1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface. See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors. Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TableGen/Error.h"
39 #include "llvm/TableGen/Record.h"
40 #include "llvm/TableGen/SetTheory.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cctype>
44 #include <cstddef>
45 #include <cstdint>
46 #include <deque>
47 #include <map>
48 #include <set>
49 #include <sstream>
50 #include <string>
51 #include <utility>
52 #include <vector>
53
54 using namespace llvm;
55
56 namespace {
57
58 // While globals are generally bad, this one allows us to perform assertions
59 // liberally and somehow still trace them back to the def they indirectly
60 // came from.
61 static Record *CurrentRecord = nullptr;
assert_with_loc(bool Assertion,const std::string & Str)62 static void assert_with_loc(bool Assertion, const std::string &Str) {
63 if (!Assertion) {
64 if (CurrentRecord)
65 PrintFatalError(CurrentRecord->getLoc(), Str);
66 else
67 PrintFatalError(Str);
68 }
69 }
70
71 enum ClassKind {
72 ClassNone,
73 ClassI, // generic integer instruction, e.g., "i8" suffix
74 ClassS, // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
75 ClassW, // width-specific instruction, e.g., "8" suffix
76 ClassB, // bitcast arguments with enum argument to specify type
77 ClassL, // Logical instructions which are op instructions
78 // but we need to not emit any suffix for in our
79 // tests.
80 ClassNoTest // Instructions which we do not test since they are
81 // not TRUE instructions.
82 };
83
84 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
85 /// builtins. These must be kept in sync with the flags in
86 /// include/clang/Basic/TargetBuiltins.h.
87 namespace NeonTypeFlags {
88
89 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
90
91 enum EltType {
92 Int8,
93 Int16,
94 Int32,
95 Int64,
96 Poly8,
97 Poly16,
98 Poly64,
99 Poly128,
100 Float16,
101 Float32,
102 Float64,
103 BFloat16
104 };
105
106 } // end namespace NeonTypeFlags
107
108 class NeonEmitter;
109
110 //===----------------------------------------------------------------------===//
111 // TypeSpec
112 //===----------------------------------------------------------------------===//
113
114 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
115 /// for strong typing purposes.
116 ///
117 /// A TypeSpec can be used to create a type.
118 class TypeSpec : public std::string {
119 public:
fromTypeSpecs(StringRef Str)120 static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
121 std::vector<TypeSpec> Ret;
122 TypeSpec Acc;
123 for (char I : Str.str()) {
124 if (islower(I)) {
125 Acc.push_back(I);
126 Ret.push_back(TypeSpec(Acc));
127 Acc.clear();
128 } else {
129 Acc.push_back(I);
130 }
131 }
132 return Ret;
133 }
134 };
135
136 //===----------------------------------------------------------------------===//
137 // Type
138 //===----------------------------------------------------------------------===//
139
140 /// A Type. Not much more to say here.
141 class Type {
142 private:
143 TypeSpec TS;
144
145 enum TypeKind {
146 Void,
147 Float,
148 SInt,
149 UInt,
150 Poly,
151 BFloat16,
152 };
153 TypeKind Kind;
154 bool Immediate, Constant, Pointer;
155 // ScalarForMangling and NoManglingQ are really not suited to live here as
156 // they are not related to the type. But they live in the TypeSpec (not the
157 // prototype), so this is really the only place to store them.
158 bool ScalarForMangling, NoManglingQ;
159 unsigned Bitwidth, ElementBitwidth, NumVectors;
160
161 public:
Type()162 Type()
163 : Kind(Void), Immediate(false), Constant(false),
164 Pointer(false), ScalarForMangling(false), NoManglingQ(false),
165 Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166
Type(TypeSpec TS,StringRef CharMods)167 Type(TypeSpec TS, StringRef CharMods)
168 : TS(std::move(TS)), Kind(Void), Immediate(false),
169 Constant(false), Pointer(false), ScalarForMangling(false),
170 NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
171 applyModifiers(CharMods);
172 }
173
174 /// Returns a type representing "void".
getVoid()175 static Type getVoid() { return Type(); }
176
operator ==(const Type & Other) const177 bool operator==(const Type &Other) const { return str() == Other.str(); }
operator !=(const Type & Other) const178 bool operator!=(const Type &Other) const { return !operator==(Other); }
179
180 //
181 // Query functions
182 //
isScalarForMangling() const183 bool isScalarForMangling() const { return ScalarForMangling; }
noManglingQ() const184 bool noManglingQ() const { return NoManglingQ; }
185
isPointer() const186 bool isPointer() const { return Pointer; }
isValue() const187 bool isValue() const { return !isVoid() && !isPointer(); }
isScalar() const188 bool isScalar() const { return isValue() && NumVectors == 0; }
isVector() const189 bool isVector() const { return isValue() && NumVectors > 0; }
isConstPointer() const190 bool isConstPointer() const { return Constant; }
isFloating() const191 bool isFloating() const { return Kind == Float; }
isInteger() const192 bool isInteger() const { return Kind == SInt || Kind == UInt; }
isPoly() const193 bool isPoly() const { return Kind == Poly; }
isSigned() const194 bool isSigned() const { return Kind == SInt; }
isImmediate() const195 bool isImmediate() const { return Immediate; }
isFloat() const196 bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
isDouble() const197 bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
isHalf() const198 bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
isChar() const199 bool isChar() const { return ElementBitwidth == 8; }
isShort() const200 bool isShort() const { return isInteger() && ElementBitwidth == 16; }
isInt() const201 bool isInt() const { return isInteger() && ElementBitwidth == 32; }
isLong() const202 bool isLong() const { return isInteger() && ElementBitwidth == 64; }
isVoid() const203 bool isVoid() const { return Kind == Void; }
isBFloat16() const204 bool isBFloat16() const { return Kind == BFloat16; }
getNumElements() const205 unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
getSizeInBits() const206 unsigned getSizeInBits() const { return Bitwidth; }
getElementSizeInBits() const207 unsigned getElementSizeInBits() const { return ElementBitwidth; }
getNumVectors() const208 unsigned getNumVectors() const { return NumVectors; }
209
210 //
211 // Mutator functions
212 //
makeUnsigned()213 void makeUnsigned() {
214 assert(!isVoid() && "not a potentially signed type");
215 Kind = UInt;
216 }
makeSigned()217 void makeSigned() {
218 assert(!isVoid() && "not a potentially signed type");
219 Kind = SInt;
220 }
221
makeInteger(unsigned ElemWidth,bool Sign)222 void makeInteger(unsigned ElemWidth, bool Sign) {
223 assert(!isVoid() && "converting void to int probably not useful");
224 Kind = Sign ? SInt : UInt;
225 Immediate = false;
226 ElementBitwidth = ElemWidth;
227 }
228
makeImmediate(unsigned ElemWidth)229 void makeImmediate(unsigned ElemWidth) {
230 Kind = SInt;
231 Immediate = true;
232 ElementBitwidth = ElemWidth;
233 }
234
makeScalar()235 void makeScalar() {
236 Bitwidth = ElementBitwidth;
237 NumVectors = 0;
238 }
239
makeOneVector()240 void makeOneVector() {
241 assert(isVector());
242 NumVectors = 1;
243 }
244
make32BitElement()245 void make32BitElement() {
246 assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
247 ElementBitwidth = 32;
248 }
249
doubleLanes()250 void doubleLanes() {
251 assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
252 Bitwidth = 128;
253 }
254
halveLanes()255 void halveLanes() {
256 assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
257 Bitwidth = 64;
258 }
259
260 /// Return the C string representation of a type, which is the typename
261 /// defined in stdint.h or arm_neon.h.
262 std::string str() const;
263
264 /// Return the string representation of a type, which is an encoded
265 /// string for passing to the BUILTIN() macro in Builtins.def.
266 std::string builtin_str() const;
267
268 /// Return the value in NeonTypeFlags for this type.
269 unsigned getNeonEnum() const;
270
271 /// Parse a type from a stdint.h or arm_neon.h typedef name,
272 /// for example uint32x2_t or int64_t.
273 static Type fromTypedefName(StringRef Name);
274
275 private:
276 /// Creates the type based on the typespec string in TS.
277 /// Sets "Quad" to true if the "Q" or "H" modifiers were
278 /// seen. This is needed by applyModifier as some modifiers
279 /// only take effect if the type size was changed by "Q" or "H".
280 void applyTypespec(bool &Quad);
281 /// Applies prototype modifiers to the type.
282 void applyModifiers(StringRef Mods);
283 };
284
285 //===----------------------------------------------------------------------===//
286 // Variable
287 //===----------------------------------------------------------------------===//
288
289 /// A variable is a simple class that just has a type and a name.
290 class Variable {
291 Type T;
292 std::string N;
293
294 public:
Variable()295 Variable() : T(Type::getVoid()) {}
Variable(Type T,std::string N)296 Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
297
getType() const298 Type getType() const { return T; }
getName() const299 std::string getName() const { return "__" + N; }
300 };
301
302 //===----------------------------------------------------------------------===//
303 // Intrinsic
304 //===----------------------------------------------------------------------===//
305
306 /// The main grunt class. This represents an instantiation of an intrinsic with
307 /// a particular typespec and prototype.
308 class Intrinsic {
309 /// The Record this intrinsic was created from.
310 Record *R;
311 /// The unmangled name.
312 std::string Name;
313 /// The input and output typespecs. InTS == OutTS except when
314 /// CartesianProductWith is non-empty - this is the case for vreinterpret.
315 TypeSpec OutTS, InTS;
316 /// The base class kind. Most intrinsics use ClassS, which has full type
317 /// info for integers (s32/u32). Some use ClassI, which doesn't care about
318 /// signedness (i32), while some (ClassB) have no type at all, only a width
319 /// (32).
320 ClassKind CK;
321 /// The list of DAGs for the body. May be empty, in which case we should
322 /// emit a builtin call.
323 ListInit *Body;
324 /// The architectural #ifdef guard.
325 std::string Guard;
326 /// Set if the Unavailable bit is 1. This means we don't generate a body,
327 /// just an "unavailable" attribute on a declaration.
328 bool IsUnavailable;
329 /// Is this intrinsic safe for big-endian? or does it need its arguments
330 /// reversing?
331 bool BigEndianSafe;
332
333 /// The types of return value [0] and parameters [1..].
334 std::vector<Type> Types;
335 /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
336 int PolymorphicKeyType;
337 /// The local variables defined.
338 std::map<std::string, Variable> Variables;
339 /// NeededEarly - set if any other intrinsic depends on this intrinsic.
340 bool NeededEarly;
341 /// UseMacro - set if we should implement using a macro or unset for a
342 /// function.
343 bool UseMacro;
344 /// The set of intrinsics that this intrinsic uses/requires.
