1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend is responsible for emitting arm_neon.h, which includes 11 // a declaration and definition of each function specified by the ARM NEON 12 // compiler interface. See ARM document DUI0348B. 13 // 14 // Each NEON instruction is implemented in terms of 1 or more functions which 15 // are suffixed with the element type of the input vectors. Functions may be 16 // implemented in terms of generic vector operations such as +, *, -, etc. or 17 // by calling a __builtin_-prefixed function which will be handled by clang's 18 // CodeGen library. 19 // 20 // Additional validation code can be generated by this file when runHeader() is 21 // called, rather than the normal run() entry point. 22 // 23 // See also the documentation in include/clang/Basic/arm_neon.td. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/TableGen/Error.h" 38 #include "llvm/TableGen/Record.h" 39 #include "llvm/TableGen/SetTheory.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cctype> 43 #include <cstddef> 44 #include <cstdint> 45 #include <deque> 46 #include <map> 47 #include <set> 48 #include <sstream> 49 #include <string> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 namespace { 56 57 // While globals are generally bad, this one allows us to perform assertions 58 // liberally and somehow still trace them back to the def they indirectly 59 // came from. 60 static Record *CurrentRecord = nullptr; 61 static void assert_with_loc(bool Assertion, const std::string &Str) { 62 if (!Assertion) { 63 if (CurrentRecord) 64 PrintFatalError(CurrentRecord->getLoc(), Str); 65 else 66 PrintFatalError(Str); 67 } 68 } 69 70 enum ClassKind { 71 ClassNone, 72 ClassI, // generic integer instruction, e.g., "i8" suffix 73 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix 74 ClassW, // width-specific instruction, e.g., "8" suffix 75 ClassB, // bitcast arguments with enum argument to specify type 76 ClassL, // Logical instructions which are op instructions 77 // but we need to not emit any suffix for in our 78 // tests. 79 ClassNoTest // Instructions which we do not test since they are 80 // not TRUE instructions. 81 }; 82 83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon 84 /// builtins. These must be kept in sync with the flags in 85 /// include/clang/Basic/TargetBuiltins.h. 86 namespace NeonTypeFlags { 87 88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 }; 89 90 enum EltType { 91 Int8, 92 Int16, 93 Int32, 94 Int64, 95 Poly8, 96 Poly16, 97 Poly64, 98 Poly128, 99 Float16, 100 Float32, 101 Float64 102 }; 103 104 } // end namespace NeonTypeFlags 105 106 class NeonEmitter; 107 108 //===----------------------------------------------------------------------===// 109 // TypeSpec 110 //===----------------------------------------------------------------------===// 111 112 /// A TypeSpec is just a simple wrapper around a string, but gets its own type 113 /// for strong typing purposes. 114 /// 115 /// A TypeSpec can be used to create a type. 116 class TypeSpec : public std::string { 117 public: 118 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) { 119 std::vector<TypeSpec> Ret; 120 TypeSpec Acc; 121 for (char I : Str.str()) { 122 if (islower(I)) { 123 Acc.push_back(I); 124 Ret.push_back(TypeSpec(Acc)); 125 Acc.clear(); 126 } else { 127 Acc.push_back(I); 128 } 129 } 130 return Ret; 131 } 132 }; 133 134 //===----------------------------------------------------------------------===// 135 // Type 136 //===----------------------------------------------------------------------===// 137 138 /// A Type. Not much more to say here. 139 class Type { 140 private: 141 TypeSpec TS; 142 143 bool Float, Signed, Immediate, Void, Poly, Constant, Pointer; 144 // ScalarForMangling and NoManglingQ are really not suited to live here as 145 // they are not related to the type. But they live in the TypeSpec (not the 146 // prototype), so this is really the only place to store them. 147 bool ScalarForMangling, NoManglingQ; 148 unsigned Bitwidth, ElementBitwidth, NumVectors; 149 150 public: 151 Type() 152 : Float(false), Signed(false), Immediate(false), Void(true), Poly(false), 153 Constant(false), Pointer(false), ScalarForMangling(false), 154 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {} 155 156 Type(TypeSpec TS, char CharMod) 157 : TS(std::move(TS)), Float(false), Signed(false), Immediate(false), 158 Void(false), Poly(false), Constant(false), Pointer(false), 159 ScalarForMangling(false), NoManglingQ(false), Bitwidth(0), 160 ElementBitwidth(0), NumVectors(0) { 161 applyModifier(CharMod); 162 } 163 164 /// Returns a type representing "void". 165 static Type getVoid() { return Type(); } 166 167 bool operator==(const Type &Other) const { return str() == Other.str(); } 168 bool operator!=(const Type &Other) const { return !operator==(Other); } 169 170 // 171 // Query functions 172 // 173 bool isScalarForMangling() const { return ScalarForMangling; } 174 bool noManglingQ() const { return NoManglingQ; } 175 176 bool isPointer() const { return Pointer; } 177 bool isFloating() const { return Float; } 178 bool isInteger() const { return !Float && !Poly; } 179 bool isSigned() const { return Signed; } 180 bool isImmediate() const { return Immediate; } 181 bool isScalar() const { return NumVectors == 0; } 182 bool isVector() const { return NumVectors > 0; } 183 bool isFloat() const { return Float && ElementBitwidth == 32; } 184 bool isDouble() const { return Float && ElementBitwidth == 64; } 185 bool isHalf() const { return Float && ElementBitwidth == 16; } 186 bool isPoly() const { return Poly; } 187 bool isChar() const { return ElementBitwidth == 8; } 188 bool isShort() const { return !Float && ElementBitwidth == 16; } 189 bool isInt() const { return !Float && ElementBitwidth == 32; } 190 bool isLong() const { return !Float && ElementBitwidth == 64; } 191 bool isVoid() const { return Void; } 192 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; } 193 unsigned getSizeInBits() const { return Bitwidth; } 194 unsigned getElementSizeInBits() const { return ElementBitwidth; } 195 unsigned getNumVectors() const { return NumVectors; } 196 197 // 198 // Mutator functions 199 // 200 void makeUnsigned() { Signed = false; } 201 void makeSigned() { Signed = true; } 202 203 void makeInteger(unsigned ElemWidth, bool Sign) { 204 Float = false; 205 Poly = false; 206 Signed = Sign; 207 Immediate = false; 208 ElementBitwidth = ElemWidth; 209 } 210 211 void makeImmediate(unsigned ElemWidth) { 212 Float = false; 213 Poly = false; 214 Signed = true; 215 Immediate = true; 216 ElementBitwidth = ElemWidth; 217 } 218 219 void makeScalar() { 220 Bitwidth = ElementBitwidth; 221 NumVectors = 0; 222 } 223 224 void makeOneVector() { 225 assert(isVector()); 226 NumVectors = 1; 227 } 228 229 void doubleLanes() { 230 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!"); 231 Bitwidth = 128; 232 } 233 234 void halveLanes() { 235 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!"); 236 Bitwidth = 64; 237 } 238 239 /// Return the C string representation of a type, which is the typename 240 /// defined in stdint.h or arm_neon.h. 241 std::string str() const; 242 243 /// Return the string representation of a type, which is an encoded 244 /// string for passing to the BUILTIN() macro in Builtins.def. 245 std::string builtin_str() const; 246 247 /// Return the value in NeonTypeFlags for this type. 248 unsigned getNeonEnum() const; 249 250 /// Parse a type from a stdint.h or arm_neon.h typedef name, 251 /// for example uint32x2_t or int64_t. 252 static Type fromTypedefName(StringRef Name); 253 254 private: 255 /// Creates the type based on the typespec string in TS. 256 /// Sets "Quad" to true if the "Q" or "H" modifiers were 257 /// seen. This is needed by applyModifier as some modifiers 258 /// only take effect if the type size was changed by "Q" or "H". 259 void applyTypespec(bool &Quad); 260 /// Applies a prototype modifier to the type. 261 void applyModifier(char Mod); 262 }; 263 264 //===----------------------------------------------------------------------===// 265 // Variable 266 //===----------------------------------------------------------------------===// 267 268 /// A variable is a simple class that just has a type and a name. 269 class Variable { 270 Type T; 271 std::string N; 272 273 public: 274 Variable() : T(Type::getVoid()), N("") {} 275 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {} 276 277 Type getType() const { return T; } 278 std::string getName() const { return "__" + N; } 279 }; 280 281 //===----------------------------------------------------------------------===// 282 // Intrinsic 283 //===----------------------------------------------------------------------===// 284 285 /// The main grunt class. This represents an instantiation of an intrinsic with 286 /// a particular typespec and prototype. 287 class Intrinsic { 288 friend class DagEmitter; 289 290 /// The Record this intrinsic was created from. 291 Record *R; 292 /// The unmangled name and prototype. 293 std::string Name, Proto; 294 /// The input and output typespecs. InTS == OutTS except when 295 /// CartesianProductOfTypes is 1 - this is the case for vreinterpret. 296 TypeSpec OutTS, InTS; 297 /// The base class kind. Most intrinsics use ClassS, which has full type 298 /// info for integers (s32/u32). Some use ClassI, which doesn't care about 299 /// signedness (i32), while some (ClassB) have no type at all, only a width 300 /// (32). 301 ClassKind CK; 302 /// The list of DAGs for the body. May be empty, in which case we should 303 /// emit a builtin call. 304 ListInit *Body; 305 /// The architectural #ifdef guard. 306 std::string Guard; 307 /// Set if the Unavailable bit is 1. This means we don't generate a body, 308 /// just an "unavailable" attribute on a declaration. 