overflow) {
354 nearest = Fraction{0}.NOT();
355 --expo;
356 } else {
357 nearest = sub1.value;
358 }
359 }
360 }
361 result.flags = result.value.Normalize(isNegative, expo, nearest);
362 } else {
363 result.flags.set(RealFlag::InvalidArgument);
364 result.value = *this;
365 }
366 return result;
367 }
368
369 // HYPOT(x,y) = SQRT(x**2 + y**2) by definition, but those squared intermediate
370 // values are susceptible to over/underflow when computed naively.
371 // Assuming that x>=y, calculate instead:
372 // HYPOT(x,y) = SQRT(x**2 * (1+(y/x)**2))
373 // = ABS(x) * SQRT(1+(y/x)**2)
374 template <typename W, int P>
HYPOT(const Real & y,Rounding rounding) const375 ValueWithRealFlags<Real<W, P>> Real<W, P>::HYPOT(
376 const Real &y, Rounding rounding) const {
377 ValueWithRealFlags<Real> result;
378 if (IsNotANumber() || y.IsNotANumber()) {
379 result.flags.set(RealFlag::InvalidArgument);
380 result.value = NotANumber();
381 } else if (ABS().Compare(y.ABS()) == Relation::Less) {
382 return y.HYPOT(*this);
383 } else if (IsZero()) {
384 return result; // x==y==0
385 } else {
386 auto yOverX{y.Divide(*this, rounding)}; // y/x
387 bool inexact{yOverX.flags.test(RealFlag::Inexact)};
388 auto squared{yOverX.value.Multiply(yOverX.value, rounding)}; // (y/x)**2
389 inexact |= squared.flags.test(RealFlag::Inexact);
390 Real one;
391 one.Normalize(false, exponentBias, Fraction::MASKL(1)); // 1.0
392 auto sum{squared.value.Add(one, rounding)}; // 1.0 + (y/x)**2
393 inexact |= sum.flags.test(RealFlag::Inexact);
394 auto sqrt{sum.value.SQRT()};
395 inexact |= sqrt.flags.test(RealFlag::Inexact);
396 result = sqrt.value.Multiply(ABS(), rounding);
397 if (inexact) {
398 result.flags.set(RealFlag::Inexact);
399 }
400 }
401 return result;
402 }
403
404 // MOD(x,y) = x - AINT(x/y)*y
405 template <typename W, int P>
MOD(const Real & y,Rounding rounding) const406 ValueWithRealFlags<Real<W, P>> Real<W, P>::MOD(
407 const Real &y, Rounding rounding) const {
408 ValueWithRealFlags<Real> result;
409 auto quotient{Divide(y, rounding)};
410 if (quotient.value.IsInfinite() && IsFinite() && y.IsFinite() &&
411 !y.IsZero()) {
412 // x/y overflowed -- so it must be an integer in this representation and
413 // the result must be a zero.
414 if (IsNegative()) {
415 result.value = Real{}.Negate(); // -0.
416 }
417 } else {
418 Real toInt{quotient.AccumulateFlags(result.flags)
419 .ToWholeNumber(common::RoundingMode::ToZero)
420 .AccumulateFlags(result.flags)};
421 Real product{toInt.Multiply(y, rounding).AccumulateFlags(result.flags)};
422 result.value = Subtract(product, rounding).AccumulateFlags(result.flags);
423 }
424 return result;
425 }
426
427 // MODULO(x,y) = x - FLOOR(x/y)*y
428 template <typename W, int P>
MODULO(const Real & y,Rounding rounding) const429 ValueWithRealFlags<Real<W, P>> Real<W, P>::MODULO(
430 const Real &y, Rounding rounding) const {
431 ValueWithRealFlags<Real> result;
432 auto quotient{Divide(y, rounding)};
433 if (quotient.value.IsInfinite() && IsFinite() && y.IsFinite() &&
434 !y.IsZero()) {
435 // x/y overflowed -- so it must be an integer in this representation and
436 // the result must be a zero.
437 if (y.IsNegative()) {
438 result.value = Real{}.Negate(); // -0.
