1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These tablegen backends emit Clang attribute processing code
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TableGen/Error.h"
30 #include "llvm/TableGen/Record.h"
31 #include "llvm/TableGen/StringMatcher.h"
32 #include "llvm/TableGen/TableGenBackend.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cctype>
36 #include <cstddef>
37 #include <cstdint>
38 #include <map>
39 #include <memory>
40 #include <set>
41 #include <sstream>
42 #include <string>
43 #include <utility>
44 #include <vector>
45
46 using namespace llvm;
47
48 namespace {
49
50 class FlattenedSpelling {
51 std::string V, N, NS;
52 bool K = false;
53
54 public:
FlattenedSpelling(const std::string & Variety,const std::string & Name,const std::string & Namespace,bool KnownToGCC)55 FlattenedSpelling(const std::string &Variety, const std::string &Name,
56 const std::string &Namespace, bool KnownToGCC) :
57 V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
FlattenedSpelling(const Record & Spelling)58 explicit FlattenedSpelling(const Record &Spelling)
59 : V(std::string(Spelling.getValueAsString("Variety"))),
60 N(std::string(Spelling.getValueAsString("Name"))) {
61 assert(V != "GCC" && V != "Clang" &&
62 "Given a GCC spelling, which means this hasn't been flattened!");
63 if (V == "CXX11" || V == "C2x" || V == "Pragma")
64 NS = std::string(Spelling.getValueAsString("Namespace"));
65 }
66
variety() const67 const std::string &variety() const { return V; }
name() const68 const std::string &name() const { return N; }
nameSpace() const69 const std::string &nameSpace() const { return NS; }
knownToGCC() const70 bool knownToGCC() const { return K; }
71 };
72
73 } // end anonymous namespace
74
75 static std::vector<FlattenedSpelling>
GetFlattenedSpellings(const Record & Attr)76 GetFlattenedSpellings(const Record &Attr) {
77 std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
78 std::vector<FlattenedSpelling> Ret;
79
80 for (const auto &Spelling : Spellings) {
81 StringRef Variety = Spelling->getValueAsString("Variety");
82 StringRef Name = Spelling->getValueAsString("Name");
83 if (Variety == "GCC") {
84 Ret.emplace_back("GNU", std::string(Name), "", true);
85 Ret.emplace_back("CXX11", std::string(Name), "gnu", true);
86 if (Spelling->getValueAsBit("AllowInC"))
87 Ret.emplace_back("C2x", std::string(Name), "gnu", true);
88 } else if (Variety == "Clang") {
89 Ret.emplace_back("GNU", std::string(Name), "", false);
90 Ret.emplace_back("CXX11", std::string(Name), "clang", false);
91 if (Spelling->getValueAsBit("AllowInC"))
92 Ret.emplace_back("C2x", std::string(Name), "clang", false);
93 } else
94 Ret.push_back(FlattenedSpelling(*Spelling));
95 }
96
97 return Ret;
98 }
99
ReadPCHRecord(StringRef type)100 static std::string ReadPCHRecord(StringRef type) {
101 return StringSwitch<std::string>(type)
102 .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
103 std::string(type.data(), 0, type.size() - 1) +
104 ">(Record.readInt())")
105 .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
106 .Case("Expr *", "Record.readExpr()")
107 .Case("IdentifierInfo *", "Record.readIdentifier()")
108 .Case("StringRef", "Record.readString()")
109 .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
110 .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
111 .Default("Record.readInt()");
112 }
113
114 // Get a type that is suitable for storing an object of the specified type.
getStorageType(StringRef type)115 static StringRef getStorageType(StringRef type) {
116 return StringSwitch<StringRef>(type)
117 .Case("StringRef", "std::string")
118 .Default(type);
119 }
120
121 // Assumes that the way to get the value is SA->getname()
WritePCHRecord(StringRef type,StringRef name)122 static std::string WritePCHRecord(StringRef type, StringRef name) {
123 return "Record." +
124 StringSwitch<std::string>(type)
125 .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
126 .Case("TypeSourceInfo *",
127 "AddTypeSourceInfo(" + std::string(name) + ");\n")
128 .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
129 .Case("IdentifierInfo *",
130 "AddIdentifierRef(" + std::string(name) + ");\n")
131 .Case("StringRef", "AddString(" + std::string(name) + ");\n")
132 .Case("ParamIdx",
133 "push_back(" + std::string(name) + ".serialize());\n")
134 .Case("OMPTraitInfo *",
135 "writeOMPTraitInfo(" + std::string(name) + ");\n")
136 .Default("push_back(" + std::string(name) + ");\n");
137 }
138
139 // Normalize attribute name by removing leading and trailing
140 // underscores. For example, __foo, foo__, __foo__ would
141 // become foo.
NormalizeAttrName(StringRef AttrName)142 static StringRef NormalizeAttrName(StringRef AttrName) {
143 AttrName.consume_front("__");
144 AttrName.consume_back("__");
145 return AttrName;
146 }
147
148 // Normalize the name by removing any and all leading and trailing underscores.
149 // This is different from NormalizeAttrName in that it also handles names like
150 // _pascal and __pascal.
NormalizeNameForSpellingComparison(StringRef Name)151 static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
152 return Name.trim("_");
153 }
154
155 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
156 // removing "__" if it appears at the beginning and end of the attribute's name.
NormalizeGNUAttrSpelling(StringRef AttrSpelling)157 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
158 if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
159 AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
160 }
161
162 return AttrSpelling;
163 }
164
165 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
166
getParsedAttrList(const RecordKeeper & Records,ParsedAttrMap * Dupes=nullptr)167 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
168 ParsedAttrMap *Dupes = nullptr) {
169 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
170 std::set<std::string> Seen;
171 ParsedAttrMap R;
172 for (const auto *Attr : Attrs) {
173 if (Attr->getValueAsBit("SemaHandler")) {
174 std::string AN;
175 if (Attr->isSubClassOf("TargetSpecificAttr") &&
176 !Attr->isValueUnset("ParseKind")) {
177 AN = std::string(Attr->getValueAsString("ParseKind"));
178
179 // If this attribute has already been handled, it does not need to be
180 // handled again.
181 if (Seen.find(AN) != Seen.end()) {
182 if (Dupes)
183 Dupes->push_back(std::make_pair(AN, Attr));
184 continue;
185 }
186 Seen.insert(AN);
187 } else
188 AN = NormalizeAttrName(Attr->getName()).str();
189
190 R.push_back(std::make_pair(AN, Attr));
191 }
192 }
193 return R;
194 }
195
196 namespace {
197
198 class Argument {
199 std::string lowerName, upperName;
200 StringRef attrName;
201 bool isOpt;
202 bool Fake;
203
204 public:
Argument(StringRef Arg,StringRef Attr)205 Argument(StringRef Arg, StringRef Attr)
206 : lowerName(std::string(Arg)), upperName(lowerName), attrName(Attr),
207 isOpt(false), Fake(false) {
208 if (!lowerName.empty()) {
209 lowerName[0] = std::tolower(lowerName[0]);
210 upperName[0] = std::toupper(upperName[0]);
211 }
212 // Work around MinGW's macro definition of 'interface' to 'struct'. We
213 // have an attribute argument called 'Interface', so only the lower case
214 // name conflicts with the macro definition.
215 if (lowerName == "interface")
216 lowerName = "interface_";
217 }
Argument(const Record & Arg,StringRef Attr)218 Argument(const Record &Arg, StringRef Attr)
219 : Argument(Arg.getValueAsString("Name"), Attr) {}
220 virtual ~Argument() = default;
221
getLowerName() const222 StringRef getLowerName() const { return lowerName; }
getUpperName() const223 StringRef getUpperName() const { return upperName; }
getAttrName() const224 StringRef getAttrName() const { return attrName; }
225
isOptional() const226 bool isOptional() const { return isOpt; }
setOptional(bool set)227 void setOptional(bool set) { isOpt = set; }
228
isFake() const229 bool isFake() const { return Fake; }
setFake(bool fake)230 void setFake(bool fake) { Fake = fake; }
231
232 // These functions print the argument contents formatted in different ways.
233 virtual void writeAccessors(raw_ostream &OS) const = 0;
writeAccessorDefinitions(raw_ostream & OS) const234 virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
writeASTVisitorTraversal(raw_ostream & OS) const235 virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
236 virtual void writeCloneArgs(raw_ostream &OS) const = 0;
237 virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
writeTemplateInstantiation(raw_ostream & OS) const238 virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
writeCtorBody(raw_ostream & OS) const239 virtual void writeCtorBody(raw_ostream &OS) const {}
240 virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
241 virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
242 virtual void writeCtorParameters(raw_ostream &OS) const = 0;
243 virtual void writeDeclarations(raw_ostream &OS) const = 0;
244 virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
245 virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
246 virtual void writePCHWrite(raw_ostream &OS) const = 0;
getIsOmitted() const247 virtual std::string getIsOmitted() const { return "false"; }
248 virtual void writeValue(raw_ostream &OS) const = 0;
249 virtual void writeDump(raw_ostream &OS) const = 0;
writeDumpChildren(raw_ostream & OS) const250 virtual void writeDumpChildren(raw_ostream &OS) const {}
writeHasChildren(raw_ostream & OS) const251 virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
252
isEnumArg() const253 virtual bool isEnumArg() const { return false; }
isVariadicEnumArg() const254 virtual bool isVariadicEnumArg() const { return false; }
isVariadic() const255 virtual bool isVariadic() const { return false; }
256
writeImplicitCtorArgs(raw_ostream & OS) const257 virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
258 OS << getUpperName();
259 }
260 };
261
262 class SimpleArgument : public Argument {
263 std::string type;
264
265 public:
SimpleArgument(const Record & Arg,StringRef Attr,std::string T)266 SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
267 : Argument(Arg, Attr), type(std::move(T)) {}
268
getType() const269 std::string getType() const { return type; }
270
writeAccessors(raw_ostream & OS) const271 void writeAccessors(raw_ostream &OS) const override {
272 OS << " " << type << " get" << getUpperName() << "() const {\n";
273 OS << " return " << getLowerName() << ";\n";
274 OS << " }";
275 }
276
writeCloneArgs(raw_ostream & OS) const277 void writeCloneArgs(raw_ostream &OS) const override {
278 OS << getLowerName();
279 }
280
writeTemplateInstantiationArgs(raw_ostream & OS) const281 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
282 OS << "A->get" << getUpperName() << "()";
283 }
284
writeCtorInitializers(raw_ostream & OS) const285 void writeCtorInitializers(raw_ostream &OS) const override {
286 OS << getLowerName() << "(" << getUpperName() << ")";
287 }
288
writeCtorDefaultInitializers(raw_ostream & OS) const289 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
290 OS << getLowerName() << "()";
291 }
292
writeCtorParameters(raw_ostream & OS) const293 void writeCtorParameters(raw_ostream &OS) const override {
294 OS << type << " " << getUpperName();
295 }
296
writeDeclarations(raw_ostream & OS) const297 void writeDeclarations(raw_ostream &OS) const override {
298 OS << type << " " << getLowerName() << ";";
299 }
300
writePCHReadDecls(raw_ostream & OS) const301 void writePCHReadDecls(raw_ostream &OS) const override {
302 std::string read = ReadPCHRecord(type);
303 OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
304 }
305
writePCHReadArgs(raw_ostream & OS) const306 void writePCHReadArgs(raw_ostream &OS) const override {
307 OS << getLowerName();
308 }
309
writePCHWrite(raw_ostream & OS) const310 void writePCHWrite(raw_ostream &OS) const override {
311 OS << " "
312 << WritePCHRecord(type,
313 "SA->get" + std::string(getUpperName()) + "()");
314 }
315
getIsOmitted() const316 std::string getIsOmitted() const override {
317 if (type == "IdentifierInfo *")
318 return "!get" + getUpperName().str() + "()";
319 if (type == "TypeSourceInfo *")
320 return "!get" + getUpperName().str() + "Loc()";
321 if (type == "ParamIdx")
322 return "!get" + getUpperName().str() + "().isValid()";
323 return "false";
324 }
325
writeValue(raw_ostream & OS) const326 void writeValue(raw_ostream &OS) const override {
327 if (type == "FunctionDecl *")
328 OS << "\" << get" << getUpperName()
329 << "()->getNameInfo().getAsString() << \"";
330 else if (type == "IdentifierInfo *")
331 // Some non-optional (comma required) identifier arguments can be the
332 // empty string but are then recorded as a nullptr.