345 std::set<Intrinsic *> Dependencies;
346 /// The "base type", which is Type('d', OutTS). InBaseType is only
347 /// different if CartesianProductWith is non-empty (for vreinterpret).
348 Type BaseType, InBaseType;
349 /// The return variable.
350 Variable RetVar;
351 /// A postfix to apply to every variable. Defaults to "".
352 std::string VariablePostfix;
353
354 NeonEmitter &Emitter;
355 std::stringstream OS;
356
isBigEndianSafe() const357 bool isBigEndianSafe() const {
358 if (BigEndianSafe)
359 return true;
360
361 for (const auto &T : Types){
362 if (T.isVector() && T.getNumElements() > 1)
363 return false;
364 }
365 return true;
366 }
367
368 public:
Intrinsic(Record * R,StringRef Name,StringRef Proto,TypeSpec OutTS,TypeSpec InTS,ClassKind CK,ListInit * Body,NeonEmitter & Emitter,StringRef Guard,bool IsUnavailable,bool BigEndianSafe)369 Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
370 TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
371 StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
372 : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
373 Guard(Guard.str()), IsUnavailable(IsUnavailable),
374 BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
375 UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
376 Emitter(Emitter) {
377 // Modify the TypeSpec per-argument to get a concrete Type, and create
378 // known variables for each.
379 // Types[0] is the return value.
380 unsigned Pos = 0;
381 Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
382 StringRef Mods = getNextModifiers(Proto, Pos);
383 while (!Mods.empty()) {
384 Types.emplace_back(InTS, Mods);
385 if (Mods.contains('!'))
386 PolymorphicKeyType = Types.size() - 1;
387
388 Mods = getNextModifiers(Proto, Pos);
389 }
390
391 for (auto Type : Types) {
392 // If this builtin takes an immediate argument, we need to #define it rather
393 // than use a standard declaration, so that SemaChecking can range check
394 // the immediate passed by the user.
395
396 // Pointer arguments need to use macros to avoid hiding aligned attributes
397 // from the pointer type.
398
399 // It is not permitted to pass or return an __fp16 by value, so intrinsics
400 // taking a scalar float16_t must be implemented as macros.
401 if (Type.isImmediate() || Type.isPointer() ||
402 (Type.isScalar() && Type.isHalf()))
403 UseMacro = true;
404 }
405 }
406
407 /// Get the Record that this intrinsic is based off.
getRecord() const408 Record *getRecord() const { return R; }
409 /// Get the set of Intrinsics that this intrinsic calls.
410 /// this is the set of immediate dependencies, NOT the
411 /// transitive closure.
getDependencies() const412 const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
413 /// Get the architectural guard string (#ifdef).
getGuard() const414 std::string getGuard() const { return Guard; }
415 /// Get the non-mangled name.
getName() const416 std::string getName() const { return Name; }
417
418 /// Return true if the intrinsic takes an immediate operand.
hasImmediate() const419 bool hasImmediate() const {
420 return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
421 }
422
423 /// Return the parameter index of the immediate operand.
getImmediateIdx() const424 unsigned getImmediateIdx() const {
425 for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
426 if (Types[Idx].isImmediate())
427 return Idx - 1;
428 llvm_unreachable("Intrinsic has no immediate");
429 }
430
431
getNumParams() const432 unsigned getNumParams() const { return Types.size() - 1; }
getReturnType() const433 Type getReturnType() const { return Types[0]; }
getParamType(unsigned I) const434 Type getParamType(unsigned I) const { return Types[I + 1]; }
getBaseType() const435 Type getBaseType() const { return BaseType; }
getPolymorphicKeyType() const436 Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
437
438 /// Return true if the prototype has a scalar argument.
439 bool protoHasScalar() const;
440
441 /// Return the index that parameter PIndex will sit at
442 /// in a generated function call. This is often just PIndex,
443 /// but may not be as things such as multiple-vector operands
444 /// and sret parameters need to be taken into accont.
getGeneratedParamIdx(unsigned PIndex)445 unsigned getGeneratedParamIdx(unsigned PIndex) {
446 unsigned Idx = 0;
447 if (getReturnType().getNumVectors() > 1)
448 // Multiple vectors are passed as sret.
449 ++Idx;
450
451 for (unsigned I = 0; I < PIndex; ++I)
452 Idx += std::max(1U, getParamType(I).getNumVectors());
453
454 return Idx;
455 }
456
hasBody() const457 bool hasBody() const { return Body && !Body->getValues().empty(); }
458
setNeededEarly()459 void setNeededEarly() { NeededEarly = true; }
460
operator <(const Intrinsic & Other) const461 bool operator<(const Intrinsic &Other) const {
462 // Sort lexicographically on a two-tuple (Guard, Name)
463 if (Guard != Other.Guard)
464 return Guard < Other.Guard;
465 return Name < Other.Name;
466 }
467
getClassKind(bool UseClassBIfScalar=false)468 ClassKind getClassKind(bool UseClassBIfScalar = false) {
469 if (UseClassBIfScalar && !protoHasScalar())
470 return ClassB;
471 return CK;
472 }
473
474 /// Return the name, mangled with type information.
475 /// If ForceClassS is true, use ClassS (u32/s32) instead
476 /// of the intrinsic's own type class.
477 std::string getMangledName(bool ForceClassS = false) const;
478 /// Return the type code for a builtin function call.
479 std::string getInstTypeCode(Type T, ClassKind CK) const;
480 /// Return the type string for a BUILTIN() macro in Builtins.def.
481 std::string getBuiltinTypeStr();
482
483 /// Generate the intrinsic, returning code.
484 std::string generate();
485 /// Perform type checking and populate the dependency graph, but
486 /// don't generate code yet.
487 void indexBody();
488
489 private:
490 StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
491
492 std::string mangleName(std::string Name, ClassKind CK) const;
493
494 void initVariables();
495 std::string replaceParamsIn(std::string S);
496
497 void emitBodyAsBuiltinCall();
498
499 void generateImpl(bool ReverseArguments,
500 StringRef NamePrefix, StringRef CallPrefix);
501 void emitReturn();
502 void emitBody(StringRef CallPrefix);
503 void emitShadowedArgs();
504 void emitArgumentReversal();
505 void emitReturnVarDecl();
506 void emitReturnReversal();
507 void emitReverseVariable(Variable &Dest, Variable &Src);
508 void emitNewLine();
509 void emitClosingBrace();
510 void emitOpeningBrace();
511 void emitPrototype(StringRef NamePrefix);
512
513 class DagEmitter {
514 Intrinsic &Intr;
515 StringRef CallPrefix;
516
517 public:
DagEmitter(Intrinsic & Intr,StringRef CallPrefix)518 DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
519 Intr(Intr), CallPrefix(CallPrefix) {
520 }
521 std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
522 std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
523 std::pair<Type, std::string> emitDagSplat(DagInit *DI);
524 std::pair<Type, std::string> emitDagDup(DagInit *DI);
525 std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
526 std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
527 std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
528 std::pair<Type, std::string> emitDagCall(DagInit *DI,
529 bool MatchMangledName);
530 std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
531 std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
532 std::pair<Type, std::string> emitDagOp(DagInit *DI);
533 std::pair<Type, std::string> emitDag(DagInit *DI);
534 };
535 };
536
537 //===----------------------------------------------------------------------===//
538 // NeonEmitter
539 //===----------------------------------------------------------------------===//
540
541 class NeonEmitter {
542 RecordKeeper &Records;
543 DenseMap<Record *, ClassKind> ClassMap;
544 std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
545 unsigned UniqueNumber;
546
547 void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
548 void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
549 void genOverloadTypeCheckCode(raw_ostream &OS,
550 SmallVectorImpl<Intrinsic *> &Defs);
551 void genIntrinsicRangeCheckCode(raw_ostream &OS,
552 SmallVectorImpl<Intrinsic *> &Defs);
553
554 public:
555 /// Called by Intrinsic - this attempts to get an intrinsic that takes
556 /// the given types as arguments.
557 Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
558 Optional<std::string> MangledName);
559
560 /// Called by Intrinsic - returns a globally-unique number.
getUniqueNumber()561 unsigned getUniqueNumber() { return UniqueNumber++; }
562
NeonEmitter(RecordKeeper & R)563 NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
564 Record *SI = R.getClass("SInst");
565 Record *II = R.getClass("IInst");
566 Record *WI = R.getClass("WInst");
567 Record *SOpI = R.getClass("SOpInst");
568 Record *IOpI = R.getClass("IOpInst");
569 Record *WOpI = R.getClass("WOpInst");
570 Record *LOpI = R.getClass("LOpInst");
571 Record *NoTestOpI = R.getClass("NoTestOpInst");
572
573 ClassMap[SI] = ClassS;
574 ClassMap[II] = ClassI;
575 ClassMap[WI] = ClassW;
576 ClassMap[SOpI] = ClassS;
577 ClassMap[IOpI] = ClassI;
578 ClassMap[WOpI] = ClassW;
579 ClassMap[LOpI] = ClassL;
580 ClassMap[NoTestOpI] = ClassNoTest;
581 }
582
583 // Emit arm_neon.h.inc
584 void run(raw_ostream &o);
585
586 // Emit arm_fp16.h.inc
587 void runFP16(raw_ostream &o);
588
589 // Emit arm_bf16.h.inc
590 void runBF16(raw_ostream &o);
591
592 // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
593 // arm_bf16.h
594 void runHeader(raw_ostream &o);
595 };
596
597 } // end anonymous namespace
598
599 //===----------------------------------------------------------------------===//
600 // Type implementation
601 //===----------------------------------------------------------------------===//
602
str() const603 std::string Type::str() const {
604 if (isVoid())
605 return "void";
606 std::string S;
607
608 if (isInteger() && !isSigned())
609 S += "u";
610
611 if (isPoly())
612 S += "poly";
613 else if (isFloating())
614 S += "float";
615 else if (isBFloat16())
616 S += "bfloat";
617 else
618 S += "int";
619
620 S += utostr(ElementBitwidth);
621 if (isVector())
622 S += "x" + utostr(getNumElements());
623 if (NumVectors > 1)
624 S += "x" + utostr(NumVectors);
625 S += "_t";
626
627 if (Constant)
628 S += " const";
629 if (Pointer)
630 S += " *";
631
632 return S;
633 }
634
builtin_str() const635 std::string Type::builtin_str() const {
636 std::string S;
637 if (isVoid())
638 return "v";
639
640 if (isPointer()) {
641 // All pointers are void pointers.
