1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend is responsible for emitting arm_neon.h, which includes
11 // a declaration and definition of each function specified by the ARM NEON
12 // compiler interface.  See ARM document DUI0348B.
13 //
14 // Each NEON instruction is implemented in terms of 1 or more functions which
15 // are suffixed with the element type of the input vectors.  Functions may be
16 // implemented in terms of generic vector operations such as +, *, -, etc. or
17 // by calling a __builtin_-prefixed function which will be handled by clang's
18 // CodeGen library.
19 //
20 // Additional validation code can be generated by this file when runHeader() is
21 // called, rather than the normal run() entry point.
22 //
23 // See also the documentation in include/clang/Basic/arm_neon.td.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/TableGen/Error.h"
38 #include "llvm/TableGen/Record.h"
39 #include "llvm/TableGen/SetTheory.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cctype>
43 #include <cstddef>
44 #include <cstdint>
45 #include <deque>
46 #include <map>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 namespace {
56 
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62   if (!Assertion) {
63     if (CurrentRecord)
64       PrintFatalError(CurrentRecord->getLoc(), Str);
65     else
66       PrintFatalError(Str);
67   }
68 }
69 
70 enum ClassKind {
71   ClassNone,
72   ClassI,     // generic integer instruction, e.g., "i8" suffix
73   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74   ClassW,     // width-specific instruction, e.g., "8" suffix
75   ClassB,     // bitcast arguments with enum argument to specify type
76   ClassL,     // Logical instructions which are op instructions
77               // but we need to not emit any suffix for in our
78               // tests.
79   ClassNoTest // Instructions which we do not test since they are
80               // not TRUE instructions.
81 };
82 
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins.  These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
87 
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
89 
90 enum EltType {
91   Int8,
92   Int16,
93   Int32,
94   Int64,
95   Poly8,
96   Poly16,
97   Poly64,
98   Poly128,
99   Float16,
100   Float32,
101   Float64
102 };
103 
104 } // end namespace NeonTypeFlags
105 
106 class NeonEmitter;
107 
108 //===----------------------------------------------------------------------===//
109 // TypeSpec
110 //===----------------------------------------------------------------------===//
111 
112 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
113 /// for strong typing purposes.
114 ///
115 /// A TypeSpec can be used to create a type.
116 class TypeSpec : public std::string {
117 public:
118   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
119     std::vector<TypeSpec> Ret;
120     TypeSpec Acc;
121     for (char I : Str.str()) {
122       if (islower(I)) {
123         Acc.push_back(I);
124         Ret.push_back(TypeSpec(Acc));
125         Acc.clear();
126       } else {
127         Acc.push_back(I);
128       }
129     }
130     return Ret;
131   }
132 };
133 
134 //===----------------------------------------------------------------------===//
135 // Type
136 //===----------------------------------------------------------------------===//
137 
138 /// A Type. Not much more to say here.
139 class Type {
140 private:
141   TypeSpec TS;
142 
143   bool Float, Signed, Immediate, Void, Poly, Constant, Pointer;
144   // ScalarForMangling and NoManglingQ are really not suited to live here as
145   // they are not related to the type. But they live in the TypeSpec (not the
146   // prototype), so this is really the only place to store them.
147   bool ScalarForMangling, NoManglingQ;
148   unsigned Bitwidth, ElementBitwidth, NumVectors;
149 
150 public:
151   Type()
152       : Float(false), Signed(false), Immediate(false), Void(true), Poly(false),
153         Constant(false), Pointer(false), ScalarForMangling(false),
154         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
155 
156   Type(TypeSpec TS, char CharMod)
157       : TS(std::move(TS)), Float(false), Signed(false), Immediate(false),
158         Void(false), Poly(false), Constant(false), Pointer(false),
159         ScalarForMangling(false), NoManglingQ(false), Bitwidth(0),
160         ElementBitwidth(0), NumVectors(0) {
161     applyModifier(CharMod);
162   }
163 
164   /// Returns a type representing "void".
165   static Type getVoid() { return Type(); }
166 
167   bool operator==(const Type &Other) const { return str() == Other.str(); }
168   bool operator!=(const Type &Other) const { return !operator==(Other); }
169 
170   //
171   // Query functions
172   //
173   bool isScalarForMangling() const { return ScalarForMangling; }
174   bool noManglingQ() const { return NoManglingQ; }
175 
176   bool isPointer() const { return Pointer; }
177   bool isFloating() const { return Float; }
178   bool isInteger() const { return !Float && !Poly; }
179   bool isSigned() const { return Signed; }
180   bool isImmediate() const { return Immediate; }
181   bool isScalar() const { return NumVectors == 0; }
182   bool isVector() const { return NumVectors > 0; }
183   bool isFloat() const { return Float && ElementBitwidth == 32; }
184   bool isDouble() const { return Float && ElementBitwidth == 64; }
185   bool isHalf() const { return Float && ElementBitwidth == 16; }
186   bool isPoly() const { return Poly; }
187   bool isChar() const { return ElementBitwidth == 8; }
188   bool isShort() const { return !Float && ElementBitwidth == 16; }
189   bool isInt() const { return !Float && ElementBitwidth == 32; }
190   bool isLong() const { return !Float && ElementBitwidth == 64; }
191   bool isVoid() const { return Void; }
192   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
193   unsigned getSizeInBits() const { return Bitwidth; }
194   unsigned getElementSizeInBits() const { return ElementBitwidth; }
195   unsigned getNumVectors() const { return NumVectors; }
196 
197   //
198   // Mutator functions
199   //
200   void makeUnsigned() { Signed = false; }
201   void makeSigned() { Signed = true; }
202 
203   void makeInteger(unsigned ElemWidth, bool Sign) {
204     Float = false;
205     Poly = false;
206     Signed = Sign;
207     Immediate = false;
208     ElementBitwidth = ElemWidth;
209   }
210 
211   void makeImmediate(unsigned ElemWidth) {
212     Float = false;
213     Poly = false;
214     Signed = true;
215     Immediate = true;
216     ElementBitwidth = ElemWidth;
217   }
218 
219   void makeScalar() {
220     Bitwidth = ElementBitwidth;
221     NumVectors = 0;
222   }
223 
224   void makeOneVector() {
225     assert(isVector());
226     NumVectors = 1;
227   }
228 
229   void doubleLanes() {
230     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
231     Bitwidth = 128;
232   }
233 
234   void halveLanes() {
235     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
236     Bitwidth = 64;
237   }
238 
239   /// Return the C string representation of a type, which is the typename
240   /// defined in stdint.h or arm_neon.h.
241   std::string str() const;
242 
243   /// Return the string representation of a type, which is an encoded
244   /// string for passing to the BUILTIN() macro in Builtins.def.
245   std::string builtin_str() const;
246 
247   /// Return the value in NeonTypeFlags for this type.
248   unsigned getNeonEnum() const;
249 
250   /// Parse a type from a stdint.h or arm_neon.h typedef name,
251   /// for example uint32x2_t or int64_t.
252   static Type fromTypedefName(StringRef Name);
253 
254 private:
255   /// Creates the type based on the typespec string in TS.
256   /// Sets "Quad" to true if the "Q" or "H" modifiers were
257   /// seen. This is needed by applyModifier as some modifiers
258   /// only take effect if the type size was changed by "Q" or "H".
259   void applyTypespec(bool &Quad);
260   /// Applies a prototype modifier to the type.
261   void applyModifier(char Mod);
262 };
263 
264 //===----------------------------------------------------------------------===//
265 // Variable
266 //===----------------------------------------------------------------------===//
267 
268 /// A variable is a simple class that just has a type and a name.
269 class Variable {
270   Type T;
271   std::string N;
272 
273 public:
274   Variable() : T(Type::getVoid()), N("") {}
275   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
276 
277   Type getType() const { return T; }
278   std::string getName() const { return "__" + N; }
279 };
280 
281 //===----------------------------------------------------------------------===//
282 // Intrinsic
283 //===----------------------------------------------------------------------===//
284 
285 /// The main grunt class. This represents an instantiation of an intrinsic with
286 /// a particular typespec and prototype.
287 class Intrinsic {
288   friend class DagEmitter;
289 
290   /// The Record this intrinsic was created from.
291   Record *R;
292   /// The unmangled name and prototype.
293   std::string Name, Proto;
294   /// The input and output typespecs. InTS == OutTS except when
295   /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
296   TypeSpec OutTS, InTS;
297   /// The base class kind. Most intrinsics use ClassS, which has full type
298   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
299   /// signedness (i32), while some (ClassB) have no type at all, only a width
300   /// (32).
301   ClassKind CK;
302   /// The list of DAGs for the body. May be empty, in which case we should
303   /// emit a builtin call.
304   ListInit *Body;
305   /// The architectural #ifdef guard.
306   std::string Guard;
307   /// Set if the Unavailable bit is 1. This means we don't generate a body,
308   /// just an "unavailable" attribute on a declaration.
309   bool IsUnavailable;
310   /// Is this intrinsic safe for big-endian? or does it need its arguments
311   /// reversing?
312   bool BigEndianSafe;
313 
314   /// The types of return value [0] and parameters [1..].
315   std::vector<Type> Types;
316   /// The local variables defined.
317   std::map<std::string, Variable> Variables;
318   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
319   bool NeededEarly;
320   /// UseMacro - set if we should implement using a macro or unset for a
321   ///            function.
322   bool UseMacro;
323   /// The set of intrinsics that this intrinsic uses/requires.
324   std::set<Intrinsic *> Dependencies;
325   /// The "base type", which is Type('d', OutTS). InBaseType is only
326   /// different if CartesianProductOfTypes = 1 (for vreinterpret).
327   Type BaseType, InBaseType;
328   /// The return variable.
329   Variable RetVar;
330   /// A postfix to apply to every variable. Defaults to "".
331   std::string VariablePostfix;
332 
333   NeonEmitter &Emitter;
334   std::stringstream OS;
335 
336 public:
337   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
338             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
339             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
340       : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
341         CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
342         BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
343         BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
344     // If this builtin takes an immediate argument, we need to #define it rather
345     // than use a standard declaration, so that SemaChecking can range check
346     // the immediate passed by the user.