333 OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
334 << "()->getName() : \"\") << \"";
335 else if (type == "VarDecl *")
336 OS << "\" << get" << getUpperName() << "()->getName() << \"";
337 else if (type == "TypeSourceInfo *")
338 OS << "\" << get" << getUpperName() << "().getAsString() << \"";
339 else if (type == "ParamIdx")
340 OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
341 else
342 OS << "\" << get" << getUpperName() << "() << \"";
343 }
344
writeDump(raw_ostream & OS) const345 void writeDump(raw_ostream &OS) const override {
346 if (StringRef(type).endswith("Decl *")) {
347 OS << " OS << \" \";\n";
348 OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
349 } else if (type == "IdentifierInfo *") {
350 // Some non-optional (comma required) identifier arguments can be the
351 // empty string but are then recorded as a nullptr.
352 OS << " if (SA->get" << getUpperName() << "())\n"
353 << " OS << \" \" << SA->get" << getUpperName()
354 << "()->getName();\n";
355 } else if (type == "TypeSourceInfo *") {
356 if (isOptional())
357 OS << " if (SA->get" << getUpperName() << "Loc())";
358 OS << " OS << \" \" << SA->get" << getUpperName()
359 << "().getAsString();\n";
360 } else if (type == "bool") {
361 OS << " if (SA->get" << getUpperName() << "()) OS << \" "
362 << getUpperName() << "\";\n";
363 } else if (type == "int" || type == "unsigned") {
364 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
365 } else if (type == "ParamIdx") {
366 if (isOptional())
367 OS << " if (SA->get" << getUpperName() << "().isValid())\n ";
368 OS << " OS << \" \" << SA->get" << getUpperName()
369 << "().getSourceIndex();\n";
370 } else if (type == "OMPTraitInfo *") {
371 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
372 } else {
373 llvm_unreachable("Unknown SimpleArgument type!");
374 }
375 }
376 };
377
378 class DefaultSimpleArgument : public SimpleArgument {
379 int64_t Default;
380
381 public:
DefaultSimpleArgument(const Record & Arg,StringRef Attr,std::string T,int64_t Default)382 DefaultSimpleArgument(const Record &Arg, StringRef Attr,
383 std::string T, int64_t Default)
384 : SimpleArgument(Arg, Attr, T), Default(Default) {}
385
writeAccessors(raw_ostream & OS) const386 void writeAccessors(raw_ostream &OS) const override {
387 SimpleArgument::writeAccessors(OS);
388
389 OS << "\n\n static const " << getType() << " Default" << getUpperName()
390 << " = ";
391 if (getType() == "bool")
392 OS << (Default != 0 ? "true" : "false");
393 else
394 OS << Default;
395 OS << ";";
396 }
397 };
398
399 class StringArgument : public Argument {
400 public:
StringArgument(const Record & Arg,StringRef Attr)401 StringArgument(const Record &Arg, StringRef Attr)
402 : Argument(Arg, Attr)
403 {}
404
writeAccessors(raw_ostream & OS) const405 void writeAccessors(raw_ostream &OS) const override {
406 OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
407 OS << " return llvm::StringRef(" << getLowerName() << ", "
408 << getLowerName() << "Length);\n";
409 OS << " }\n";
410 OS << " unsigned get" << getUpperName() << "Length() const {\n";
411 OS << " return " << getLowerName() << "Length;\n";
412 OS << " }\n";
413 OS << " void set" << getUpperName()
414 << "(ASTContext &C, llvm::StringRef S) {\n";
415 OS << " " << getLowerName() << "Length = S.size();\n";
416 OS << " this->" << getLowerName() << " = new (C, 1) char ["
417 << getLowerName() << "Length];\n";
418 OS << " if (!S.empty())\n";
419 OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
420 << getLowerName() << "Length);\n";
421 OS << " }";
422 }
423
writeCloneArgs(raw_ostream & OS) const424 void writeCloneArgs(raw_ostream &OS) const override {
425 OS << "get" << getUpperName() << "()";
426 }
427
writeTemplateInstantiationArgs(raw_ostream & OS) const428 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
429 OS << "A->get" << getUpperName() << "()";
430 }
431
writeCtorBody(raw_ostream & OS) const432 void writeCtorBody(raw_ostream &OS) const override {
433 OS << " if (!" << getUpperName() << ".empty())\n";
434 OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
435 << ".data(), " << getLowerName() << "Length);\n";
436 }
437
writeCtorInitializers(raw_ostream & OS) const438 void writeCtorInitializers(raw_ostream &OS) const override {
439 OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
440 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
441 << "Length])";
442 }
443
writeCtorDefaultInitializers(raw_ostream & OS) const444 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
445 OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
446 }
447
writeCtorParameters(raw_ostream & OS) const448 void writeCtorParameters(raw_ostream &OS) const override {
449 OS << "llvm::StringRef " << getUpperName();
450 }
451
writeDeclarations(raw_ostream & OS) const452 void writeDeclarations(raw_ostream &OS) const override {
453 OS << "unsigned " << getLowerName() << "Length;\n";
454 OS << "char *" << getLowerName() << ";";
455 }
456
writePCHReadDecls(raw_ostream & OS) const457 void writePCHReadDecls(raw_ostream &OS) const override {
458 OS << " std::string " << getLowerName()
459 << "= Record.readString();\n";
460 }
461
writePCHReadArgs(raw_ostream & OS) const462 void writePCHReadArgs(raw_ostream &OS) const override {
463 OS << getLowerName();
464 }
465
writePCHWrite(raw_ostream & OS) const466 void writePCHWrite(raw_ostream &OS) const override {
467 OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
468 }
469
writeValue(raw_ostream & OS) const470 void writeValue(raw_ostream &OS) const override {
471 OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
472 }
473
writeDump(raw_ostream & OS) const474 void writeDump(raw_ostream &OS) const override {
475 OS << " OS << \" \\\"\" << SA->get" << getUpperName()
476 << "() << \"\\\"\";\n";
477 }
478 };
479
480 class AlignedArgument : public Argument {
481 public:
AlignedArgument(const Record & Arg,StringRef Attr)482 AlignedArgument(const Record &Arg, StringRef Attr)
483 : Argument(Arg, Attr)
484 {}
485
writeAccessors(raw_ostream & OS) const486 void writeAccessors(raw_ostream &OS) const override {
487 OS << " bool is" << getUpperName() << "Dependent() const;\n";
488 OS << " bool is" << getUpperName() << "ErrorDependent() const;\n";
489
490 OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
491
492 OS << " bool is" << getUpperName() << "Expr() const {\n";
493 OS << " return is" << getLowerName() << "Expr;\n";
494 OS << " }\n";
495
496 OS << " Expr *get" << getUpperName() << "Expr() const {\n";
497 OS << " assert(is" << getLowerName() << "Expr);\n";
498 OS << " return " << getLowerName() << "Expr;\n";
499 OS << " }\n";
500
501 OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
502 OS << " assert(!is" << getLowerName() << "Expr);\n";
503 OS << " return " << getLowerName() << "Type;\n";
504 OS << " }";
505 }
506
writeAccessorDefinitions(raw_ostream & OS) const507 void writeAccessorDefinitions(raw_ostream &OS) const override {
508 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
509 << "Dependent() const {\n";
510 OS << " if (is" << getLowerName() << "Expr)\n";
511 OS << " return " << getLowerName() << "Expr && (" << getLowerName()
512 << "Expr->isValueDependent() || " << getLowerName()
513 << "Expr->isTypeDependent());\n";
514 OS << " else\n";
515 OS << " return " << getLowerName()
516 << "Type->getType()->isDependentType();\n";
517 OS << "}\n";
518
519 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
520 << "ErrorDependent() const {\n";
521 OS << " if (is" << getLowerName() << "Expr)\n";
522 OS << " return " << getLowerName() << "Expr && " << getLowerName()
523 << "Expr->containsErrors();\n";
524 OS << " return " << getLowerName()
525 << "Type->getType()->containsErrors();\n";
526 OS << "}\n";
527
528 // FIXME: Do not do the calculation here
529 // FIXME: Handle types correctly
530 // A null pointer means maximum alignment
531 OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
532 << "(ASTContext &Ctx) const {\n";
533 OS << " assert(!is" << getUpperName() << "Dependent());\n";
534 OS << " if (is" << getLowerName() << "Expr)\n";
535 OS << " return " << getLowerName() << "Expr ? " << getLowerName()
536 << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
537 << " * Ctx.getCharWidth() : "
538 << "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
539 OS << " else\n";
540 OS << " return 0; // FIXME\n";
541 OS << "}\n";
542 }
543
writeASTVisitorTraversal(raw_ostream & OS) const544 void writeASTVisitorTraversal(raw_ostream &OS) const override {
545 StringRef Name = getUpperName();
546 OS << " if (A->is" << Name << "Expr()) {\n"
547 << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
548 << " return false;\n"
549 << " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
550 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
551 << " return false;\n"
552 << " }\n";
553 }
554
writeCloneArgs(raw_ostream & OS) const555 void writeCloneArgs(raw_ostream &OS) const override {
556 OS << "is" << getLowerName() << "Expr, is" << getLowerName()
557 << "Expr ? static_cast<void*>(" << getLowerName()
558 << "Expr) : " << getLowerName()
559 << "Type";
560 }
561
writeTemplateInstantiationArgs(raw_ostream & OS) const562 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
563 // FIXME: move the definition in Sema::InstantiateAttrs to here.
564 // In the meantime, aligned attributes are cloned.
565 }
566
writeCtorBody(raw_ostream & OS) const567 void writeCtorBody(raw_ostream &OS) const override {
568 OS << " if (is" << getLowerName() << "Expr)\n";
569 OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
570 << getUpperName() << ");\n";
571 OS << " else\n";
572 OS << " " << getLowerName()
573 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
574 << ");\n";
575 }
576
writeCtorInitializers(raw_ostream & OS) const577 void writeCtorInitializers(raw_ostream &OS) const override {
578 OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
579 }
580
writeCtorDefaultInitializers(raw_ostream & OS) const581 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
582 OS << "is" << getLowerName() << "Expr(false)";
583 }
584
writeCtorParameters(raw_ostream & OS) const585 void writeCtorParameters(raw_ostream &OS) const override {
586 OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
587 }
588
writeImplicitCtorArgs(raw_ostream & OS) const589 void writeImplicitCtorArgs(raw_ostream &OS) const override {
590 OS << "Is" << getUpperName() << "Expr, " << getUpperName();
591 }
592
writeDeclarations(raw_ostream & OS) const593 void writeDeclarations(raw_ostream &OS) const override {
594 OS << "bool is" << getLowerName() << "Expr;\n";
595 OS << "union {\n";
596 OS << "Expr *" << getLowerName() << "Expr;\n";
597 OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
598 OS << "};";
599 }
600
writePCHReadArgs(raw_ostream & OS) const601 void writePCHReadArgs(raw_ostream &OS) const override {
602 OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
603 }
604
writePCHReadDecls(raw_ostream & OS) const605 void writePCHReadDecls(raw_ostream &OS) const override {
606 OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
607 OS << " void *" << getLowerName() << "Ptr;\n";
608 OS << " if (is" << getLowerName() << "Expr)\n";
609 OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
610 OS << " else\n";
611 OS << " " << getLowerName()
612 << "Ptr = Record.readTypeSourceInfo();\n";
613 }
614
writePCHWrite(raw_ostream & OS) const615 void writePCHWrite(raw_ostream &OS) const override {
616 OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
617 OS << " if (SA->is" << getUpperName() << "Expr())\n";
618 OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
619 OS << " else\n";
620 OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
621 << "Type());\n";
622 }
623
getIsOmitted() const624 std::string getIsOmitted() const override {
625 return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str()
626 + "Expr";
627 }
628
writeValue(raw_ostream & OS) const629 void writeValue(raw_ostream &OS) const override {
630 OS << "\";\n";
631 OS << " " << getLowerName()
632 << "Expr->printPretty(OS, nullptr, Policy);\n";
633 OS << " OS << \"";
634 }
635
writeDump(raw_ostream & OS) const636 void writeDump(raw_ostream &OS) const override {
637 OS << " if (!SA->is" << getUpperName() << "Expr())\n";
638 OS << " dumpType(SA->get" << getUpperName()
639 << "Type()->getType());\n";
640 }
641
writeDumpChildren(raw_ostream & OS) const642 void writeDumpChildren(raw_ostream &OS) const override {
643 OS << " if (SA->is" << getUpperName() << "Expr())\n";
644 OS << " Visit(SA->get" << getUpperName() << "Expr());\n";
645 }
646
writeHasChildren(raw_ostream & OS) const647 void writeHasChildren(raw_ostream &OS) const override {
648 OS << "SA->is" << getUpperName() << "Expr()";
649 }
650 };
651
652 class VariadicArgument : public Argument {
653 std::string Type, ArgName, ArgSizeName, RangeName;
654
655 protected:
656 // Assumed to receive a parameter: raw_ostream OS.