642 S = "v";
643 if (isConstPointer())
644 S += "C";
645 S += "*";
646 return S;
647 } else if (isInteger())
648 switch (ElementBitwidth) {
649 case 8: S += "c"; break;
650 case 16: S += "s"; break;
651 case 32: S += "i"; break;
652 case 64: S += "Wi"; break;
653 case 128: S += "LLLi"; break;
654 default: llvm_unreachable("Unhandled case!");
655 }
656 else if (isBFloat16()) {
657 assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
658 S += "y";
659 } else
660 switch (ElementBitwidth) {
661 case 16: S += "h"; break;
662 case 32: S += "f"; break;
663 case 64: S += "d"; break;
664 default: llvm_unreachable("Unhandled case!");
665 }
666
667 // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
668 if (isChar() && !isPointer() && isSigned())
669 // Make chars explicitly signed.
670 S = "S" + S;
671 else if (isInteger() && !isSigned())
672 S = "U" + S;
673
674 // Constant indices are "int", but have the "constant expression" modifier.
675 if (isImmediate()) {
676 assert(isInteger() && isSigned());
677 S = "I" + S;
678 }
679
680 if (isScalar())
681 return S;
682
683 std::string Ret;
684 for (unsigned I = 0; I < NumVectors; ++I)
685 Ret += "V" + utostr(getNumElements()) + S;
686
687 return Ret;
688 }
689
getNeonEnum() const690 unsigned Type::getNeonEnum() const {
691 unsigned Addend;
692 switch (ElementBitwidth) {
693 case 8: Addend = 0; break;
694 case 16: Addend = 1; break;
695 case 32: Addend = 2; break;
696 case 64: Addend = 3; break;
697 case 128: Addend = 4; break;
698 default: llvm_unreachable("Unhandled element bitwidth!");
699 }
700
701 unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
702 if (isPoly()) {
703 // Adjustment needed because Poly32 doesn't exist.
704 if (Addend >= 2)
705 --Addend;
706 Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
707 }
708 if (isFloating()) {
709 assert(Addend != 0 && "Float8 doesn't exist!");
710 Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
711 }
712
713 if (isBFloat16()) {
714 assert(Addend == 1 && "BFloat16 is only 16 bit");
715 Base = (unsigned)NeonTypeFlags::BFloat16;
716 }
717
718 if (Bitwidth == 128)
719 Base |= (unsigned)NeonTypeFlags::QuadFlag;
720 if (isInteger() && !isSigned())
721 Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
722
723 return Base;
724 }
725
fromTypedefName(StringRef Name)726 Type Type::fromTypedefName(StringRef Name) {
727 Type T;
728 T.Kind = SInt;
729
730 if (Name.front() == 'u') {
731 T.Kind = UInt;
732 Name = Name.drop_front();
733 }
734
735 if (Name.startswith("float")) {
736 T.Kind = Float;
737 Name = Name.drop_front(5);
738 } else if (Name.startswith("poly")) {
739 T.Kind = Poly;
740 Name = Name.drop_front(4);
741 } else if (Name.startswith("bfloat")) {
742 T.Kind = BFloat16;
743 Name = Name.drop_front(6);
744 } else {
745 assert(Name.startswith("int"));
746 Name = Name.drop_front(3);
747 }
748
749 unsigned I = 0;
750 for (I = 0; I < Name.size(); ++I) {
751 if (!isdigit(Name[I]))
752 break;
753 }
754 Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
755 Name = Name.drop_front(I);
756
757 T.Bitwidth = T.ElementBitwidth;
758 T.NumVectors = 1;
759
760 if (Name.front() == 'x') {
761 Name = Name.drop_front();
762 unsigned I = 0;
763 for (I = 0; I < Name.size(); ++I) {
764 if (!isdigit(Name[I]))
765 break;
766 }
767 unsigned NumLanes;
768 Name.substr(0, I).getAsInteger(10, NumLanes);
769 Name = Name.drop_front(I);
770 T.Bitwidth = T.ElementBitwidth * NumLanes;
771 } else {
772 // Was scalar.
773 T.NumVectors = 0;
774 }
775 if (Name.front() == 'x') {
776 Name = Name.drop_front();
777 unsigned I = 0;
778 for (I = 0; I < Name.size(); ++I) {
779 if (!isdigit(Name[I]))
780 break;
781 }
782 Name.substr(0, I).getAsInteger(10, T.NumVectors);
783 Name = Name.drop_front(I);
784 }
785
786 assert(Name.startswith("_t") && "Malformed typedef!");
787 return T;
788 }
789
applyTypespec(bool & Quad)790 void Type::applyTypespec(bool &Quad) {
791 std::string S = TS;
792 ScalarForMangling = false;
793 Kind = SInt;
794 ElementBitwidth = ~0U;
795 NumVectors = 1;
796
797 for (char I : S) {
798 switch (I) {
799 case 'S':
800 ScalarForMangling = true;
801 break;
802 case 'H':
803 NoManglingQ = true;
804 Quad = true;
805 break;
806 case 'Q':
807 Quad = true;
808 break;
809 case 'P':
810 Kind = Poly;
811 break;
812 case 'U':
813 Kind = UInt;
814 break;
815 case 'c':
816 ElementBitwidth = 8;
817 break;
818 case 'h':
819 Kind = Float;
820 LLVM_FALLTHROUGH;
821 case 's':
822 ElementBitwidth = 16;
823 break;
824 case 'f':
825 Kind = Float;
826 LLVM_FALLTHROUGH;
827 case 'i':
828 ElementBitwidth = 32;
829 break;
830 case 'd':
831 Kind = Float;
832 LLVM_FALLTHROUGH;
833 case 'l':
834 ElementBitwidth = 64;
835 break;
836 case 'k':
837 ElementBitwidth = 128;
838 // Poly doesn't have a 128x1 type.
839 if (isPoly())
840 NumVectors = 0;
841 break;
842 case 'b':
843 Kind = BFloat16;
844 ElementBitwidth = 16;
845 break;
846 default:
847 llvm_unreachable("Unhandled type code!");
848 }
849 }
850 assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
851
852 Bitwidth = Quad ? 128 : 64;
853 }
854
applyModifiers(StringRef Mods)855 void Type::applyModifiers(StringRef Mods) {
856 bool AppliedQuad = false;
857 applyTypespec(AppliedQuad);
858
859 for (char Mod : Mods) {
860 switch (Mod) {
861 case '.':
862 break;
863 case 'v':
864 Kind = Void;
865 break;
866 case 'S':
867 Kind = SInt;
868 break;
869 case 'U':
870 Kind = UInt;
871 break;
872 case 'B':
873 Kind = BFloat16;
874 ElementBitwidth = 16;
875 break;
876 case 'F':
877 Kind = Float;
878 break;
879 case 'P':
880 Kind = Poly;
881 break;
882 case '>':
883 assert(ElementBitwidth < 128);
884 ElementBitwidth *= 2;
885 break;
886 case '<':
887 assert(ElementBitwidth > 8);
888 ElementBitwidth /= 2;
889 break;
890 case '1':
891 NumVectors = 0;
892 break;
893 case '2':
894 NumVectors = 2;
895 break;
896 case '3':
897 NumVectors = 3;
898 break;
899 case '4':
900 NumVectors = 4;
901 break;
902 case '*':
903 Pointer = true;
904 break;
905 case 'c':
906 Constant = true;
907 break;
908 case 'Q':
909 Bitwidth = 128;
910 break;
911 case 'q':
912 Bitwidth = 64;
913 break;
914 case 'I':
915 Kind = SInt;
916 ElementBitwidth = Bitwidth = 32;
917 NumVectors = 0;
918 Immediate = true;
919 break;
920 case 'p':
921 if (isPoly())
922 Kind = UInt;
923 break;
924 case '!':
925 // Key type, handled elsewhere.
926 break;
927 default:
928 llvm_unreachable("Unhandled character!");
929 }
930 }
931 }
932
933 //===----------------------------------------------------------------------===//
934 // Intrinsic implementation
935 //===----------------------------------------------------------------------===//
936
getNextModifiers(StringRef Proto,unsigned & Pos) const937 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
938 if (Proto.size() == Pos)
939 return StringRef();
940 else if (Proto[Pos] != '(')
941 return Proto.substr(Pos++, 1);
942
943 size_t Start = Pos + 1;
944 size_t End = Proto.find(')', Start);
945 assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
946 Pos = End + 1;
947 return Proto.slice(Start, End);
948 }
949
getInstTypeCode(Type T,ClassKind CK) const950 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
951 char typeCode = '\0';
952 bool printNumber = true;
953
954 if (CK == ClassB)
955 return "";
956
957 if (T.isBFloat16())
958 return "bf16";
959
960 if (T.isPoly())
961 typeCode = 'p';
962 else if (T.isInteger())
963 typeCode = T.isSigned() ? 's' : 'u';
964 else
965 typeCode = 'f';
966
967 if (CK == ClassI) {
968 switch (typeCode) {
969 default:
970 break;
971 case 's':
972 case 'u':
973 case 'p':
974 typeCode = 'i';
975 break;
976 }
977 }
978 if (CK == ClassB) {
979 typeCode = '\0';
980 }
981
982 std::string S;
983 if (typeCode != '\0')
984 S.push_back(typeCode);
985 if (printNumber)
986 S += utostr(T.getElementSizeInBits());
987
988 return S;
989 }
990
getBuiltinTypeStr()991 std::string Intrinsic::getBuiltinTypeStr() {
992 ClassKind LocalCK = getClassKind(true);
993 std::string S;
994
995 Type RetT = getReturnType();
996 if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
997 !RetT.isFloating() && !RetT.isBFloat16())
998 RetT.makeInteger(RetT.getElementSizeInBits(), false);
999
1000 // Since the return value must be one type, return a vector type of the
1001 // appropriate width which we will bitcast. An exception is made for
1002 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1003 // fashion, storing them to a pointer arg.
1004 if (RetT.getNumVectors() > 1) {
1005 S += "vv*"; // void result with void* first argument
1006 } else {
1007 if (RetT.isPoly())
1008 RetT.makeInteger(RetT.getElementSizeInBits(), false);
1009 if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1010 RetT.makeSigned();
1011
1012 if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1013 // Cast to vector of 8-bit elements.
1014 RetT.makeInteger(8, true);
1015
1016 S += RetT.builtin_str();
1017 }
1018
1019 for (unsigned I = 0; I < getNumParams(); ++I) {
1020 Type T = getParamType(I);
1021 if (T.isPoly())
1022 T.makeInteger(T.getElementSizeInBits(), false);
1023
1024 if (LocalCK == ClassB && !T.isScalar())
1025 T.makeInteger(8, true);
1026 // Halves always get converted to 8-bit elements.