347     if (Proto.find('i') != std::string::npos)
348       UseMacro = true;
349 
350     // Pointer arguments need to use macros to avoid hiding aligned attributes
351     // from the pointer type.
352     if (Proto.find('p') != std::string::npos ||
353         Proto.find('c') != std::string::npos)
354       UseMacro = true;
355 
356     // It is not permitted to pass or return an __fp16 by value, so intrinsics
357     // taking a scalar float16_t must be implemented as macros.
358     if (OutTS.find('h') != std::string::npos &&
359         Proto.find('s') != std::string::npos)
360       UseMacro = true;
361 
362     // Modify the TypeSpec per-argument to get a concrete Type, and create
363     // known variables for each.
364     // Types[0] is the return value.
365     Types.emplace_back(OutTS, Proto[0]);
366     for (unsigned I = 1; I < Proto.size(); ++I)
367       Types.emplace_back(InTS, Proto[I]);
368   }
369 
370   /// Get the Record that this intrinsic is based off.
371   Record *getRecord() const { return R; }
372   /// Get the set of Intrinsics that this intrinsic calls.
373   /// this is the set of immediate dependencies, NOT the
374   /// transitive closure.
375   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
376   /// Get the architectural guard string (#ifdef).
377   std::string getGuard() const { return Guard; }
378   /// Get the non-mangled name.
379   std::string getName() const { return Name; }
380 
381   /// Return true if the intrinsic takes an immediate operand.
382   bool hasImmediate() const {
383     return Proto.find('i') != std::string::npos;
384   }
385 
386   /// Return the parameter index of the immediate operand.
387   unsigned getImmediateIdx() const {
388     assert(hasImmediate());
389     unsigned Idx = Proto.find('i');
390     assert(Idx > 0 && "Can't return an immediate!");
391     return Idx - 1;
392   }
393 
394   /// Return true if the intrinsic takes an splat operand.
395   bool hasSplat() const { return Proto.find('a') != std::string::npos; }
396 
397   /// Return the parameter index of the splat operand.
398   unsigned getSplatIdx() const {
399     assert(hasSplat());
400     unsigned Idx = Proto.find('a');
401     assert(Idx > 0 && "Can't return a splat!");
402     return Idx - 1;
403   }
404 
405   unsigned getNumParams() const { return Proto.size() - 1; }
406   Type getReturnType() const { return Types[0]; }
407   Type getParamType(unsigned I) const { return Types[I + 1]; }
408   Type getBaseType() const { return BaseType; }
409   /// Return the raw prototype string.
410   std::string getProto() const { return Proto; }
411 
412   /// Return true if the prototype has a scalar argument.
413   /// This does not return true for the "splat" code ('a').
414   bool protoHasScalar() const;
415 
416   /// Return the index that parameter PIndex will sit at
417   /// in a generated function call. This is often just PIndex,
418   /// but may not be as things such as multiple-vector operands
419   /// and sret parameters need to be taken into accont.
420   unsigned getGeneratedParamIdx(unsigned PIndex) {
421     unsigned Idx = 0;
422     if (getReturnType().getNumVectors() > 1)
423       // Multiple vectors are passed as sret.
424       ++Idx;
425 
426     for (unsigned I = 0; I < PIndex; ++I)
427       Idx += std::max(1U, getParamType(I).getNumVectors());
428 
429     return Idx;
430   }
431 
432   bool hasBody() const { return Body && !Body->getValues().empty(); }
433 
434   void setNeededEarly() { NeededEarly = true; }
435 
436   bool operator<(const Intrinsic &Other) const {
437     // Sort lexicographically on a two-tuple (Guard, Name)
438     if (Guard != Other.Guard)
439       return Guard < Other.Guard;
440     return Name < Other.Name;
441   }
442 
443   ClassKind getClassKind(bool UseClassBIfScalar = false) {
444     if (UseClassBIfScalar && !protoHasScalar())
445       return ClassB;
446     return CK;
447   }
448 
449   /// Return the name, mangled with type information.
450   /// If ForceClassS is true, use ClassS (u32/s32) instead
451   /// of the intrinsic's own type class.
452   std::string getMangledName(bool ForceClassS = false) const;
453   /// Return the type code for a builtin function call.
454   std::string getInstTypeCode(Type T, ClassKind CK) const;
455   /// Return the type string for a BUILTIN() macro in Builtins.def.
456   std::string getBuiltinTypeStr();
457 
458   /// Generate the intrinsic, returning code.
459   std::string generate();
460   /// Perform type checking and populate the dependency graph, but
461   /// don't generate code yet.
462   void indexBody();
463 
464 private:
465   std::string mangleName(std::string Name, ClassKind CK) const;
466 
467   void initVariables();
468   std::string replaceParamsIn(std::string S);
469 
470   void emitBodyAsBuiltinCall();
471 
472   void generateImpl(bool ReverseArguments,
473                     StringRef NamePrefix, StringRef CallPrefix);
474   void emitReturn();
475   void emitBody(StringRef CallPrefix);
476   void emitShadowedArgs();
477   void emitArgumentReversal();
478   void emitReturnReversal();
479   void emitReverseVariable(Variable &Dest, Variable &Src);
480   void emitNewLine();
481   void emitClosingBrace();
482   void emitOpeningBrace();
483   void emitPrototype(StringRef NamePrefix);
484 
485   class DagEmitter {
486     Intrinsic &Intr;
487     StringRef CallPrefix;
488 
489   public:
490     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
491       Intr(Intr), CallPrefix(CallPrefix) {
492     }
493     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
494     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
495     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
496     std::pair<Type, std::string> emitDagDup(DagInit *DI);
497     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
498     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
499     std::pair<Type, std::string> emitDagCall(DagInit *DI);
500     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
501     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
502     std::pair<Type, std::string> emitDagOp(DagInit *DI);
503     std::pair<Type, std::string> emitDag(DagInit *DI);
504   };
505 };
506 
507 //===----------------------------------------------------------------------===//
508 // NeonEmitter
509 //===----------------------------------------------------------------------===//
510 
511 class NeonEmitter {
512   RecordKeeper &Records;
513   DenseMap<Record *, ClassKind> ClassMap;
514   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
515   unsigned UniqueNumber;
516 
517   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
518   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
519   void genOverloadTypeCheckCode(raw_ostream &OS,
520                                 SmallVectorImpl<Intrinsic *> &Defs);
521   void genIntrinsicRangeCheckCode(raw_ostream &OS,
522                                   SmallVectorImpl<Intrinsic *> &Defs);
523 
524 public:
525   /// Called by Intrinsic - this attempts to get an intrinsic that takes
526   /// the given types as arguments.
527   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);
528 
529   /// Called by Intrinsic - returns a globally-unique number.
530   unsigned getUniqueNumber() { return UniqueNumber++; }
531 
532   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
533     Record *SI = R.getClass("SInst");
534     Record *II = R.getClass("IInst");
535     Record *WI = R.getClass("WInst");
536     Record *SOpI = R.getClass("SOpInst");
537     Record *IOpI = R.getClass("IOpInst");
538     Record *WOpI = R.getClass("WOpInst");
539     Record *LOpI = R.getClass("LOpInst");
540     Record *NoTestOpI = R.getClass("NoTestOpInst");
541 
542     ClassMap[SI] = ClassS;
543     ClassMap[II] = ClassI;
544     ClassMap[WI] = ClassW;
545     ClassMap[SOpI] = ClassS;
546     ClassMap[IOpI] = ClassI;
547     ClassMap[WOpI] = ClassW;
548     ClassMap[LOpI] = ClassL;
549     ClassMap[NoTestOpI] = ClassNoTest;
550   }
551 
552   // run - Emit arm_neon.h.inc
553   void run(raw_ostream &o);
554 
555   // runFP16 - Emit arm_fp16.h.inc
556   void runFP16(raw_ostream &o);
557 
558   // runHeader - Emit all the __builtin prototypes used in arm_neon.h
559 	// and arm_fp16.h
560   void runHeader(raw_ostream &o);
561 
562   // runTests - Emit tests for all the Neon intrinsics.
563   void runTests(raw_ostream &o);
564 };
565 
566 } // end anonymous namespace
567 
568 //===----------------------------------------------------------------------===//
569 // Type implementation
570 //===----------------------------------------------------------------------===//
571 
572 std::string Type::str() const {
573   if (Void)
574     return "void";
575   std::string S;
576 
577   if (!Signed && isInteger())
578     S += "u";
579 
580   if (Poly)
581     S += "poly";
582   else if (Float)
583     S += "float";
584   else
585     S += "int";
586 
587   S += utostr(ElementBitwidth);
588   if (isVector())
589     S += "x" + utostr(getNumElements());
590   if (NumVectors > 1)
591     S += "x" + utostr(NumVectors);
592   S += "_t";
593 
594   if (Constant)
595     S += " const";
596   if (Pointer)
597     S += " *";
598 
599   return S;
600 }
601 
602 std::string Type::builtin_str() const {
603   std::string S;
604   if (isVoid())
605     return "v";
606 
607   if (Pointer)
608     // All pointers are void pointers.
609     S += "v";
610   else if (isInteger())
611     switch (ElementBitwidth) {
612     case 8: S += "c"; break;
613     case 16: S += "s"; break;
614     case 32: S += "i"; break;
615     case 64: S += "Wi"; break;
616     case 128: S += "LLLi"; break;
617     default: llvm_unreachable("Unhandled case!");
618     }
619   else
620     switch (ElementBitwidth) {
621     case 16: S += "h"; break;
622     case 32: S += "f"; break;
623     case 64: S += "d"; break;
624     default: llvm_unreachable("Unhandled case!");
625     }
626 
627   if (isChar() && !Pointer)
628     // Make chars explicitly signed.
629     S = "S" + S;
630   else if (isInteger() && !Pointer && !Signed)
631     S = "U" + S;
632 
633   // Constant indices are "int", but have the "constant expression" modifier.