writeValueImpl(raw_ostream & OS) const657 virtual void writeValueImpl(raw_ostream &OS) const {
658 OS << " OS << Val;\n";
659 }
660 // Assumed to receive a parameter: raw_ostream OS.
writeDumpImpl(raw_ostream & OS) const661 virtual void writeDumpImpl(raw_ostream &OS) const {
662 OS << " OS << \" \" << Val;\n";
663 }
664
665 public:
VariadicArgument(const Record & Arg,StringRef Attr,std::string T)666 VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
667 : Argument(Arg, Attr), Type(std::move(T)),
668 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
669 RangeName(std::string(getLowerName())) {}
670
VariadicArgument(StringRef Arg,StringRef Attr,std::string T)671 VariadicArgument(StringRef Arg, StringRef Attr, std::string T)
672 : Argument(Arg, Attr), Type(std::move(T)),
673 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
674 RangeName(std::string(getLowerName())) {}
675
getType() const676 const std::string &getType() const { return Type; }
getArgName() const677 const std::string &getArgName() const { return ArgName; }
getArgSizeName() const678 const std::string &getArgSizeName() const { return ArgSizeName; }
isVariadic() const679 bool isVariadic() const override { return true; }
680
writeAccessors(raw_ostream & OS) const681 void writeAccessors(raw_ostream &OS) const override {
682 std::string IteratorType = getLowerName().str() + "_iterator";
683 std::string BeginFn = getLowerName().str() + "_begin()";
684 std::string EndFn = getLowerName().str() + "_end()";
685
686 OS << " typedef " << Type << "* " << IteratorType << ";\n";
687 OS << " " << IteratorType << " " << BeginFn << " const {"
688 << " return " << ArgName << "; }\n";
689 OS << " " << IteratorType << " " << EndFn << " const {"
690 << " return " << ArgName << " + " << ArgSizeName << "; }\n";
691 OS << " unsigned " << getLowerName() << "_size() const {"
692 << " return " << ArgSizeName << "; }\n";
693 OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
694 << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
695 << "); }\n";
696 }
697
writeSetter(raw_ostream & OS) const698 void writeSetter(raw_ostream &OS) const {
699 OS << " void set" << getUpperName() << "(ASTContext &Ctx, ";
700 writeCtorParameters(OS);
701 OS << ") {\n";
702 OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n";
703 OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "["
704 << ArgSizeName << "];\n";
705 OS << " ";
706 writeCtorBody(OS);
707 OS << " }\n";
708 }
709
writeCloneArgs(raw_ostream & OS) const710 void writeCloneArgs(raw_ostream &OS) const override {
711 OS << ArgName << ", " << ArgSizeName;
712 }
713
writeTemplateInstantiationArgs(raw_ostream & OS) const714 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
715 // This isn't elegant, but we have to go through public methods...
716 OS << "A->" << getLowerName() << "_begin(), "
717 << "A->" << getLowerName() << "_size()";
718 }
719
writeASTVisitorTraversal(raw_ostream & OS) const720 void writeASTVisitorTraversal(raw_ostream &OS) const override {
721 // FIXME: Traverse the elements.
722 }
723
writeCtorBody(raw_ostream & OS) const724 void writeCtorBody(raw_ostream &OS) const override {
725 OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + "
726 << ArgSizeName << ", " << ArgName << ");\n";
727 }
728
writeCtorInitializers(raw_ostream & OS) const729 void writeCtorInitializers(raw_ostream &OS) const override {
730 OS << ArgSizeName << "(" << getUpperName() << "Size), "
731 << ArgName << "(new (Ctx, 16) " << getType() << "["
732 << ArgSizeName << "])";
733 }
734
writeCtorDefaultInitializers(raw_ostream & OS) const735 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
736 OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
737 }
738
writeCtorParameters(raw_ostream & OS) const739 void writeCtorParameters(raw_ostream &OS) const override {
740 OS << getType() << " *" << getUpperName() << ", unsigned "
741 << getUpperName() << "Size";
742 }
743
writeImplicitCtorArgs(raw_ostream & OS) const744 void writeImplicitCtorArgs(raw_ostream &OS) const override {
745 OS << getUpperName() << ", " << getUpperName() << "Size";
746 }
747
writeDeclarations(raw_ostream & OS) const748 void writeDeclarations(raw_ostream &OS) const override {
749 OS << " unsigned " << ArgSizeName << ";\n";
750 OS << " " << getType() << " *" << ArgName << ";";
751 }
752
writePCHReadDecls(raw_ostream & OS) const753 void writePCHReadDecls(raw_ostream &OS) const override {
754 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
755 OS << " SmallVector<" << getType() << ", 4> "
756 << getLowerName() << ";\n";
757 OS << " " << getLowerName() << ".reserve(" << getLowerName()
758 << "Size);\n";
759
760 // If we can't store the values in the current type (if it's something
761 // like StringRef), store them in a different type and convert the
762 // container afterwards.
763 std::string StorageType = std::string(getStorageType(getType()));
764 std::string StorageName = std::string(getLowerName());
765 if (StorageType != getType()) {
766 StorageName += "Storage";
767 OS << " SmallVector<" << StorageType << ", 4> "
768 << StorageName << ";\n";
769 OS << " " << StorageName << ".reserve(" << getLowerName()
770 << "Size);\n";
771 }
772
773 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
774 std::string read = ReadPCHRecord(Type);
775 OS << " " << StorageName << ".push_back(" << read << ");\n";
776
777 if (StorageType != getType()) {
778 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
779 OS << " " << getLowerName() << ".push_back("
780 << StorageName << "[i]);\n";
781 }
782 }
783
writePCHReadArgs(raw_ostream & OS) const784 void writePCHReadArgs(raw_ostream &OS) const override {
785 OS << getLowerName() << ".data(), " << getLowerName() << "Size";
786 }
787
writePCHWrite(raw_ostream & OS) const788 void writePCHWrite(raw_ostream &OS) const override {
789 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
790 OS << " for (auto &Val : SA->" << RangeName << "())\n";
791 OS << " " << WritePCHRecord(Type, "Val");
792 }
793
writeValue(raw_ostream & OS) const794 void writeValue(raw_ostream &OS) const override {
795 OS << "\";\n";
796 OS << " for (const auto &Val : " << RangeName << "()) {\n"
797 << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
798 writeValueImpl(OS);
799 OS << " }\n";
800 OS << " OS << \"";
801 }
802
writeDump(raw_ostream & OS) const803 void writeDump(raw_ostream &OS) const override {
804 OS << " for (const auto &Val : SA->" << RangeName << "())\n";
805 writeDumpImpl(OS);
806 }
807 };
808
809 class VariadicParamIdxArgument : public VariadicArgument {
810 public:
VariadicParamIdxArgument(const Record & Arg,StringRef Attr)811 VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
812 : VariadicArgument(Arg, Attr, "ParamIdx") {}
813
814 public:
writeValueImpl(raw_ostream & OS) const815 void writeValueImpl(raw_ostream &OS) const override {
816 OS << " OS << Val.getSourceIndex();\n";
817 }
818
writeDumpImpl(raw_ostream & OS) const819 void writeDumpImpl(raw_ostream &OS) const override {
820 OS << " OS << \" \" << Val.getSourceIndex();\n";
821 }
822 };
823
824 struct VariadicParamOrParamIdxArgument : public VariadicArgument {
VariadicParamOrParamIdxArgument__anon2ca3fa2f0211::VariadicParamOrParamIdxArgument825 VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
826 : VariadicArgument(Arg, Attr, "int") {}
827 };
828
829 // Unique the enums, but maintain the original declaration ordering.
830 std::vector<StringRef>
uniqueEnumsInOrder(const std::vector<StringRef> & enums)831 uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
832 std::vector<StringRef> uniques;
833 SmallDenseSet<StringRef, 8> unique_set;
834 for (const auto &i : enums) {
835 if (unique_set.insert(i).second)
836 uniques.push_back(i);
837 }
838 return uniques;
839 }
840
841 class EnumArgument : public Argument {
842 std::string type;
843 std::vector<StringRef> values, enums, uniques;
844
845 public:
EnumArgument(const Record & Arg,StringRef Attr)846 EnumArgument(const Record &Arg, StringRef Attr)
847 : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))),
848 values(Arg.getValueAsListOfStrings("Values")),
849 enums(Arg.getValueAsListOfStrings("Enums")),
850 uniques(uniqueEnumsInOrder(enums)) {
851 // FIXME: Emit a proper error
852 assert(!uniques.empty());
853 }
854
isEnumArg() const855 bool isEnumArg() const override { return true; }
856
writeAccessors(raw_ostream & OS) const857 void writeAccessors(raw_ostream &OS) const override {
858 OS << " " << type << " get" << getUpperName() << "() const {\n";
859 OS << " return " << getLowerName() << ";\n";
860 OS << " }";
861 }
862
writeCloneArgs(raw_ostream & OS) const863 void writeCloneArgs(raw_ostream &OS) const override {
864 OS << getLowerName();
865 }
866
writeTemplateInstantiationArgs(raw_ostream & OS) const867 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
868 OS << "A->get" << getUpperName() << "()";
869 }
writeCtorInitializers(raw_ostream & OS) const870 void writeCtorInitializers(raw_ostream &OS) const override {
871 OS << getLowerName() << "(" << getUpperName() << ")";
872 }
writeCtorDefaultInitializers(raw_ostream & OS) const873 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
874 OS << getLowerName() << "(" << type << "(0))";
875 }
writeCtorParameters(raw_ostream & OS) const876 void writeCtorParameters(raw_ostream &OS) const override {
877 OS << type << " " << getUpperName();
878 }
writeDeclarations(raw_ostream & OS) const879 void writeDeclarations(raw_ostream &OS) const override {
880 auto i = uniques.cbegin(), e = uniques.cend();
881 // The last one needs to not have a comma.
882 --e;
883
884 OS << "public:\n";
885 OS << " enum " << type << " {\n";
886 for (; i != e; ++i)
887 OS << " " << *i << ",\n";
888 OS << " " << *e << "\n";
889 OS << " };\n";
890 OS << "private:\n";
891 OS << " " << type << " " << getLowerName() << ";";
892 }
893
writePCHReadDecls(raw_ostream & OS) const894 void writePCHReadDecls(raw_ostream &OS) const override {
895 OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName()
896 << "(static_cast<" << getAttrName() << "Attr::" << type
897 << ">(Record.readInt()));\n";
898 }
899
writePCHReadArgs(raw_ostream & OS) const900 void writePCHReadArgs(raw_ostream &OS) const override {
901 OS << getLowerName();
902 }
903
writePCHWrite(raw_ostream & OS) const904 void writePCHWrite(raw_ostream &OS) const override {
905 OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
906 }
907
writeValue(raw_ostream & OS) const908 void writeValue(raw_ostream &OS) const override {
909 // FIXME: this isn't 100% correct -- some enum arguments require printing
910 // as a string literal, while others require printing as an identifier.
911 // Tablegen currently does not distinguish between the two forms.