439 }
440 } else {
441 Real toInt{quotient.AccumulateFlags(result.flags)
442 .ToWholeNumber(common::RoundingMode::Down)
443 .AccumulateFlags(result.flags)};
444 Real product{toInt.Multiply(y, rounding).AccumulateFlags(result.flags)};
445 result.value = Subtract(product, rounding).AccumulateFlags(result.flags);
446 }
447 return result;
448 }
449
450 template <typename W, int P>
DIM(const Real & y,Rounding rounding) const451 ValueWithRealFlags<Real<W, P>> Real<W, P>::DIM(
452 const Real &y, Rounding rounding) const {
453 ValueWithRealFlags<Real> result;
454 if (IsNotANumber() || y.IsNotANumber()) {
455 result.flags.set(RealFlag::InvalidArgument);
456 result.value = NotANumber();
457 } else if (Compare(y) == Relation::Greater) {
458 result = Subtract(y, rounding);
459 } else {
460 // result is already zero
461 }
462 return result;
463 }
464
465 template <typename W, int P>
ToWholeNumber(common::RoundingMode mode) const466 ValueWithRealFlags<Real<W, P>> Real<W, P>::ToWholeNumber(
467 common::RoundingMode mode) const {
468 ValueWithRealFlags<Real> result{*this};
469 if (IsNotANumber()) {
470 result.flags.set(RealFlag::InvalidArgument);
471 result.value = NotANumber();
472 } else if (IsInfinite()) {
473 result.flags.set(RealFlag::Overflow);
474 } else {
475 constexpr int noClipExponent{exponentBias + binaryPrecision - 1};
476 if (Exponent() < noClipExponent) {
477 Real adjust; // ABS(EPSILON(adjust)) == 0.5
478 adjust.Normalize(IsSignBitSet(), noClipExponent, Fraction::MASKL(1));
479 // Compute ival=(*this + adjust), losing any fractional bits; keep flags
480 result = Add(adjust, Rounding{mode});
481 result.flags.reset(RealFlag::Inexact); // result *is* exact
482 // Return (ival-adjust) with original sign in case we've generated a zero.
483 result.value =
484 result.value.Subtract(adjust, Rounding{common::RoundingMode::ToZero})
485 .value.SIGN(*this);
486 }
487 }
488 return result;
489 }
490
491 template <typename W, int P>
Normalize(bool negative,int exponent,const Fraction & fraction,Rounding rounding,RoundingBits * roundingBits)492 RealFlags Real<W, P>::Normalize(bool negative, int exponent,
493 const Fraction &fraction, Rounding rounding, RoundingBits *roundingBits) {
494 int lshift{fraction.LEADZ()};
495 if (lshift == fraction.bits /* fraction is zero */ &&
496 (!roundingBits || roundingBits->empty())) {
497 // No fraction, no rounding bits -> +/-0.0
498 exponent = lshift = 0;
499 } else if (lshift < exponent) {
500 exponent -= lshift;
501 } else if (exponent > 0) {
502 lshift = exponent - 1;
503 exponent = 0;
504 } else if (lshift == 0) {
505 exponent = 1;
506 } else {
507 lshift = 0;
508 }
509 if (exponent >= maxExponent) {
510 // Infinity or overflow
511 if (rounding.mode == common::RoundingMode::TiesToEven ||
512 rounding.mode == common::RoundingMode::TiesAwayFromZero ||
513 (rounding.mode == common::RoundingMode::Up && !negative) ||
514 (rounding.mode == common::RoundingMode::Down && negative)) {
515 word_ = Word{maxExponent}.SHIFTL(significandBits); // Inf
516 } else {
517 // directed rounding: round to largest finite value rather than infinity
518 // (x86 does this, not sure whether it's standard behavior)
519 word_ = Word{word_.MASKR(word_.bits - 1)}.IBCLR(significandBits);
520 }
521 if (negative) {
522 word_ = word_.IBSET(bits - 1);
523 }
524 RealFlags flags{RealFlag::Overflow};
525 if (!fraction.IsZero()) {
526 flags.set(RealFlag::Inexact);
527 }
528 return flags;
529 }
530 word_ = Word::ConvertUnsigned(fraction).value;
531 if (lshift > 0) {
532 word_ = word_.SHIFTL(lshift);
533 if (roundingBits) {
534 for (; lshift > 0; --lshift) {
535 if (roundingBits->ShiftLeft()) {
536 word_ = word_.IBSET(lshift - 1);
537 }
538 }
539 }
540 }
541 if constexpr (isImplicitMSB) {
542 word_ = word_.IBCLR(significandBits);
543 }
544 word_ = word_.IOR(Word{exponent}.SHIFTL(significandBits));
545 if (negative) {
546 word_ = word_.IBSET(bits - 1);