634   if (isImmediate()) {
635     assert(isInteger() && isSigned());
636     S = "I" + S;
637   }
638 
639   if (isScalar()) {
640     if (Constant) S += "C";
641     if (Pointer) S += "*";
642     return S;
643   }
644 
645   std::string Ret;
646   for (unsigned I = 0; I < NumVectors; ++I)
647     Ret += "V" + utostr(getNumElements()) + S;
648 
649   return Ret;
650 }
651 
652 unsigned Type::getNeonEnum() const {
653   unsigned Addend;
654   switch (ElementBitwidth) {
655   case 8: Addend = 0; break;
656   case 16: Addend = 1; break;
657   case 32: Addend = 2; break;
658   case 64: Addend = 3; break;
659   case 128: Addend = 4; break;
660   default: llvm_unreachable("Unhandled element bitwidth!");
661   }
662 
663   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
664   if (Poly) {
665     // Adjustment needed because Poly32 doesn't exist.
666     if (Addend >= 2)
667       --Addend;
668     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
669   }
670   if (Float) {
671     assert(Addend != 0 && "Float8 doesn't exist!");
672     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
673   }
674 
675   if (Bitwidth == 128)
676     Base |= (unsigned)NeonTypeFlags::QuadFlag;
677   if (isInteger() && !Signed)
678     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
679 
680   return Base;
681 }
682 
683 Type Type::fromTypedefName(StringRef Name) {
684   Type T;
685   T.Void = false;
686   T.Float = false;
687   T.Poly = false;
688 
689   if (Name.front() == 'u') {
690     T.Signed = false;
691     Name = Name.drop_front();
692   } else {
693     T.Signed = true;
694   }
695 
696   if (Name.startswith("float")) {
697     T.Float = true;
698     Name = Name.drop_front(5);
699   } else if (Name.startswith("poly")) {
700     T.Poly = true;
701     Name = Name.drop_front(4);
702   } else {
703     assert(Name.startswith("int"));
704     Name = Name.drop_front(3);
705   }
706 
707   unsigned I = 0;
708   for (I = 0; I < Name.size(); ++I) {
709     if (!isdigit(Name[I]))
710       break;
711   }
712   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
713   Name = Name.drop_front(I);
714 
715   T.Bitwidth = T.ElementBitwidth;
716   T.NumVectors = 1;
717 
718   if (Name.front() == 'x') {
719     Name = Name.drop_front();
720     unsigned I = 0;
721     for (I = 0; I < Name.size(); ++I) {
722       if (!isdigit(Name[I]))
723         break;
724     }
725     unsigned NumLanes;
726     Name.substr(0, I).getAsInteger(10, NumLanes);
727     Name = Name.drop_front(I);
728     T.Bitwidth = T.ElementBitwidth * NumLanes;
729   } else {
730     // Was scalar.
731     T.NumVectors = 0;
732   }
733   if (Name.front() == 'x') {
734     Name = Name.drop_front();
735     unsigned I = 0;
736     for (I = 0; I < Name.size(); ++I) {
737       if (!isdigit(Name[I]))
738         break;
739     }
740     Name.substr(0, I).getAsInteger(10, T.NumVectors);
741     Name = Name.drop_front(I);
742   }
743 
744   assert(Name.startswith("_t") && "Malformed typedef!");
745   return T;
746 }
747 
748 void Type::applyTypespec(bool &Quad) {
749   std::string S = TS;
750   ScalarForMangling = false;
751   Void = false;
752   Poly = Float = false;
753   ElementBitwidth = ~0U;
754   Signed = true;
755   NumVectors = 1;
756 
757   for (char I : S) {
758     switch (I) {
759     case 'S':
760       ScalarForMangling = true;
761       break;
762     case 'H':
763       NoManglingQ = true;
764       Quad = true;
765       break;
766     case 'Q':
767       Quad = true;
768       break;
769     case 'P':
770       Poly = true;
771       break;
772     case 'U':
773       Signed = false;
774       break;
775     case 'c':
776       ElementBitwidth = 8;
777       break;
778     case 'h':
779       Float = true;
780       LLVM_FALLTHROUGH;
781     case 's':
782       ElementBitwidth = 16;
783       break;
784     case 'f':
785       Float = true;
786       LLVM_FALLTHROUGH;
787     case 'i':
788       ElementBitwidth = 32;
789       break;
790     case 'd':
791       Float = true;
792       LLVM_FALLTHROUGH;
793     case 'l':
794       ElementBitwidth = 64;
795       break;
796     case 'k':
797       ElementBitwidth = 128;
798       // Poly doesn't have a 128x1 type.
799       if (Poly)
800         NumVectors = 0;
801       break;
802     default:
803       llvm_unreachable("Unhandled type code!");
804     }
805   }
806   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
807 
808   Bitwidth = Quad ? 128 : 64;
809 }
810 
811 void Type::applyModifier(char Mod) {
812   bool AppliedQuad = false;
813   applyTypespec(AppliedQuad);
814 
815   switch (Mod) {
816   case 'v':
817     Void = true;
818     break;
819   case 't':
820     if (Poly) {
821       Poly = false;
822       Signed = false;
823     }
824     break;
825   case 'b':
826     Signed = false;
827     Float = false;
828     Poly = false;
829     NumVectors = 0;
830     Bitwidth = ElementBitwidth;
831     break;
832   case '$':
833     Signed = true;
834     Float = false;
835     Poly = false;
836     NumVectors = 0;
837     Bitwidth = ElementBitwidth;
838     break;
839   case 'u':
840     Signed = false;
841     Poly = false;
842     Float = false;
843     break;
844   case 'x':
845     Signed = true;
846     assert(!Poly && "'u' can't be used with poly types!");
847     Float = false;
848     break;
849   case 'o':
850     Bitwidth = ElementBitwidth = 64;
851     NumVectors = 0;
852     Float = true;
853     break;
854   case 'y':
855     Bitwidth = ElementBitwidth = 32;
856     NumVectors = 0;
857     Float = true;
858     break;
859   case 'Y':
860     Bitwidth = ElementBitwidth = 16;
861     NumVectors = 0;
862     Float = true;
863     break;
864   case 'I':
865     Bitwidth = ElementBitwidth = 32;
866     NumVectors = 0;
867     Float = false;
868     Signed = true;
869     break;
870   case 'L':
871     Bitwidth = ElementBitwidth = 64;
872     NumVectors = 0;
873     Float = false;
874     Signed = true;
875     break;
876   case 'U':
877     Bitwidth = ElementBitwidth = 32;
878     NumVectors = 0;
879     Float = false;
880     Signed = false;
881     break;
882   case 'O':
883     Bitwidth = ElementBitwidth = 64;
884     NumVectors = 0;
885     Float = false;
886     Signed = false;
887     break;
888   case 'f':
889     Float = true;
890     ElementBitwidth = 32;
891     break;
892   case 'F':
893     Float = true;
894     ElementBitwidth = 64;
895     break;
896   case 'H':
897     Float = true;
898     ElementBitwidth = 16;
899     break;
900   case 'g':
901     if (AppliedQuad)
902       Bitwidth /= 2;
903     break;
904   case 'j':
905     if (!AppliedQuad)
906       Bitwidth *= 2;
907     break;
908   case 'w':
909     ElementBitwidth *= 2;
910     Bitwidth *= 2;
911     break;
912   case 'n':
913     ElementBitwidth *= 2;
914     break;
915   case 'i':
916     Float = false;
917     Poly = false;
918     ElementBitwidth = Bitwidth = 32;
919     NumVectors = 0;
920     Signed = true;
921     Immediate = true;
922     break;
923   case 'l':
924     Float = false;
925     Poly = false;
926     ElementBitwidth = Bitwidth = 64;
927     NumVectors = 0;
928     Signed = false;
929     Immediate = true;
930     break;
931   case 'z':
932     ElementBitwidth /= 2;
933     Bitwidth = ElementBitwidth;
934     NumVectors = 0;
935     break;
936   case 'r':
937     ElementBitwidth *= 2;
938     Bitwidth = ElementBitwidth;
939     NumVectors = 0;
940     break;
941   case 's':
942   case 'a':
943     Bitwidth = ElementBitwidth;
944     NumVectors = 0;
945     break;
946   case 'k':
947     Bitwidth *= 2;
948     break;
949   case 'c':
950     Constant = true;
951     LLVM_FALLTHROUGH;
952   case 'p':
953     Pointer = true;
954     Bitwidth = ElementBitwidth;
955     NumVectors = 0;
956     break;
957   case 'h':
958     ElementBitwidth /= 2;
959     break;
960   case 'q':
961     ElementBitwidth /= 2;
962     Bitwidth *= 2;
963     break;
964   case 'e':
965     ElementBitwidth /= 2;
966     Signed = false;
967     break;
968   case 'm':
969     ElementBitwidth /= 2;
970     Bitwidth /= 2;
971     break;
972   case 'd':
973     break;
974   case '2':
975     NumVectors = 2;
976     break;
977   case '3':
978     NumVectors = 3;
979     break;
980   case '4':
981     NumVectors = 4;
982     break;
983   case 'B':
984     NumVectors = 2;
985     if (!AppliedQuad)
986       Bitwidth *= 2;
987     break;
988   case 'C':
989     NumVectors = 3;
990     if (!AppliedQuad)
991       Bitwidth *= 2;
992     break;
993   case 'D':
994     NumVectors = 4;
995     if (!AppliedQuad)
996       Bitwidth *= 2;
997     break;
998   default:
999     llvm_unreachable("Unhandled character!");
1000   }
1001 }
1002 
1003 //===----------------------------------------------------------------------===//
1004 // Intrinsic implementation
1005 //===----------------------------------------------------------------------===//
1006 
1007 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
1008   char typeCode = '\0';
1009   bool printNumber = true;
1010 
1011   if (CK == ClassB)
1012     return "";
1013 
1014   if (T.isPoly())
1015     typeCode = 'p';
1016   else if (T.isInteger())
1017     typeCode = T.isSigned() ? 's' : 'u';
1018   else
1019     typeCode = 'f';
1020 
1021   if (CK == ClassI) {
1022     switch (typeCode) {
1023     default:
1024       break;
1025     case 's':
1026     case 'u':
1027     case 'p':
1028       typeCode = 'i';
1029       break;
1030     }
1031   }
1032   if (CK == ClassB) {
1033     typeCode = '\0';
1034   }
1035 
1036   std::string S;
1037   if (typeCode != '\0')
1038     S.push_back(typeCode);
1039   if (printNumber)
1040     S += utostr(T.getElementSizeInBits());
1041 
1042   return S;
1043 }
1044 
1045 static bool isFloatingPointProtoModifier(char Mod) {
1046   return Mod == 'F' || Mod == 'f' || Mod == 'H' || Mod == 'Y' || Mod == 'I';
1047 }
1048 
1049 std::string Intrinsic::getBuiltinTypeStr() {
1050   ClassKind LocalCK = getClassKind(true);
1051   std::string S;
1052 
1053   Type RetT = getReturnType();
1054   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1055       !RetT.isFloating())
1056     RetT.makeInteger(RetT.getElementSizeInBits(), false);
1057 
1058   // Since the return value must be one type, return a vector type of the
1059   // appropriate width which we will bitcast.  An exception is made for
1060   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1061   // fashion, storing them to a pointer arg.