912 OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
913 << getUpperName() << "()) << \"\\\"";
914 }
915
writeDump(raw_ostream & OS) const916 void writeDump(raw_ostream &OS) const override {
917 OS << " switch(SA->get" << getUpperName() << "()) {\n";
918 for (const auto &I : uniques) {
919 OS << " case " << getAttrName() << "Attr::" << I << ":\n";
920 OS << " OS << \" " << I << "\";\n";
921 OS << " break;\n";
922 }
923 OS << " }\n";
924 }
925
writeConversion(raw_ostream & OS,bool Header) const926 void writeConversion(raw_ostream &OS, bool Header) const {
927 if (Header) {
928 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type
929 << " &Out);\n";
930 OS << " static const char *Convert" << type << "ToStr(" << type
931 << " Val);\n";
932 return;
933 }
934
935 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
936 << "(StringRef Val, " << type << " &Out) {\n";
937 OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
938 OS << type << ">>(Val)\n";
939 for (size_t I = 0; I < enums.size(); ++I) {
940 OS << " .Case(\"" << values[I] << "\", ";
941 OS << getAttrName() << "Attr::" << enums[I] << ")\n";
942 }
943 OS << " .Default(Optional<" << type << ">());\n";
944 OS << " if (R) {\n";
945 OS << " Out = *R;\n return true;\n }\n";
946 OS << " return false;\n";
947 OS << "}\n\n";
948
949 // Mapping from enumeration values back to enumeration strings isn't
950 // trivial because some enumeration values have multiple named
951 // enumerators, such as type_visibility(internal) and
952 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
953 OS << "const char *" << getAttrName() << "Attr::Convert" << type
954 << "ToStr(" << type << " Val) {\n"
955 << " switch(Val) {\n";
956 SmallDenseSet<StringRef, 8> Uniques;
957 for (size_t I = 0; I < enums.size(); ++I) {
958 if (Uniques.insert(enums[I]).second)
959 OS << " case " << getAttrName() << "Attr::" << enums[I]
960 << ": return \"" << values[I] << "\";\n";
961 }
962 OS << " }\n"
963 << " llvm_unreachable(\"No enumerator with that value\");\n"
964 << "}\n";
965 }
966 };
967
968 class VariadicEnumArgument: public VariadicArgument {
969 std::string type, QualifiedTypeName;
970 std::vector<StringRef> values, enums, uniques;
971
972 protected:
writeValueImpl(raw_ostream & OS) const973 void writeValueImpl(raw_ostream &OS) const override {
974 // FIXME: this isn't 100% correct -- some enum arguments require printing
975 // as a string literal, while others require printing as an identifier.
976 // Tablegen currently does not distinguish between the two forms.
977 OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
978 << "ToStr(Val)" << "<< \"\\\"\";\n";
979 }
980
981 public:
VariadicEnumArgument(const Record & Arg,StringRef Attr)982 VariadicEnumArgument(const Record &Arg, StringRef Attr)
983 : VariadicArgument(Arg, Attr,
984 std::string(Arg.getValueAsString("Type"))),
985 type(std::string(Arg.getValueAsString("Type"))),
986 values(Arg.getValueAsListOfStrings("Values")),
987 enums(Arg.getValueAsListOfStrings("Enums")),
988 uniques(uniqueEnumsInOrder(enums)) {
989 QualifiedTypeName = getAttrName().str() + "Attr::" + type;
990
991 // FIXME: Emit a proper error
992 assert(!uniques.empty());
993 }
994
isVariadicEnumArg() const995 bool isVariadicEnumArg() const override { return true; }
996
writeDeclarations(raw_ostream & OS) const997 void writeDeclarations(raw_ostream &OS) const override {
998 auto i = uniques.cbegin(), e = uniques.cend();
999 // The last one needs to not have a comma.
1000 --e;
1001
1002 OS << "public:\n";
1003 OS << " enum " << type << " {\n";
1004 for (; i != e; ++i)
1005 OS << " " << *i << ",\n";
1006 OS << " " << *e << "\n";
1007 OS << " };\n";
1008 OS << "private:\n";
1009
1010 VariadicArgument::writeDeclarations(OS);
1011 }
1012
writeDump(raw_ostream & OS) const1013 void writeDump(raw_ostream &OS) const override {
1014 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1015 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1016 << getLowerName() << "_end(); I != E; ++I) {\n";
1017 OS << " switch(*I) {\n";
1018 for (const auto &UI : uniques) {
1019 OS << " case " << getAttrName() << "Attr::" << UI << ":\n";
1020 OS << " OS << \" " << UI << "\";\n";
1021 OS << " break;\n";
1022 }
1023 OS << " }\n";
1024 OS << " }\n";
1025 }
1026
writePCHReadDecls(raw_ostream & OS) const1027 void writePCHReadDecls(raw_ostream &OS) const override {
1028 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
1029 OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
1030 << ";\n";
1031 OS << " " << getLowerName() << ".reserve(" << getLowerName()
1032 << "Size);\n";
1033 OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1034 OS << " " << getLowerName() << ".push_back(" << "static_cast<"
1035 << QualifiedTypeName << ">(Record.readInt()));\n";
1036 }
1037
writePCHWrite(raw_ostream & OS) const1038 void writePCHWrite(raw_ostream &OS) const override {
1039 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
1040 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1041 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1042 << getLowerName() << "_end(); i != e; ++i)\n";
1043 OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)");
1044 }
1045
writeConversion(raw_ostream & OS,bool Header) const1046 void writeConversion(raw_ostream &OS, bool Header) const {
1047 if (Header) {
1048 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type
1049 << " &Out);\n";
1050 OS << " static const char *Convert" << type << "ToStr(" << type
1051 << " Val);\n";
1052 return;
1053 }
1054
1055 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
1056 << "(StringRef Val, ";
1057 OS << type << " &Out) {\n";
1058 OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
1059 OS << type << ">>(Val)\n";
1060 for (size_t I = 0; I < enums.size(); ++I) {
1061 OS << " .Case(\"" << values[I] << "\", ";
1062 OS << getAttrName() << "Attr::" << enums[I] << ")\n";
1063 }
1064 OS << " .Default(Optional<" << type << ">());\n";
1065 OS << " if (R) {\n";
1066 OS << " Out = *R;\n return true;\n }\n";
1067 OS << " return false;\n";
1068 OS << "}\n\n";
1069
1070 OS << "const char *" << getAttrName() << "Attr::Convert" << type
1071 << "ToStr(" << type << " Val) {\n"
1072 << " switch(Val) {\n";
1073 SmallDenseSet<StringRef, 8> Uniques;
1074 for (size_t I = 0; I < enums.size(); ++I) {
1075 if (Uniques.insert(enums[I]).second)
1076 OS << " case " << getAttrName() << "Attr::" << enums[I]
1077 << ": return \"" << values[I] << "\";\n";
1078 }
1079 OS << " }\n"
1080 << " llvm_unreachable(\"No enumerator with that value\");\n"
1081 << "}\n";
1082 }
1083 };
1084
1085 class VersionArgument : public Argument {
1086 public:
VersionArgument(const Record & Arg,StringRef Attr)1087 VersionArgument(const Record &Arg, StringRef Attr)
1088 : Argument(Arg, Attr)
1089 {}
1090
writeAccessors(raw_ostream & OS) const1091 void writeAccessors(raw_ostream &OS) const override {
1092 OS << " VersionTuple get" << getUpperName() << "() const {\n";
1093 OS << " return " << getLowerName() << ";\n";
1094 OS << " }\n";
1095 OS << " void set" << getUpperName()
1096 << "(ASTContext &C, VersionTuple V) {\n";
1097 OS << " " << getLowerName() << " = V;\n";
1098 OS << " }";
1099 }
1100
writeCloneArgs(raw_ostream & OS) const1101 void writeCloneArgs(raw_ostream &OS) const override {
1102 OS << "get" << getUpperName() << "()";
1103 }
1104
writeTemplateInstantiationArgs(raw_ostream & OS) const1105 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1106 OS << "A->get" << getUpperName() << "()";
1107 }
1108
writeCtorInitializers(raw_ostream & OS) const1109 void writeCtorInitializers(raw_ostream &OS) const override {
1110 OS << getLowerName() << "(" << getUpperName() << ")";
1111 }
1112
writeCtorDefaultInitializers(raw_ostream & OS) const1113 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1114 OS << getLowerName() << "()";
1115 }
1116
writeCtorParameters(raw_ostream & OS) const1117 void writeCtorParameters(raw_ostream &OS) const override {
1118 OS << "VersionTuple " << getUpperName();
1119 }
1120
writeDeclarations(raw_ostream & OS) const1121 void writeDeclarations(raw_ostream &OS) const override {
1122 OS << "VersionTuple " << getLowerName() << ";\n";
1123 }
1124
writePCHReadDecls(raw_ostream & OS) const1125 void writePCHReadDecls(raw_ostream &OS) const override {
1126 OS << " VersionTuple " << getLowerName()
1127 << "= Record.readVersionTuple();\n";
1128 }
1129
writePCHReadArgs(raw_ostream & OS) const1130 void writePCHReadArgs(raw_ostream &OS) const override {
1131 OS << getLowerName();
1132 }
1133
writePCHWrite(raw_ostream & OS) const1134 void writePCHWrite(raw_ostream &OS) const override {
1135 OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1136 }
1137
writeValue(raw_ostream & OS) const1138 void writeValue(raw_ostream &OS) const override {
1139 OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1140 }
1141
writeDump(raw_ostream & OS) const1142 void writeDump(raw_ostream &OS) const override {
1143 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
1144 }
1145 };
1146
1147 class ExprArgument : public SimpleArgument {
1148 public:
ExprArgument(const Record & Arg,StringRef Attr)1149 ExprArgument(const Record &Arg, StringRef Attr)
1150 : SimpleArgument(Arg, Attr, "Expr *")
1151 {}
1152
writeASTVisitorTraversal(raw_ostream & OS) const1153 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1154 OS << " if (!"