1027 if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1028 T.makeInteger(8, true);
1029
1030 if (LocalCK == ClassI && T.isInteger())
1031 T.makeSigned();
1032
1033 if (hasImmediate() && getImmediateIdx() == I)
1034 T.makeImmediate(32);
1035
1036 S += T.builtin_str();
1037 }
1038
1039 // Extra constant integer to hold type class enum for this function, e.g. s8
1040 if (LocalCK == ClassB)
1041 S += "i";
1042
1043 return S;
1044 }
1045
getMangledName(bool ForceClassS) const1046 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1047 // Check if the prototype has a scalar operand with the type of the vector
1048 // elements. If not, bitcasting the args will take care of arg checking.
1049 // The actual signedness etc. will be taken care of with special enums.
1050 ClassKind LocalCK = CK;
1051 if (!protoHasScalar())
1052 LocalCK = ClassB;
1053
1054 return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1055 }
1056
mangleName(std::string Name,ClassKind LocalCK) const1057 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1058 std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1059 std::string S = Name;
1060
1061 if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1062 Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1063 Name == "vcvt_f32_bf16")
1064 return Name;
1065
1066 if (!typeCode.empty()) {
1067 // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1068 if (Name.size() >= 3 && isdigit(Name.back()) &&
1069 Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1070 S.insert(S.length() - 3, "_" + typeCode);
1071 else
1072 S += "_" + typeCode;
1073 }
1074
1075 if (BaseType != InBaseType) {
1076 // A reinterpret - out the input base type at the end.
1077 S += "_" + getInstTypeCode(InBaseType, LocalCK);
1078 }
1079
1080 if (LocalCK == ClassB)
1081 S += "_v";
1082
1083 // Insert a 'q' before the first '_' character so that it ends up before
1084 // _lane or _n on vector-scalar operations.
1085 if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1086 size_t Pos = S.find('_');
1087 S.insert(Pos, "q");
1088 }
1089
1090 char Suffix = '\0';
1091 if (BaseType.isScalarForMangling()) {
1092 switch (BaseType.getElementSizeInBits()) {
1093 case 8: Suffix = 'b'; break;
1094 case 16: Suffix = 'h'; break;
1095 case 32: Suffix = 's'; break;
1096 case 64: Suffix = 'd'; break;
1097 default: llvm_unreachable("Bad suffix!");
1098 }
1099 }
1100 if (Suffix != '\0') {
1101 size_t Pos = S.find('_');
1102 S.insert(Pos, &Suffix, 1);
1103 }
1104
1105 return S;
1106 }
1107
replaceParamsIn(std::string S)1108 std::string Intrinsic::replaceParamsIn(std::string S) {
1109 while (S.find('$') != std::string::npos) {
1110 size_t Pos = S.find('$');
1111 size_t End = Pos + 1;
1112 while (isalpha(S[End]))
1113 ++End;
1114
1115 std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1116 assert_with_loc(Variables.find(VarName) != Variables.end(),
1117 "Variable not defined!");
1118 S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1119 }
1120
1121 return S;
1122 }
1123
initVariables()1124 void Intrinsic::initVariables() {
1125 Variables.clear();
1126
1127 // Modify the TypeSpec per-argument to get a concrete Type, and create
1128 // known variables for each.
1129 for (unsigned I = 1; I < Types.size(); ++I) {
1130 char NameC = '0' + (I - 1);
1131 std::string Name = "p";
1132 Name.push_back(NameC);
1133
1134 Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1135 }
1136 RetVar = Variable(Types[0], "ret" + VariablePostfix);
1137 }
1138
emitPrototype(StringRef NamePrefix)1139 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1140 if (UseMacro)
1141 OS << "#define ";
1142 else
1143 OS << "__ai " << Types[0].str() << " ";
1144
1145 OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1146
1147 for (unsigned I = 0; I < getNumParams(); ++I) {
1148 if (I != 0)
1149 OS << ", ";
1150
1151 char NameC = '0' + I;
1152 std::string Name = "p";
1153 Name.push_back(NameC);
1154 assert(Variables.find(Name) != Variables.end());
1155 Variable &V = Variables[Name];
1156
1157 if (!UseMacro)
1158 OS << V.getType().str() << " ";
1159 OS << V.getName();
1160 }
1161
1162 OS << ")";
1163 }
1164
emitOpeningBrace()1165 void Intrinsic::emitOpeningBrace() {
1166 if (UseMacro)
1167 OS << " __extension__ ({";
1168 else
1169 OS << " {";
1170 emitNewLine();
1171 }
1172
emitClosingBrace()1173 void Intrinsic::emitClosingBrace() {
1174 if (UseMacro)
1175 OS << "})";
1176 else
1177 OS << "}";
1178 }
1179
emitNewLine()1180 void Intrinsic::emitNewLine() {
1181 if (UseMacro)
1182 OS << " \\\n";
1183 else
1184 OS << "\n";
1185 }
1186
emitReverseVariable(Variable & Dest,Variable & Src)1187 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1188 if (Dest.getType().getNumVectors() > 1) {
1189 emitNewLine();
1190
1191 for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1192 OS << " " << Dest.getName() << ".val[" << K << "] = "
1193 << "__builtin_shufflevector("
1194 << Src.getName() << ".val[" << K << "], "
1195 << Src.getName() << ".val[" << K << "]";
1196 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1197 OS << ", " << J;
1198 OS << ");";
1199 emitNewLine();
1200 }
1201 } else {
1202 OS << " " << Dest.getName()
1203 << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1204 for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1205 OS << ", " << J;
1206 OS << ");";
1207 emitNewLine();
1208 }
1209 }
1210
emitArgumentReversal()1211 void Intrinsic::emitArgumentReversal() {
1212 if (isBigEndianSafe())
1213 return;
1214
1215 // Reverse all vector arguments.
1216 for (unsigned I = 0; I < getNumParams(); ++I) {
1217 std::string Name = "p" + utostr(I);
1218 std::string NewName = "rev" + utostr(I);
1219
1220 Variable &V = Variables[Name];
1221 Variable NewV(V.getType(), NewName + VariablePostfix);
1222
1223 if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1224 continue;
1225
1226 OS << " " << NewV.getType().str() << " " << NewV.getName() << ";";
1227 emitReverseVariable(NewV, V);
1228 V = NewV;
1229 }
1230 }
1231
emitReturnVarDecl()1232 void Intrinsic::emitReturnVarDecl() {
1233 assert(RetVar.getType() == Types[0]);
1234 // Create a return variable, if we're not void.
1235 if (!RetVar.getType().isVoid()) {
1236 OS << " " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1237 emitNewLine();
1238 }
1239 }
1240
emitReturnReversal()1241 void Intrinsic::emitReturnReversal() {
1242 if (isBigEndianSafe())
1243 return;
1244 if (!getReturnType().isVector() || getReturnType().isVoid() ||
1245 getReturnType().getNumElements() == 1)
1246 return;
1247 emitReverseVariable(RetVar, RetVar);
1248 }
1249
emitShadowedArgs()1250 void Intrinsic::emitShadowedArgs() {
1251 // Macro arguments are not type-checked like inline function arguments,
1252 // so assign them to local temporaries to get the right type checking.
1253 if (!UseMacro)
1254 return;
1255
1256 for (unsigned I = 0; I < getNumParams(); ++I) {
1257 // Do not create a temporary for an immediate argument.
1258 // That would defeat the whole point of using a macro!
1259 if (getParamType(I).isImmediate())
1260 continue;
1261 // Do not create a temporary for pointer arguments. The input
1262 // pointer may have an alignment hint.
1263 if (getParamType(I).isPointer())
1264 continue;
1265
1266 std::string Name = "p" + utostr(I);
1267
1268 assert(Variables.find(Name) != Variables.end());
1269 Variable &V = Variables[Name];
1270
1271 std::string NewName = "s" + utostr(I);
1272 Variable V2(V.getType(), NewName + VariablePostfix);
1273
1274 OS << " " << V2.getType().str() << " " << V2.getName() << " = "
1275 << V.getName() << ";";
1276 emitNewLine();
1277
1278 V = V2;
1279 }
1280 }
1281
protoHasScalar() const1282 bool Intrinsic::protoHasScalar() const {
1283 return llvm::any_of(
1284 Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1285 }
1286
emitBodyAsBuiltinCall()1287 void Intrinsic::emitBodyAsBuiltinCall() {
1288 std::string S;
1289
1290 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1291 // sret-like argument.
1292 bool SRet = getReturnType().getNumVectors() >= 2;
1293
1294 StringRef N = Name;
1295 ClassKind LocalCK = CK;
1296 if (!protoHasScalar())
1297 LocalCK = ClassB;
1298
1299 if (!getReturnType().isVoid() && !SRet)
1300 S += "(" + RetVar.getType().str() + ") ";
1301
1302 S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1303
1304 if (SRet)
1305 S += "&" + RetVar.getName() + ", ";
1306
1307 for (unsigned I = 0; I < getNumParams(); ++I) {
1308 Variable &V = Variables["p" + utostr(I)];
1309 Type T = V.getType();
1310
1311 // Handle multiple-vector values specially, emitting each subvector as an
1312 // argument to the builtin.
1313 if (T.getNumVectors() > 1) {
1314 // Check if an explicit cast is needed.
1315 std::string Cast;
1316 if (LocalCK == ClassB) {
1317 Type T2 = T;
1318 T2.makeOneVector();
1319 T2.makeInteger(8, /*Sign=*/true);
1320 Cast = "(" + T2.str() + ")";
1321 }
1322
1323 for (unsigned J = 0; J < T.getNumVectors(); ++J)
1324 S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1325 continue;
1326 }
1327
1328 std::string Arg = V.getName();
1329 Type CastToType = T;
1330
1331 // Check if an explicit cast is needed.
1332 if (CastToType.isVector() &&
1333 (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1334 CastToType.makeInteger(8, true);
1335 Arg = "(" + CastToType.str() + ")" + Arg;
1336 } else if (CastToType.isVector() && LocalCK == ClassI) {
1337 if (CastToType.isInteger())
1338 CastToType.makeSigned();
1339 Arg = "(" + CastToType.str() + ")" + Arg;
1340 }
1341
1342 S += Arg + ", ";
1343 }
1344
1345 // Extra constant integer to hold type class enum for this function, e.g. s8
1346 if (getClassKind(true) == ClassB) {
1347 S += utostr(getPolymorphicKeyType().getNeonEnum());
1348 } else {
1349 // Remove extraneous ", ".
1350 S.pop_back();
1351 S.pop_back();
1352 }
1353 S += ");";
1354
1355 std::string RetExpr;
1356 if (!SRet && !RetVar.getType().isVoid())
1357 RetExpr = RetVar.getName() + " = ";
1358
1359 OS << " " << RetExpr << S;
1360 emitNewLine();
1361 }
1362
emitBody(StringRef CallPrefix)1363 void Intrinsic::emitBody(StringRef CallPrefix) {
1364 std::vector<std::string> Lines;
1365
1366 if (!Body || Body->getValues().empty()) {
1367 // Nothing specific to output - must output a builtin.