1062   if (RetT.getNumVectors() > 1) {
1063     S += "vv*"; // void result with void* first argument
1064   } else {
1065     if (RetT.isPoly())
1066       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1067     if (!RetT.isScalar() && !RetT.isSigned())
1068       RetT.makeSigned();
1069 
1070     bool ForcedVectorFloatingType = isFloatingPointProtoModifier(Proto[0]);
1071     if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
1072       // Cast to vector of 8-bit elements.
1073       RetT.makeInteger(8, true);
1074 
1075     S += RetT.builtin_str();
1076   }
1077 
1078   for (unsigned I = 0; I < getNumParams(); ++I) {
1079     Type T = getParamType(I);
1080     if (T.isPoly())
1081       T.makeInteger(T.getElementSizeInBits(), false);
1082 
1083     bool ForcedFloatingType = isFloatingPointProtoModifier(Proto[I + 1]);
1084     if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
1085       T.makeInteger(8, true);
1086     // Halves always get converted to 8-bit elements.
1087     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1088       T.makeInteger(8, true);
1089 
1090     if (LocalCK == ClassI)
1091       T.makeSigned();
1092 
1093     if (hasImmediate() && getImmediateIdx() == I)
1094       T.makeImmediate(32);
1095 
1096     S += T.builtin_str();
1097   }
1098 
1099   // Extra constant integer to hold type class enum for this function, e.g. s8
1100   if (LocalCK == ClassB)
1101     S += "i";
1102 
1103   return S;
1104 }
1105 
1106 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1107   // Check if the prototype has a scalar operand with the type of the vector
1108   // elements.  If not, bitcasting the args will take care of arg checking.
1109   // The actual signedness etc. will be taken care of with special enums.
1110   ClassKind LocalCK = CK;
1111   if (!protoHasScalar())
1112     LocalCK = ClassB;
1113 
1114   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1115 }
1116 
1117 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1118   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1119   std::string S = Name;
1120 
1121   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1122       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
1123     return Name;
1124 
1125   if (!typeCode.empty()) {
1126     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1127     if (Name.size() >= 3 && isdigit(Name.back()) &&
1128         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1129       S.insert(S.length() - 3, "_" + typeCode);
1130     else
1131       S += "_" + typeCode;
1132   }
1133 
1134   if (BaseType != InBaseType) {
1135     // A reinterpret - out the input base type at the end.
1136     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1137   }
1138 
1139   if (LocalCK == ClassB)
1140     S += "_v";
1141 
1142   // Insert a 'q' before the first '_' character so that it ends up before
1143   // _lane or _n on vector-scalar operations.
1144   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1145     size_t Pos = S.find('_');
1146     S.insert(Pos, "q");
1147   }
1148 
1149   char Suffix = '\0';
1150   if (BaseType.isScalarForMangling()) {
1151     switch (BaseType.getElementSizeInBits()) {
1152     case 8: Suffix = 'b'; break;
1153     case 16: Suffix = 'h'; break;
1154     case 32: Suffix = 's'; break;
1155     case 64: Suffix = 'd'; break;
1156     default: llvm_unreachable("Bad suffix!");
1157     }
1158   }
1159   if (Suffix != '\0') {
1160     size_t Pos = S.find('_');
1161     S.insert(Pos, &Suffix, 1);
1162   }
1163 
1164   return S;
1165 }
1166 
1167 std::string Intrinsic::replaceParamsIn(std::string S) {
1168   while (S.find('$') != std::string::npos) {
1169     size_t Pos = S.find('$');
1170     size_t End = Pos + 1;
1171     while (isalpha(S[End]))
1172       ++End;
1173 
1174     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1175     assert_with_loc(Variables.find(VarName) != Variables.end(),
1176                     "Variable not defined!");
1177     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1178   }
1179 
1180   return S;
1181 }
1182 
1183 void Intrinsic::initVariables() {
1184   Variables.clear();
1185 
1186   // Modify the TypeSpec per-argument to get a concrete Type, and create
1187   // known variables for each.
1188   for (unsigned I = 1; I < Proto.size(); ++I) {
1189     char NameC = '0' + (I - 1);
1190     std::string Name = "p";
1191     Name.push_back(NameC);
1192 
1193     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1194   }
1195   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1196 }
1197 
1198 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1199   if (UseMacro)
1200     OS << "#define ";
1201   else
1202     OS << "__ai " << Types[0].str() << " ";
1203 
1204   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1205 
1206   for (unsigned I = 0; I < getNumParams(); ++I) {
1207     if (I != 0)
1208       OS << ", ";
1209 
1210     char NameC = '0' + I;
1211     std::string Name = "p";
1212     Name.push_back(NameC);
1213     assert(Variables.find(Name) != Variables.end());
1214     Variable &V = Variables[Name];
1215 
1216     if (!UseMacro)
1217       OS << V.getType().str() << " ";
1218     OS << V.getName();
1219   }
1220 
1221   OS << ")";
1222 }
1223 
1224 void Intrinsic::emitOpeningBrace() {
1225   if (UseMacro)
1226     OS << " __extension__ ({";
1227   else
1228     OS << " {";
1229   emitNewLine();
1230 }
1231 
1232 void Intrinsic::emitClosingBrace() {
1233   if (UseMacro)
1234     OS << "})";
1235   else
1236     OS << "}";
1237 }
1238 
1239 void Intrinsic::emitNewLine() {
1240   if (UseMacro)
1241     OS << " \\\n";
1242   else
1243     OS << "\n";
1244 }
1245 
1246 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1247   if (Dest.getType().getNumVectors() > 1) {
1248     emitNewLine();
1249 
1250     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1251       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1252          << "__builtin_shufflevector("
1253          << Src.getName() << ".val[" << K << "], "
1254          << Src.getName() << ".val[" << K << "]";
1255       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1256         OS << ", " << J;
1257       OS << ");";
1258       emitNewLine();
1259     }
1260   } else {
1261     OS << "  " << Dest.getName()
1262        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1263     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1264       OS << ", " << J;
1265     OS << ");";
1266     emitNewLine();
1267   }
1268 }
1269 
1270 void Intrinsic::emitArgumentReversal() {
1271   if (BigEndianSafe)
1272     return;
1273 
1274   // Reverse all vector arguments.
1275   for (unsigned I = 0; I < getNumParams(); ++I) {
1276     std::string Name = "p" + utostr(I);
1277     std::string NewName = "rev" + utostr(I);
1278 
1279     Variable &V = Variables[Name];
1280     Variable NewV(V.getType(), NewName + VariablePostfix);
1281 
1282     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1283       continue;
1284 
1285     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1286     emitReverseVariable(NewV, V);
1287     V = NewV;
1288   }
1289 }
1290 
1291 void Intrinsic::emitReturnReversal() {
1292   if (BigEndianSafe)
1293     return;
1294   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1295       getReturnType().getNumElements() == 1)
1296     return;
1297   emitReverseVariable(RetVar, RetVar);
1298 }
1299 
1300 void Intrinsic::emitShadowedArgs() {
1301   // Macro arguments are not type-checked like inline function arguments,
1302   // so assign them to local temporaries to get the right type checking.
1303   if (!UseMacro)
1304     return;
1305 
1306   for (unsigned I = 0; I < getNumParams(); ++I) {
1307     // Do not create a temporary for an immediate argument.
1308     // That would defeat the whole point of using a macro!
1309     if (hasImmediate() && Proto[I+1] == 'i')
1310       continue;
1311     // Do not create a temporary for pointer arguments. The input
1312     // pointer may have an alignment hint.
1313     if (getParamType(I).isPointer())
1314       continue;
1315 
1316     std::string Name = "p" + utostr(I);
1317 
1318     assert(Variables.find(Name) != Variables.end());
1319     Variable &V = Variables[Name];
1320 
1321     std::string NewName = "s" + utostr(I);
1322     Variable V2(V.getType(), NewName + VariablePostfix);
1323 
1324     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1325        << V.getName() << ";";
1326     emitNewLine();
1327 
1328     V = V2;
1329   }
1330 }
1331 
1332 // We don't check 'a' in this function, because for builtin function the
1333 // argument matching to 'a' uses a vector type splatted from a scalar type.
1334 bool Intrinsic::protoHasScalar() const {
1335   return (Proto.find('s') != std::string::npos ||
1336           Proto.find('z') != std::string::npos ||
1337           Proto.find('r') != std::string::npos ||
1338           Proto.find('b') != std::string::npos ||
1339           Proto.find('$') != std::string::npos ||
1340           Proto.find('y') != std::string::npos ||
1341           Proto.find('o') != std::string::npos);
1342 }
1343 
1344 void Intrinsic::emitBodyAsBuiltinCall() {
1345   std::string S;
1346 
1347   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1348   // sret-like argument.
1349   bool SRet = getReturnType().getNumVectors() >= 2;
1350 
1351   StringRef N = Name;
1352   if (hasSplat()) {
1353     // Call the non-splat builtin: chop off the "_n" suffix from the name.