1155 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1156 OS << " return false;\n";
1157 }
1158
writeTemplateInstantiationArgs(raw_ostream & OS) const1159 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1160 OS << "tempInst" << getUpperName();
1161 }
1162
writeTemplateInstantiation(raw_ostream & OS) const1163 void writeTemplateInstantiation(raw_ostream &OS) const override {
1164 OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
1165 OS << " {\n";
1166 OS << " EnterExpressionEvaluationContext "
1167 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1168 OS << " ExprResult " << "Result = S.SubstExpr("
1169 << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1170 OS << " if (Result.isInvalid())\n";
1171 OS << " return nullptr;\n";
1172 OS << " tempInst" << getUpperName() << " = Result.get();\n";
1173 OS << " }\n";
1174 }
1175
writeDump(raw_ostream & OS) const1176 void writeDump(raw_ostream &OS) const override {}
1177
writeDumpChildren(raw_ostream & OS) const1178 void writeDumpChildren(raw_ostream &OS) const override {
1179 OS << " Visit(SA->get" << getUpperName() << "());\n";
1180 }
1181
writeHasChildren(raw_ostream & OS) const1182 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1183 };
1184
1185 class VariadicExprArgument : public VariadicArgument {
1186 public:
VariadicExprArgument(const Record & Arg,StringRef Attr)1187 VariadicExprArgument(const Record &Arg, StringRef Attr)
1188 : VariadicArgument(Arg, Attr, "Expr *")
1189 {}
1190
VariadicExprArgument(StringRef ArgName,StringRef Attr)1191 VariadicExprArgument(StringRef ArgName, StringRef Attr)
1192 : VariadicArgument(ArgName, Attr, "Expr *") {}
1193
writeASTVisitorTraversal(raw_ostream & OS) const1194 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1195 OS << " {\n";
1196 OS << " " << getType() << " *I = A->" << getLowerName()
1197 << "_begin();\n";
1198 OS << " " << getType() << " *E = A->" << getLowerName()
1199 << "_end();\n";
1200 OS << " for (; I != E; ++I) {\n";
1201 OS << " if (!getDerived().TraverseStmt(*I))\n";
1202 OS << " return false;\n";
1203 OS << " }\n";
1204 OS << " }\n";
1205 }
1206
writeTemplateInstantiationArgs(raw_ostream & OS) const1207 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1208 OS << "tempInst" << getUpperName() << ", "
1209 << "A->" << getLowerName() << "_size()";
1210 }
1211
writeTemplateInstantiation(raw_ostream & OS) const1212 void writeTemplateInstantiation(raw_ostream &OS) const override {
1213 OS << " auto *tempInst" << getUpperName()
1214 << " = new (C, 16) " << getType()
1215 << "[A->" << getLowerName() << "_size()];\n";
1216 OS << " {\n";
1217 OS << " EnterExpressionEvaluationContext "
1218 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1219 OS << " " << getType() << " *TI = tempInst" << getUpperName()
1220 << ";\n";
1221 OS << " " << getType() << " *I = A->" << getLowerName()
1222 << "_begin();\n";
1223 OS << " " << getType() << " *E = A->" << getLowerName()
1224 << "_end();\n";
1225 OS << " for (; I != E; ++I, ++TI) {\n";
1226 OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1227 OS << " if (Result.isInvalid())\n";
1228 OS << " return nullptr;\n";
1229 OS << " *TI = Result.get();\n";
1230 OS << " }\n";
1231 OS << " }\n";
1232 }
1233
writeDump(raw_ostream & OS) const1234 void writeDump(raw_ostream &OS) const override {}
1235
writeDumpChildren(raw_ostream & OS) const1236 void writeDumpChildren(raw_ostream &OS) const override {
1237 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1238 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1239 << getLowerName() << "_end(); I != E; ++I)\n";
1240 OS << " Visit(*I);\n";
1241 }
1242
writeHasChildren(raw_ostream & OS) const1243 void writeHasChildren(raw_ostream &OS) const override {
1244 OS << "SA->" << getLowerName() << "_begin() != "
1245 << "SA->" << getLowerName() << "_end()";
1246 }
1247 };
1248
1249 class VariadicIdentifierArgument : public VariadicArgument {
1250 public:
VariadicIdentifierArgument(const Record & Arg,StringRef Attr)1251 VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1252 : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1253 {}
1254 };
1255
1256 class VariadicStringArgument : public VariadicArgument {
1257 public:
VariadicStringArgument(const Record & Arg,StringRef Attr)1258 VariadicStringArgument(const Record &Arg, StringRef Attr)
1259 : VariadicArgument(Arg, Attr, "StringRef")
1260 {}
1261
writeCtorBody(raw_ostream & OS) const1262 void writeCtorBody(raw_ostream &OS) const override {
1263 OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1264 " ++I) {\n"
1265 " StringRef Ref = " << getUpperName() << "[I];\n"
1266 " if (!Ref.empty()) {\n"
1267 " char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1268 " std::memcpy(Mem, Ref.data(), Ref.size());\n"
1269 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1270 " }\n"
1271 " }\n";
1272 }
1273
writeValueImpl(raw_ostream & OS) const1274 void writeValueImpl(raw_ostream &OS) const override {
1275 OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
1276 }
1277 };
1278
1279 class TypeArgument : public SimpleArgument {
1280 public:
TypeArgument(const Record & Arg,StringRef Attr)1281 TypeArgument(const Record &Arg, StringRef Attr)
1282 : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1283 {}
1284
writeAccessors(raw_ostream & OS) const1285 void writeAccessors(raw_ostream &OS) const override {
1286 OS << " QualType get" << getUpperName() << "() const {\n";
1287 OS << " return " << getLowerName() << "->getType();\n";
1288 OS << " }";
1289 OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
1290 OS << " return " << getLowerName() << ";\n";
1291 OS << " }";
1292 }
1293
writeASTVisitorTraversal(raw_ostream & OS) const1294 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1295 OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1296 OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1297 OS << " return false;\n";
1298 }
1299
writeTemplateInstantiation(raw_ostream & OS) const1300 void writeTemplateInstantiation(raw_ostream &OS) const override {
1301 OS << " " << getType() << " tempInst" << getUpperName() << " =\n";
1302 OS << " S.SubstType(A->get" << getUpperName() << "Loc(), "
1303 << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1304 OS << " if (!tempInst" << getUpperName() << ")\n";
1305 OS << " return nullptr;\n";
1306 }
1307
writeTemplateInstantiationArgs(raw_ostream & OS) const1308 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1309 OS << "tempInst" << getUpperName();
1310 }
1311
writePCHWrite(raw_ostream & OS) const1312 void writePCHWrite(raw_ostream &OS) const override {
1313 OS << " "
1314 << WritePCHRecord(getType(),
1315 "SA->get" + std::string(getUpperName()) + "Loc()");
1316 }
1317 };
1318
1319 } // end anonymous namespace
1320
1321 static std::unique_ptr<Argument>
createArgument(const Record & Arg,StringRef Attr,const Record * Search=nullptr)1322 createArgument(const Record &Arg, StringRef Attr,
1323 const Record *Search = nullptr) {
1324 if (!Search)
1325 Search = &Arg;
1326
1327 std::unique_ptr<Argument> Ptr;
1328 llvm::StringRef ArgName = Search->getName();
1329
1330 if (ArgName == "AlignedArgument")
1331 Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1332 else if (ArgName == "EnumArgument")
1333 Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1334 else if (ArgName == "ExprArgument")
1335 Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1336 else if (ArgName == "DeclArgument")
1337 Ptr = std::make_unique<SimpleArgument>(
1338 Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1339 else if (ArgName == "IdentifierArgument")
1340 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1341 else if (ArgName == "DefaultBoolArgument")
1342 Ptr = std::make_unique<DefaultSimpleArgument>(
1343 Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1344 else if (ArgName == "BoolArgument")
1345 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1346 else if (ArgName == "DefaultIntArgument")
1347 Ptr = std::make_unique<DefaultSimpleArgument>(
1348 Arg, Attr, "int", Arg.getValueAsInt("Default"));
1349 else if (ArgName == "IntArgument")
1350 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1351 else if (ArgName == "StringArgument")
1352 Ptr = std::make_unique<StringArgument>(Arg, Attr);
1353 else if (ArgName == "TypeArgument")
1354 Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1355 else if (ArgName == "UnsignedArgument")
1356 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1357 else if (ArgName == "VariadicUnsignedArgument")
1358 Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1359 else if (ArgName == "VariadicStringArgument")
1360 Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1361 else if (ArgName == "VariadicEnumArgument")
1362 Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1363 else if (ArgName == "VariadicExprArgument")
1364 Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1365 else if (ArgName == "VariadicParamIdxArgument")
1366 Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1367 else if (ArgName == "VariadicParamOrParamIdxArgument")
1368 Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1369 else if (ArgName == "ParamIdxArgument")
1370 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1371 else if (ArgName == "VariadicIdentifierArgument")
1372 Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1373 else if (ArgName == "VersionArgument")
1374 Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1375 else if (ArgName == "OMPTraitInfoArgument")
1376 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1377
1378 if (!Ptr) {
1379 // Search in reverse order so that the most-derived type is handled first.
1380 ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
1381 for (const auto &Base : llvm::reverse(Bases)) {
1382 if ((Ptr = createArgument(Arg, Attr, Base.first)))
1383 break;
1384 }
1385 }
1386
1387 if (Ptr && Arg.getValueAsBit("Optional"))
1388 Ptr->setOptional(true);
1389
1390 if (Ptr && Arg.getValueAsBit("Fake"))
1391 Ptr->setFake(true);
1392
1393 return Ptr;
1394 }
1395
writeAvailabilityValue(raw_ostream & OS)1396 static void writeAvailabilityValue(raw_ostream &OS) {
1397 OS << "\" << getPlatform()->getName();\n"
1398 << " if (getStrict()) OS << \", strict\";\n"
1399 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1400 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1401 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1402 << " if (getUnavailable()) OS << \", unavailable\";\n"
1403 << " OS << \"";
1404 }
1405
writeDeprecatedAttrValue(raw_ostream & OS,std::string & Variety)1406 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
1407 OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1408 // Only GNU deprecated has an optional fixit argument at the second position.
1409 if (Variety == "GNU")
1410 OS << " if (!getReplacement().empty()) OS << \", \\\"\""
1411 " << getReplacement() << \"\\\"\";\n";
1412 OS << " OS << \"";
1413 }
1414
writeGetSpellingFunction(const Record & R,raw_ostream & OS)1415 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1416 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1417
1418 OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1419 if (Spellings.empty()) {
1420 OS << " return \"(No spelling)\";\n}\n\n";
1421 return;
1422 }
1423
1424 OS << " switch (getAttributeSpellingListIndex()) {\n"
1425 " default:\n"
1426 " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1427 " return \"(No spelling)\";\n";
1428
1429 for (unsigned I = 0; I < Spellings.size(); ++I)
1430 OS << " case " << I << ":\n"
1431 " return \"" << Spellings[I].name() << "\";\n";
1432 // End of the switch statement.
1433 OS << " }\n";
1434 // End of the getSpelling function.
1435 OS << "}\n\n";
1436 }
1437
1438 static void
writePrettyPrintFunction(const Record & R,const std::vector<std::unique_ptr<Argument>> & Args,raw_ostream & OS)1439 writePrettyPrintFunction(const Record &R,
1440 const std::vector<std::unique_ptr<Argument>> &Args,
1441 raw_ostream &OS) {
1442 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1443
1444 OS << "void " << R.getName() << "Attr::printPretty("
1445 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1446
1447 if (Spellings.empty()) {
1448 OS << "}\n\n";
1449 return;
1450 }
1451
1452 OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1453 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1454 << " switch (getAttributeSpellingListIndex()) {\n"
1455 << " default:\n"
1456 << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1457 << " break;\n";
1458
1459 for (unsigned I = 0; I < Spellings.size(); ++ I) {
1460 llvm::SmallString<16> Prefix;
1461 llvm::SmallString<8> Suffix;
1462 // The actual spelling of the name and namespace (if applicable)
1463 // of an attribute without considering prefix and suffix.
1464 llvm::SmallString<64> Spelling;
1465 std::string Name = Spellings[I].name();
1466 std::string Variety = Spellings[I].variety();
1467
1468 if (Variety == "GNU") {
1469 Prefix = " __attribute__((";
1470 Suffix = "))";
1471 } else if (Variety == "CXX11" || Variety == "C2x") {
1472 Prefix = " [[";
1473 Suffix = "]]";
1474 std::string Namespace = Spellings[I].nameSpace();
1475 if (!Namespace.empty()) {
1476 Spelling += Namespace;
1477 Spelling += "::";
1478 }
1479 } else if (Variety == "Declspec") {
1480 Prefix = " __declspec(";
1481 Suffix = ")";
1482 } else if (Variety == "Microsoft") {
1483 Prefix = "[";
1484 Suffix = "]";
1485 } else if (Variety == "Keyword") {
1486 Prefix = " ";
1487 Suffix = "";
1488 } else if (Variety == "Pragma") {
1489 Prefix = "#pragma ";
1490 Suffix = "\n";
1491 std::string Namespace = Spellings[I].nameSpace();
1492 if (!Namespace.empty()) {
1493 Spelling += Namespace;
1494 Spelling += " ";
1495 }
1496 } else if (Variety == "HLSLSemantic") {
1497 Prefix = ":";
1498 Suffix = "";
1499 } else {
1500 llvm_unreachable("Unknown attribute syntax variety!");
1501 }
1502
1503 Spelling += Name;
1504
1505 OS << " case " << I << " : {\n"
1506 << " OS << \"" << Prefix << Spelling << "\";\n";
1507
1508 if (Variety == "Pragma") {
1509 OS << " printPrettyPragma(OS, Policy);\n";
1510 OS << " OS << \"\\n\";";
1511 OS << " break;\n";
1512 OS << " }\n";
1513 continue;
1514 }
1515
1516 if (Spelling == "availability") {
1517 OS << " OS << \"(";
1518 writeAvailabilityValue(OS);
1519 OS << ")\";\n";
1520 } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1521 OS << " OS << \"(";
1522 writeDeprecatedAttrValue(OS, Variety);
1523 OS << ")\";\n";
1524 } else {
1525 // To avoid printing parentheses around an empty argument list or
1526 // printing spurious commas at the end of an argument list, we need to
1527 // determine where the last provided non-fake argument is.
1528 bool FoundNonOptArg = false;
1529 for (const auto &arg : llvm::reverse(Args)) {
1530 if (arg->isFake())
1531 continue;
1532 if (FoundNonOptArg)
1533 continue;
1534 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1535 // any way to detect whether the argument was omitted.
1536 if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1537 FoundNonOptArg = true;
1538 continue;
1539 }
1540 OS << " if (" << arg->getIsOmitted() << ")\n"
1541 << " ++TrailingOmittedArgs;\n";
1542 }
1543 unsigned ArgIndex = 0;
1544 for (const auto &arg : Args) {
1545 if (arg->isFake())
1546 continue;
1547 std::string IsOmitted = arg->getIsOmitted();
1548 if (arg->isOptional() && IsOmitted != "false")
1549 OS << " if (!(" << IsOmitted << ")) {\n";
1550 // Variadic arguments print their own leading comma.