547 }
548 return {};
549 }
550
551 template <typename W, int P>
Round(Rounding rounding,const RoundingBits & bits,bool multiply)552 RealFlags Real<W, P>::Round(
553 Rounding rounding, const RoundingBits &bits, bool multiply) {
554 int origExponent{Exponent()};
555 RealFlags flags;
556 bool inexact{!bits.empty()};
557 if (inexact) {
558 flags.set(RealFlag::Inexact);
559 }
560 if (origExponent < maxExponent &&
561 bits.MustRound(rounding, IsNegative(), word_.BTEST(0) /* is odd */)) {
562 typename Fraction::ValueWithCarry sum{
563 GetFraction().AddUnsigned(Fraction{}, true)};
564 int newExponent{origExponent};
565 if (sum.carry) {
566 // The fraction was all ones before rounding; sum.value is now zero
567 sum.value = sum.value.IBSET(binaryPrecision - 1);
568 if (++newExponent >= maxExponent) {
569 flags.set(RealFlag::Overflow); // rounded away to an infinity
570 }
571 }
572 flags |= Normalize(IsNegative(), newExponent, sum.value);
573 }
574 if (inexact && origExponent == 0) {
575 // inexact subnormal input: signal Underflow unless in an x86-specific
576 // edge case
577 if (rounding.x86CompatibleBehavior && Exponent() != 0 && multiply &&
578 bits.sticky() &&
579 (bits.guard() ||
580 (rounding.mode != common::RoundingMode::Up &&
581 rounding.mode != common::RoundingMode::Down))) {
582 // x86 edge case in which Underflow fails to signal when a subnormal
583 // inexact multiplication product rounds to a normal result when
584 // the guard bit is set or we're not using directed rounding
585 } else {
586 flags.set(RealFlag::Underflow);
587 }
588 }
589 return flags;
590 }
591
592 template <typename W, int P>
NormalizeAndRound(ValueWithRealFlags<Real> & result,bool isNegative,int exponent,const Fraction & fraction,Rounding rounding,RoundingBits roundingBits,bool multiply)593 void Real<W, P>::NormalizeAndRound(ValueWithRealFlags<Real> &result,
594 bool isNegative, int exponent, const Fraction &fraction, Rounding rounding,
595 RoundingBits roundingBits, bool multiply) {
596 result.flags |= result.value.Normalize(
597 isNegative, exponent, fraction, rounding, &roundingBits);
598 result.flags |= result.value.Round(rounding, roundingBits, multiply);
599 }
600
MapRoundingMode(common::RoundingMode rounding)601 inline enum decimal::FortranRounding MapRoundingMode(
602 common::RoundingMode rounding) {
603 switch (rounding) {
604 case common::RoundingMode::TiesToEven:
605 break;
606 case common::RoundingMode::ToZero:
607 return decimal::RoundToZero;
608 case common::RoundingMode::Down:
609 return decimal::RoundDown;
610 case common::RoundingMode::Up:
611 return decimal::RoundUp;
612 case common::RoundingMode::TiesAwayFromZero:
613 return decimal::RoundCompatible;
614 }
615 return decimal::RoundNearest; // dodge gcc warning about lack of result
616 }
617
MapFlags(decimal::ConversionResultFlags flags)618 inline RealFlags MapFlags(decimal::ConversionResultFlags flags) {
619 RealFlags result;
620 if (flags & decimal::Overflow) {
621 result.set(RealFlag::Overflow);
622 }
623 if (flags & decimal::Inexact) {
624 result.set(RealFlag::Inexact);
625 }
626 if (flags & decimal::Invalid) {
627 result.set(RealFlag::InvalidArgument);
628 }
629 return result;
630 }
631
632 template <typename W, int P>
Read(const char * & p,Rounding rounding)633 ValueWithRealFlags<Real<W, P>> Real<W, P>::Read(
634 const char *&p, Rounding rounding) {
635 auto converted{
636 decimal::ConvertToBinary<P>(p, MapRoundingMode(rounding.mode))};
637 const auto *value{reinterpret_cast<Real<W, P> *>(&converted.binary)};
638 return {*value, MapFlags(converted.flags)};
639 }
640
DumpHexadecimal() const641 template <typename W, int P> std::string Real<W, P>::DumpHexadecimal() const {
642 if (IsNotANumber()) {
643 return "NaN0x"s + word_.Hexadecimal();
644 } else if (IsNegative()) {
645 return "-"s + Negate().DumpHexadecimal();
646 } else if (IsInfinite()) {
647 return "Inf"s;
648 } else if (IsZero()) {