1368 emitBodyAsBuiltinCall();
1369 return;
1370 }
1371
1372 // We have a list of "things to output". The last should be returned.
1373 for (auto *I : Body->getValues()) {
1374 if (StringInit *SI = dyn_cast<StringInit>(I)) {
1375 Lines.push_back(replaceParamsIn(SI->getAsString()));
1376 } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1377 DagEmitter DE(*this, CallPrefix);
1378 Lines.push_back(DE.emitDag(DI).second + ";");
1379 }
1380 }
1381
1382 assert(!Lines.empty() && "Empty def?");
1383 if (!RetVar.getType().isVoid())
1384 Lines.back().insert(0, RetVar.getName() + " = ");
1385
1386 for (auto &L : Lines) {
1387 OS << " " << L;
1388 emitNewLine();
1389 }
1390 }
1391
emitReturn()1392 void Intrinsic::emitReturn() {
1393 if (RetVar.getType().isVoid())
1394 return;
1395 if (UseMacro)
1396 OS << " " << RetVar.getName() << ";";
1397 else
1398 OS << " return " << RetVar.getName() << ";";
1399 emitNewLine();
1400 }
1401
emitDag(DagInit * DI)1402 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1403 // At this point we should only be seeing a def.
1404 DefInit *DefI = cast<DefInit>(DI->getOperator());
1405 std::string Op = DefI->getAsString();
1406
1407 if (Op == "cast" || Op == "bitcast")
1408 return emitDagCast(DI, Op == "bitcast");
1409 if (Op == "shuffle")
1410 return emitDagShuffle(DI);
1411 if (Op == "dup")
1412 return emitDagDup(DI);
1413 if (Op == "dup_typed")
1414 return emitDagDupTyped(DI);
1415 if (Op == "splat")
1416 return emitDagSplat(DI);
1417 if (Op == "save_temp")
1418 return emitDagSaveTemp(DI);
1419 if (Op == "op")
1420 return emitDagOp(DI);
1421 if (Op == "call" || Op == "call_mangled")
1422 return emitDagCall(DI, Op == "call_mangled");
1423 if (Op == "name_replace")
1424 return emitDagNameReplace(DI);
1425 if (Op == "literal")
1426 return emitDagLiteral(DI);
1427 assert_with_loc(false, "Unknown operation!");
1428 return std::make_pair(Type::getVoid(), "");
1429 }
1430
emitDagOp(DagInit * DI)1431 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1432 std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1433 if (DI->getNumArgs() == 2) {
1434 // Unary op.
1435 std::pair<Type, std::string> R =
1436 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1437 return std::make_pair(R.first, Op + R.second);
1438 } else {
1439 assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1440 std::pair<Type, std::string> R1 =
1441 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1442 std::pair<Type, std::string> R2 =
1443 emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1444 assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1445 return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1446 }
1447 }
1448
1449 std::pair<Type, std::string>
emitDagCall(DagInit * DI,bool MatchMangledName)1450 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1451 std::vector<Type> Types;
1452 std::vector<std::string> Values;
1453 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1454 std::pair<Type, std::string> R =
1455 emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1456 Types.push_back(R.first);
1457 Values.push_back(R.second);
1458 }
1459
1460 // Look up the called intrinsic.
1461 std::string N;
1462 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1463 N = SI->getAsUnquotedString();
1464 else
1465 N = emitDagArg(DI->getArg(0), "").second;
1466 Optional<std::string> MangledName;
1467 if (MatchMangledName) {
1468 if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1469 N += "q";
1470 MangledName = Intr.mangleName(N, ClassS);
1471 }
1472 Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1473
1474 // Make sure the callee is known as an early def.
1475 Callee.setNeededEarly();
1476 Intr.Dependencies.insert(&Callee);
1477
1478 // Now create the call itself.
1479 std::string S;
1480 if (!Callee.isBigEndianSafe())
1481 S += CallPrefix.str();
1482 S += Callee.getMangledName(true) + "(";
1483 for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1484 if (I != 0)
1485 S += ", ";
1486 S += Values[I];
1487 }
1488 S += ")";
1489
1490 return std::make_pair(Callee.getReturnType(), S);
1491 }
1492
emitDagCast(DagInit * DI,bool IsBitCast)1493 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1494 bool IsBitCast){
1495 // (cast MOD* VAL) -> cast VAL to type given by MOD.
1496 std::pair<Type, std::string> R =
1497 emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1498 std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1499 Type castToType = R.first;
1500 for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1501
1502 // MOD can take several forms:
1503 // 1. $X - take the type of parameter / variable X.
1504 // 2. The value "R" - take the type of the return type.
1505 // 3. a type string
1506 // 4. The value "U" or "S" to switch the signedness.
1507 // 5. The value "H" or "D" to half or double the bitwidth.
1508 // 6. The value "8" to convert to 8-bit (signed) integer lanes.
1509 if (!DI->getArgNameStr(ArgIdx).empty()) {
1510 assert_with_loc(Intr.Variables.find(std::string(
1511 DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1512 "Variable not found");
1513 castToType =
1514 Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1515 } else {
1516 StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1517 assert_with_loc(SI, "Expected string type or $Name for cast type");
1518
1519 if (SI->getAsUnquotedString() == "R") {
1520 castToType = Intr.getReturnType();
1521 } else if (SI->getAsUnquotedString() == "U") {
1522 castToType.makeUnsigned();
1523 } else if (SI->getAsUnquotedString() == "S") {
1524 castToType.makeSigned();
1525 } else if (SI->getAsUnquotedString() == "H") {
1526 castToType.halveLanes();
1527 } else if (SI->getAsUnquotedString() == "D") {
1528 castToType.doubleLanes();
1529 } else if (SI->getAsUnquotedString() == "8") {
1530 castToType.makeInteger(8, true);
1531 } else if (SI->getAsUnquotedString() == "32") {
1532 castToType.make32BitElement();
1533 } else {
1534 castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1535 assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1536 }
1537 }
1538 }
1539
1540 std::string S;
1541 if (IsBitCast) {
1542 // Emit a reinterpret cast. The second operand must be an lvalue, so create
1543 // a temporary.
1544 std::string N = "reint";
1545 unsigned I = 0;
1546 while (Intr.Variables.find(N) != Intr.Variables.end())
1547 N = "reint" + utostr(++I);
1548 Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1549
1550 Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1551 << R.second << ";";
1552 Intr.emitNewLine();
1553
1554 S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1555 } else {
1556 // Emit a normal (static) cast.
1557 S = "(" + castToType.str() + ")(" + R.second + ")";
1558 }
1559
1560 return std::make_pair(castToType, S);
1561 }
1562
emitDagShuffle(DagInit * DI)1563 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1564 // See the documentation in arm_neon.td for a description of these operators.
1565 class LowHalf : public SetTheory::Operator {
1566 public:
1567 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1568 ArrayRef<SMLoc> Loc) override {
1569 SetTheory::RecSet Elts2;
1570 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1571 Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1572 }
1573 };
1574
1575 class HighHalf : public SetTheory::Operator {
1576 public:
1577 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1578 ArrayRef<SMLoc> Loc) override {
1579 SetTheory::RecSet Elts2;
1580 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1581 Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1582 }
1583 };
1584
1585 class Rev : public SetTheory::Operator {
1586 unsigned ElementSize;
1587
1588 public:
1589 Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1590
1591 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1592 ArrayRef<SMLoc> Loc) override {
1593 SetTheory::RecSet Elts2;
1594 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1595
1596 int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1597 VectorSize /= ElementSize;
1598
1599 std::vector<Record *> Revved;
1600 for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1601 for (int LI = VectorSize - 1; LI >= 0; --LI) {
1602 Revved.push_back(Elts2[VI + LI]);
1603 }
1604 }
1605
1606 Elts.insert(Revved.begin(), Revved.end());
1607 }
1608 };
1609
1610 class MaskExpander : public SetTheory::Expander {
1611 unsigned N;
1612
1613 public:
1614 MaskExpander(unsigned N) : N(N) {}
1615
1616 void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1617 unsigned Addend = 0;
1618 if (R->getName() == "mask0")
1619 Addend = 0;
1620 else if (R->getName() == "mask1")
1621 Addend = N;
1622 else
1623 return;
1624 for (unsigned I = 0; I < N; ++I)
1625 Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1626 }
1627 };
1628
1629 // (shuffle arg1, arg2, sequence)
1630 std::pair<Type, std::string> Arg1 =
1631 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1632 std::pair<Type, std::string> Arg2 =
1633 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1634 assert_with_loc(Arg1.first == Arg2.first,
1635 "Different types in arguments to shuffle!");
1636
1637 SetTheory ST;
1638 SetTheory::RecSet Elts;
1639 ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1640 ST.addOperator("highhalf", std::make_unique<HighHalf>());
1641 ST.addOperator("rev",
1642 std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1643 ST.addExpander("MaskExpand",
1644 std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1645 ST.evaluate(DI->getArg(2), Elts, None);
1646
1647 std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1648 for (auto &E : Elts) {
1649 StringRef Name = E->getName();
1650 assert_with_loc(Name.startswith("sv"),
1651 "Incorrect element kind in shuffle mask!");
1652 S += ", " + Name.drop_front(2).str();
1653 }
1654 S += ")";
1655
1656 // Recalculate the return type - the shuffle may have halved or doubled it.
1657 Type T(Arg1.first);
1658 if (Elts.size() > T.getNumElements()) {
1659 assert_with_loc(
1660 Elts.size() == T.getNumElements() * 2,
1661 "Can only double or half the number of elements in a shuffle!");
1662 T.doubleLanes();
1663 } else if (Elts.size() < T.getNumElements()) {
1664 assert_with_loc(
1665 Elts.size() == T.getNumElements() / 2,
1666 "Can only double or half the number of elements in a shuffle!");
1667 T.halveLanes();
1668 }
1669
1670 return std::make_pair(T, S);
1671 }
1672
emitDagDup(DagInit * DI)1673 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1674 assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1675 std::pair<Type, std::string> A =
1676 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1677 assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1678
1679 Type T = Intr.getBaseType();
1680 assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1681 std::string S = "(" + T.str() + ") {";
1682 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1683 if (I != 0)
1684 S += ", ";
1685 S += A.second;
1686 }
1687 S += "}";
1688
1689 return std::make_pair(T, S);
1690 }
1691
emitDagDupTyped(DagInit * DI)1692 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1693 assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1694 std::pair<Type, std::string> B =
1695 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1696 assert_with_loc(B.first.isScalar(),
1697 "dup_typed() requires a scalar as the second argument");
1698 Type T;
1699 // If the type argument is a constant string, construct the type directly.