1354     assert(N.endswith("_n"));
1355     N = N.drop_back(2);
1356   }
1357 
1358   ClassKind LocalCK = CK;
1359   if (!protoHasScalar())
1360     LocalCK = ClassB;
1361 
1362   if (!getReturnType().isVoid() && !SRet)
1363     S += "(" + RetVar.getType().str() + ") ";
1364 
1365   S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1366 
1367   if (SRet)
1368     S += "&" + RetVar.getName() + ", ";
1369 
1370   for (unsigned I = 0; I < getNumParams(); ++I) {
1371     Variable &V = Variables["p" + utostr(I)];
1372     Type T = V.getType();
1373 
1374     // Handle multiple-vector values specially, emitting each subvector as an
1375     // argument to the builtin.
1376     if (T.getNumVectors() > 1) {
1377       // Check if an explicit cast is needed.
1378       std::string Cast;
1379       if (T.isChar() || T.isPoly() || !T.isSigned()) {
1380         Type T2 = T;
1381         T2.makeOneVector();
1382         T2.makeInteger(8, /*Signed=*/true);
1383         Cast = "(" + T2.str() + ")";
1384       }
1385 
1386       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1387         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1388       continue;
1389     }
1390 
1391     std::string Arg;
1392     Type CastToType = T;
1393     if (hasSplat() && I == getSplatIdx()) {
1394       Arg = "(" + BaseType.str() + ") {";
1395       for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
1396         if (J != 0)
1397           Arg += ", ";
1398         Arg += V.getName();
1399       }
1400       Arg += "}";
1401 
1402       CastToType = BaseType;
1403     } else {
1404       Arg = V.getName();
1405     }
1406 
1407     // Check if an explicit cast is needed.
1408     if (CastToType.isVector()) {
1409       CastToType.makeInteger(8, true);
1410       Arg = "(" + CastToType.str() + ")" + Arg;
1411     }
1412 
1413     S += Arg + ", ";
1414   }
1415 
1416   // Extra constant integer to hold type class enum for this function, e.g. s8
1417   if (getClassKind(true) == ClassB) {
1418     Type ThisTy = getReturnType();
1419     if (Proto[0] == 'v' || isFloatingPointProtoModifier(Proto[0]))
1420       ThisTy = getParamType(0);
1421     if (ThisTy.isPointer())
1422       ThisTy = getParamType(1);
1423 
1424     S += utostr(ThisTy.getNeonEnum());
1425   } else {
1426     // Remove extraneous ", ".
1427     S.pop_back();
1428     S.pop_back();
1429   }
1430   S += ");";
1431 
1432   std::string RetExpr;
1433   if (!SRet && !RetVar.getType().isVoid())
1434     RetExpr = RetVar.getName() + " = ";
1435 
1436   OS << "  " << RetExpr << S;
1437   emitNewLine();
1438 }
1439 
1440 void Intrinsic::emitBody(StringRef CallPrefix) {
1441   std::vector<std::string> Lines;
1442 
1443   assert(RetVar.getType() == Types[0]);
1444   // Create a return variable, if we're not void.
1445   if (!RetVar.getType().isVoid()) {
1446     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1447     emitNewLine();
1448   }
1449 
1450   if (!Body || Body->getValues().empty()) {
1451     // Nothing specific to output - must output a builtin.
1452     emitBodyAsBuiltinCall();
1453     return;
1454   }
1455 
1456   // We have a list of "things to output". The last should be returned.
1457   for (auto *I : Body->getValues()) {
1458     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1459       Lines.push_back(replaceParamsIn(SI->getAsString()));
1460     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1461       DagEmitter DE(*this, CallPrefix);
1462       Lines.push_back(DE.emitDag(DI).second + ";");
1463     }
1464   }
1465 
1466   assert(!Lines.empty() && "Empty def?");
1467   if (!RetVar.getType().isVoid())
1468     Lines.back().insert(0, RetVar.getName() + " = ");
1469 
1470   for (auto &L : Lines) {
1471     OS << "  " << L;
1472     emitNewLine();
1473   }
1474 }
1475 
1476 void Intrinsic::emitReturn() {
1477   if (RetVar.getType().isVoid())
1478     return;
1479   if (UseMacro)
1480     OS << "  " << RetVar.getName() << ";";
1481   else
1482     OS << "  return " << RetVar.getName() << ";";
1483   emitNewLine();
1484 }
1485 
1486 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1487   // At this point we should only be seeing a def.
1488   DefInit *DefI = cast<DefInit>(DI->getOperator());
1489   std::string Op = DefI->getAsString();
1490 
1491   if (Op == "cast" || Op == "bitcast")
1492     return emitDagCast(DI, Op == "bitcast");
1493   if (Op == "shuffle")
1494     return emitDagShuffle(DI);
1495   if (Op == "dup")
1496     return emitDagDup(DI);
1497   if (Op == "splat")
1498     return emitDagSplat(DI);
1499   if (Op == "save_temp")
1500     return emitDagSaveTemp(DI);
1501   if (Op == "op")
1502     return emitDagOp(DI);
1503   if (Op == "call")
1504     return emitDagCall(DI);
1505   if (Op == "name_replace")
1506     return emitDagNameReplace(DI);
1507   if (Op == "literal")
1508     return emitDagLiteral(DI);
1509   assert_with_loc(false, "Unknown operation!");
1510   return std::make_pair(Type::getVoid(), "");
1511 }
1512 
1513 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1514   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1515   if (DI->getNumArgs() == 2) {
1516     // Unary op.
1517     std::pair<Type, std::string> R =
1518         emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1519     return std::make_pair(R.first, Op + R.second);
1520   } else {
1521     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1522     std::pair<Type, std::string> R1 =
1523         emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1524     std::pair<Type, std::string> R2 =
1525         emitDagArg(DI->getArg(2), DI->getArgNameStr(2));
1526     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1527     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1528   }
1529 }
1530 
1531 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1532   std::vector<Type> Types;
1533   std::vector<std::string> Values;
1534   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1535     std::pair<Type, std::string> R =
1536         emitDagArg(DI->getArg(I + 1), DI->getArgNameStr(I + 1));
1537     Types.push_back(R.first);
1538     Values.push_back(R.second);
1539   }
1540 
1541   // Look up the called intrinsic.
1542   std::string N;
1543   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1544     N = SI->getAsUnquotedString();
1545   else
1546     N = emitDagArg(DI->getArg(0), "").second;
1547   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);
1548 
1549   // Make sure the callee is known as an early def.
1550   Callee.setNeededEarly();
1551   Intr.Dependencies.insert(&Callee);
1552 
1553   // Now create the call itself.
1554   std::string S = CallPrefix.str() + Callee.getMangledName(true) + "(";
1555   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1556     if (I != 0)
1557       S += ", ";
1558     S += Values[I];
1559   }
1560   S += ")";
1561 
1562   return std::make_pair(Callee.getReturnType(), S);
1563 }
1564 
1565 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1566                                                                 bool IsBitCast){
1567   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1568   std::pair<Type, std::string> R = emitDagArg(
1569       DI->getArg(DI->getNumArgs() - 1),
1570       DI->getArgNameStr(DI->getNumArgs() - 1));
1571   Type castToType = R.first;
1572   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1573 
1574     // MOD can take several forms:
1575     //   1. $X - take the type of parameter / variable X.
1576     //   2. The value "R" - take the type of the return type.
1577     //   3. a type string
1578     //   4. The value "U" or "S" to switch the signedness.
1579     //   5. The value "H" or "D" to half or double the bitwidth.
1580     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1581     if (!DI->getArgNameStr(ArgIdx).empty()) {
1582       assert_with_loc(Intr.Variables.find(DI->getArgNameStr(ArgIdx)) !=
1583                       Intr.Variables.end(),
1584                       "Variable not found");
1585       castToType = Intr.Variables[DI->getArgNameStr(ArgIdx)].getType();
1586     } else {
1587       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1588       assert_with_loc(SI, "Expected string type or $Name for cast type");
1589 
1590       if (SI->getAsUnquotedString() == "R") {
1591         castToType = Intr.getReturnType();
1592       } else if (SI->getAsUnquotedString() == "U") {
1593         castToType.makeUnsigned();
1594       } else if (SI->getAsUnquotedString() == "S") {
1595         castToType.makeSigned();
1596       } else if (SI->getAsUnquotedString() == "H") {
1597         castToType.halveLanes();
1598       } else if (SI->getAsUnquotedString() == "D") {
1599         castToType.doubleLanes();
1600       } else if (SI->getAsUnquotedString() == "8") {
1601         castToType.makeInteger(8, true);
1602       } else {
1603         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1604         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1605       }
1606     }
1607   }
1608 
1609   std::string S;
1610   if (IsBitCast) {
1611     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1612     // a temporary.
1613     std::string N = "reint";
1614     unsigned I = 0;
1615     while (Intr.Variables.find(N) != Intr.Variables.end())
1616       N = "reint" + utostr(++I);
1617     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1618 
1619     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1620             << R.second << ";";
1621     Intr.emitNewLine();
1622 
1623     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1624   } else {
1625     // Emit a normal (static) cast.
1626     S = "(" + castToType.str() + ")(" + R.second + ")";
1627   }
1628 
1629   return std::make_pair(castToType, S);
1630 }
1631 
1632 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1633   // See the documentation in arm_neon.td for a description of these operators.