649 return "0.0"s;
650 } else {
651 Fraction frac{GetFraction()};
652 std::string result{"0x"};
653 char intPart = '0' + frac.BTEST(frac.bits - 1);
654 result += intPart;
655 result += '.';
656 int trailz{frac.TRAILZ()};
657 if (trailz >= frac.bits - 1) {
658 result += '0';
659 } else {
660 int remainingBits{frac.bits - 1 - trailz};
661 int wholeNybbles{remainingBits / 4};
662 int lostBits{remainingBits - 4 * wholeNybbles};
663 if (wholeNybbles > 0) {
664 std::string fracHex{frac.SHIFTR(trailz + lostBits)
665 .IAND(frac.MASKR(4 * wholeNybbles))
666 .Hexadecimal()};
667 std::size_t field = wholeNybbles;
668 if (fracHex.size() < field) {
669 result += std::string(field - fracHex.size(), '0');
670 }
671 result += fracHex;
672 }
673 if (lostBits > 0) {
674 result += frac.SHIFTR(trailz)
675 .IAND(frac.MASKR(lostBits))
676 .SHIFTL(4 - lostBits)
677 .Hexadecimal();
678 }
679 }
680 result += 'p';
681 int exponent = Exponent() - exponentBias;
682 if (intPart == '0') {
683 exponent += 1;
684 }
685 result += Integer<32>{exponent}.SignedDecimal();
686 return result;
687 }
688 }
689
690 template <typename W, int P>
AsFortran(llvm::raw_ostream & o,int kind,bool minimal) const691 llvm::raw_ostream &Real<W, P>::AsFortran(
692 llvm::raw_ostream &o, int kind, bool minimal) const {
693 if (IsNotANumber()) {
694 o << "(0._" << kind << "/0.)";
695 } else if (IsInfinite()) {
696 if (IsNegative()) {
697 o << "(-1._" << kind << "/0.)";
698 } else {
699 o << "(1._" << kind << "/0.)";
700 }
701 } else {
702 using B = decimal::BinaryFloatingPointNumber<P>;
703 B value{word_.template ToUInt<typename B::RawType>()};
704 char buffer[common::MaxDecimalConversionDigits(P) +
705 EXTRA_DECIMAL_CONVERSION_SPACE];
706 decimal::DecimalConversionFlags flags{}; // default: exact representation
707 if (minimal) {
708 flags = decimal::Minimize;
709 }
710 auto result{decimal::ConvertToDecimal<P>(buffer, sizeof buffer, flags,
711 static_cast<int>(sizeof buffer), decimal::RoundNearest, value)};
712 const char *p{result.str};
713 if (DEREF(p) == '-' || *p == '+') {
714 o << *p++;
715 }
716 int expo{result.decimalExponent};
717 if (*p != '0') {
718 --expo;
719 }
720 o << *p << '.' << (p + 1);
721 if (expo != 0) {
722 o << 'e' << expo;
723 }
724 o << '_' << kind;
725 }
726 return o;
727 }
728
729 // 16.9.180
RRSPACING() const730 template <typename W, int P> Real<W, P> Real<W, P>::RRSPACING() const {
731 if (IsNotANumber()) {
732 return *this;
733 } else if (IsInfinite()) {
734 return NotANumber();
735 } else {
736 Real result;
737 result.Normalize(false, binaryPrecision + exponentBias - 1, GetFraction());
738 return result;
739 }
740 }
741
742 // 16.9.180
SPACING() const743 template <typename W, int P> Real<W, P> Real<W, P>::SPACING() const {
744 if (IsNotANumber()) {
745 return *this;
746 } else if (IsInfinite()) {
747 return NotANumber();
748 } else if (IsZero()) {
749 return TINY();
750 } else {
751 Real result;
752 result.Normalize(
753 false, Exponent() - binaryPrecision + 1, Fraction::MASKL(1));
754 return result;
755 }
756 }
757
758 // 16.9.171
759 template <typename W, int P>
SET_EXPONENT(int expo) const760 Real<W, P> Real<W, P>::SET_EXPONENT(int expo) const {
761 if (IsNotANumber()) {
762 return *this;
763 } else if (IsInfinite()) {
764 return NotANumber();
765 } else if (IsZero()) {
766 return *this;
767 } else {
768 Real result;
769 result.Normalize(IsNegative(), expo + exponentBias - 1, GetFraction());
770 return result;
771 }
772 }
773
774 // 16.9.171
FRACTION() const775 template <typename W, int P> Real<W, P> Real<W, P>::FRACTION() const {
776 return SET_EXPONENT(0);
777 }
778
779 template class Real<Integer<16>, 11>;
780 template class Real<Integer<16>, 8>;
781 template class Real<Integer<32>, 24>;
782 template class Real<Integer<64>, 53>;
783 template class Real<Integer<80>, 64>;
784 template class Real<Integer<128>, 113>;
785 } // namespace Fortran::evaluate::value
786