1700 if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1701 T = Type::fromTypedefName(SI->getAsUnquotedString());
1702 assert_with_loc(!T.isVoid(), "Unknown typedef");
1703 } else
1704 T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1705
1706 assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1707 std::string S = "(" + T.str() + ") {";
1708 for (unsigned I = 0; I < T.getNumElements(); ++I) {
1709 if (I != 0)
1710 S += ", ";
1711 S += B.second;
1712 }
1713 S += "}";
1714
1715 return std::make_pair(T, S);
1716 }
1717
emitDagSplat(DagInit * DI)1718 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1719 assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1720 std::pair<Type, std::string> A =
1721 emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1722 std::pair<Type, std::string> B =
1723 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1724
1725 assert_with_loc(B.first.isScalar(),
1726 "splat() requires a scalar int as the second argument");
1727
1728 std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1729 for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1730 S += ", " + B.second;
1731 }
1732 S += ")";
1733
1734 return std::make_pair(Intr.getBaseType(), S);
1735 }
1736
emitDagSaveTemp(DagInit * DI)1737 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1738 assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1739 std::pair<Type, std::string> A =
1740 emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1741
1742 assert_with_loc(!A.first.isVoid(),
1743 "Argument to save_temp() must have non-void type!");
1744
1745 std::string N = std::string(DI->getArgNameStr(0));
1746 assert_with_loc(!N.empty(),
1747 "save_temp() expects a name as the first argument");
1748
1749 assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1750 "Variable already defined!");
1751 Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1752
1753 std::string S =
1754 A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1755
1756 return std::make_pair(Type::getVoid(), S);
1757 }
1758
1759 std::pair<Type, std::string>
emitDagNameReplace(DagInit * DI)1760 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1761 std::string S = Intr.Name;
1762
1763 assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1764 std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1765 std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1766
1767 size_t Idx = S.find(ToReplace);
1768
1769 assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1770 S.replace(Idx, ToReplace.size(), ReplaceWith);
1771
1772 return std::make_pair(Type::getVoid(), S);
1773 }
1774
emitDagLiteral(DagInit * DI)1775 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1776 std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1777 std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1778 return std::make_pair(Type::fromTypedefName(Ty), Value);
1779 }
1780
1781 std::pair<Type, std::string>
emitDagArg(Init * Arg,std::string ArgName)1782 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1783 if (!ArgName.empty()) {
1784 assert_with_loc(!Arg->isComplete(),
1785 "Arguments must either be DAGs or names, not both!");
1786 assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1787 "Variable not defined!");
1788 Variable &V = Intr.Variables[ArgName];
1789 return std::make_pair(V.getType(), V.getName());
1790 }
1791
1792 assert(Arg && "Neither ArgName nor Arg?!");
1793 DagInit *DI = dyn_cast<DagInit>(Arg);
1794 assert_with_loc(DI, "Arguments must either be DAGs or names!");
1795
1796 return emitDag(DI);
1797 }
1798
generate()1799 std::string Intrinsic::generate() {
1800 // Avoid duplicated code for big and little endian
1801 if (isBigEndianSafe()) {
1802 generateImpl(false, "", "");
1803 return OS.str();
1804 }
1805 // Little endian intrinsics are simple and don't require any argument
1806 // swapping.
1807 OS << "#ifdef __LITTLE_ENDIAN__\n";
1808
1809 generateImpl(false, "", "");
1810
1811 OS << "#else\n";
1812
1813 // Big endian intrinsics are more complex. The user intended these
1814 // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1815 // but we load as-if (V)LD1. So we should swap all arguments and
1816 // swap the return value too.
1817 //
1818 // If we call sub-intrinsics, we should call a version that does
1819 // not re-swap the arguments!
1820 generateImpl(true, "", "__noswap_");
1821
1822 // If we're needed early, create a non-swapping variant for
1823 // big-endian.
1824 if (NeededEarly) {
1825 generateImpl(false, "__noswap_", "__noswap_");
1826 }
1827 OS << "#endif\n\n";
1828
1829 return OS.str();
1830 }
1831
generateImpl(bool ReverseArguments,StringRef NamePrefix,StringRef CallPrefix)1832 void Intrinsic::generateImpl(bool ReverseArguments,
1833 StringRef NamePrefix, StringRef CallPrefix) {
1834 CurrentRecord = R;
1835
1836 // If we call a macro, our local variables may be corrupted due to
1837 // lack of proper lexical scoping. So, add a globally unique postfix
1838 // to every variable.
1839 //
1840 // indexBody() should have set up the Dependencies set by now.
1841 for (auto *I : Dependencies)
1842 if (I->UseMacro) {
1843 VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1844 break;
1845 }
1846
1847 initVariables();
1848
1849 emitPrototype(NamePrefix);
1850
1851 if (IsUnavailable) {
1852 OS << " __attribute__((unavailable));";
1853 } else {
1854 emitOpeningBrace();
1855 // Emit return variable declaration first as to not trigger
1856 // -Wdeclaration-after-statement.
1857 emitReturnVarDecl();
1858 emitShadowedArgs();
1859 if (ReverseArguments)
1860 emitArgumentReversal();
1861 emitBody(CallPrefix);
1862 if (ReverseArguments)
1863 emitReturnReversal();
1864 emitReturn();
1865 emitClosingBrace();
1866 }
1867 OS << "\n";
1868
1869 CurrentRecord = nullptr;
1870 }
1871
indexBody()1872 void Intrinsic::indexBody() {
1873 CurrentRecord = R;
1874
1875 initVariables();
1876 // Emit return variable declaration first as to not trigger
1877 // -Wdeclaration-after-statement.
1878 emitReturnVarDecl();
1879 emitBody("");
1880 OS.str("");
1881
1882 CurrentRecord = nullptr;
1883 }
1884
1885 //===----------------------------------------------------------------------===//
1886 // NeonEmitter implementation
1887 //===----------------------------------------------------------------------===//
1888
getIntrinsic(StringRef Name,ArrayRef<Type> Types,Optional<std::string> MangledName)1889 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1890 Optional<std::string> MangledName) {
1891 // First, look up the name in the intrinsic map.
1892 assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1893 ("Intrinsic '" + Name + "' not found!").str());
1894 auto &V = IntrinsicMap.find(Name.str())->second;
1895 std::vector<Intrinsic *> GoodVec;
1896
1897 // Create a string to print if we end up failing.
1898 std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1899 for (unsigned I = 0; I < Types.size(); ++I) {
1900 if (I != 0)
1901 ErrMsg += ", ";
1902 ErrMsg += Types[I].str();
1903 }
1904 ErrMsg += ")'\n";
1905 ErrMsg += "Available overloads:\n";
1906
1907 // Now, look through each intrinsic implementation and see if the types are
1908 // compatible.
1909 for (auto &I : V) {
1910 ErrMsg += " - " + I.getReturnType().str() + " " + I.getMangledName();
1911 ErrMsg += "(";
1912 for (unsigned A = 0; A < I.getNumParams(); ++A) {
1913 if (A != 0)
1914 ErrMsg += ", ";
1915 ErrMsg += I.getParamType(A).str();
1916 }
1917 ErrMsg += ")\n";
1918
1919 if (MangledName && MangledName != I.getMangledName(true))
1920 continue;
1921
1922 if (I.getNumParams() != Types.size())
1923 continue;
1924
1925 unsigned ArgNum = 0;
1926 bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1927 return Type == I.getParamType(ArgNum++);
1928 });
1929
1930 if (MatchingArgumentTypes)
1931 GoodVec.push_back(&I);
1932 }
1933
1934 assert_with_loc(!GoodVec.empty(),
1935 "No compatible intrinsic found - " + ErrMsg);
1936 assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1937
1938 return *GoodVec.front();
1939 }
1940
createIntrinsic(Record * R,SmallVectorImpl<Intrinsic * > & Out)1941 void NeonEmitter::createIntrinsic(Record *R,
1942 SmallVectorImpl<Intrinsic *> &Out) {
1943 std::string Name = std::string(R->getValueAsString("Name"));
1944 std::string Proto = std::string(R->getValueAsString("Prototype"));
1945 std::string Types = std::string(R->getValueAsString("Types"));
1946 Record *OperationRec = R->getValueAsDef("Operation");
1947 bool BigEndianSafe = R->getValueAsBit("BigEndianSafe");
1948 std::string Guard = std::string(R->getValueAsString("ArchGuard"));
1949 bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1950 std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1951
1952 // Set the global current record. This allows assert_with_loc to produce
1953 // decent location information even when highly nested.
1954 CurrentRecord = R;
1955
1956 ListInit *Body = OperationRec->getValueAsListInit("Ops");
1957
1958 std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1959
1960 ClassKind CK = ClassNone;
1961 if (R->getSuperClasses().size() >= 2)
1962 CK = ClassMap[R->getSuperClasses()[1].first];
1963
1964 std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1965 if (!CartesianProductWith.empty()) {
1966 std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1967 for (auto TS : TypeSpecs) {
1968 Type DefaultT(TS, ".");
1969 for (auto SrcTS : ProductTypeSpecs) {
1970 Type DefaultSrcT(SrcTS, ".");
1971 if (TS == SrcTS ||
1972 DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1973 continue;
1974 NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1975 }
1976 }
1977 } else {
1978 for (auto TS : TypeSpecs) {
1979 NewTypeSpecs.push_back(std::make_pair(TS, TS));
1980 }
1981 }
1982
1983 llvm::sort(NewTypeSpecs);
1984 NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1985 NewTypeSpecs.end());
1986 auto &Entry = IntrinsicMap[Name];
1987
1988 for (auto &I : NewTypeSpecs) {
1989 Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1990 Guard, IsUnavailable, BigEndianSafe);
1991 Out.push_back(&Entry.back());
1992 }
1993
1994 CurrentRecord = nullptr;
1995 }
1996
1997 /// genBuiltinsDef: Generate the BuiltinsARM.def and BuiltinsAArch64.def
1998 /// declaration of builtins, checking for unique builtin declarations.
genBuiltinsDef(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)1999 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2000 SmallVectorImpl<Intrinsic *> &Defs) {
2001 OS << "#ifdef GET_NEON_BUILTINS\n";
2002
2003 // We only want to emit a builtin once, and we want to emit them in
2004 // alphabetical order, so use a std::set.