1634   class LowHalf : public SetTheory::Operator {
1635   public:
1636     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1637                ArrayRef<SMLoc> Loc) override {
1638       SetTheory::RecSet Elts2;
1639       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1640       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1641     }
1642   };
1643 
1644   class HighHalf : public SetTheory::Operator {
1645   public:
1646     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1647                ArrayRef<SMLoc> Loc) override {
1648       SetTheory::RecSet Elts2;
1649       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1650       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1651     }
1652   };
1653 
1654   class Rev : public SetTheory::Operator {
1655     unsigned ElementSize;
1656 
1657   public:
1658     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1659 
1660     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1661                ArrayRef<SMLoc> Loc) override {
1662       SetTheory::RecSet Elts2;
1663       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1664 
1665       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1666       VectorSize /= ElementSize;
1667 
1668       std::vector<Record *> Revved;
1669       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1670         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1671           Revved.push_back(Elts2[VI + LI]);
1672         }
1673       }
1674 
1675       Elts.insert(Revved.begin(), Revved.end());
1676     }
1677   };
1678 
1679   class MaskExpander : public SetTheory::Expander {
1680     unsigned N;
1681 
1682   public:
1683     MaskExpander(unsigned N) : N(N) {}
1684 
1685     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1686       unsigned Addend = 0;
1687       if (R->getName() == "mask0")
1688         Addend = 0;
1689       else if (R->getName() == "mask1")
1690         Addend = N;
1691       else
1692         return;
1693       for (unsigned I = 0; I < N; ++I)
1694         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1695     }
1696   };
1697 
1698   // (shuffle arg1, arg2, sequence)
1699   std::pair<Type, std::string> Arg1 =
1700       emitDagArg(DI->getArg(0), DI->getArgNameStr(0));
1701   std::pair<Type, std::string> Arg2 =
1702       emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1703   assert_with_loc(Arg1.first == Arg2.first,
1704                   "Different types in arguments to shuffle!");
1705 
1706   SetTheory ST;
1707   SetTheory::RecSet Elts;
1708   ST.addOperator("lowhalf", llvm::make_unique<LowHalf>());
1709   ST.addOperator("highhalf", llvm::make_unique<HighHalf>());
1710   ST.addOperator("rev",
1711                  llvm::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1712   ST.addExpander("MaskExpand",
1713                  llvm::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1714   ST.evaluate(DI->getArg(2), Elts, None);
1715 
1716   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1717   for (auto &E : Elts) {
1718     StringRef Name = E->getName();
1719     assert_with_loc(Name.startswith("sv"),
1720                     "Incorrect element kind in shuffle mask!");
1721     S += ", " + Name.drop_front(2).str();
1722   }
1723   S += ")";
1724 
1725   // Recalculate the return type - the shuffle may have halved or doubled it.
1726   Type T(Arg1.first);
1727   if (Elts.size() > T.getNumElements()) {
1728     assert_with_loc(
1729         Elts.size() == T.getNumElements() * 2,
1730         "Can only double or half the number of elements in a shuffle!");
1731     T.doubleLanes();
1732   } else if (Elts.size() < T.getNumElements()) {
1733     assert_with_loc(
1734         Elts.size() == T.getNumElements() / 2,
1735         "Can only double or half the number of elements in a shuffle!");
1736     T.halveLanes();
1737   }
1738 
1739   return std::make_pair(T, S);
1740 }
1741 
1742 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1743   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1744   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1745                                               DI->getArgNameStr(0));
1746   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1747 
1748   Type T = Intr.getBaseType();
1749   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1750   std::string S = "(" + T.str() + ") {";
1751   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1752     if (I != 0)
1753       S += ", ";
1754     S += A.second;
1755   }
1756   S += "}";
1757 
1758   return std::make_pair(T, S);
1759 }
1760 
1761 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1762   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1763   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1764                                               DI->getArgNameStr(0));
1765   std::pair<Type, std::string> B = emitDagArg(DI->getArg(1),
1766                                               DI->getArgNameStr(1));
1767 
1768   assert_with_loc(B.first.isScalar(),
1769                   "splat() requires a scalar int as the second argument");
1770 
1771   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1772   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1773     S += ", " + B.second;
1774   }
1775   S += ")";
1776 
1777   return std::make_pair(Intr.getBaseType(), S);
1778 }
1779 
1780 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1781   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1782   std::pair<Type, std::string> A = emitDagArg(DI->getArg(1),
1783                                               DI->getArgNameStr(1));
1784 
1785   assert_with_loc(!A.first.isVoid(),
1786                   "Argument to save_temp() must have non-void type!");
1787 
1788   std::string N = DI->getArgNameStr(0);
1789   assert_with_loc(!N.empty(),
1790                   "save_temp() expects a name as the first argument");
1791 
1792   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1793                   "Variable already defined!");
1794   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1795 
1796   std::string S =
1797       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1798 
1799   return std::make_pair(Type::getVoid(), S);
1800 }
1801 
1802 std::pair<Type, std::string>
1803 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1804   std::string S = Intr.Name;
1805 
1806   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1807   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1808   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1809 
1810   size_t Idx = S.find(ToReplace);
1811 
1812   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1813   S.replace(Idx, ToReplace.size(), ReplaceWith);
1814 
1815   return std::make_pair(Type::getVoid(), S);
1816 }
1817 
1818 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1819   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1820   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1821   return std::make_pair(Type::fromTypedefName(Ty), Value);
1822 }
1823 
1824 std::pair<Type, std::string>
1825 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1826   if (!ArgName.empty()) {
1827     assert_with_loc(!Arg->isComplete(),
1828                     "Arguments must either be DAGs or names, not both!");
1829     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1830                     "Variable not defined!");
1831     Variable &V = Intr.Variables[ArgName];
1832     return std::make_pair(V.getType(), V.getName());
1833   }
1834 
1835   assert(Arg && "Neither ArgName nor Arg?!");
1836   DagInit *DI = dyn_cast<DagInit>(Arg);
1837   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1838 
1839   return emitDag(DI);
1840 }
1841 
1842 std::string Intrinsic::generate() {
1843   // Little endian intrinsics are simple and don't require any argument
1844   // swapping.
1845   OS << "#ifdef __LITTLE_ENDIAN__\n";
1846 
1847   generateImpl(false, "", "");
1848 
1849   OS << "#else\n";
1850 
1851   // Big endian intrinsics are more complex. The user intended these
1852   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1853   // but we load as-if (V)LD1. So we should swap all arguments and
1854   // swap the return value too.
1855   //
1856   // If we call sub-intrinsics, we should call a version that does
1857   // not re-swap the arguments!
1858   generateImpl(true, "", "__noswap_");
1859 
1860   // If we're needed early, create a non-swapping variant for
1861   // big-endian.
1862   if (NeededEarly) {
1863     generateImpl(false, "__noswap_", "__noswap_");
1864   }
1865   OS << "#endif\n\n";
1866 
1867   return OS.str();
1868 }
1869 
1870 void Intrinsic::generateImpl(bool ReverseArguments,
1871                              StringRef NamePrefix, StringRef CallPrefix) {
1872   CurrentRecord = R;
1873 
1874   // If we call a macro, our local variables may be corrupted due to
1875   // lack of proper lexical scoping. So, add a globally unique postfix
1876   // to every variable.
1877   //
1878   // indexBody() should have set up the Dependencies set by now.
1879   for (auto *I : Dependencies)
1880     if (I->UseMacro) {
1881       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1882       break;
1883     }
1884 
1885   initVariables();
1886 
1887   emitPrototype(NamePrefix);
1888 
1889   if (IsUnavailable) {
1890     OS << " __attribute__((unavailable));";
1891   } else {
1892     emitOpeningBrace();
1893     emitShadowedArgs();
1894     if (ReverseArguments)
1895       emitArgumentReversal();
1896     emitBody(CallPrefix);
1897     if (ReverseArguments)
1898       emitReturnReversal();
1899     emitReturn();
1900     emitClosingBrace();
1901   }
1902   OS << "\n";
1903 
1904   CurrentRecord = nullptr;
1905 }
1906 
1907 void Intrinsic::indexBody() {
1908   CurrentRecord = R;
1909 
1910   initVariables();
1911   emitBody("");
1912   OS.str("");
1913 
1914   CurrentRecord = nullptr;
1915 }
1916 
1917 //===----------------------------------------------------------------------===//
1918 // NeonEmitter implementation
1919 //===----------------------------------------------------------------------===//
1920 
1921 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1922   // First, look up the name in the intrinsic map.
1923   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1924                   ("Intrinsic '" + Name + "' not found!").str());
1925   auto &V = IntrinsicMap.find(Name.str())->second;
1926   std::vector<Intrinsic *> GoodVec;
1927 
1928   // Create a string to print if we end up failing.
1929   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1930   for (unsigned I = 0; I < Types.size(); ++I) {
1931     if (I != 0)
1932       ErrMsg += ", ";
1933     ErrMsg += Types[I].str();
1934   }
1935   ErrMsg += ")'\n";
1936   ErrMsg += "Available overloads:\n";
1937 
1938   // Now, look through each intrinsic implementation and see if the types are
1939   // compatible.
1940   for (auto &I : V) {
1941     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1942     ErrMsg += "(";
1943     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1944       if (A != 0)
1945         ErrMsg += ", ";
1946       ErrMsg += I.getParamType(A).str();
1947     }
1948     ErrMsg += ")\n";
1949 
1950     if (I.getNumParams() != Types.size())
1951       continue;
1952 
1953     bool Good = true;
1954     for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
1955       if (I.getParamType(Arg) != Types[Arg]) {
1956         Good = false;
1957         break;
1958       }
1959     }
1960     if (Good)
1961       GoodVec.push_back(&I);
1962   }
1963 
1964   assert_with_loc(!GoodVec.empty(),
1965                   "No compatible intrinsic found - " + ErrMsg);
1966   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1967 
1968   return *GoodVec.front();
1969 }
1970 
1971 void NeonEmitter::createIntrinsic(Record *R,
1972                                   SmallVectorImpl<Intrinsic *> &Out) {
1973   std::string Name = R->getValueAsString("Name");
1974   std::string Proto = R->getValueAsString("Prototype");
1975   std::string Types = R->getValueAsString("Types");
1976   Record *OperationRec = R->getValueAsDef("Operation");
1977   bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
1978   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1979   std::string Guard = R->getValueAsString("ArchGuard");
1980   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1981 
1982   // Set the global current record. This allows assert_with_loc to produce
1983   // decent location information even when highly nested.