309 bool IsUnavailable; 310 /// Is this intrinsic safe for big-endian? or does it need its arguments 311 /// reversing? 312 bool BigEndianSafe; 313 314 /// The types of return value [0] and parameters [1..]. 315 std::vector<Type> Types; 316 /// The local variables defined. 317 std::map<std::string, Variable> Variables; 318 /// NeededEarly - set if any other intrinsic depends on this intrinsic. 319 bool NeededEarly; 320 /// UseMacro - set if we should implement using a macro or unset for a 321 /// function. 322 bool UseMacro; 323 /// The set of intrinsics that this intrinsic uses/requires. 324 std::set<Intrinsic *> Dependencies; 325 /// The "base type", which is Type('d', OutTS). InBaseType is only 326 /// different if CartesianProductOfTypes = 1 (for vreinterpret). 327 Type BaseType, InBaseType; 328 /// The return variable. 329 Variable RetVar; 330 /// A postfix to apply to every variable. Defaults to "". 331 std::string VariablePostfix; 332 333 NeonEmitter &Emitter; 334 std::stringstream OS; 335 336 public: 337 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS, 338 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter, 339 StringRef Guard, bool IsUnavailable, bool BigEndianSafe) 340 : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS), 341 CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable), 342 BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false), 343 BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) { 344 // If this builtin takes an immediate argument, we need to #define it rather 345 // than use a standard declaration, so that SemaChecking can range check 346 // the immediate passed by the user. 347 if (Proto.find('i') != std::string::npos) 348 UseMacro = true; 349 350 // Pointer arguments need to use macros to avoid hiding aligned attributes 351 // from the pointer type. 352 if (Proto.find('p') != std::string::npos || 353 Proto.find('c') != std::string::npos) 354 UseMacro = true; 355 356 // It is not permitted to pass or return an __fp16 by value, so intrinsics 357 // taking a scalar float16_t must be implemented as macros. 358 if (OutTS.find('h') != std::string::npos && 359 Proto.find('s') != std::string::npos) 360 UseMacro = true; 361 362 // Modify the TypeSpec per-argument to get a concrete Type, and create 363 // known variables for each. 364 // Types[0] is the return value. 365 Types.emplace_back(OutTS, Proto[0]); 366 for (unsigned I = 1; I < Proto.size(); ++I) 367 Types.emplace_back(InTS, Proto[I]); 368 } 369 370 /// Get the Record that this intrinsic is based off. 371 Record *getRecord() const { return R; } 372 /// Get the set of Intrinsics that this intrinsic calls. 373 /// this is the set of immediate dependencies, NOT the 374 /// transitive closure. 375 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; } 376 /// Get the architectural guard string (#ifdef). 377 std::string getGuard() const { return Guard; } 378 /// Get the non-mangled name. 379 std::string getName() const { return Name; } 380 381 /// Return true if the intrinsic takes an immediate operand. 382 bool hasImmediate() const { 383 return Proto.find('i') != std::string::npos; 384 } 385 386 /// Return the parameter index of the immediate operand. 387 unsigned getImmediateIdx() const { 388 assert(hasImmediate()); 389 unsigned Idx = Proto.find('i'); 390 assert(Idx > 0 && "Can't return an immediate!"); 391 return Idx - 1; 392 } 393 394 /// Return true if the intrinsic takes an splat operand. 395 bool hasSplat() const { return Proto.find('a') != std::string::npos; } 396 397 /// Return the parameter index of the splat operand. 398 unsigned getSplatIdx() const { 399 assert(hasSplat()); 400 unsigned Idx = Proto.find('a'); 401 assert(Idx > 0 && "Can't return a splat!"); 402 return Idx - 1; 403 } 404 405 unsigned getNumParams() const { return Proto.size() - 1; } 406 Type getReturnType() const { return Types[0]; } 407 Type getParamType(unsigned I) const { return Types[I + 1]; } 408 Type getBaseType() const { return BaseType; } 409 /// Return the raw prototype string. 410 std::string getProto() const { return Proto; } 411 412 /// Return true if the prototype has a scalar argument. 413 /// This does not return true for the "splat" code ('a'). 414 bool protoHasScalar() const; 415 416 /// Return the index that parameter PIndex will sit at 417 /// in a generated function call. This is often just PIndex, 418 /// but may not be as things such as multiple-vector operands 419 /// and sret parameters need to be taken into accont. 420 unsigned getGeneratedParamIdx(unsigned PIndex) { 421 unsigned Idx = 0; 422 if (getReturnType().getNumVectors() > 1) 423 // Multiple vectors are passed as sret. 424 ++Idx; 425 426 for (unsigned I = 0; I < PIndex; ++I) 427 Idx += std::max(1U, getParamType(I).getNumVectors()); 428 429 return Idx; 430 } 431 432 bool hasBody() const { return Body && !Body->getValues().empty(); } 433 434 void setNeededEarly() { NeededEarly = true; } 435 436 bool operator<(const Intrinsic &Other) const { 437 // Sort lexicographically on a two-tuple (Guard, Name) 438 if (Guard != Other.Guard) 439 return Guard < Other.Guard; 440 return Name < Other.Name; 441 } 442 443 ClassKind getClassKind(bool UseClassBIfScalar = false) { 444 if (UseClassBIfScalar && !protoHasScalar()) 445 return ClassB; 446 return CK; 447 } 448 449 /// Return the name, mangled with type information. 450 /// If ForceClassS is true, use ClassS (u32/s32) instead 451 /// of the intrinsic's own type class. 452 std::string getMangledName(bool ForceClassS = false) const; 453 /// Return the type code for a builtin function call. 454 std::string getInstTypeCode(Type T, ClassKind CK) const; 455 /// Return the type string for a BUILTIN() macro in Builtins.def. 456 std::string getBuiltinTypeStr(); 457 458 /// Generate the intrinsic, returning code. 459 std::string generate(); 460 /// Perform type checking and populate the dependency graph, but 461 /// don't generate code yet. 462 void indexBody(); 463 464 private: 465 std::string mangleName(std::string Name, ClassKind CK) const; 466 467 void initVariables(); 468 std::string replaceParamsIn(std::string S); 469 470 void emitBodyAsBuiltinCall(); 471 472 void generateImpl(bool ReverseArguments, 473 StringRef NamePrefix, StringRef CallPrefix); 474 void emitReturn(); 475 void emitBody(StringRef CallPrefix); 476 void emitShadowedArgs(); 477 void emitArgumentReversal(); 478 void emitReturnReversal(); 479 void emitReverseVariable(Variable &Dest, Variable &Src); 480 void emitNewLine(); 481 void emitClosingBrace(); 482 void emitOpeningBrace(); 483 void emitPrototype(StringRef NamePrefix); 484 485 class DagEmitter { 486 Intrinsic &Intr; 487 StringRef CallPrefix; 488 489 public: 490 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) : 491 Intr(Intr), CallPrefix(CallPrefix) { 492 } 493 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName); 494 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI); 495 std::pair<Type, std::string> emitDagSplat(DagInit *DI); 496 std::pair<Type, std::string> emitDagDup(DagInit *DI); 497 std::pair<Type, std::string> emitDagShuffle(DagInit *DI); 498 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast); 499 std::pair<Type, std::string> emitDagCall(DagInit *DI); 500 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI); 501 std::pair<Type, std::string> emitDagLiteral(DagInit *DI); 502 std::pair<Type, std::string> emitDagOp(DagInit *DI); 503 std::pair<Type, std::string> emitDag(DagInit *DI); 504 }; 505 }; 506 507 //===----------------------------------------------------------------------===// 508 // NeonEmitter 509 //===----------------------------------------------------------------------===// 510 511 class NeonEmitter { 512 RecordKeeper &Records; 513 DenseMap<Record *, ClassKind> ClassMap; 514 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap; 515 unsigned UniqueNumber; 516 517 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out); 518 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs); 519 void genOverloadTypeCheckCode(raw_ostream &OS, 520 SmallVectorImpl<Intrinsic *> &Defs); 521 void genIntrinsicRangeCheckCode(raw_ostream &OS, 522 SmallVectorImpl<Intrinsic *> &Defs); 523 524 public: 525 /// Called by Intrinsic - this attempts to get an intrinsic that takes 526 /// the given types as arguments. 527 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types); 528 529 /// Called by Intrinsic - returns a globally-unique number. 530 unsigned getUniqueNumber() { return UniqueNumber++; } 531 532 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) { 533 Record *SI = R.getClass("SInst"); 534 Record *II = R.getClass("IInst"); 535 Record *WI = R.getClass("WInst"); 536 Record *SOpI = R.getClass("SOpInst"); 537 Record *IOpI = R.getClass("IOpInst"); 538 Record *WOpI = R.getClass("WOpInst"); 539 Record *LOpI = R.getClass("LOpInst"); 540 Record *NoTestOpI = R.getClass("NoTestOpInst"); 541 542 ClassMap[SI] = ClassS; 543 ClassMap[II] = ClassI; 544 ClassMap[WI] = ClassW; 545 ClassMap[SOpI] = ClassS; 546 ClassMap[IOpI] = ClassI; 547 ClassMap[WOpI] = ClassW; 548 ClassMap[LOpI] = ClassL; 549 ClassMap[NoTestOpI] = ClassNoTest; 550 } 551 552 // run - Emit arm_neon.h.inc 553 void run(raw_ostream &o); 554 555 // runFP16 - Emit arm_fp16.h.inc 556 void runFP16(raw_ostream &o); 557 558 // runHeader - Emit all the __builtin prototypes used in arm_neon.h 559 // and arm_fp16.h 560 void runHeader(raw_ostream &o); 561 562 // runTests - Emit tests for all the Neon intrinsics. 