2005 std::set<std::string> Builtins;
2006
2007 for (auto *Def : Defs) {
2008 if (Def->hasBody())
2009 continue;
2010
2011 std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
2012
2013 S += Def->getBuiltinTypeStr();
2014 S += "\", \"n\")";
2015
2016 Builtins.insert(S);
2017 }
2018
2019 for (auto &S : Builtins)
2020 OS << S << "\n";
2021 OS << "#endif\n\n";
2022 }
2023
2024 /// Generate the ARM and AArch64 overloaded type checking code for
2025 /// SemaChecking.cpp, checking for unique builtin declarations.
genOverloadTypeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2026 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2027 SmallVectorImpl<Intrinsic *> &Defs) {
2028 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2029
2030 // We record each overload check line before emitting because subsequent Inst
2031 // definitions may extend the number of permitted types (i.e. augment the
2032 // Mask). Use std::map to avoid sorting the table by hash number.
2033 struct OverloadInfo {
2034 uint64_t Mask;
2035 int PtrArgNum;
2036 bool HasConstPtr;
2037 OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2038 };
2039 std::map<std::string, OverloadInfo> OverloadMap;
2040
2041 for (auto *Def : Defs) {
2042 // If the def has a body (that is, it has Operation DAGs), it won't call
2043 // __builtin_neon_* so we don't need to generate a definition for it.
2044 if (Def->hasBody())
2045 continue;
2046 // Functions which have a scalar argument cannot be overloaded, no need to
2047 // check them if we are emitting the type checking code.
2048 if (Def->protoHasScalar())
2049 continue;
2050
2051 uint64_t Mask = 0ULL;
2052 Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2053
2054 // Check if the function has a pointer or const pointer argument.
2055 int PtrArgNum = -1;
2056 bool HasConstPtr = false;
2057 for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2058 const auto &Type = Def->getParamType(I);
2059 if (Type.isPointer()) {
2060 PtrArgNum = I;
2061 HasConstPtr = Type.isConstPointer();
2062 }
2063 }
2064
2065 // For sret builtins, adjust the pointer argument index.
2066 if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2067 PtrArgNum += 1;
2068
2069 std::string Name = Def->getName();
2070 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2071 // and vst1_lane intrinsics. Using a pointer to the vector element
2072 // type with one of those operations causes codegen to select an aligned
2073 // load/store instruction. If you want an unaligned operation,
2074 // the pointer argument needs to have less alignment than element type,
2075 // so just accept any pointer type.
2076 if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2077 PtrArgNum = -1;
2078 HasConstPtr = false;
2079 }
2080
2081 if (Mask) {
2082 std::string Name = Def->getMangledName();
2083 OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2084 OverloadInfo &OI = OverloadMap[Name];
2085 OI.Mask |= Mask;
2086 OI.PtrArgNum |= PtrArgNum;
2087 OI.HasConstPtr = HasConstPtr;
2088 }
2089 }
2090
2091 for (auto &I : OverloadMap) {
2092 OverloadInfo &OI = I.second;
2093
2094 OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2095 OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2096 if (OI.PtrArgNum >= 0)
2097 OS << "; PtrArgNum = " << OI.PtrArgNum;
2098 if (OI.HasConstPtr)
2099 OS << "; HasConstPtr = true";
2100 OS << "; break;\n";
2101 }
2102 OS << "#endif\n\n";
2103 }
2104
genIntrinsicRangeCheckCode(raw_ostream & OS,SmallVectorImpl<Intrinsic * > & Defs)2105 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2106 SmallVectorImpl<Intrinsic *> &Defs) {
2107 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2108
2109 std::set<std::string> Emitted;
2110
2111 for (auto *Def : Defs) {
2112 if (Def->hasBody())
2113 continue;
2114 // Functions which do not have an immediate do not need to have range
2115 // checking code emitted.
2116 if (!Def->hasImmediate())
2117 continue;
2118 if (Emitted.find(Def->getMangledName()) != Emitted.end())
2119 continue;
2120
2121 std::string LowerBound, UpperBound;
2122
2123 Record *R = Def->getRecord();
2124 if (R->getValueAsBit("isVXAR")) {
2125 //VXAR takes an immediate in the range [0, 63]
2126 LowerBound = "0";
2127 UpperBound = "63";
2128 } else if (R->getValueAsBit("isVCVT_N")) {
2129 // VCVT between floating- and fixed-point values takes an immediate
2130 // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2131 LowerBound = "1";
2132 if (Def->getBaseType().getElementSizeInBits() == 16 ||
2133 Def->getName().find('h') != std::string::npos)
2134 // VCVTh operating on FP16 intrinsics in range [1, 16)
2135 UpperBound = "15";
2136 else if (Def->getBaseType().getElementSizeInBits() == 32)
2137 UpperBound = "31";
2138 else
2139 UpperBound = "63";
2140 } else if (R->getValueAsBit("isScalarShift")) {
2141 // Right shifts have an 'r' in the name, left shifts do not. Convert
2142 // instructions have the same bounds and right shifts.
2143 if (Def->getName().find('r') != std::string::npos ||
2144 Def->getName().find("cvt") != std::string::npos)
2145 LowerBound = "1";
2146
2147 UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2148 } else if (R->getValueAsBit("isShift")) {
2149 // Builtins which are overloaded by type will need to have their upper
2150 // bound computed at Sema time based on the type constant.
2151
2152 // Right shifts have an 'r' in the name, left shifts do not.
2153 if (Def->getName().find('r') != std::string::npos)
2154 LowerBound = "1";
2155 UpperBound = "RFT(TV, true)";
2156 } else if (Def->getClassKind(true) == ClassB) {
2157 // ClassB intrinsics have a type (and hence lane number) that is only
2158 // known at runtime.
2159 if (R->getValueAsBit("isLaneQ"))
2160 UpperBound = "RFT(TV, false, true)";
2161 else
2162 UpperBound = "RFT(TV, false, false)";
2163 } else {
2164 // The immediate generally refers to a lane in the preceding argument.
2165 assert(Def->getImmediateIdx() > 0);
2166 Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2167 UpperBound = utostr(T.getNumElements() - 1);
2168 }
2169
2170 // Calculate the index of the immediate that should be range checked.
2171 unsigned Idx = Def->getNumParams();
2172 if (Def->hasImmediate())
2173 Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2174
2175 OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2176 << "i = " << Idx << ";";
2177 if (!LowerBound.empty())
2178 OS << " l = " << LowerBound << ";";
2179 if (!UpperBound.empty())
2180 OS << " u = " << UpperBound << ";";
2181 OS << " break;\n";
2182
2183 Emitted.insert(Def->getMangledName());
2184 }
2185
2186 OS << "#endif\n\n";
2187 }
2188
2189 /// runHeader - Emit a file with sections defining:
2190 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2191 /// 2. the SemaChecking code for the type overload checking.
2192 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
runHeader(raw_ostream & OS)2193 void NeonEmitter::runHeader(raw_ostream &OS) {
2194 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2195
2196 SmallVector<Intrinsic *, 128> Defs;
2197 for (auto *R : RV)
2198 createIntrinsic(R, Defs);
2199
2200 // Generate shared BuiltinsXXX.def
2201 genBuiltinsDef(OS, Defs);
2202
2203 // Generate ARM overloaded type checking code for SemaChecking.cpp
2204 genOverloadTypeCheckCode(OS, Defs);
2205
2206 // Generate ARM range checking code for shift/lane immediates.
2207 genIntrinsicRangeCheckCode(OS, Defs);
2208 }
2209
emitNeonTypeDefs(const std::string & types,raw_ostream & OS)2210 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2211 std::string TypedefTypes(types);
2212 std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2213
2214 // Emit vector typedefs.
2215 bool InIfdef = false;
2216 for (auto &TS : TDTypeVec) {
2217 bool IsA64 = false;
2218 Type T(TS, ".");
2219 if (T.isDouble())
2220 IsA64 = true;
2221
2222 if (InIfdef && !IsA64) {
2223 OS << "#endif\n";
2224 InIfdef = false;
2225 }
2226 if (!InIfdef && IsA64) {
2227 OS << "#ifdef __aarch64__\n";
2228 InIfdef = true;
2229 }
2230
2231 if (T.isPoly())
2232 OS << "typedef __attribute__((neon_polyvector_type(";
2233 else
2234 OS << "typedef __attribute__((neon_vector_type(";
2235
2236 Type T2 = T;
2237 T2.makeScalar();
2238 OS << T.getNumElements() << "))) ";
2239 OS << T2.str();
2240 OS << " " << T.str() << ";\n";
2241 }
2242 if (InIfdef)
2243 OS << "#endif\n";
2244 OS << "\n";
2245
2246 // Emit struct typedefs.
2247 InIfdef = false;
2248 for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2249 for (auto &TS : TDTypeVec) {
2250 bool IsA64 = false;
2251 Type T(TS, ".");
2252 if (T.isDouble())
2253 IsA64 = true;
2254
2255 if (InIfdef && !IsA64) {
2256 OS << "#endif\n";
2257 InIfdef = false;
2258 }
2259 if (!InIfdef && IsA64) {
2260 OS << "#ifdef __aarch64__\n";
2261 InIfdef = true;
2262 }
2263
2264 const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2265 Type VT(TS, Mods);
2266 OS << "typedef struct " << VT.str() << " {\n";
2267 OS << " " << T.str() << " val";
2268 OS << "[" << NumMembers << "]";
2269 OS << ";\n} ";
2270 OS << VT.str() << ";\n";
2271 OS << "\n";
2272 }
2273 }
2274 if (InIfdef)
2275 OS << "#endif\n";
2276 }
2277
2278 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
2279 /// is comprised of type definitions and function declarations.
run(raw_ostream & OS)2280 void NeonEmitter::run(raw_ostream &OS) {
2281 OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2282 "------------------------------"
2283 "---===\n"
2284 " *\n"
2285 " * Permission is hereby granted, free of charge, to any person "
2286 "obtaining "
2287 "a copy\n"
2288 " * of this software and associated documentation files (the "
2289 "\"Software\"),"
2290 " to deal\n"
2291 " * in the Software without restriction, including without limitation "
2292 "the "
2293 "rights\n"
2294 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2295 "and/or sell\n"
2296 " * copies of the Software, and to permit persons to whom the Software "
2297 "is\n"
2298 " * furnished to do so, subject to the following conditions:\n"
2299 " *\n"
2300 " * The above copyright notice and this permission notice shall be "
2301 "included in\n"
2302 " * all copies or substantial portions of the Software.\n"
2303 " *\n"
2304 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2305 "EXPRESS OR\n"
2306 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2307 "MERCHANTABILITY,\n"
2308 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2309 "SHALL THE\n"
2310 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2311 "OTHER\n"
2312 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2313 "ARISING FROM,\n"
2314 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2315 "DEALINGS IN\n"
2316 " * THE SOFTWARE.\n"
2317 " *\n"
2318 " *===-----------------------------------------------------------------"
2319 "---"
2320 "---===\n"
2321 " */\n\n";
2322
2323 OS << "#ifndef __ARM_NEON_H\n";
2324 OS << "#define __ARM_NEON_H\n\n";
2325
2326 OS << "#ifndef __ARM_FP\n";
2327 OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2328 "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2329 OS << "#else\n\n";
2330
2331 OS << "#if !defined(__ARM_NEON)\n";
2332 OS << "#error \"NEON support not enabled\"\n";
2333 OS << "#else\n\n";
2334
2335 OS << "#include <stdint.h>\n\n";
2336
2337 OS << "#ifdef __ARM_FEATURE_BF16\n";
2338 OS << "#include <arm_bf16.h>\n";
2339 OS << "typedef __bf16 bfloat16_t;\n";
2340 OS << "#endif\n\n";
2341
2342 // Emit NEON-specific scalar typedefs.