1984   CurrentRecord = R;
1985 
1986   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1987 
1988   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1989 
1990   ClassKind CK = ClassNone;
1991   if (R->getSuperClasses().size() >= 2)
1992     CK = ClassMap[R->getSuperClasses()[1].first];
1993 
1994   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1995   for (auto TS : TypeSpecs) {
1996     if (CartesianProductOfTypes) {
1997       Type DefaultT(TS, 'd');
1998       for (auto SrcTS : TypeSpecs) {
1999         Type DefaultSrcT(SrcTS, 'd');
2000         if (TS == SrcTS ||
2001             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
2002           continue;
2003         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
2004       }
2005     } else {
2006       NewTypeSpecs.push_back(std::make_pair(TS, TS));
2007     }
2008   }
2009 
2010   llvm::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
2011   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
2012 		     NewTypeSpecs.end());
2013   auto &Entry = IntrinsicMap[Name];
2014 
2015   for (auto &I : NewTypeSpecs) {
2016     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
2017                        Guard, IsUnavailable, BigEndianSafe);
2018     Out.push_back(&Entry.back());
2019   }
2020 
2021   CurrentRecord = nullptr;
2022 }
2023 
2024 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
2025 /// declaration of builtins, checking for unique builtin declarations.
2026 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2027                                  SmallVectorImpl<Intrinsic *> &Defs) {
2028   OS << "#ifdef GET_NEON_BUILTINS\n";
2029 
2030   // We only want to emit a builtin once, and we want to emit them in
2031   // alphabetical order, so use a std::set.
2032   std::set<std::string> Builtins;
2033 
2034   for (auto *Def : Defs) {
2035     if (Def->hasBody())
2036       continue;
2037     // Functions with 'a' (the splat code) in the type prototype should not get
2038     // their own builtin as they use the non-splat variant.
2039     if (Def->hasSplat())
2040       continue;
2041 
2042     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
2043 
2044     S += Def->getBuiltinTypeStr();
2045     S += "\", \"n\")";
2046 
2047     Builtins.insert(S);
2048   }
2049 
2050   for (auto &S : Builtins)
2051     OS << S << "\n";
2052   OS << "#endif\n\n";
2053 }
2054 
2055 /// Generate the ARM and AArch64 overloaded type checking code for
2056 /// SemaChecking.cpp, checking for unique builtin declarations.
2057 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2058                                            SmallVectorImpl<Intrinsic *> &Defs) {
2059   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2060 
2061   // We record each overload check line before emitting because subsequent Inst
2062   // definitions may extend the number of permitted types (i.e. augment the
2063   // Mask). Use std::map to avoid sorting the table by hash number.
2064   struct OverloadInfo {
2065     uint64_t Mask;
2066     int PtrArgNum;
2067     bool HasConstPtr;
2068     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2069   };
2070   std::map<std::string, OverloadInfo> OverloadMap;
2071 
2072   for (auto *Def : Defs) {
2073     // If the def has a body (that is, it has Operation DAGs), it won't call
2074     // __builtin_neon_* so we don't need to generate a definition for it.
2075     if (Def->hasBody())
2076       continue;
2077     // Functions with 'a' (the splat code) in the type prototype should not get
2078     // their own builtin as they use the non-splat variant.
2079     if (Def->hasSplat())
2080       continue;
2081     // Functions which have a scalar argument cannot be overloaded, no need to
2082     // check them if we are emitting the type checking code.
2083     if (Def->protoHasScalar())
2084       continue;
2085 
2086     uint64_t Mask = 0ULL;
2087     Type Ty = Def->getReturnType();
2088     if (Def->getProto()[0] == 'v' ||
2089         isFloatingPointProtoModifier(Def->getProto()[0]))
2090       Ty = Def->getParamType(0);
2091     if (Ty.isPointer())
2092       Ty = Def->getParamType(1);
2093 
2094     Mask |= 1ULL << Ty.getNeonEnum();
2095 
2096     // Check if the function has a pointer or const pointer argument.
2097     std::string Proto = Def->getProto();
2098     int PtrArgNum = -1;
2099     bool HasConstPtr = false;
2100     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2101       char ArgType = Proto[I + 1];
2102       if (ArgType == 'c') {
2103         HasConstPtr = true;
2104         PtrArgNum = I;
2105         break;
2106       }
2107       if (ArgType == 'p') {
2108         PtrArgNum = I;
2109         break;
2110       }
2111     }
2112     // For sret builtins, adjust the pointer argument index.
2113     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2114       PtrArgNum += 1;
2115 
2116     std::string Name = Def->getName();
2117     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2118     // and vst1_lane intrinsics.  Using a pointer to the vector element
2119     // type with one of those operations causes codegen to select an aligned
2120     // load/store instruction.  If you want an unaligned operation,
2121     // the pointer argument needs to have less alignment than element type,
2122     // so just accept any pointer type.
2123     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2124       PtrArgNum = -1;
2125       HasConstPtr = false;
2126     }
2127 
2128     if (Mask) {
2129       std::string Name = Def->getMangledName();
2130       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2131       OverloadInfo &OI = OverloadMap[Name];
2132       OI.Mask |= Mask;
2133       OI.PtrArgNum |= PtrArgNum;
2134       OI.HasConstPtr = HasConstPtr;
2135     }
2136   }
2137 
2138   for (auto &I : OverloadMap) {
2139     OverloadInfo &OI = I.second;
2140 
2141     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2142     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2143     if (OI.PtrArgNum >= 0)
2144       OS << "; PtrArgNum = " << OI.PtrArgNum;
2145     if (OI.HasConstPtr)
2146       OS << "; HasConstPtr = true";
2147     OS << "; break;\n";
2148   }
2149   OS << "#endif\n\n";
2150 }
2151 
2152 void
2153 NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2154                                         SmallVectorImpl<Intrinsic *> &Defs) {
2155   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2156 
2157   std::set<std::string> Emitted;
2158 
2159   for (auto *Def : Defs) {
2160     if (Def->hasBody())
2161       continue;
2162     // Functions with 'a' (the splat code) in the type prototype should not get
2163     // their own builtin as they use the non-splat variant.
2164     if (Def->hasSplat())
2165       continue;
2166     // Functions which do not have an immediate do not need to have range
2167     // checking code emitted.
2168     if (!Def->hasImmediate())
2169       continue;
2170     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2171       continue;
2172 
2173     std::string LowerBound, UpperBound;
2174 
2175     Record *R = Def->getRecord();
2176     if (R->getValueAsBit("isVCVT_N")) {
2177       // VCVT between floating- and fixed-point values takes an immediate
2178       // in the range [1, 32) for f32 or [1, 64) for f64.
2179       LowerBound = "1";
2180       if (Def->getBaseType().getElementSizeInBits() == 32)
2181         UpperBound = "31";
2182       else
2183         UpperBound = "63";
2184     } else if (R->getValueAsBit("isScalarShift")) {
2185       // Right shifts have an 'r' in the name, left shifts do not. Convert
2186       // instructions have the same bounds and right shifts.
2187       if (Def->getName().find('r') != std::string::npos ||
2188           Def->getName().find("cvt") != std::string::npos)
2189         LowerBound = "1";
2190 
2191       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2192     } else if (R->getValueAsBit("isShift")) {
2193       // Builtins which are overloaded by type will need to have their upper
2194       // bound computed at Sema time based on the type constant.
2195 
2196       // Right shifts have an 'r' in the name, left shifts do not.
2197       if (Def->getName().find('r') != std::string::npos)
2198         LowerBound = "1";
2199       UpperBound = "RFT(TV, true)";
2200     } else if (Def->getClassKind(true) == ClassB) {
2201       // ClassB intrinsics have a type (and hence lane number) that is only
2202       // known at runtime.
2203       if (R->getValueAsBit("isLaneQ"))
2204         UpperBound = "RFT(TV, false, true)";
2205       else
2206         UpperBound = "RFT(TV, false, false)";
2207     } else {
2208       // The immediate generally refers to a lane in the preceding argument.
2209       assert(Def->getImmediateIdx() > 0);
2210       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2211       UpperBound = utostr(T.getNumElements() - 1);
2212     }
2213 
2214     // Calculate the index of the immediate that should be range checked.
2215     unsigned Idx = Def->getNumParams();
2216     if (Def->hasImmediate())
2217       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2218 
2219     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2220        << "i = " << Idx << ";";
2221     if (!LowerBound.empty())
2222       OS << " l = " << LowerBound << ";";
2223     if (!UpperBound.empty())
2224       OS << " u = " << UpperBound << ";";
2225     OS << " break;\n";
2226 
2227     Emitted.insert(Def->getMangledName());
2228   }
2229 
2230   OS << "#endif\n\n";
2231 }
2232 
2233 /// runHeader - Emit a file with sections defining:
2234 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2235 /// 2. the SemaChecking code for the type overload checking.
2236 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2237 void NeonEmitter::runHeader(raw_ostream &OS) {
2238   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2239 
2240   SmallVector<Intrinsic *, 128> Defs;
2241   for (auto *R : RV)
2242     createIntrinsic(R, Defs);
2243 
2244   // Generate shared BuiltinsXXX.def
2245   genBuiltinsDef(OS, Defs);
2246 
2247   // Generate ARM overloaded type checking code for SemaChecking.cpp
2248   genOverloadTypeCheckCode(OS, Defs);
2249 
2250   // Generate ARM range checking code for shift/lane immediates.
2251   genIntrinsicRangeCheckCode(OS, Defs);
2252 }
2253 
2254 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2255 /// is comprised of type definitions and function declarations.