563 void runTests(raw_ostream &o); 564 }; 565 566 } // end anonymous namespace 567 568 //===----------------------------------------------------------------------===// 569 // Type implementation 570 //===----------------------------------------------------------------------===// 571 572 std::string Type::str() const { 573 if (Void) 574 return "void"; 575 std::string S; 576 577 if (!Signed && isInteger()) 578 S += "u"; 579 580 if (Poly) 581 S += "poly"; 582 else if (Float) 583 S += "float"; 584 else 585 S += "int"; 586 587 S += utostr(ElementBitwidth); 588 if (isVector()) 589 S += "x" + utostr(getNumElements()); 590 if (NumVectors > 1) 591 S += "x" + utostr(NumVectors); 592 S += "_t"; 593 594 if (Constant) 595 S += " const"; 596 if (Pointer) 597 S += " *"; 598 599 return S; 600 } 601 602 std::string Type::builtin_str() const { 603 std::string S; 604 if (isVoid()) 605 return "v"; 606 607 if (Pointer) 608 // All pointers are void pointers. 609 S += "v"; 610 else if (isInteger()) 611 switch (ElementBitwidth) { 612 case 8: S += "c"; break; 613 case 16: S += "s"; break; 614 case 32: S += "i"; break; 615 case 64: S += "Wi"; break; 616 case 128: S += "LLLi"; break; 617 default: llvm_unreachable("Unhandled case!"); 618 } 619 else 620 switch (ElementBitwidth) { 621 case 16: S += "h"; break; 622 case 32: S += "f"; break; 623 case 64: S += "d"; break; 624 default: llvm_unreachable("Unhandled case!"); 625 } 626 627 if (isChar() && !Pointer) 628 // Make chars explicitly signed. 629 S = "S" + S; 630 else if (isInteger() && !Pointer && !Signed) 631 S = "U" + S; 632 633 // Constant indices are "int", but have the "constant expression" modifier. 634 if (isImmediate()) { 635 assert(isInteger() && isSigned()); 636 S = "I" + S; 637 } 638 639 if (isScalar()) { 640 if (Constant) S += "C"; 641 if (Pointer) S += "*"; 642 return S; 643 } 644 645 std::string Ret; 646 for (unsigned I = 0; I < NumVectors; ++I) 647 Ret += "V" + utostr(getNumElements()) + S; 648 649 return Ret; 650 } 651 652 unsigned Type::getNeonEnum() const { 653 unsigned Addend; 654 switch (ElementBitwidth) { 655 case 8: Addend = 0; break; 656 case 16: Addend = 1; break; 657 case 32: Addend = 2; break; 658 case 64: Addend = 3; break; 659 case 128: Addend = 4; break; 660 default: llvm_unreachable("Unhandled element bitwidth!"); 661 } 662 663 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend; 664 if (Poly) { 665 // Adjustment needed because Poly32 doesn't exist. 666 if (Addend >= 2) 667 --Addend; 668 Base = (unsigned)NeonTypeFlags::Poly8 + Addend; 669 } 670 if (Float) { 671 assert(Addend != 0 && "Float8 doesn't exist!"); 672 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1); 673 } 674 675 if (Bitwidth == 128) 676 Base |= (unsigned)NeonTypeFlags::QuadFlag; 677 if (isInteger() && !Signed) 678 Base |= (unsigned)NeonTypeFlags::UnsignedFlag; 679 680 return Base; 681 } 682 683 Type Type::fromTypedefName(StringRef Name) { 684 Type T; 685 T.Void = false; 686 T.Float = false; 687 T.Poly = false; 688 689 if (Name.front() == 'u') { 690 T.Signed = false; 691 Name = Name.drop_front(); 692 } else { 693 T.Signed = true; 694 } 695 696 if (Name.startswith("float")) { 697 T.Float = true; 698 Name = Name.drop_front(5); 699 } else if (Name.startswith("poly")) { 700 T.Poly = true; 701 Name = Name.drop_front(4); 702 } else { 703 assert(Name.startswith("int")); 704 Name = Name.drop_front(3); 705 } 706 707 unsigned I = 0; 708 for (I = 0; I < Name.size(); ++I) { 709 if (!isdigit(Name[I])) 710 break; 711 } 712 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth); 713 Name = Name.drop_front(I); 714 715 T.Bitwidth = T.ElementBitwidth; 716 T.NumVectors = 1; 717 718 if (Name.front() == 'x') { 719 Name = Name.drop_front(); 720 unsigned I = 0; 721 for (I = 0; I < Name.size(); ++I) { 722 if (!isdigit(Name[I])) 723 break; 724 } 725 unsigned NumLanes; 726 Name.substr(0, I).getAsInteger(10, NumLanes); 727 Name = Name.drop_front(I); 728 T.Bitwidth = T.ElementBitwidth * NumLanes; 729 } else { 730 // Was scalar. 731 T.NumVectors = 0; 732 } 733 if (Name.front() == 'x') { 734 Name = Name.drop_front(); 735 unsigned I = 0; 736 for (I = 0; I < Name.size(); ++I) { 737 if (!isdigit(Name[I])) 738 break; 739 } 740 Name.substr(0, I).getAsInteger(10, T.NumVectors); 741 Name = Name.drop_front(I); 742 } 743 744 assert(Name.startswith("_t") && "Malformed typedef!"); 745 return T; 746 } 747 748 void Type::applyTypespec(bool &Quad) { 749 std::string S = TS; 750 ScalarForMangling = false; 751 Void = false; 752 Poly = Float = false; 753 ElementBitwidth = ~0U; 754 Signed = true; 755 NumVectors = 1; 756 757 for (char I : S) { 758 switch (I) { 759 case 'S': 760 ScalarForMangling = true; 761 break; 762 case 'H': 763 NoManglingQ = true; 764 Quad = true; 765 break; 766 case 'Q': 767 Quad = true; 768 break; 769 case 'P': 770 Poly = true; 771 break; 772 case 'U': 773 Signed = false; 774 break; 775 case 'c': 776 ElementBitwidth = 8; 777 break; 778 case 'h': 779 Float = true; 780 LLVM_FALLTHROUGH; 781 case 's': 782 ElementBitwidth = 16; 783 break; 784 case 'f': 785 Float = true; 786 LLVM_FALLTHROUGH; 787 case 'i': 788 ElementBitwidth = 32; 789 break; 790 case 'd': 791 Float = true; 792 LLVM_FALLTHROUGH; 793 case 'l': 794 ElementBitwidth = 64; 795 break; 796 case 'k': 797 ElementBitwidth = 128; 798 // Poly doesn't have a 128x1 type. 799 if (Poly) 800 NumVectors = 0; 801 break; 802 default: 803 llvm_unreachable("Unhandled type code!"); 804 } 805 } 806 assert(ElementBitwidth != ~0U && "Bad element bitwidth!"); 807 808 Bitwidth = Quad ? 128 : 64; 809 } 810 811 void Type::applyModifier(char Mod) { 812 bool AppliedQuad = false; 813 applyTypespec(AppliedQuad); 814 815 switch (Mod) { 816 case 'v': 817 Void = true; 818 break; 819 case 't': 820 if (Poly) { 821 Poly = false; 822 Signed = false; 823 } 824 break; 825 case 'b': 826 Signed = false; 827 Float = false; 828 Poly = false; 829 NumVectors = 0; 830 Bitwidth = ElementBitwidth; 831 break; 832 case '$': 833 Signed = true; 834 Float = false; 835 Poly = false; 836 NumVectors = 0; 837 Bitwidth = ElementBitwidth; 838 break; 839 case 'u': 840 Signed = false; 841 Poly = false; 842 Float = false; 843 break; 844 case 'x': 845 Signed = true; 846 assert(!Poly && "'u' can't be used with poly types!"); 847 Float = false; 848 break; 849 case 'o': 850 Bitwidth = ElementBitwidth = 64; 851 NumVectors = 0; 852 Float = true; 853 break; 854 case 'y': 855 Bitwidth = ElementBitwidth = 32; 856 NumVectors = 0; 857 Float = true; 858 break; 859 case 'Y': 860 Bitwidth = ElementBitwidth = 16; 861 NumVectors = 0; 862 Float = true; 863 break; 864 case 'I': 865 Bitwidth = ElementBitwidth = 32; 866 NumVectors = 0; 867 Float = false; 868 Signed = true; 869 break; 870 case 'L': 871 Bitwidth = ElementBitwidth = 64; 872 NumVectors = 0; 873 Float = false; 874 Signed = true; 875 break; 876 case 'U': 877 Bitwidth = ElementBitwidth = 32; 878 NumVectors = 0; 879 Float = false; 880 Signed = false; 881 break; 882 case 'O': 883 Bitwidth = ElementBitwidth = 64; 884 NumVectors = 0; 885 Float = false; 886 Signed = false; 887 break; 888 case 'f': 889 Float = true; 890 ElementBitwidth = 32; 891 break; 892 case 'F': 893 Float = true; 894 ElementBitwidth = 64; 895 break; 896 case 'H': 897 Float = true; 898 ElementBitwidth = 16; 899 break; 900 case 'g': 901 if (AppliedQuad) 902 Bitwidth /= 2; 903 break; 904 case 'j': 905 if (!AppliedQuad) 906 Bitwidth *= 2; 907 break; 908 case 'w': 909 ElementBitwidth *= 2; 910 Bitwidth *= 2; 911 break; 912 case 'n': 913 ElementBitwidth *= 2; 914 break; 915 case 'i': 916 Float = false; 917 Poly = false; 918 ElementBitwidth = Bitwidth = 32; 919 NumVectors = 0; 920 Signed = true; 921 Immediate = true; 922 break; 923 case 'l': 924 Float = false; 925 Poly = false; 926 ElementBitwidth = Bitwidth = 64; 927 NumVectors = 0; 928 Signed = false; 929 Immediate = true; 930 break; 931 case 'z': 932 ElementBitwidth /= 2; 933 Bitwidth = ElementBitwidth; 934 NumVectors = 0; 935 break; 936 case 'r': 937 ElementBitwidth *= 2; 938 Bitwidth = ElementBitwidth; 939 NumVectors = 0; 940 break; 941 case 's': 942 case 'a': 943 Bitwidth = ElementBitwidth; 944 NumVectors = 0; 945 break; 946 case 'k': 947 Bitwidth *= 2; 948 break; 949 case 'c': 950 Constant = true; 951 LLVM_FALLTHROUGH; 952 case 'p': 953 Pointer = true; 954 Bitwidth = ElementBitwidth; 955 NumVectors = 0; 956 break; 957 case 'h': 958 ElementBitwidth /= 2; 959 break; 960 case 'q': 961 ElementBitwidth /= 2; 962 Bitwidth *= 2; 963 break; 964 case 'e': 965 ElementBitwidth /= 2; 966 Signed = false; 967 break; 968 case 'm': 969 ElementBitwidth /= 2; 970 Bitwidth /= 2; 971 break; 972 case 'd': 973 break; 974 case '2': 975 NumVectors = 2; 976 break; 977 case '3': 978 NumVectors = 3; 979 break; 980 case '4': 981 NumVectors = 4; 982 break; 983 case 'B': 984 NumVectors = 2; 985 if (!AppliedQuad) 986 Bitwidth *= 2; 987 break; 988 case 'C': 989 NumVectors = 3; 990 if (!AppliedQuad) 991 Bitwidth *= 2; 992 break; 993 case 'D': 994 NumVectors = 4; 995 if (!AppliedQuad) 996 Bitwidth *= 2; 997 break; 998 default: 999 llvm_unreachable("Unhandled character!"); 1000 } 1001 } 1002 1003 //===----------------------------------------------------------------------===// 1004 // Intrinsic implementation 1005 //===----------------------------------------------------------------------===// 1006 1007 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const { 1008 char typeCode = '\0'; 1009 bool printNumber = true; 1010 1011 if (CK == ClassB) 1012 return ""; 1013 1014 if (T.isPoly()) 1015 typeCode = 'p'; 1016 else if (T.isInteger()) 1017 typeCode = T.isSigned() ? 