1551 if (!arg->isVariadic())
1552 OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
1553 OS << " OS << \"";
1554 arg->writeValue(OS);
1555 OS << "\";\n";
1556 if (arg->isOptional() && IsOmitted != "false")
1557 OS << " }\n";
1558 ++ArgIndex;
1559 }
1560 if (ArgIndex != 0)
1561 OS << " if (!IsFirstArgument)\n"
1562 << " OS << \")\";\n";
1563 }
1564 OS << " OS << \"" << Suffix << "\";\n"
1565 << " break;\n"
1566 << " }\n";
1567 }
1568
1569 // End of the switch statement.
1570 OS << "}\n";
1571 // End of the print function.
1572 OS << "}\n\n";
1573 }
1574
1575 /// Return the index of a spelling in a spelling list.
1576 static unsigned
getSpellingListIndex(const std::vector<FlattenedSpelling> & SpellingList,const FlattenedSpelling & Spelling)1577 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
1578 const FlattenedSpelling &Spelling) {
1579 assert(!SpellingList.empty() && "Spelling list is empty!");
1580
1581 for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
1582 const FlattenedSpelling &S = SpellingList[Index];
1583 if (S.variety() != Spelling.variety())
1584 continue;
1585 if (S.nameSpace() != Spelling.nameSpace())
1586 continue;
1587 if (S.name() != Spelling.name())
1588 continue;
1589
1590 return Index;
1591 }
1592
1593 llvm_unreachable("Unknown spelling!");
1594 }
1595
writeAttrAccessorDefinition(const Record & R,raw_ostream & OS)1596 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1597 std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
1598 if (Accessors.empty())
1599 return;
1600
1601 const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1602 assert(!SpellingList.empty() &&
1603 "Attribute with empty spelling list can't have accessors!");
1604 for (const auto *Accessor : Accessors) {
1605 const StringRef Name = Accessor->getValueAsString("Name");
1606 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1607
1608 OS << " bool " << Name
1609 << "() const { return getAttributeSpellingListIndex() == ";
1610 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1611 OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1612 if (Index != Spellings.size() - 1)
1613 OS << " ||\n getAttributeSpellingListIndex() == ";
1614 else
1615 OS << "; }\n";
1616 }
1617 }
1618 }
1619
1620 static bool
SpellingNamesAreCommon(const std::vector<FlattenedSpelling> & Spellings)1621 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1622 assert(!Spellings.empty() && "An empty list of spellings was provided");
1623 std::string FirstName =
1624 std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
1625 for (const auto &Spelling :
1626 llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
1627 std::string Name =
1628 std::string(NormalizeNameForSpellingComparison(Spelling.name()));
1629 if (Name != FirstName)
1630 return false;
1631 }
1632 return true;
1633 }
1634
1635 typedef std::map<unsigned, std::string> SemanticSpellingMap;
1636 static std::string
CreateSemanticSpellings(const std::vector<FlattenedSpelling> & Spellings,SemanticSpellingMap & Map)1637 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1638 SemanticSpellingMap &Map) {
1639 // The enumerants are automatically generated based on the variety,
1640 // namespace (if present) and name for each attribute spelling. However,
1641 // care is taken to avoid trampling on the reserved namespace due to
1642 // underscores.
1643 std::string Ret(" enum Spelling {\n");
1644 std::set<std::string> Uniques;
1645 unsigned Idx = 0;
1646
1647 // If we have a need to have this many spellings we likely need to add an
1648 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1649 // value of SpellingNotCalculated there and here.
1650 assert(Spellings.size() < 15 &&
1651 "Too many spellings, would step on SpellingNotCalculated in "
1652 "AttributeCommonInfo");
1653 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1654 const FlattenedSpelling &S = *I;
1655 const std::string &Variety = S.variety();
1656 const std::string &Spelling = S.name();
1657 const std::string &Namespace = S.nameSpace();
1658 std::string EnumName;
1659
1660 EnumName += (Variety + "_");
1661 if (!Namespace.empty())
1662 EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
1663 "_");
1664 EnumName += NormalizeNameForSpellingComparison(Spelling);
1665
1666 // Even if the name is not unique, this spelling index corresponds to a
1667 // particular enumerant name that we've calculated.
1668 Map[Idx] = EnumName;
1669
1670 // Since we have been stripping underscores to avoid trampling on the
1671 // reserved namespace, we may have inadvertently created duplicate
1672 // enumerant names. These duplicates are not considered part of the
1673 // semantic spelling, and can be elided.
1674 if (Uniques.find(EnumName) != Uniques.end())
1675 continue;
1676
1677 Uniques.insert(EnumName);
1678 if (I != Spellings.begin())
1679 Ret += ",\n";
1680 // Duplicate spellings are not considered part of the semantic spelling
1681 // enumeration, but the spelling index and semantic spelling values are
1682 // meant to be equivalent, so we must specify a concrete value for each
1683 // enumerator.
1684 Ret += " " + EnumName + " = " + llvm::utostr(Idx);
1685 }
1686 Ret += ",\n SpellingNotCalculated = 15\n";
1687 Ret += "\n };\n\n";
1688 return Ret;
1689 }
1690
WriteSemanticSpellingSwitch(const std::string & VarName,const SemanticSpellingMap & Map,raw_ostream & OS)1691 void WriteSemanticSpellingSwitch(const std::string &VarName,
1692 const SemanticSpellingMap &Map,
1693 raw_ostream &OS) {
1694 OS << " switch (" << VarName << ") {\n default: "
1695 << "llvm_unreachable(\"Unknown spelling list index\");\n";
1696 for (const auto &I : Map)
1697 OS << " case " << I.first << ": return " << I.second << ";\n";
1698 OS << " }\n";
1699 }
1700
1701 // Emits the LateParsed property for attributes.
emitClangAttrLateParsedList(RecordKeeper & Records,raw_ostream & OS)1702 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
1703 OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1704 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
1705
1706 for (const auto *Attr : Attrs) {
1707 bool LateParsed = Attr->getValueAsBit("LateParsed");
1708
1709 if (LateParsed) {
1710 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1711
1712 // FIXME: Handle non-GNU attributes
1713 for (const auto &I : Spellings) {
1714 if (I.variety() != "GNU")
1715 continue;
1716 OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
1717 }
1718 }
1719 }
1720 OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1721 }
1722
hasGNUorCXX11Spelling(const Record & Attribute)1723 static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1724 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1725 for (const auto &I : Spellings) {
1726 if (I.variety() == "GNU" || I.variety() == "CXX11")
1727 return true;
1728 }
1729 return false;
1730 }
1731
1732 namespace {
1733
1734 struct AttributeSubjectMatchRule {
1735 const Record *MetaSubject;
1736 const Record *Constraint;
1737
AttributeSubjectMatchRule__anon2ca3fa2f0311::AttributeSubjectMatchRule1738 AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1739 : MetaSubject(MetaSubject), Constraint(Constraint) {
1740 assert(MetaSubject && "Missing subject");
1741 }
1742
isSubRule__anon2ca3fa2f0311::AttributeSubjectMatchRule1743 bool isSubRule() const { return Constraint != nullptr; }
1744
getSubjects__anon2ca3fa2f0311::AttributeSubjectMatchRule1745 std::vector<Record *> getSubjects() const {
1746 return (Constraint ? Constraint : MetaSubject)
1747 ->getValueAsListOfDefs("Subjects");
1748 }
1749
getLangOpts__anon2ca3fa2f0311::AttributeSubjectMatchRule1750 std::vector<Record *> getLangOpts() const {
1751 if (Constraint) {
1752 // Lookup the options in the sub-rule first, in case the sub-rule
1753 // overrides the rules options.
1754 std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
1755 if (!Opts.empty())
1756 return Opts;
1757 }
1758 return MetaSubject->getValueAsListOfDefs("LangOpts");
1759 }
1760
1761 // Abstract rules are used only for sub-rules
isAbstractRule__anon2ca3fa2f0311::AttributeSubjectMatchRule1762 bool isAbstractRule() const { return getSubjects().empty(); }
1763
getName__anon2ca3fa2f0311::AttributeSubjectMatchRule1764 StringRef getName() const {
1765 return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1766 }
1767
isNegatedSubRule__anon2ca3fa2f0311::AttributeSubjectMatchRule1768 bool isNegatedSubRule() const {
1769 assert(isSubRule() && "Not a sub-rule");
1770 return Constraint->getValueAsBit("Negated");
1771 }
1772
getSpelling__anon2ca3fa2f0311::AttributeSubjectMatchRule1773 std::string getSpelling() const {
1774 std::string Result = std::string(MetaSubject->getValueAsString("Name"));
1775 if (isSubRule()) {
1776 Result += '(';
1777 if (isNegatedSubRule())
1778 Result += "unless(";
1779 Result += getName();
1780 if (isNegatedSubRule())
1781 Result += ')';
1782 Result += ')';
1783 }
1784 return Result;
1785 }
1786
getEnumValueName__anon2ca3fa2f0311::AttributeSubjectMatchRule1787 std::string getEnumValueName() const {
1788 SmallString<128> Result;
1789 Result += "SubjectMatchRule_";
1790 Result += MetaSubject->getValueAsString("Name");
1791 if (isSubRule()) {
1792 Result += "_";
1793 if (isNegatedSubRule())
1794 Result += "not_";
1795 Result += Constraint->getValueAsString("Name");
1796 }
1797 if (isAbstractRule())
1798 Result += "_abstract";
1799 return std::string(Result.str());
1800 }
1801
getEnumValue__anon2ca3fa2f0311::AttributeSubjectMatchRule1802 std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
1803
1804 static const char *EnumName;
1805 };
1806
1807 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
1808
1809 struct PragmaClangAttributeSupport {
1810 std::vector<AttributeSubjectMatchRule> Rules;
1811
1812 class RuleOrAggregateRuleSet {
1813 std::vector<AttributeSubjectMatchRule> Rules;
1814 bool IsRule;
RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,bool IsRule)1815 RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
1816 bool IsRule)
1817 : Rules(Rules), IsRule(IsRule) {}
1818
1819 public:
isRule() const1820 bool isRule() const { return IsRule; }
1821
getRule() const1822 const AttributeSubjectMatchRule &getRule() const {
1823 assert(IsRule && "not a rule!");
1824 return Rules[0];
1825 }
1826
getAggregateRuleSet() const1827 ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
1828 return Rules;
1829 }
1830
1831 static RuleOrAggregateRuleSet
getRule(const AttributeSubjectMatchRule & Rule)1832 getRule(const AttributeSubjectMatchRule &Rule) {
1833 return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
1834 }
1835 static RuleOrAggregateRuleSet
getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules)1836 getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
1837 return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
1838 }
1839 };
1840 llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
1841
1842 PragmaClangAttributeSupport(RecordKeeper &Records);
1843
1844 bool isAttributedSupported(const Record &Attribute);
1845
1846 void emitMatchRuleList(raw_ostream &OS);
1847
1848 void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
1849
1850 void generateParsingHelpers(raw_ostream &OS);
1851 };
1852
1853 } // end anonymous namespace
1854
isSupportedPragmaClangAttributeSubject(const Record & Subject)1855 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
1856 // FIXME: #pragma clang attribute does not currently support statement
1857 // attributes, so test whether the subject is one that appertains to a
1858 // declaration node. However, it may be reasonable for support for statement
1859 // attributes to be added.