2256 void NeonEmitter::run(raw_ostream &OS) {
2257   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2258         "------------------------------"
2259         "---===\n"
2260         " *\n"
2261         " * Permission is hereby granted, free of charge, to any person "
2262         "obtaining "
2263         "a copy\n"
2264         " * of this software and associated documentation files (the "
2265         "\"Software\"),"
2266         " to deal\n"
2267         " * in the Software without restriction, including without limitation "
2268         "the "
2269         "rights\n"
2270         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2271         "and/or sell\n"
2272         " * copies of the Software, and to permit persons to whom the Software "
2273         "is\n"
2274         " * furnished to do so, subject to the following conditions:\n"
2275         " *\n"
2276         " * The above copyright notice and this permission notice shall be "
2277         "included in\n"
2278         " * all copies or substantial portions of the Software.\n"
2279         " *\n"
2280         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2281         "EXPRESS OR\n"
2282         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2283         "MERCHANTABILITY,\n"
2284         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2285         "SHALL THE\n"
2286         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2287         "OTHER\n"
2288         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2289         "ARISING FROM,\n"
2290         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2291         "DEALINGS IN\n"
2292         " * THE SOFTWARE.\n"
2293         " *\n"
2294         " *===-----------------------------------------------------------------"
2295         "---"
2296         "---===\n"
2297         " */\n\n";
2298 
2299   OS << "#ifndef __ARM_NEON_H\n";
2300   OS << "#define __ARM_NEON_H\n\n";
2301 
2302   OS << "#if !defined(__ARM_NEON)\n";
2303   OS << "#error \"NEON support not enabled\"\n";
2304   OS << "#endif\n\n";
2305 
2306   OS << "#include <stdint.h>\n\n";
2307 
2308   // Emit NEON-specific scalar typedefs.
2309   OS << "typedef float float32_t;\n";
2310   OS << "typedef __fp16 float16_t;\n";
2311 
2312   OS << "#ifdef __aarch64__\n";
2313   OS << "typedef double float64_t;\n";
2314   OS << "#endif\n\n";
2315 
2316   // For now, signedness of polynomial types depends on target
2317   OS << "#ifdef __aarch64__\n";
2318   OS << "typedef uint8_t poly8_t;\n";
2319   OS << "typedef uint16_t poly16_t;\n";
2320   OS << "typedef uint64_t poly64_t;\n";
2321   OS << "typedef __uint128_t poly128_t;\n";
2322   OS << "#else\n";
2323   OS << "typedef int8_t poly8_t;\n";
2324   OS << "typedef int16_t poly16_t;\n";
2325   OS << "#endif\n";
2326 
2327   // Emit Neon vector typedefs.
2328   std::string TypedefTypes(
2329       "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2330   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2331 
2332   // Emit vector typedefs.
2333   bool InIfdef = false;
2334   for (auto &TS : TDTypeVec) {
2335     bool IsA64 = false;
2336     Type T(TS, 'd');
2337     if (T.isDouble() || (T.isPoly() && T.isLong()))
2338       IsA64 = true;
2339 
2340     if (InIfdef && !IsA64) {
2341       OS << "#endif\n";
2342       InIfdef = false;
2343     }
2344     if (!InIfdef && IsA64) {
2345       OS << "#ifdef __aarch64__\n";
2346       InIfdef = true;
2347     }
2348 
2349     if (T.isPoly())
2350       OS << "typedef __attribute__((neon_polyvector_type(";
2351     else
2352       OS << "typedef __attribute__((neon_vector_type(";
2353 
2354     Type T2 = T;
2355     T2.makeScalar();
2356     OS << T.getNumElements() << "))) ";
2357     OS << T2.str();
2358     OS << " " << T.str() << ";\n";
2359   }
2360   if (InIfdef)
2361     OS << "#endif\n";
2362   OS << "\n";
2363 
2364   // Emit struct typedefs.
2365   InIfdef = false;
2366   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2367     for (auto &TS : TDTypeVec) {
2368       bool IsA64 = false;
2369       Type T(TS, 'd');
2370       if (T.isDouble() || (T.isPoly() && T.isLong()))
2371         IsA64 = true;
2372 
2373       if (InIfdef && !IsA64) {
2374         OS << "#endif\n";
2375         InIfdef = false;
2376       }
2377       if (!InIfdef && IsA64) {
2378         OS << "#ifdef __aarch64__\n";
2379         InIfdef = true;
2380       }
2381 
2382       char M = '2' + (NumMembers - 2);
2383       Type VT(TS, M);
2384       OS << "typedef struct " << VT.str() << " {\n";
2385       OS << "  " << T.str() << " val";
2386       OS << "[" << NumMembers << "]";
2387       OS << ";\n} ";
2388       OS << VT.str() << ";\n";
2389       OS << "\n";
2390     }
2391   }
2392   if (InIfdef)
2393     OS << "#endif\n";
2394   OS << "\n";
2395 
2396   OS << "#define __ai static inline __attribute__((__always_inline__, "
2397         "__nodebug__))\n\n";
2398 
2399   SmallVector<Intrinsic *, 128> Defs;
2400   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2401   for (auto *R : RV)
2402     createIntrinsic(R, Defs);
2403 
2404   for (auto *I : Defs)
2405     I->indexBody();
2406 
2407   std::stable_sort(
2408       Defs.begin(), Defs.end(),
2409       [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
2410 
2411   // Only emit a def when its requirements have been met.
2412   // FIXME: This loop could be made faster, but it's fast enough for now.
2413   bool MadeProgress = true;
2414   std::string InGuard;
2415   while (!Defs.empty() && MadeProgress) {
2416     MadeProgress = false;
2417 
2418     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2419          I != Defs.end(); /*No step*/) {
2420       bool DependenciesSatisfied = true;
2421       for (auto *II : (*I)->getDependencies()) {
2422         if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
2423           DependenciesSatisfied = false;
2424       }
2425       if (!DependenciesSatisfied) {
2426         // Try the next one.
2427         ++I;
2428         continue;
2429       }
2430 
2431       // Emit #endif/#if pair if needed.
2432       if ((*I)->getGuard() != InGuard) {
2433         if (!InGuard.empty())
2434           OS << "#endif\n";
2435         InGuard = (*I)->getGuard();
2436         if (!InGuard.empty())
2437           OS << "#if " << InGuard << "\n";
2438       }
2439 
2440       // Actually generate the intrinsic code.
2441       OS << (*I)->generate();
2442 
2443       MadeProgress = true;
2444       I = Defs.erase(I);
2445     }
2446   }
2447   assert(Defs.empty() && "Some requirements were not satisfied!");
2448   if (!InGuard.empty())
2449     OS << "#endif\n";
2450 
2451   OS << "\n";
2452   OS << "#undef __ai\n\n";
2453   OS << "#endif /* __ARM_NEON_H */\n";
2454 }
2455 
2456 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2457 /// is comprised of type definitions and function declarations.
2458 void NeonEmitter::runFP16(raw_ostream &OS) {
2459   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2460         "------------------------------"
2461         "---===\n"
2462         " *\n"
2463         " * Permission is hereby granted, free of charge, to any person "
2464         "obtaining a copy\n"
2465         " * of this software and associated documentation files (the "
2466 				"\"Software\"), to deal\n"
2467         " * in the Software without restriction, including without limitation "
2468 				"the rights\n"
2469         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2470 				"and/or sell\n"
2471         " * copies of the Software, and to permit persons to whom the Software "
2472 				"is\n"
2473         " * furnished to do so, subject to the following conditions:\n"
2474         " *\n"
2475         " * The above copyright notice and this permission notice shall be "
2476         "included in\n"
2477         " * all copies or substantial portions of the Software.\n"
2478         " *\n"
2479         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2480         "EXPRESS OR\n"
2481         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2482         "MERCHANTABILITY,\n"
2483         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2484         "SHALL THE\n"
2485         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2486         "OTHER\n"
2487         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2488         "ARISING FROM,\n"
2489         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2490         "DEALINGS IN\n"
2491         " * THE SOFTWARE.\n"
2492         " *\n"
2493         " *===-----------------------------------------------------------------"
2494         "---"
2495         "---===\n"
2496         " */\n\n";
2497 
2498   OS << "#ifndef __ARM_FP16_H\n";
2499   OS << "#define __ARM_FP16_H\n\n";
2500 
2501   OS << "#include <stdint.h>\n\n";
2502 
2503   OS << "typedef __fp16 float16_t;\n";
2504 
2505   OS << "#define __ai static inline __attribute__((__always_inline__, "
2506         "__nodebug__))\n\n";
2507 
2508   SmallVector<Intrinsic *, 128> Defs;
2509   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2510   for (auto *R : RV)
2511     createIntrinsic(R, Defs);
2512 
2513   for (auto *I : Defs)
2514     I->indexBody();
2515 
2516   std::stable_sort(
2517       Defs.begin(), Defs.end(),
2518       [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
2519 
2520   // Only emit a def when its requirements have been met.
2521   // FIXME: This loop could be made faster, but it's fast enough for now.
2522   bool MadeProgress = true;
2523   std::string InGuard;
2524   while (!Defs.empty() && MadeProgress) {
2525     MadeProgress = false;
2526 
2527     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2528          I != Defs.end(); /*No step*/) {
2529       bool DependenciesSatisfied = true;
2530       for (auto *II : (*I)->getDependencies()) {
2531         if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
2532           DependenciesSatisfied = false;
2533       }
2534       if (!DependenciesSatisfied) {
2535         // Try the next one.
2536         ++I;
2537         continue;
2538       }
2539 
2540       // Emit #endif/#if pair if needed.
2541       if ((*I)->getGuard() != InGuard) {
2542         if (!InGuard.empty())
2543           OS << "#endif\n";
2544         InGuard = (*I)->getGuard();
2545         if (!InGuard.empty())
2546           OS << "#if " << InGuard << "\n";
2547       }
2548 
2549       // Actually generate the intrinsic code.
2550       OS << (*I)->generate();
2551 
2552       MadeProgress = true;
2553       I = Defs.erase(I);
2554     }
2555   }
2556   assert(Defs.empty() && "Some requirements were not satisfied!");
2557   if (!InGuard.empty())
2558     OS << "#endif\n";
2559 
2560   OS << "\n";
2561   OS << "#undef __ai\n\n";
2562   OS << "#endif /* __ARM_FP16_H */\n";
2563 }
2564 
2565 namespace clang {
2566 
2567 void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2568   NeonEmitter(Records).run(OS);
2569 }
2570 
2571 void EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2572   NeonEmitter(Records).runFP16(OS);
2573 }
2574 
2575 void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2576   NeonEmitter(Records).runHeader(OS);
2577 }
2578 
2579 void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2580   llvm_unreachable("Neon test generation no longer implemented!");
2581 }
2582 
2583 } // end namespace clang
2584