's' : 'u'; 1018 else 1019 typeCode = 'f'; 1020 1021 if (CK == ClassI) { 1022 switch (typeCode) { 1023 default: 1024 break; 1025 case 's': 1026 case 'u': 1027 case 'p': 1028 typeCode = 'i'; 1029 break; 1030 } 1031 } 1032 if (CK == ClassB) { 1033 typeCode = '\0'; 1034 } 1035 1036 std::string S; 1037 if (typeCode != '\0') 1038 S.push_back(typeCode); 1039 if (printNumber) 1040 S += utostr(T.getElementSizeInBits()); 1041 1042 return S; 1043 } 1044 1045 static bool isFloatingPointProtoModifier(char Mod) { 1046 return Mod == 'F' || Mod == 'f' || Mod == 'H' || Mod == 'Y' || Mod == 'I'; 1047 } 1048 1049 std::string Intrinsic::getBuiltinTypeStr() { 1050 ClassKind LocalCK = getClassKind(true); 1051 std::string S; 1052 1053 Type RetT = getReturnType(); 1054 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() && 1055 !RetT.isFloating()) 1056 RetT.makeInteger(RetT.getElementSizeInBits(), false); 1057 1058 // Since the return value must be one type, return a vector type of the 1059 // appropriate width which we will bitcast. An exception is made for 1060 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like 1061 // fashion, storing them to a pointer arg. 1062 if (RetT.getNumVectors() > 1) { 1063 S += "vv*"; // void result with void* first argument 1064 } else { 1065 if (RetT.isPoly()) 1066 RetT.makeInteger(RetT.getElementSizeInBits(), false); 1067 if (!RetT.isScalar() && !RetT.isSigned()) 1068 RetT.makeSigned(); 1069 1070 bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]); 1071 if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType) 1072 // Cast to vector of 8-bit elements. 1073 RetT.makeInteger(8, true); 1074 1075 S += RetT.builtin_str(); 1076 } 1077 1078 for (unsigned I = 0; I < getNumParams(); ++I) { 1079 Type T = getParamType(I); 1080 if (T.isPoly()) 1081 T.makeInteger(T.getElementSizeInBits(), false); 1082 1083 bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]); 1084 if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType) 1085 T.makeInteger(8, true); 1086 // Halves always get converted to 8-bit elements. 1087 if (T.isHalf() && T.isVector() && !T.isScalarForMangling()) 1088 T.makeInteger(8, true); 1089 1090 if (LocalCK == ClassI) 1091 T.makeSigned(); 1092 1093 if (hasImmediate() && getImmediateIdx() == I) 1094 T.makeImmediate(32); 1095 1096 S += T.builtin_str(); 1097 } 1098 1099 // Extra constant integer to hold type class enum for this function, e.g. s8 1100 if (LocalCK == ClassB) 1101 S += "i"; 1102 1103 return S; 1104 } 1105 1106 std::string Intrinsic::getMangledName(bool ForceClassS) const { 1107 // Check if the prototype has a scalar operand with the type of the vector 1108 // elements. If not, bitcasting the args will take care of arg checking. 1109 // The actual signedness etc. will be taken care of with special enums. 1110 ClassKind LocalCK = CK; 1111 if (!protoHasScalar()) 1112 LocalCK = ClassB; 1113 1114 return mangleName(Name, ForceClassS ? ClassS : LocalCK); 1115 } 1116 1117 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const { 1118 std::string typeCode = getInstTypeCode(BaseType, LocalCK); 1119 std::string S = Name; 1120 1121 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" || 1122 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32") 1123 return Name; 1124 1125 if (!typeCode.empty()) { 1126 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN. 1127 if (Name.size() >= 3 && isdigit(Name.back()) && 1128 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_') 1129 S.insert(S.length() - 3, "_" + typeCode); 1130 else 1131 S += "_" + typeCode; 1132 } 1133 1134 if (BaseType != InBaseType) { 1135 // A reinterpret - out the input base type at the end. 1136 S += "_" + getInstTypeCode(InBaseType, LocalCK); 1137 } 1138 1139 if (LocalCK == ClassB) 1140 S += "_v"; 1141 1142 // Insert a 'q' before the first '_' character so that it ends up before 1143 // _lane or _n on vector-scalar operations. 1144 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) { 1145 size_t Pos = S.find('_'); 1146 S.insert(Pos, "q"); 1147 } 1148 1149 char Suffix = '\0'; 1150 if (BaseType.isScalarForMangling()) { 1151 switch (BaseType.getElementSizeInBits()) { 1152 case 8: Suffix = 'b'; break; 1153 case 16: Suffix = 'h'; break; 1154 case 32: Suffix = 's'; break; 1155 case 64: Suffix = 'd'; break; 1156 default: llvm_unreachable("Bad suffix!"); 1157 } 1158 } 1159 if (Suffix != '\0') { 1160 size_t Pos = S.find('_'); 1161 S.insert(Pos, &Suffix, 1); 1162 } 1163 1164 return S; 1165 } 1166 1167 std::string Intrinsic::replaceParamsIn(std::string S) { 1168 while (S.find('$') != std::string::npos) { 1169 size_t Pos = S.find('$'); 1170 size_t End = Pos + 1; 1171 while (isalpha(S[End])) 1172 ++End; 1173 1174 std::string VarName = S.substr(Pos + 1, End - Pos - 1); 1175 assert_with_loc(Variables.find(VarName) != Variables.end(), 1176 "Variable not defined!"); 1177 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName()); 1178 } 1179 1180 return S; 1181 } 1182 1183 void Intrinsic::initVariables() { 1184 Variables.clear(); 1185 1186 // Modify the TypeSpec per-argument to get a concrete Type, and create 1187 // known variables for each. 1188 for (unsigned I = 1; I < Proto.size(); ++I) { 1189 char NameC = '0' + (I - 1); 1190 std::string Name = "p"; 1191 Name.push_back(NameC); 1192 1193 Variables[Name] = Variable(Types[I], Name + VariablePostfix); 1194 } 1195 RetVar = Variable(Types[0], "ret" + VariablePostfix); 1196 } 1197 1198 void Intrinsic::emitPrototype(StringRef NamePrefix) { 1199 if (UseMacro) 1200 OS << "#define "; 1201 else 1202 OS << "__ai " << Types[0].str() << " "; 1203 1204 OS << NamePrefix.str() << mangleName(Name, ClassS) << "("; 1205 1206 for (unsigned I = 0; I < getNumParams(); ++I) { 1207 if (I != 0) 1208 OS << ", "; 1209 1210 char NameC = '0' + I; 1211 std::string Name = "p"; 1212 Name.push_back(NameC); 1213 assert(Variables.find(Name) != Variables.end()); 1214 Variable &V = Variables[Name]; 1215 1216 if (!UseMacro) 1217 OS << V.getType().str() << " "; 1218 OS << V.getName(); 1219 } 1220 1221 OS << ")"; 1222 } 1223 1224 void Intrinsic::emitOpeningBrace() { 1225 if (UseMacro) 1226 OS << " __extension__ ({"; 1227 else 1228 OS << " {"; 1229 emitNewLine(); 1230 } 1231 1232 void Intrinsic::emitClosingBrace() { 1233 if (UseMacro) 1234 OS << "})"; 1235 else 1236 OS << "}"; 1237 } 1238 1239 void Intrinsic::emitNewLine() { 1240 if (UseMacro) 1241 OS << " \\\n"; 1242 else 1243 OS << "\n"; 1244 } 1245 1246 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) { 1247 if (Dest.getType().getNumVectors() > 1) { 1248 emitNewLine(); 1249 1250 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) { 1251 OS << " " << Dest.getName() << ".val[" << K << "] = " 1252 << "__builtin_shufflevector(" 1253 << Src.getName() << ".val[" << K << "], " 1254 << Src.getName() << ".val[" << K << "]"; 1255 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) 1256 OS << ", " << J; 1257 OS << ");"; 1258 emitNewLine(); 1259 } 1260 } else { 1261 OS << " " << Dest.getName() 1262 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName(); 1263 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J) 1264 OS << ", " << J; 1265 OS << ");"; 1266 emitNewLine(); 1267 } 1268 } 1269 1270 void Intrinsic::emitArgumentReversal() { 1271 if (BigEndianSafe) 1272 return; 1273 1274 // Reverse all vector arguments. 1275 for (unsigned I = 0; I < getNumParams(); ++I) { 1276 std::string Name = "p" + utostr(I); 1277 std::string NewName = "rev" + utostr(I); 1278 1279 Variable &V = Variables[Name]; 1280 Variable NewV(V.getType(), NewName + VariablePostfix); 1281 1282 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1) 1283 continue; 1284 1285 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";"; 1286 emitReverseVariable(NewV, V); 1287 V = NewV; 1288 } 1289 } 1290 1291 void Intrinsic::emitReturnReversal() { 1292 if (BigEndianSafe) 1293 return; 1294 if (!getReturnType().isVector() || getReturnType().isVoid() || 1295 getReturnType().getNumElements() == 1) 1296 return; 1297 emitReverseVariable(RetVar, RetVar); 1298 } 1299 1300 void Intrinsic::emitShadowedArgs() { 1301 // Macro arguments are not type-checked like inline function arguments, 1302 // so assign them to local temporaries to get the right type checking. 1303 if (!UseMacro) 1304 return; 1305 1306 for (unsigned I = 0; I < getNumParams(); ++I) { 1307 // Do not create a temporary for an immediate argument. 1308 // That would defeat the whole point of using a macro! 1309 if (hasImmediate() && Proto[I+1] == 'i') 1310 continue; 1311 // Do not create a temporary for pointer arguments. The input 1312 // pointer may have an alignment hint. 1313 if (getParamType(I).isPointer()) 1314 continue; 1315 1316 std::string Name = "p" + utostr(I); 1317 1318 assert(Variables.find(Name) != Variables.end()); 1319 Variable &V = Variables[Name]; 1320 1321 std::string NewName = "s" + utostr(I); 1322 Variable V2(V.getType(), NewName + VariablePostfix); 1323 1324 OS << " " << V2.getType().str() << " " << V2.getName() << " = " 1325 << V.getName() << ";"; 1326 emitNewLine(); 1327 1328 V = V2; 1329 } 1330 } 1331 1332 // We don't check 'a' in this function, because for builtin function the 1333 // argument matching to 'a' uses a vector type splatted from a scalar type. 1334 bool Intrinsic::protoHasScalar() const { 1335 return (Proto.find('s') != std::string::npos || 1336 Proto.find('z') != std::string::npos || 1337 Proto.find('r') != std::string::npos || 1338 Proto.find('b') != std::string::npos || 1339 Proto.find('$') != std::string::npos || 1340 Proto.find('y') != std::string::npos || 1341 Proto.find('o') != std::string::npos); 1342 } 1343 1344 void Intrinsic::emitBodyAsBuiltinCall() { 1345 std::string S; 1346 1347 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit 1348 // sret-like argument. 1349 bool SRet = getReturnType().getNumVectors() >= 2; 1350 1351 StringRef N = Name; 1352 if (hasSplat()) { 1353 // Call the non-splat builtin: chop off the "_n" suffix from the name. 1354 assert(N.endswith("_n")); 1355 N = N.drop_back(2); 1356 } 1357 1358 ClassKind LocalCK = CK; 1359 if (!protoHasScalar()) 1360 LocalCK = ClassB; 1361 1362 if (!getReturnType().isVoid() && !SRet) 1363 S += "(" + RetVar.getType().str() + ") "; 1364 1365 S += "__builtin_neon_" + mangleName(N, LocalCK) + "("; 1366 1367 if (SRet) 1368 S += "&" + RetVar.getName() + ", "; 1369 1370 for (unsigned I = 0; I < getNumParams(); ++I) { 1371 Variable &V = Variables["p" + utostr(I)]; 1372 Type T = V.getType(); 1373 1374 // Handle multiple-vector values specially, emitting each subvector as an 1375 // argument to the builtin. 