1860 if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") ||
1861 Subject.getName() == "DeclBase")
1862 return true;
1863
1864 if (Subject.isSubClassOf("SubsetSubject"))
1865 return isSupportedPragmaClangAttributeSubject(
1866 *Subject.getValueAsDef("Base"));
1867
1868 return false;
1869 }
1870
doesDeclDeriveFrom(const Record * D,const Record * Base)1871 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
1872 const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
1873 if (!CurrentBase)
1874 return false;
1875 if (CurrentBase == Base)
1876 return true;
1877 return doesDeclDeriveFrom(CurrentBase, Base);
1878 }
1879
PragmaClangAttributeSupport(RecordKeeper & Records)1880 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1881 RecordKeeper &Records) {
1882 std::vector<Record *> MetaSubjects =
1883 Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1884 auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
1885 const Record *MetaSubject,
1886 const Record *Constraint) {
1887 Rules.emplace_back(MetaSubject, Constraint);
1888 std::vector<Record *> ApplicableSubjects =
1889 SubjectContainer->getValueAsListOfDefs("Subjects");
1890 for (const auto *Subject : ApplicableSubjects) {
1891 bool Inserted =
1892 SubjectsToRules
1893 .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
1894 AttributeSubjectMatchRule(MetaSubject,
1895 Constraint)))
1896 .second;
1897 if (!Inserted) {
1898 PrintFatalError("Attribute subject match rules should not represent"
1899 "same attribute subjects.");
1900 }
1901 }
1902 };
1903 for (const auto *MetaSubject : MetaSubjects) {
1904 MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
1905 std::vector<Record *> Constraints =
1906 MetaSubject->getValueAsListOfDefs("Constraints");
1907 for (const auto *Constraint : Constraints)
1908 MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
1909 }
1910
1911 std::vector<Record *> Aggregates =
1912 Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
1913 std::vector<Record *> DeclNodes =
1914 Records.getAllDerivedDefinitions(DeclNodeClassName);
1915 for (const auto *Aggregate : Aggregates) {
1916 Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
1917
1918 // Gather sub-classes of the aggregate subject that act as attribute
1919 // subject rules.
1920 std::vector<AttributeSubjectMatchRule> Rules;
1921 for (const auto *D : DeclNodes) {
1922 if (doesDeclDeriveFrom(D, SubjectDecl)) {
1923 auto It = SubjectsToRules.find(D);
1924 if (It == SubjectsToRules.end())
1925 continue;
1926 if (!It->second.isRule() || It->second.getRule().isSubRule())
1927 continue; // Assume that the rule will be included as well.
1928 Rules.push_back(It->second.getRule());
1929 }
1930 }
1931
1932 bool Inserted =
1933 SubjectsToRules
1934 .try_emplace(SubjectDecl,
1935 RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
1936 .second;
1937 if (!Inserted) {
1938 PrintFatalError("Attribute subject match rules should not represent"
1939 "same attribute subjects.");
1940 }
1941 }
1942 }
1943
1944 static PragmaClangAttributeSupport &
getPragmaAttributeSupport(RecordKeeper & Records)1945 getPragmaAttributeSupport(RecordKeeper &Records) {
1946 static PragmaClangAttributeSupport Instance(Records);
1947 return Instance;
1948 }
1949
emitMatchRuleList(raw_ostream & OS)1950 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
1951 OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
1952 OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
1953 "IsNegated) "
1954 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
1955 OS << "#endif\n";
1956 for (const auto &Rule : Rules) {
1957 OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
1958 OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
1959 << Rule.isAbstractRule();
1960 if (Rule.isSubRule())
1961 OS << ", "
1962 << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
1963 << ", " << Rule.isNegatedSubRule();
1964 OS << ")\n";
1965 }
1966 OS << "#undef ATTR_MATCH_SUB_RULE\n";
1967 }
1968
isAttributedSupported(const Record & Attribute)1969 bool PragmaClangAttributeSupport::isAttributedSupported(
1970 const Record &Attribute) {
1971 // If the attribute explicitly specified whether to support #pragma clang
1972 // attribute, use that setting.
1973 bool Unset;
1974 bool SpecifiedResult =
1975 Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
1976 if (!Unset)
1977 return SpecifiedResult;
1978
1979 // Opt-out rules:
1980 // An attribute requires delayed parsing (LateParsed is on)
1981 if (Attribute.getValueAsBit("LateParsed"))
1982 return false;
1983 // An attribute has no GNU/CXX11 spelling
1984 if (!hasGNUorCXX11Spelling(Attribute))
1985 return false;
1986 // An attribute subject list has a subject that isn't covered by one of the
1987 // subject match rules or has no subjects at all.
1988 if (Attribute.isValueUnset("Subjects"))
1989 return false;
1990 const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
1991 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
1992 bool HasAtLeastOneValidSubject = false;
1993 for (const auto *Subject : Subjects) {
1994 if (!isSupportedPragmaClangAttributeSubject(*Subject))
1995 continue;
1996 if (SubjectsToRules.find(Subject) == SubjectsToRules.end())
1997 return false;
1998 HasAtLeastOneValidSubject = true;
1999 }
2000 return HasAtLeastOneValidSubject;
2001 }
2002
GenerateTestExpression(ArrayRef<Record * > LangOpts)2003 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
2004 std::string Test;
2005
2006 for (auto *E : LangOpts) {
2007 if (!Test.empty())
2008 Test += " || ";
2009
2010 const StringRef Code = E->getValueAsString("CustomCode");
2011 if (!Code.empty()) {
2012 Test += "(";
2013 Test += Code;
2014 Test += ")";
2015 if (!E->getValueAsString("Name").empty()) {
2016 PrintWarning(
2017 E->getLoc(),
2018 "non-empty 'Name' field ignored because 'CustomCode' was supplied");
2019 }
2020 } else {
2021 Test += "LangOpts.";
2022 Test += E->getValueAsString("Name");
2023 }
2024 }
2025
2026 if (Test.empty())
2027 return "true";
2028
2029 return Test;
2030 }
2031
2032 void
generateStrictConformsTo(const Record & Attr,raw_ostream & OS)2033 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2034 raw_ostream &OS) {
2035 if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2036 return;
2037 // Generate a function that constructs a set of matching rules that describe
2038 // to which declarations the attribute should apply to.
2039 OS << "void getPragmaAttributeMatchRules("
2040 << "llvm::SmallVectorImpl<std::pair<"
2041 << AttributeSubjectMatchRule::EnumName
2042 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2043 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2044 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2045 for (const auto *Subject : Subjects) {
2046 if (!isSupportedPragmaClangAttributeSubject(*Subject))
2047 continue;
2048 auto It = SubjectsToRules.find(Subject);
2049 assert(It != SubjectsToRules.end() &&
2050 "This attribute is unsupported by #pragma clang attribute");
2051 for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2052 // The rule might be language specific, so only subtract it from the given
2053 // rules if the specific language options are specified.
2054 std::vector<Record *> LangOpts = Rule.getLangOpts();
2055 OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2056 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2057 << "));\n";
2058 }
2059 }
2060 OS << "}\n\n";
2061 }
2062
generateParsingHelpers(raw_ostream & OS)2063 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2064 // Generate routines that check the names of sub-rules.
2065 OS << "Optional<attr::SubjectMatchRule> "
2066 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2067 OS << " return None;\n";
2068 OS << "}\n\n";
2069
2070 llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
2071 SubMatchRules;
2072 for (const auto &Rule : Rules) {
2073 if (!Rule.isSubRule())
2074 continue;
2075 SubMatchRules[Rule.MetaSubject].push_back(Rule);
2076 }
2077
2078 for (const auto &SubMatchRule : SubMatchRules) {
2079 OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_"
2080 << SubMatchRule.first->getValueAsString("Name")
2081 << "(StringRef Name, bool IsUnless) {\n";
2082 OS << " if (IsUnless)\n";
2083 OS << " return "
2084 "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2085 for (const auto &Rule : SubMatchRule.second) {
2086 if (Rule.isNegatedSubRule())
2087 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2088 << ").\n";
2089 }
2090 OS << " Default(None);\n";
2091 OS << " return "
2092 "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
2093 for (const auto &Rule : SubMatchRule.second) {
2094 if (!Rule.isNegatedSubRule())
2095 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2096 << ").\n";
2097 }
2098 OS << " Default(None);\n";
2099 OS << "}\n\n";
2100 }
2101
2102 // Generate the function that checks for the top-level rules.
2103 OS << "std::pair<Optional<attr::SubjectMatchRule>, "
2104 "Optional<attr::SubjectMatchRule> (*)(StringRef, "
2105 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2106 OS << " return "
2107 "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, "
2108 "Optional<attr::SubjectMatchRule> (*) (StringRef, "
2109 "bool)>>(Name).\n";
2110 for (const auto &Rule : Rules) {
2111 if (Rule.isSubRule())
2112 continue;
2113 std::string SubRuleFunction;
2114 if (SubMatchRules.count(Rule.MetaSubject))
2115 SubRuleFunction =
2116 ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2117 else
2118 SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2119 OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
2120 << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2121 }
2122 OS << " Default(std::make_pair(None, "
2123 "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2124 OS << "}\n\n";
2125
2126 // Generate the function that checks for the submatch rules.
2127 OS << "const char *validAttributeSubjectMatchSubRules("
2128 << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2129 OS << " switch (Rule) {\n";
2130 for (const auto &SubMatchRule : SubMatchRules) {
2131 OS << " case "
2132 << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2133 << ":\n";
2134 OS << " return \"'";
2135 bool IsFirst = true;
2136 for (const auto &Rule : SubMatchRule.second) {
2137 if (!IsFirst)
2138 OS << ", '";
2139 IsFirst = false;
2140 if (Rule.isNegatedSubRule())
2141 OS << "unless(";
2142 OS << Rule.getName();
2143 if (Rule.isNegatedSubRule())
2144 OS << ')';
2145 OS << "'";
2146 }
2147 OS << "\";\n";
2148 }
2149 OS << " default: return nullptr;\n";
2150 OS << " }\n";
2151 OS << "}\n\n";
2152 }
2153
2154 template <typename Fn>
forEachUniqueSpelling(const Record & Attr,Fn && F)2155 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
2156 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
2157 SmallDenseSet<StringRef, 8> Seen;
2158 for (const FlattenedSpelling &S : Spellings) {
2159 if (Seen.insert(S.name()).second)
2160 F(S);
2161 }
2162 }
2163
isTypeArgument(const Record * Arg)2164 static bool isTypeArgument(const Record *Arg) {
2165 return !Arg->getSuperClasses().empty() &&
2166 Arg->getSuperClasses().back().first->getName() == "TypeArgument";
2167 }
2168
2169 /// Emits the first-argument-is-type property for attributes.
emitClangAttrTypeArgList(RecordKeeper & Records,raw_ostream & OS)2170 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
2171 OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2172 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2173
2174 for (const auto *Attr : Attrs) {
2175 // Determine whether the first argument is a type.
2176 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2177 if (Args.empty())
2178 continue;
2179
2180 if (!isTypeArgument(Args[0]))
2181 continue;
2182
2183 // All these spellings take a single type argument.
2184 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2185 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2186 });
2187 }
2188 OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2189 }
2190
2191 /// Emits the parse-arguments-in-unevaluated-context property for
2192 /// attributes.
emitClangAttrArgContextList(RecordKeeper & Records,raw_ostream & OS)2193 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
2194 OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2195 ParsedAttrMap Attrs = getParsedAttrList(Records);
2196 for (const auto &I : Attrs) {
2197 const Record &Attr = *I.second;
2198
2199 if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2200 continue;
2201
2202 // All these spellings take are parsed unevaluated.
2203 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2204 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2205 });
2206 }
2207 OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2208 }
2209
isIdentifierArgument(const Record * Arg)2210 static bool isIdentifierArgument(const Record *Arg) {
2211 return !Arg->getSuperClasses().empty() &&
2212 llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2213 .Case("IdentifierArgument", true)
2214 .Case("EnumArgument", true)
2215 .Case("VariadicEnumArgument", true)
2216 .Default(false);
2217 }
2218
isVariadicIdentifierArgument(const Record * Arg)2219 static bool isVariadicIdentifierArgument(const Record *Arg) {
2220 return !Arg->getSuperClasses().empty() &&
2221 llvm::StringSwitch<bool>(
2222 Arg->getSuperClasses().back().first->getName())
2223 .Case("VariadicIdentifierArgument", true)
2224 .Case("VariadicParamOrParamIdxArgument", true)
2225 .Default(false);
2226 }
2227
isVariadicExprArgument(const Record * Arg)2228 static bool isVariadicExprArgument(const Record *Arg) {
2229 return !Arg->getSuperClasses().empty() &&
2230 llvm::StringSwitch<bool>(
2231 Arg->getSuperClasses().back().first->getName())
2232 .Case("VariadicExprArgument", true)
2233 .Default(false);
2234 }
2235
emitClangAttrVariadicIdentifierArgList(RecordKeeper & Records,raw_ostream & OS)2236 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
2237 raw_ostream &OS) {
2238 OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2239 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2240 for (const auto *A : Attrs) {
2241 // Determine whether the first argument is a variadic identifier.