2343 OS << "typedef float float32_t;\n";
2344 OS << "typedef __fp16 float16_t;\n";
2345
2346 OS << "#ifdef __aarch64__\n";
2347 OS << "typedef double float64_t;\n";
2348 OS << "#endif\n\n";
2349
2350 // For now, signedness of polynomial types depends on target
2351 OS << "#ifdef __aarch64__\n";
2352 OS << "typedef uint8_t poly8_t;\n";
2353 OS << "typedef uint16_t poly16_t;\n";
2354 OS << "typedef uint64_t poly64_t;\n";
2355 OS << "typedef __uint128_t poly128_t;\n";
2356 OS << "#else\n";
2357 OS << "typedef int8_t poly8_t;\n";
2358 OS << "typedef int16_t poly16_t;\n";
2359 OS << "typedef int64_t poly64_t;\n";
2360 OS << "#endif\n";
2361
2362 emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS);
2363
2364 OS << "#ifdef __ARM_FEATURE_BF16\n";
2365 emitNeonTypeDefs("bQb", OS);
2366 OS << "#endif\n\n";
2367
2368 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2369 "__nodebug__))\n\n";
2370
2371 SmallVector<Intrinsic *, 128> Defs;
2372 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2373 for (auto *R : RV)
2374 createIntrinsic(R, Defs);
2375
2376 for (auto *I : Defs)
2377 I->indexBody();
2378
2379 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2380
2381 // Only emit a def when its requirements have been met.
2382 // FIXME: This loop could be made faster, but it's fast enough for now.
2383 bool MadeProgress = true;
2384 std::string InGuard;
2385 while (!Defs.empty() && MadeProgress) {
2386 MadeProgress = false;
2387
2388 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2389 I != Defs.end(); /*No step*/) {
2390 bool DependenciesSatisfied = true;
2391 for (auto *II : (*I)->getDependencies()) {
2392 if (llvm::is_contained(Defs, II))
2393 DependenciesSatisfied = false;
2394 }
2395 if (!DependenciesSatisfied) {
2396 // Try the next one.
2397 ++I;
2398 continue;
2399 }
2400
2401 // Emit #endif/#if pair if needed.
2402 if ((*I)->getGuard() != InGuard) {
2403 if (!InGuard.empty())
2404 OS << "#endif\n";
2405 InGuard = (*I)->getGuard();
2406 if (!InGuard.empty())
2407 OS << "#if " << InGuard << "\n";
2408 }
2409
2410 // Actually generate the intrinsic code.
2411 OS << (*I)->generate();
2412
2413 MadeProgress = true;
2414 I = Defs.erase(I);
2415 }
2416 }
2417 assert(Defs.empty() && "Some requirements were not satisfied!");
2418 if (!InGuard.empty())
2419 OS << "#endif\n";
2420
2421 OS << "\n";
2422 OS << "#undef __ai\n\n";
2423 OS << "#endif /* if !defined(__ARM_NEON) */\n";
2424 OS << "#endif /* ifndef __ARM_FP */\n";
2425 OS << "#endif /* __ARM_NEON_H */\n";
2426 }
2427
2428 /// run - Read the records in arm_fp16.td and output arm_fp16.h. arm_fp16.h
2429 /// is comprised of type definitions and function declarations.
runFP16(raw_ostream & OS)2430 void NeonEmitter::runFP16(raw_ostream &OS) {
2431 OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2432 "------------------------------"
2433 "---===\n"
2434 " *\n"
2435 " * Permission is hereby granted, free of charge, to any person "
2436 "obtaining a copy\n"
2437 " * of this software and associated documentation files (the "
2438 "\"Software\"), to deal\n"
2439 " * in the Software without restriction, including without limitation "
2440 "the rights\n"
2441 " * to use, copy, modify, merge, publish, distribute, sublicense, "
2442 "and/or sell\n"
2443 " * copies of the Software, and to permit persons to whom the Software "
2444 "is\n"
2445 " * furnished to do so, subject to the following conditions:\n"
2446 " *\n"
2447 " * The above copyright notice and this permission notice shall be "
2448 "included in\n"
2449 " * all copies or substantial portions of the Software.\n"
2450 " *\n"
2451 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2452 "EXPRESS OR\n"
2453 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2454 "MERCHANTABILITY,\n"
2455 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2456 "SHALL THE\n"
2457 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2458 "OTHER\n"
2459 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2460 "ARISING FROM,\n"
2461 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2462 "DEALINGS IN\n"
2463 " * THE SOFTWARE.\n"
2464 " *\n"
2465 " *===-----------------------------------------------------------------"
2466 "---"
2467 "---===\n"
2468 " */\n\n";
2469
2470 OS << "#ifndef __ARM_FP16_H\n";
2471 OS << "#define __ARM_FP16_H\n\n";
2472
2473 OS << "#include <stdint.h>\n\n";
2474
2475 OS << "typedef __fp16 float16_t;\n";
2476
2477 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2478 "__nodebug__))\n\n";
2479
2480 SmallVector<Intrinsic *, 128> Defs;
2481 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2482 for (auto *R : RV)
2483 createIntrinsic(R, Defs);
2484
2485 for (auto *I : Defs)
2486 I->indexBody();
2487
2488 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2489
2490 // Only emit a def when its requirements have been met.
2491 // FIXME: This loop could be made faster, but it's fast enough for now.
2492 bool MadeProgress = true;
2493 std::string InGuard;
2494 while (!Defs.empty() && MadeProgress) {
2495 MadeProgress = false;
2496
2497 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2498 I != Defs.end(); /*No step*/) {
2499 bool DependenciesSatisfied = true;
2500 for (auto *II : (*I)->getDependencies()) {
2501 if (llvm::is_contained(Defs, II))
2502 DependenciesSatisfied = false;
2503 }
2504 if (!DependenciesSatisfied) {
2505 // Try the next one.
2506 ++I;
2507 continue;
2508 }
2509
2510 // Emit #endif/#if pair if needed.
2511 if ((*I)->getGuard() != InGuard) {
2512 if (!InGuard.empty())
2513 OS << "#endif\n";
2514 InGuard = (*I)->getGuard();
2515 if (!InGuard.empty())
2516 OS << "#if " << InGuard << "\n";
2517 }
2518
2519 // Actually generate the intrinsic code.
2520 OS << (*I)->generate();
2521
2522 MadeProgress = true;
2523 I = Defs.erase(I);
2524 }
2525 }
2526 assert(Defs.empty() && "Some requirements were not satisfied!");
2527 if (!InGuard.empty())
2528 OS << "#endif\n";
2529
2530 OS << "\n";
2531 OS << "#undef __ai\n\n";
2532 OS << "#endif /* __ARM_FP16_H */\n";
2533 }
2534
runBF16(raw_ostream & OS)2535 void NeonEmitter::runBF16(raw_ostream &OS) {
2536 OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2537 "-----------------------------------===\n"
2538 " *\n"
2539 " *\n"
2540 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2541 "Exceptions.\n"
2542 " * See https://llvm.org/LICENSE.txt for license information.\n"
2543 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2544 " *\n"
2545 " *===-----------------------------------------------------------------"
2546 "------===\n"
2547 " */\n\n";
2548
2549 OS << "#ifndef __ARM_BF16_H\n";
2550 OS << "#define __ARM_BF16_H\n\n";
2551
2552 OS << "typedef __bf16 bfloat16_t;\n";
2553
2554 OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2555 "__nodebug__))\n\n";
2556
2557 SmallVector<Intrinsic *, 128> Defs;
2558 std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2559 for (auto *R : RV)
2560 createIntrinsic(R, Defs);
2561
2562 for (auto *I : Defs)
2563 I->indexBody();
2564
2565 llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2566
2567 // Only emit a def when its requirements have been met.
2568 // FIXME: This loop could be made faster, but it's fast enough for now.
2569 bool MadeProgress = true;
2570 std::string InGuard;
2571 while (!Defs.empty() && MadeProgress) {
2572 MadeProgress = false;
2573
2574 for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2575 I != Defs.end(); /*No step*/) {
2576 bool DependenciesSatisfied = true;
2577 for (auto *II : (*I)->getDependencies()) {
2578 if (llvm::is_contained(Defs, II))
2579 DependenciesSatisfied = false;
2580 }
2581 if (!DependenciesSatisfied) {
2582 // Try the next one.
2583 ++I;
2584 continue;
2585 }
2586
2587 // Emit #endif/#if pair if needed.
2588 if ((*I)->getGuard() != InGuard) {
2589 if (!InGuard.empty())
2590 OS << "#endif\n";
2591 InGuard = (*I)->getGuard();
2592 if (!InGuard.empty())
2593 OS << "#if " << InGuard << "\n";
2594 }
2595
2596 // Actually generate the intrinsic code.
2597 OS << (*I)->generate();
2598
2599 MadeProgress = true;
2600 I = Defs.erase(I);
2601 }
2602 }
2603 assert(Defs.empty() && "Some requirements were not satisfied!");
2604 if (!InGuard.empty())
2605 OS << "#endif\n";
2606
2607 OS << "\n";
2608 OS << "#undef __ai\n\n";
2609
2610 OS << "#endif\n";
2611 }
2612
EmitNeon(RecordKeeper & Records,raw_ostream & OS)2613 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2614 NeonEmitter(Records).run(OS);
2615 }
2616
EmitFP16(RecordKeeper & Records,raw_ostream & OS)2617 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2618 NeonEmitter(Records).runFP16(OS);
2619 }
2620
EmitBF16(RecordKeeper & Records,raw_ostream & OS)2621 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2622 NeonEmitter(Records).runBF16(OS);
2623 }
2624
EmitNeonSema(RecordKeeper & Records,raw_ostream & OS)2625 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2626 NeonEmitter(Records).runHeader(OS);
2627 }
2628
EmitNeonTest(RecordKeeper & Records,raw_ostream & OS)2629 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2630 llvm_unreachable("Neon test generation no longer implemented!");
2631 }
2632