1376 if (T.getNumVectors() > 1) { 1377 // Check if an explicit cast is needed. 1378 std::string Cast; 1379 if (T.isChar() || T.isPoly() || !T.isSigned()) { 1380 Type T2 = T; 1381 T2.makeOneVector(); 1382 T2.makeInteger(8, /*Signed=*/true); 1383 Cast = "(" + T2.str() + ")"; 1384 } 1385 1386 for (unsigned J = 0; J < T.getNumVectors(); ++J) 1387 S += Cast + V.getName() + ".val[" + utostr(J) + "], "; 1388 continue; 1389 } 1390 1391 std::string Arg; 1392 Type CastToType = T; 1393 if (hasSplat() && I == getSplatIdx()) { 1394 Arg = "(" + BaseType.str() + ") {"; 1395 for (unsigned J = 0; J < BaseType.getNumElements(); ++J) { 1396 if (J != 0) 1397 Arg += ", "; 1398 Arg += V.getName(); 1399 } 1400 Arg += "}"; 1401 1402 CastToType = BaseType; 1403 } else { 1404 Arg = V.getName(); 1405 } 1406 1407 // Check if an explicit cast is needed. 1408 if (CastToType.isVector()) { 1409 CastToType.makeInteger(8, true); 1410 Arg = "(" + CastToType.str() + ")" + Arg; 1411 } 1412 1413 S += Arg + ", "; 1414 } 1415 1416 // Extra constant integer to hold type class enum for this function, e.g. s8 1417 if (getClassKind(true) == ClassB) { 1418 Type ThisTy = getReturnType(); 1419 if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0])) 1420 ThisTy = getParamType(0); 1421 if (ThisTy.isPointer()) 1422 ThisTy = getParamType(1); 1423 1424 S += utostr(ThisTy.getNeonEnum()); 1425 } else { 1426 // Remove extraneous ", ". 1427 S.pop_back(); 1428 S.pop_back(); 1429 } 1430 S += ");"; 1431 1432 std::string RetExpr; 1433 if (!SRet && !RetVar.getType().isVoid()) 1434 RetExpr = RetVar.getName() + " = "; 1435 1436 OS << " " << RetExpr << S; 1437 emitNewLine(); 1438 } 1439 1440 void Intrinsic::emitBody(StringRef CallPrefix) { 1441 std::vector<std::string> Lines; 1442 1443 assert(RetVar.getType() == Types[0]); 1444 // Create a return variable, if we're not void. 1445 if (!RetVar.getType().isVoid()) { 1446 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";"; 1447 emitNewLine(); 1448 } 1449 1450 if (!Body || Body->getValues().empty()) { 1451 // Nothing specific to output - must output a builtin. 1452 emitBodyAsBuiltinCall(); 1453 return; 1454 } 1455 1456 // We have a list of "things to output". The last should be returned. 1457 for (auto *I : Body->getValues()) { 1458 if (StringInit *SI = dyn_cast<StringInit>(I)) { 1459 Lines.push_back(replaceParamsIn(SI->getAsString())); 1460 } else if (DagInit *DI = dyn_cast<DagInit>(I)) { 1461 DagEmitter DE(*this, CallPrefix); 1462 Lines.push_back(DE.emitDag(DI).second + ";"); 1463 } 1464 } 1465 1466 assert(!Lines.empty() && "Empty def?"); 1467 if (!RetVar.getType().isVoid()) 1468 Lines.back().insert(0, RetVar.getName() + " = "); 1469 1470 for (auto &L : Lines) { 1471 OS << " " << L; 1472 emitNewLine(); 1473 } 1474 } 1475 1476 void Intrinsic::emitReturn() { 1477 if (RetVar.getType().isVoid()) 1478 return; 1479 if (UseMacro) 1480 OS << " " << RetVar.getName() << ";"; 1481 else 1482 OS << " return " << RetVar.getName() << ";"; 1483 emitNewLine(); 1484 } 1485 1486 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) { 1487 // At this point we should only be seeing a def. 1488 DefInit *DefI = cast<DefInit>(DI->getOperator()); 1489 std::string Op = DefI->getAsString(); 1490 1491 if (Op == "cast" || Op == "bitcast") 1492 return emitDagCast(DI, Op == "bitcast"); 1493 if (Op == "shuffle") 1494 return emitDagShuffle(DI); 1495 if (Op == "dup") 1496 return emitDagDup(DI); 1497 if (Op == "splat") 1498 return emitDagSplat(DI); 1499 if (Op == "save_temp") 1500 return emitDagSaveTemp(DI); 1501 if (Op == "op") 1502 return emitDagOp(DI); 1503 if (Op == "call") 1504 return emitDagCall(DI); 1505 if (Op == "name_replace") 1506 return emitDagNameReplace(DI); 1507 if (Op == "literal") 1508 return emitDagLiteral(DI); 1509 assert_with_loc(false, "Unknown operation!"); 1510 return std::make_pair(Type::getVoid(), ""); 1511 } 1512 1513 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) { 1514 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1515 if (DI->getNumArgs() == 2) { 1516 // Unary op. 1517 std::pair<Type, std::string> R = 1518 emitDagArg(DI->getArg(1), DI->getArgNameStr(1)); 1519 return std::make_pair(R.first, Op + R.second); 1520 } else { 1521 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!"); 1522 std::pair<Type, std::string> R1 = 1523 emitDagArg(DI->getArg(1), DI->getArgNameStr(1)); 1524 std::pair<Type, std::string> R2 = 1525 emitDagArg(DI->getArg(2), DI->getArgNameStr(2)); 1526 assert_with_loc(R1.first == R2.first, "Argument type mismatch!"); 1527 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second); 1528 } 1529 } 1530 1531 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) { 1532 std::vector<Type> Types; 1533 std::vector<std::string> Values; 1534 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { 1535 std::pair<Type, std::string> R = 1536 emitDagArg(DI->getArg(I + 1), DI->getArgNameStr(I + 1)); 1537 Types.push_back(R.first); 1538 Values.push_back(R.second); 1539 } 1540 1541 // Look up the called intrinsic. 1542 std::string N; 1543 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) 1544 N = SI->getAsUnquotedString(); 1545 else 1546 N = emitDagArg(DI->getArg(0), "").second; 1547 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types); 1548 1549 // Make sure the callee is known as an early def. 1550 Callee.setNeededEarly(); 1551 Intr.Dependencies.insert(&Callee); 1552 1553 // Now create the call itself. 1554 std::string S = CallPrefix.str() + Callee.getMangledName(true) + "("; 1555 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) { 1556 if (I != 0) 1557 S += ", "; 1558 S += Values[I]; 1559 } 1560 S += ")"; 1561 1562 return std::make_pair(Callee.getReturnType(), S); 1563 } 1564 1565 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI, 1566 bool IsBitCast){ 1567 // (cast MOD* VAL) -> cast VAL to type given by MOD. 1568 std::pair<Type, std::string> R = emitDagArg( 1569 DI->getArg(DI->getNumArgs() - 1), 1570 DI->getArgNameStr(DI->getNumArgs() - 1)); 1571 Type castToType = R.first; 1572 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) { 1573 1574 // MOD can take several forms: 1575 // 1. $X - take the type of parameter / variable X. 1576 // 2. The value "R" - take the type of the return type. 1577 // 3. a type string 1578 // 4. The value "U" or "S" to switch the signedness. 1579 // 5. The value "H" or "D" to half or double the bitwidth. 1580 // 6. The value "8" to convert to 8-bit (signed) integer lanes. 1581 if (!DI->getArgNameStr(ArgIdx).empty()) { 1582 assert_with_loc(Intr.Variables.find(DI->getArgNameStr(ArgIdx)) != 1583 Intr.Variables.end(), 1584 "Variable not found"); 1585 castToType = Intr.Variables[DI->getArgNameStr(ArgIdx)].getType(); 1586 } else { 1587 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx)); 1588 assert_with_loc(SI, "Expected string type or $Name for cast type"); 1589 1590 if (SI->getAsUnquotedString() == "R") { 1591 castToType = Intr.getReturnType(); 1592 } else if (SI->getAsUnquotedString() == "U") { 1593 castToType.makeUnsigned(); 1594 } else if (SI->getAsUnquotedString() == "S") { 1595 castToType.makeSigned(); 1596 } else if (SI->getAsUnquotedString() == "H") { 1597 castToType.halveLanes(); 1598 } else if (SI->getAsUnquotedString() == "D") { 1599 castToType.doubleLanes(); 1600 } else if (SI->getAsUnquotedString() == "8") { 1601 castToType.makeInteger(8, true); 1602 } else { 1603 castToType = Type::fromTypedefName(SI->getAsUnquotedString()); 1604 assert_with_loc(!castToType.isVoid(), "Unknown typedef"); 1605 } 1606 } 1607 } 1608 1609 std::string S; 1610 if (IsBitCast) { 1611 // Emit a reinterpret cast. The second operand must be an lvalue, so create 1612 // a temporary. 1613 std::string N = "reint"; 1614 unsigned I = 0; 1615 while (Intr.Variables.find(N) != Intr.Variables.end()) 1616 N = "reint" + utostr(++I); 1617 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix); 1618 1619 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = " 1620 << R.second << ";"; 1621 Intr.emitNewLine(); 1622 1623 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + ""; 1624 } else { 1625 // Emit a normal (static) cast. 1626 S = "(" + castToType.str() + ")(" + R.second + ")"; 1627 } 1628 1629 return std::make_pair(castToType, S); 1630 } 1631 1632 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){ 1633 // See the documentation in arm_neon.td for a description of these operators. 1634 class LowHalf : public SetTheory::Operator { 1635 public: 1636 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1637 ArrayRef<SMLoc> Loc) override { 1638 SetTheory::RecSet Elts2; 1639 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); 1640 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2)); 1641 } 1642 }; 1643 1644 class HighHalf : public SetTheory::Operator { 1645 public: 1646 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1647 ArrayRef<SMLoc> Loc) override { 1648 SetTheory::RecSet Elts2; 1649 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc); 1650 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end()); 1651 } 1652 }; 1653 1654 class Rev : public SetTheory::Operator { 1655 unsigned ElementSize; 1656 1657 public: 1658 Rev(unsigned ElementSize) : ElementSize(ElementSize) {} 1659 1660 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, 1661 ArrayRef<SMLoc> Loc) override { 1662 SetTheory::RecSet Elts2; 1663 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc); 1664 1665 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue(); 1666 VectorSize /= ElementSize; 1667 1668 std::vector<Record *> Revved; 1669 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) { 1670 for (int LI = VectorSize - 1; LI >= 0; --LI) { 1671 Revved.push_back(Elts2[VI + LI]); 1672 } 1673 } 1674 1675 Elts.insert(Revved.begin(), Revved.end()); 1676 } 1677 }; 1678 1679 class MaskExpander : public SetTheory::Expander { 1680 unsigned N; 1681 1682 public: 1683 MaskExpander(unsigned N) : N(N) {} 1684 1685 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override { 1686 unsigned Addend = 0; 1687 if (R->getName() == "mask0") 1688 Addend = 0; 1689 else if (R->getName() == "mask1") 1690 Addend = N; 1691 else 1692 return; 1693 for (unsigned I = 0; I < N; ++I) 1694 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend))); 1695 } 1696 }; 1697 1698 // (shuffle arg1, arg2, sequence) 1699 std::pair<Type, std::string> Arg1 = 1700 emitDagArg(DI->getArg(0), DI->getArgNameStr(0)); 1701 std::pair<Type, std::string> Arg2 = 1702 emitDagArg(DI->getArg(1), DI->getArgNameStr(1)); 1703 assert_with_loc(Arg1.first == Arg2.first, 1704 "Different types in arguments to shuffle!"); 1705 1706 SetTheory ST; 1707 SetTheory::RecSet Elts; 1708 ST.addOperator("lowhalf", llvm::make_unique<LowHalf>()); 1709 ST.addOperator("highhalf", llvm::make_unique<HighHalf>()); 1710 ST.addOperator("rev", 1711 llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits())); 1712 ST.addExpander("MaskExpand", 1713 llvm::make_unique<MaskExpander>(Arg1.first.getNumElements())); 1714 ST.evaluate(DI->getArg(2), Elts, None); 1715 1716 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second; 1717 for (auto &E : Elts) { 1718 StringRef Name = E->getName(); 1719 assert_with_loc(Name.startswith("sv"), 1720 "Incorrect element kind in shuffle mask!"); 1721 S += ", " + Name.drop_front(2).str(); 1722 } 1723 S += ")"; 1724 1725 // Recalculate the return type - the shuffle may have halved or doubled it. 1726 Type T(Arg1.first); 1727 if (Elts.size() > T.getNumElements()) { 1728 assert_with_loc( 1729 Elts.size() == T.getNumElements() * 2, 1730 "Can only double or half the number of elements in a shuffle!"); 1731 T.doubleLanes(); 1732 } else if (Elts.size() < T.getNumElements()) { 1733 assert_with_loc( 1734 Elts.size() == T.getNumElements() / 2, 1735 "Can only double or half the number of elements in a shuffle!"); 1736 T.halveLanes(); 1737 } 1738 1739 return std::make_pair(T, S); 1740 } 1741 1742 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) { 1743 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument"); 1744 std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), 1745 DI->getArgNameStr(0)); 1746 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument"); 1747 1748 Type T = Intr.getBaseType(); 1749 assert_with_loc(T.isVector(), "dup() used but default type is scalar!"); 1750 std::string S = "(" + T.str() + ") {"; 1751 for (unsigned I = 0; I < T.getNumElements(); ++I) { 1752 if (I != 0) 1753 S += ", "; 1754 S += A.second; 1755 } 1756 S += "}"; 1757 1758 return std::make_pair(T, S); 1759 } 1760 1761 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) { 1762 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments"); 1763 std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), 1764 DI->getArgNameStr(0)); 1765 std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), 1766 DI->getArgNameStr(1)); 1767 1768 assert_with_loc(B.first.isScalar(), 1769 "splat() requires a scalar int as the second argument"); 1770 1771 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second; 1772 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) { 1773 S += ", " + B.second; 1774 } 1775 S += ")"; 1776 1777 return std::make_pair(Intr.getBaseType(), S); 1778 } 1779 1780 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) { 1781 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments"); 1782 std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), 1783 DI->getArgNameStr(1)); 1784 1785 assert_with_loc(!A.first.isVoid(), 1786 "Argument to save_temp() must have non-void type!"); 1787 1788 std::string N = DI->getArgNameStr(0); 1789 assert_with_loc(!N.empty(), 1790 "save_temp() expects a name as the first argument"); 1791 1792 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(), 1793 "Variable already defined!"); 1794 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix); 1795 1796 std::string S = 1797 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second; 1798 1799 return std::make_pair(Type::getVoid(), S); 1800 } 1801 1802 std::pair<Type, std::string> 1803 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) { 1804 std::string S = Intr.Name; 1805 1806 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!"); 1807 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1808 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); 1809 1810 size_t Idx = S.find(ToReplace); 1811 1812 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!"); 1813 S.replace(Idx, ToReplace.size(), ReplaceWith); 1814 1815 return std::make_pair(Type::getVoid(), S); 1816 } 1817 1818 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){ 1819 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString(); 1820 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString(); 1821 return std::make_pair(Type::fromTypedefName(Ty), Value); 1822 } 1823 1824 std::pair<Type, std::string> 1825 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) { 1826 if (!ArgName.empty()) { 1827 assert_with_loc(!Arg->isComplete(), 1828 "Arguments must either be DAGs or names, not both!"); 1829 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(), 1830 "Variable not defined!"); 1831 Variable &V = Intr.Variables[ArgName]; 1832 return std::make_pair(V.getType(), V.getName()); 1833 } 1834 1835 assert(Arg && "Neither ArgName nor Arg?!"); 1836 DagInit *DI = dyn_cast<DagInit>(Arg); 1837 assert_with_loc(DI, "Arguments must either be DAGs or names!"); 1838 1839 return emitDag(DI); 1840 } 1841 1842 std::string Intrinsic::generate() { 1843 // Little endian intrinsics are simple and don't require any argument 1844 // swapping. 1845 OS << "#ifdef __LITTLE_ENDIAN__\n"; 1846 1847 generateImpl(false, "", ""); 1848 1849 OS << "#else\n"; 1850 1851 // Big endian intrinsics are more complex. The user intended these 1852 // intrinsics to operate on a vector "as-if" loaded by (V)LDR, 1853 // but we load as-if (V)LD1. So we should swap all arguments and 1854 // swap the return value too. 1855 // 1856 // If we call sub-intrinsics, we should call a version that does 1857 // not re-swap the arguments! 1858 generateImpl(true, "", "__noswap_"); 1859 1860 // If we're needed early, create a non-swapping variant for 1861 // big-endian. 1862 if (NeededEarly) { 1863 generateImpl(false, "__noswap_", "__noswap_"); 1864 } 1865 OS << "#endif\n\n"; 1866 1867 return OS.str(); 1868 } 1869 1870 void Intrinsic::generateImpl(bool ReverseArguments, 1871 StringRef NamePrefix, StringRef CallPrefix) { 1872 CurrentRecord = R; 1873 1874 // If we call a macro, our local variables may be corrupted due to 1875 // lack of proper lexical scoping. So, add a globally unique postfix 1876 // to every variable. 1877 // 1878 // indexBody() should have set up the Dependencies set by now. 1879 for (auto *I : Dependencies) 1880 if (I->UseMacro) { 1881 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber()); 1882 break; 1883 } 1884 1885 initVariables(); 1886 1887 emitPrototype(NamePrefix); 1888 1889 if (IsUnavailable) { 1890 OS << " __attribute__((unavailable));"; 1891 } else { 1892 emitOpeningBrace(); 1893 emitShadowedArgs(); 1894 if (ReverseArguments) 1895 emitArgumentReversal(); 1896 emitBody(CallPrefix); 1897 if (ReverseArguments) 1898 emitReturnReversal(); 1899 emitReturn(); 1900 emitClosingBrace(); 1901 } 1902 OS << "\n"; 1903 1904 CurrentRecord = nullptr; 1905 } 1906 1907 void Intrinsic::indexBody() { 1908 CurrentRecord = R; 1909 1910 initVariables(); 1911 emitBody(""); 1912 OS.str(""); 1913 1914 CurrentRecord = nullptr; 1915 } 1916 1917 //===----------------------------------------------------------------------===// 1918 // NeonEmitter implementation 1919 //===----------------------------------------------------------------------===// 1920 1921 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) { 1922 // First, look up the name in the intrinsic map. 1923 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(), 1924 ("Intrinsic '" + Name + "' not found!").str()); 1925 auto &V = IntrinsicMap.find(Name.str())->second; 1926 std::vector<Intrinsic *> GoodVec; 1927 1928 // Create a string to print if we end up failing. 1929 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "("; 1930 for (unsigned I = 0; I < Types.size(); ++I) { 1931 if (I != 0) 1932 ErrMsg += ", "; 1933 ErrMsg += Types[I].str(); 1934 } 1935 ErrMsg += ")'\n"; 1936 ErrMsg += "Available overloads:\n"; 1937 1938 // Now, look through each intrinsic implementation and see if the types are 1939 // compatible. 1940 for (auto &I : V) { 1941 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName(); 1942 ErrMsg += "("; 1943 for (unsigned A = 0; A < I.getNumParams(); ++A) { 1944 if (A != 0) 1945 ErrMsg += ", "; 1946 ErrMsg += I.getParamType(A).str(); 1947 } 1948 ErrMsg += ")\n"; 1949 1950 if (I.getNumParams() != Types.size()) 1951 continue; 1952 1953 bool Good = true; 1954 for (unsigned Arg = 0; Arg < Types.size(); ++Arg) { 1955 if (I.getParamType(Arg) != Types[Arg]) { 1956 Good = false; 1957 break; 1958 } 1959 } 1960 if (Good) 1961 GoodVec.push_back(&I); 1962 } 1963 1964 assert_with_loc(!GoodVec.empty(), 1965 "No compatible intrinsic found - " + ErrMsg); 1966 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg); 1967 1968 return *GoodVec.front(); 1969 } 1970 1971 void NeonEmitter::createIntrinsic(Record *R, 1972 SmallVectorImpl<Intrinsic *> &Out) { 1973 std::string Name = R->getValueAsString("Name"); 1974 std::string Proto = R->getValueAsString("Prototype"); 1975 std::string Types = R->getValueAsString("Types"); 1976 Record *OperationRec = R->getValueAsDef("Operation"); 1977 bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes"); 1978 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe"); 1979 std::string Guard = R->getValueAsString("ArchGuard"); 1980 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable"); 1981 1982 // Set the global current record. This allows assert_with_loc to produce 1983 // decent location information even when highly nested. 1984 CurrentRecord = R; 1985 1986 ListInit *Body = OperationRec->getValueAsListInit("Ops"); 1987 1988 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types); 1989 1990 ClassKind CK = ClassNone; 1991 if (R->getSuperClasses().size() >= 2) 1992 CK = ClassMap[R->getSuperClasses()[1].first]; 1993 1994 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs; 1995 for (auto TS : TypeSpecs) { 1996 if (CartesianProductOfTypes) { 1997 Type DefaultT(TS, 'd'); 1998 for (auto SrcTS : TypeSpecs) { 1999 Type DefaultSrcT(SrcTS, 'd'); 2000 if (TS == SrcTS || 2001 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits()) 2002 continue; 2003 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS)); 2004 } 2005 } else { 2006 NewTypeSpecs.push_back(std::make_pair(TS, TS)); 2007 } 2008 } 2009 2010 llvm::sort(NewTypeSpecs.begin(), NewTypeSpecs.end()); 2011 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()), 2012 NewTypeSpecs.end()); 2013 auto &Entry = IntrinsicMap[Name]; 2014 2015 for (auto &I : NewTypeSpecs) { 2016 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this, 2017 Guard, IsUnavailable, BigEndianSafe); 2018 Out.push_back(&Entry.back()); 2019 } 2020 2021 CurrentRecord = nullptr; 2022 } 2023 2024 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def 2025 /// declaration of builtins, checking for unique builtin declarations. 2026 void NeonEmitter::genBuiltinsDef(raw_ostream &OS, 2027 SmallVectorImpl<Intrinsic *> &Defs) { 2028 OS << "#ifdef GET_NEON_BUILTINS\n"; 2029 2030 // We only want to emit a builtin once, and we want to emit them in 2031 // alphabetical order, so use a std::set. 2032 std::set<std::string> Builtins; 2033 2034 for (auto *Def : Defs) { 2035 if (Def->hasBody()) 2036 continue; 2037 // Functions with 'a' (the splat code) in the type prototype should not get 2038 // their own builtin as they use the non-splat variant. 2039 if (Def->hasSplat()) 2040 continue; 2041 2042 std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \""; 2043 2044 S += Def->getBuiltinTypeStr(); 2045 S += "\", \"n\")"; 2046 2047 Builtins.insert(S); 2048 } 2049 2050 for (auto &S : Builtins) 2051 OS << S << "\n"; 2052 OS << "#endif\n\n"; 2053 } 2054 2055 /// Generate the ARM and AArch64 overloaded type checking code for 2056 /// SemaChecking.cpp, checking for unique builtin declarations. 2057 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS, 2058 SmallVectorImpl<Intrinsic *> &Defs) { 2059 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n"; 2060 2061 // We record each overload check line before emitting because subsequent Inst 2062 // definitions may extend the number of permitted types (i.e. augment the 2063 // Mask). Use std::map to avoid sorting the table by hash number. 2064 struct OverloadInfo { 2065 uint64_t Mask; 2066 int PtrArgNum; 2067 bool HasConstPtr; 2068 OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {} 2069 }; 2070 std::map<std::string, OverloadInfo> OverloadMap; 2071 2072 for (auto *Def : Defs) { 2073 // If the def has a body (that is, it has Operation DAGs), it won't call 2074 // __builtin_neon_* so we don't need to generate a definition for it. 2075 if (Def->hasBody()) 2076 continue; 2077 // Functions with 'a' (the splat code) in the type prototype should not get 2078 // their own builtin as they use the non-splat variant. 2079 if (Def->hasSplat()) 2080 continue; 2081 // Functions which have a scalar argument cannot be overloaded, no need to 2082 // check them if we are emitting the type checking code. 2083 if (Def->protoHasScalar()) 2084 continue; 2085 2086 uint64_t Mask = 0ULL; 2087 Type Ty = Def->getReturnType(); 2088 if (Def->getProto()[0] == 'v' || 2089 isFloatingPointProtoModifier(Def->getProto()[0])) 2090 Ty = Def->getParamType(0); 2091 if (Ty.isPointer()) 2092 Ty = Def->getParamType(1); 2093 2094 Mask |= 1ULL << Ty.getNeonEnum(); 2095 2096 // Check if the function has a pointer or const pointer argument. 2097 std::string Proto = Def->getProto(); 2098 int PtrArgNum = -1; 2099 bool HasConstPtr = false; 2100 for (unsigned I = 0; I < Def->getNumParams(); ++I) { 2101 char ArgType = Proto[I + 1]; 2102 if (ArgType == 'c') { 2103 HasConstPtr = true; 2104 PtrArgNum = I; 2105 break; 2106 } 2107 if (ArgType == 'p') { 2108 PtrArgNum = I; 2109 break; 2110 } 2111 } 2112 // For sret builtins, adjust the pointer argument index. 2113 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1) 2114 PtrArgNum += 1; 2115 2116 std::string Name = Def->getName(); 2117 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup, 2118 // and vst1_lane intrinsics. Using a pointer to the vector element 2119 // type with one of those operations causes codegen to select an aligned 2120 // load/store instruction. If you want an unaligned operation, 2121 // the pointer argument needs to have less alignment than element type, 2122 // so just accept any pointer type. 2123 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") { 2124 PtrArgNum = -1; 2125 HasConstPtr = false; 2126 } 2127 2128 if (Mask) { 2129 std::string Name = Def->getMangledName(); 2130 OverloadMap.insert(std::make_pair(Name, OverloadInfo())); 2131 OverloadInfo &OI = OverloadMap[Name]; 2132 OI.Mask |= Mask; 2133 OI.PtrArgNum |= PtrArgNum; 2134 OI.HasConstPtr = HasConstPtr; 2135 } 2136 } 2137 2138 for (auto &I : OverloadMap) { 2139 OverloadInfo &OI = I.second; 2140 2141 OS << "case NEON::BI__builtin_neon_" << I.first << ": "; 2142 OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL"; 2143 if (OI.PtrArgNum >= 0) 2144 OS << "; PtrArgNum = " << OI.PtrArgNum; 2145 if (OI.HasConstPtr) 2146 OS << "; HasConstPtr = true"; 2147 OS << "; break;\n"; 2148 } 2149 OS << "#endif\n\n"; 2150 } 2151 2152 void 2153 NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS, 2154 SmallVectorImpl<Intrinsic *> &Defs) { 2155 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n"; 2156 2157 std::set<std::string> Emitted; 2158 2159 for (auto *Def : Defs) { 2160 if (Def->hasBody()) 2161 continue; 2162 // Functions with 'a' (the splat code) in the type prototype should not get 2163 // their own builtin as they use the non-splat variant. 2164 if (Def->hasSplat()) 2165 continue; 2166 // Functions which do not have an immediate do not need to have range 2167 // checking code emitted. 2168 if (!Def->hasImmediate()) 2169 continue; 2170 if (Emitted.find(Def->getMangledName()) != Emitted.end()) 2171 continue; 2172 2173 std::string LowerBound, UpperBound; 2174 2175 Record *R = Def->getRecord(); 2176 if (R->getValueAsBit("isVCVT_N")) { 2177 // VCVT between floating- and fixed-point values takes an immediate 2178 // in the range [1, 32) for f32 or [1, 64) for f64. 2179 LowerBound = "1"; 2180 if (Def->getBaseType().getElementSizeInBits() == 32) 2181 UpperBound = "31"; 2182 else 2183 UpperBound = "63"; 2184 } else if (R->getValueAsBit("isScalarShift")) { 2185 // Right shifts have an 'r' in the name, left shifts do not. Convert 2186 // instructions have the same bounds and right shifts. 2187 if (Def->getName().find('r') != std::string::npos || 2188 Def->getName().find("cvt") != std::string::npos) 2189 LowerBound = "1"; 2190 2191 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1); 2192 } else if (R->getValueAsBit("isShift")) { 2193 // Builtins which are overloaded by type will need to have their upper 2194 // bound computed at Sema time based on the type constant. 2195 2196 // Right shifts have an 'r' in the name, left shifts do not. 2197 if (Def->getName().find('r') != std::string::npos) 2198 LowerBound = "1"; 2199 UpperBound = "RFT(TV, true)"; 2200 } else if (Def->getClassKind(true) == ClassB) { 2201 // ClassB intrinsics have a type (and hence lane number) that is only 2202 // known at runtime. 2203 if (R->getValueAsBit("isLaneQ")) 2204 UpperBound = "RFT(TV, false, true)"; 2205 else 2206 UpperBound = "RFT(TV, false, false)"; 2207 } else { 2208 // The immediate generally refers to a lane in the preceding argument. 2209 assert(Def->getImmediateIdx() > 0); 2210 Type T = Def->getParamType(Def->getImmediateIdx() - 1); 2211 UpperBound = utostr(T.getNumElements() - 1); 2212 } 2213 2214 // Calculate the index of the immediate that should be range checked. 2215 unsigned Idx = Def->getNumParams(); 2216 if (Def->hasImmediate()) 2217 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx()); 2218 2219 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": " 2220 << "i = " << Idx << ";"; 2221 if (!LowerBound.empty()) 2222 OS << " l = " << LowerBound << ";"; 2223 if (!UpperBound.empty()) 2224 OS << " u = " << UpperBound << ";"; 2225 OS << " break;\n"; 2226 2227 Emitted.insert(Def->getMangledName()); 2228 } 2229 2230 OS << "#endif\n\n"; 2231 } 2232 2233 /// runHeader - Emit a file with sections defining: 2234 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def. 2235 /// 2. the SemaChecking code for the type overload checking. 2236 /// 3. the SemaChecking code for validation of intrinsic immediate arguments. 2237 void NeonEmitter::runHeader(raw_ostream &OS) { 2238 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2239 2240 SmallVector<Intrinsic *, 128> Defs; 2241 for (auto *R : RV) 2242 createIntrinsic(R, Defs); 2243 2244 // Generate shared BuiltinsXXX.def 2245 genBuiltinsDef(OS, Defs); 2246 2247 // Generate ARM overloaded type checking code for SemaChecking.cpp 2248 genOverloadTypeCheckCode(OS, Defs); 2249 2250 // Generate ARM range checking code for shift/lane immediates. 2251 genIntrinsicRangeCheckCode(OS, Defs); 2252 } 2253 2254 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h 2255 /// is comprised of type definitions and function declarations. 2256 void NeonEmitter::run(raw_ostream &OS) { 2257 OS << "/*===---- arm_neon.h - ARM Neon intrinsics " 2258 "------------------------------" 2259 "---===\n" 2260 " *\n" 2261 " * Permission is hereby granted, free of charge, to any person " 2262 "obtaining " 2263 "a copy\n" 2264 " * of this software and associated documentation files (the " 2265 "\"Software\")," 2266 " to deal\n" 2267 " * in the Software without restriction, including without limitation " 2268 "the " 2269 "rights\n" 2270 " * to use, copy, modify, merge, publish, distribute, sublicense, " 2271 "and/or sell\n" 2272 " * copies of the Software, and to permit persons to whom the Software " 2273 "is\n" 2274 " * furnished to do so, subject to the following conditions:\n" 2275 " *\n" 2276 " * The above copyright notice and this permission notice shall be " 2277 "included in\n" 2278 " * all copies or substantial portions of the Software.\n" 2279 " *\n" 2280 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 2281 "EXPRESS OR\n" 2282 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 2283 "MERCHANTABILITY,\n" 2284 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 2285 "SHALL THE\n" 2286 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 2287 "OTHER\n" 2288 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 2289 "ARISING FROM,\n" 2290 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 2291 "DEALINGS IN\n" 2292 " * THE SOFTWARE.\n" 2293 " *\n" 2294 " *===-----------------------------------------------------------------" 2295 "---" 2296 "---===\n" 2297 " */\n\n"; 2298 2299 OS << "#ifndef __ARM_NEON_H\n"; 2300 OS << "#define __ARM_NEON_H\n\n"; 2301 2302 OS << "#if !defined(__ARM_NEON)\n"; 2303 OS << "#error \"NEON support not enabled\"\n"; 2304 OS << "#endif\n\n"; 2305 2306 OS << "#include <stdint.h>\n\n"; 2307 2308 // Emit NEON-specific scalar typedefs. 2309 OS << "typedef float float32_t;\n"; 2310 OS << "typedef __fp16 float16_t;\n"; 2311 2312 OS << "#ifdef __aarch64__\n"; 2313 OS << "typedef double float64_t;\n"; 2314 OS << "#endif\n\n"; 2315 2316 // For now, signedness of polynomial types depends on target 2317 OS << "#ifdef __aarch64__\n"; 2318 OS << "typedef uint8_t poly8_t;\n"; 2319 OS << "typedef uint16_t poly16_t;\n"; 2320 OS << "typedef uint64_t poly64_t;\n"; 2321 OS << "typedef __uint128_t poly128_t;\n"; 2322 OS << "#else\n"; 2323 OS << "typedef int8_t poly8_t;\n"; 2324 OS << "typedef int16_t poly16_t;\n"; 2325 OS << "#endif\n"; 2326 2327 // Emit Neon vector typedefs. 2328 std::string TypedefTypes( 2329 "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl"); 2330 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes); 2331 2332 // Emit vector typedefs. 2333 bool InIfdef = false; 2334 for (auto &TS : TDTypeVec) { 2335 bool IsA64 = false; 2336 Type T(TS, 'd'); 2337 if (T.isDouble() || (T.isPoly() && T.isLong())) 2338 IsA64 = true; 2339 2340 if (InIfdef && !IsA64) { 2341 OS << "#endif\n"; 2342 InIfdef = false; 2343 } 2344 if (!InIfdef && IsA64) { 2345 OS << "#ifdef __aarch64__\n"; 2346 InIfdef = true; 2347 } 2348 2349 if (T.isPoly()) 2350 OS << "typedef __attribute__((neon_polyvector_type("; 2351 else 2352 OS << "typedef __attribute__((neon_vector_type("; 2353 2354 Type T2 = T; 2355 T2.makeScalar(); 2356 OS << T.getNumElements() << "))) "; 2357 OS << T2.str(); 2358 OS << " " << T.str() << ";\n"; 2359 } 2360 if (InIfdef) 2361 OS << "#endif\n"; 2362 OS << "\n"; 2363 2364 // Emit struct typedefs. 2365 InIfdef = false; 2366 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) { 2367 for (auto &TS : TDTypeVec) { 2368 bool IsA64 = false; 2369 Type T(TS, 'd'); 2370 if (T.isDouble() || (T.isPoly() && T.isLong())) 2371 IsA64 = true; 2372 2373 if (InIfdef && !IsA64) { 2374 OS << "#endif\n"; 2375 InIfdef = false; 2376 } 2377 if (!InIfdef && IsA64) { 2378 OS << "#ifdef __aarch64__\n"; 2379 InIfdef = true; 2380 } 2381 2382 char M = '2' + (NumMembers - 2); 2383 Type VT(TS, M); 2384 OS << "typedef struct " << VT.str() << " {\n"; 2385 OS << " " << T.str() << " val"; 2386 OS << "[" << NumMembers << "]"; 2387 OS << ";\n} "; 2388 OS << VT.str() << ";\n"; 2389 OS << "\n"; 2390 } 2391 } 2392 if (InIfdef) 2393 OS << "#endif\n"; 2394 OS << "\n"; 2395 2396 OS << "#define __ai static inline __attribute__((__always_inline__, " 2397 "__nodebug__))\n\n"; 2398 2399 SmallVector<Intrinsic *, 128> Defs; 2400 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2401 for (auto *R : RV) 2402 createIntrinsic(R, Defs); 2403 2404 for (auto *I : Defs) 2405 I->indexBody(); 2406 2407 std::stable_sort( 2408 Defs.begin(), Defs.end(), 2409 [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; }); 2410 2411 // Only emit a def when its requirements have been met. 2412 // FIXME: This loop could be made faster, but it's fast enough for now. 2413 bool MadeProgress = true; 2414 std::string InGuard; 2415 while (!Defs.empty() && MadeProgress) { 2416 MadeProgress = false; 2417 2418 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2419 I != Defs.end(); /*No step*/) { 2420 bool DependenciesSatisfied = true; 2421 for (auto *II : (*I)->getDependencies()) { 2422 if (std::find(Defs.begin(), Defs.end(), II) != Defs.end()) 2423 DependenciesSatisfied = false; 2424 } 2425 if (!DependenciesSatisfied) { 2426 // Try the next one. 2427 ++I; 2428 continue; 2429 } 2430 2431 // Emit #endif/#if pair if needed. 2432 if ((*I)->getGuard() != InGuard) { 2433 if (!InGuard.empty()) 2434 OS << "#endif\n"; 2435 InGuard = (*I)->getGuard(); 2436 if (!InGuard.empty()) 2437 OS << "#if " << InGuard << "\n"; 2438 } 2439 2440 // Actually generate the intrinsic code. 2441 OS << (*I)->generate(); 2442 2443 MadeProgress = true; 2444 I = Defs.erase(I); 2445 } 2446 } 2447 assert(Defs.empty() && "Some requirements were not satisfied!"); 2448 if (!InGuard.empty()) 2449 OS << "#endif\n"; 2450 2451 OS << "\n"; 2452 OS << "#undef __ai\n\n"; 2453 OS << "#endif /* __ARM_NEON_H */\n"; 2454 } 2455 2456 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h 2457 /// is comprised of type definitions and function declarations. 2458 void NeonEmitter::runFP16(raw_ostream &OS) { 2459 OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics " 2460 "------------------------------" 2461 "---===\n" 2462 " *\n" 2463 " * Permission is hereby granted, free of charge, to any person " 2464 "obtaining a copy\n" 2465 " * of this software and associated documentation files (the " 2466 "\"Software\"), to deal\n" 2467 " * in the Software without restriction, including without limitation " 2468 "the rights\n" 2469 " * to use, copy, modify, merge, publish, distribute, sublicense, " 2470 "and/or sell\n" 2471 " * copies of the Software, and to permit persons to whom the Software " 2472 "is\n" 2473 " * furnished to do so, subject to the following conditions:\n" 2474 " *\n" 2475 " * The above copyright notice and this permission notice shall be " 2476 "included in\n" 2477 " * all copies or substantial portions of the Software.\n" 2478 " *\n" 2479 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 2480 "EXPRESS OR\n" 2481 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 2482 "MERCHANTABILITY,\n" 2483 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 2484 "SHALL THE\n" 2485 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 2486 "OTHER\n" 2487 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 2488 "ARISING FROM,\n" 2489 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 2490 "DEALINGS IN\n" 2491 " * THE SOFTWARE.\n" 2492 " *\n" 2493 " *===-----------------------------------------------------------------" 2494 "---" 2495 "---===\n" 2496 " */\n\n"; 2497 2498 OS << "#ifndef __ARM_FP16_H\n"; 2499 OS << "#define __ARM_FP16_H\n\n"; 2500 2501 OS << "#include <stdint.h>\n\n"; 2502 2503 OS << "typedef __fp16 float16_t;\n"; 2504 2505 OS << "#define __ai static inline __attribute__((__always_inline__, " 2506 "__nodebug__))\n\n"; 2507 2508 SmallVector<Intrinsic *, 128> Defs; 2509 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst"); 2510 for (auto *R : RV) 2511 createIntrinsic(R, Defs); 2512 2513 for (auto *I : Defs) 2514 I->indexBody(); 2515 2516 std::stable_sort( 2517 Defs.begin(), Defs.end(), 2518 [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; }); 2519 2520 // Only emit a def when its requirements have been met. 2521 // FIXME: This loop could be made faster, but it's fast enough for now. 2522 bool MadeProgress = true; 2523 std::string InGuard; 2524 while (!Defs.empty() && MadeProgress) { 2525 MadeProgress = false; 2526 2527 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin(); 2528 I != Defs.end(); /*No step*/) { 2529 bool DependenciesSatisfied = true; 2530 for (auto *II : (*I)->getDependencies()) { 2531 if (std::find(Defs.begin(), Defs.end(), II) != Defs.end()) 2532 DependenciesSatisfied = false; 2533 } 2534 if (!DependenciesSatisfied) { 2535 // Try the next one. 2536 ++I; 2537 continue; 2538 } 2539 2540 // Emit #endif/#if pair if needed. 2541 if ((*I)->getGuard() != InGuard) { 2542 if (!InGuard.empty()) 2543 OS << "#endif\n"; 2544 InGuard = (*I)->getGuard(); 2545 if (!InGuard.empty()) 2546 OS << "#if " << InGuard << "\n"; 2547 } 2548 2549 // Actually generate the intrinsic code. 2550 OS << (*I)->generate(); 2551 2552 MadeProgress = true; 2553 I = Defs.erase(I); 2554 } 2555 } 2556 assert(Defs.empty() && "Some requirements were not satisfied!"); 2557 if (!InGuard.empty()) 2558 OS << "#endif\n"; 2559 2560 OS << "\n"; 2561 OS << "#undef __ai\n\n"; 2562 OS << "#endif /* __ARM_FP16_H */\n"; 2563 } 2564 2565 namespace clang { 2566 2567 void EmitNeon(RecordKeeper &Records, raw_ostream &OS) { 2568 NeonEmitter(Records).run(OS); 2569 } 2570 2571 void EmitFP16(RecordKeeper &Records, raw_ostream &OS) { 2572 NeonEmitter(Records).runFP16(OS); 2573 } 2574 2575 void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) { 2576 NeonEmitter(Records).runHeader(OS); 2577 } 2578 2579 void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) { 2580 llvm_unreachable("Neon test generation no longer implemented!"); 2581 } 2582 2583 } // end namespace clang 2584