2242 std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2243 if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2244 continue;
2245
2246 // All these spellings take an identifier argument.
2247 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2248 OS << ".Case(\"" << S.name() << "\", "
2249 << "true"
2250 << ")\n";
2251 });
2252 }
2253 OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2254 }
2255
2256 // Emits the first-argument-is-identifier property for attributes.
emitClangAttrIdentifierArgList(RecordKeeper & Records,raw_ostream & OS)2257 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
2258 OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2259 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2260
2261 for (const auto *Attr : Attrs) {
2262 // Determine whether the first argument is an identifier.
2263 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2264 if (Args.empty() || !isIdentifierArgument(Args[0]))
2265 continue;
2266
2267 // All these spellings take an identifier argument.
2268 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2269 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2270 });
2271 }
2272 OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2273 }
2274
keywordThisIsaIdentifierInArgument(const Record * Arg)2275 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2276 return !Arg->getSuperClasses().empty() &&
2277 llvm::StringSwitch<bool>(
2278 Arg->getSuperClasses().back().first->getName())
2279 .Case("VariadicParamOrParamIdxArgument", true)
2280 .Default(false);
2281 }
2282
emitClangAttrThisIsaIdentifierArgList(RecordKeeper & Records,raw_ostream & OS)2283 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
2284 raw_ostream &OS) {
2285 OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2286 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2287 for (const auto *A : Attrs) {
2288 // Determine whether the first argument is a variadic identifier.
2289 std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2290 if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2291 continue;
2292
2293 // All these spellings take an identifier argument.
2294 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2295 OS << ".Case(\"" << S.name() << "\", "
2296 << "true"
2297 << ")\n";
2298 });
2299 }
2300 OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2301 }
2302
emitClangAttrAcceptsExprPack(RecordKeeper & Records,raw_ostream & OS)2303 static void emitClangAttrAcceptsExprPack(RecordKeeper &Records,
2304 raw_ostream &OS) {
2305 OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n";
2306 ParsedAttrMap Attrs = getParsedAttrList(Records);
2307 for (const auto &I : Attrs) {
2308 const Record &Attr = *I.second;
2309
2310 if (!Attr.getValueAsBit("AcceptsExprPack"))
2311 continue;
2312
2313 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2314 OS << ".Case(\"" << S.name() << "\", true)\n";
2315 });
2316 }
2317 OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n";
2318 }
2319
emitAttributes(RecordKeeper & Records,raw_ostream & OS,bool Header)2320 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
2321 bool Header) {
2322 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2323 ParsedAttrMap AttrMap = getParsedAttrList(Records);
2324
2325 // Helper to print the starting character of an attribute argument. If there
2326 // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2327 // prints a comma.
2328 OS << "static inline void DelimitAttributeArgument("
2329 << "raw_ostream& OS, bool& IsFirst) {\n"
2330 << " if (IsFirst) {\n"
2331 << " IsFirst = false;\n"
2332 << " OS << \"(\";\n"
2333 << " } else\n"
2334 << " OS << \", \";\n"
2335 << "}\n";
2336
2337 for (const auto *Attr : Attrs) {
2338 const Record &R = *Attr;
2339
2340 // FIXME: Currently, documentation is generated as-needed due to the fact
2341 // that there is no way to allow a generated project "reach into" the docs
2342 // directory (for instance, it may be an out-of-tree build). However, we want
2343 // to ensure that every attribute has a Documentation field, and produce an
2344 // error if it has been neglected. Otherwise, the on-demand generation which
2345 // happens server-side will fail. This code is ensuring that functionality,
2346 // even though this Emitter doesn't technically need the documentation.
2347 // When attribute documentation can be generated as part of the build
2348 // itself, this code can be removed.
2349 (void)R.getValueAsListOfDefs("Documentation");
2350
2351 if (!R.getValueAsBit("ASTNode"))
2352 continue;
2353
2354 ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
2355 assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2356 std::string SuperName;
2357 bool Inheritable = false;
2358 for (const auto &Super : llvm::reverse(Supers)) {
2359 const Record *R = Super.first;
2360 if (R->getName() != "TargetSpecificAttr" &&
2361 R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2362 SuperName = std::string(R->getName());
2363 if (R->getName() == "InheritableAttr")
2364 Inheritable = true;
2365 }
2366
2367 if (Header)
2368 OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
2369 else
2370 OS << "\n// " << R.getName() << "Attr implementation\n\n";
2371
2372 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
2373 std::vector<std::unique_ptr<Argument>> Args;
2374 Args.reserve(ArgRecords.size());
2375
2376 bool AttrAcceptsExprPack = Attr->getValueAsBit("AcceptsExprPack");
2377 if (AttrAcceptsExprPack) {
2378 for (size_t I = 0; I < ArgRecords.size(); ++I) {
2379 const Record *ArgR = ArgRecords[I];
2380 if (isIdentifierArgument(ArgR) || isVariadicIdentifierArgument(ArgR) ||
2381 isTypeArgument(ArgR))
2382 PrintFatalError(Attr->getLoc(),
2383 "Attributes accepting packs cannot also "
2384 "have identifier or type arguments.");
2385 // When trying to determine if value-dependent expressions can populate
2386 // the attribute without prior instantiation, the decision is made based
2387 // on the assumption that only the last argument is ever variadic.
2388 if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(ArgR))
2389 PrintFatalError(Attr->getLoc(),
2390 "Attributes accepting packs can only have the last "
2391 "argument be variadic.");
2392 }
2393 }
2394
2395 bool HasOptArg = false;
2396 bool HasFakeArg = false;
2397 for (const auto *ArgRecord : ArgRecords) {
2398 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2399 if (Header) {
2400 Args.back()->writeDeclarations(OS);
2401 OS << "\n\n";
2402 }
2403
2404 // For these purposes, fake takes priority over optional.
2405 if (Args.back()->isFake()) {
2406 HasFakeArg = true;
2407 } else if (Args.back()->isOptional()) {
2408 HasOptArg = true;
2409 }
2410 }
2411
2412 std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr;
2413 if (AttrAcceptsExprPack) {
2414 DelayedArgs =
2415 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
2416 if (Header) {
2417 DelayedArgs->writeDeclarations(OS);
2418 OS << "\n\n";
2419 }
2420 }
2421
2422 if (Header)
2423 OS << "public:\n";
2424
2425 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2426
2427 // If there are zero or one spellings, all spelling-related functionality
2428 // can be elided. If all of the spellings share the same name, the spelling
2429 // functionality can also be elided.
2430 bool ElideSpelling = (Spellings.size() <= 1) ||
2431 SpellingNamesAreCommon(Spellings);
2432
2433 // This maps spelling index values to semantic Spelling enumerants.
2434 SemanticSpellingMap SemanticToSyntacticMap;
2435
2436 std::string SpellingEnum;
2437 if (Spellings.size() > 1)
2438 SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2439 if (Header)
2440 OS << SpellingEnum;
2441
2442 const auto &ParsedAttrSpellingItr = llvm::find_if(
2443 AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2444 return &R == P.second;
2445 });
2446
2447 // Emit CreateImplicit factory methods.
2448 auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) {
2449 if (Header)
2450 OS << " static ";
2451 OS << R.getName() << "Attr *";
2452 if (!Header)
2453 OS << R.getName() << "Attr::";
2454 OS << "Create";
2455 if (Implicit)
2456 OS << "Implicit";
2457 if (DelayedArgsOnly)
2458 OS << "WithDelayedArgs";
2459 OS << "(";
2460 OS << "ASTContext &Ctx";
2461 if (!DelayedArgsOnly) {
2462 for (auto const &ai : Args) {
2463 if (ai->isFake() && !emitFake)
2464 continue;
2465 OS << ", ";
2466 ai->writeCtorParameters(OS);
2467 }
2468 } else {
2469 OS << ", ";
2470 DelayedArgs->writeCtorParameters(OS);
2471 }
2472 OS << ", const AttributeCommonInfo &CommonInfo";
2473 if (Header && Implicit)
2474 OS << " = {SourceRange{}}";
2475 OS << ")";
2476 if (Header) {
2477 OS << ";\n";
2478 return;
2479 }
2480
2481 OS << " {\n";
2482 OS << " auto *A = new (Ctx) " << R.getName();
2483 OS << "Attr(Ctx, CommonInfo";
2484 if (!DelayedArgsOnly) {
2485 for (auto const &ai : Args) {
2486 if (ai->isFake() && !emitFake)
2487 continue;
2488 OS << ", ";
2489 ai->writeImplicitCtorArgs(OS);
2490 }
2491 }
2492 OS << ");\n";
2493 if (Implicit) {
2494 OS << " A->setImplicit(true);\n";
2495 }
2496 if (Implicit || ElideSpelling) {
2497 OS << " if (!A->isAttributeSpellingListCalculated() && "
2498 "!A->getAttrName())\n";
2499 OS << " A->setAttributeSpellingListIndex(0);\n";
2500 }
2501 if (DelayedArgsOnly) {
2502 OS << " A->setDelayedArgs(Ctx, ";
2503 DelayedArgs->writeImplicitCtorArgs(OS);
2504 OS << ");\n";
2505 }
2506 OS << " return A;\n}\n\n";
2507 };
2508
2509 auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly,
2510 bool emitFake) {
2511 if (Header)
2512 OS << " static ";
2513 OS << R.getName() << "Attr *";
2514 if (!Header)
2515 OS << R.getName() << "Attr::";
2516 OS << "Create";
2517 if (Implicit)
2518 OS << "Implicit";
2519 if (DelayedArgsOnly)
2520 OS << "WithDelayedArgs";
2521 OS << "(";
2522 OS << "ASTContext &Ctx";
2523 if (!DelayedArgsOnly) {
2524 for (auto const &ai : Args) {
2525 if (ai->isFake() && !emitFake)
2526 continue;
2527 OS << ", ";
2528 ai->writeCtorParameters(OS);
2529 }
2530 } else {
2531 OS << ", ";
2532 DelayedArgs->writeCtorParameters(OS);
2533 }
2534 OS << ", SourceRange Range, AttributeCommonInfo::Syntax Syntax";
2535 if (!ElideSpelling) {
2536 OS << ", " << R.getName() << "Attr::Spelling S";
2537 if (Header)
2538 OS << " = static_cast<Spelling>(SpellingNotCalculated)";
2539 }
2540 OS << ")";
2541 if (Header) {
2542 OS << ";\n";
2543 return;
2544 }
2545
2546 OS << " {\n";
2547 OS << " AttributeCommonInfo I(Range, ";
2548
2549 if (ParsedAttrSpellingItr != std::end(AttrMap))
2550 OS << "AT_" << ParsedAttrSpellingItr->first;
2551 else
2552 OS << "NoSemaHandlerAttribute";
2553
2554 OS << ", Syntax";
2555 if (!ElideSpelling)
2556 OS << ", S";
2557 OS << ");\n";
2558 OS << " return Create";
2559 if (Implicit)
2560 OS << "Implicit";
2561 if (DelayedArgsOnly)
2562 OS << "WithDelayedArgs";
2563 OS << "(Ctx";
2564 if (!DelayedArgsOnly) {
2565 for (auto const &ai : Args) {
2566 if (ai->isFake() && !emitFake)
2567 continue;
2568 OS << ", ";
2569 ai->writeImplicitCtorArgs(OS);
2570 }
2571 } else {
2572 OS << ", ";
2573 DelayedArgs->writeImplicitCtorArgs(OS);
2574 }
2575 OS << ", I);\n";
2576 OS << "}\n\n";
2577 };
2578
2579 auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) {
2580 emitCreate(true, DelayedArgsOnly, emitFake);
2581 emitCreate(false, DelayedArgsOnly, emitFake);
2582 emitCreateNoCI(true, DelayedArgsOnly, emitFake);
2583 emitCreateNoCI(false, DelayedArgsOnly, emitFake);
2584 };
2585
2586 if (Header)
2587 OS << " // Factory methods\n";
2588
2589 // Emit a CreateImplicit that takes all the arguments.
2590 emitCreates(false, true);
2591
2592 // Emit a CreateImplicit that takes all the non-fake arguments.
2593 if (HasFakeArg)
2594 emitCreates(false, false);
2595
2596 // Emit a CreateWithDelayedArgs that takes only the dependent argument
2597 // expressions.
2598 if (DelayedArgs)
2599 emitCreates(true, false);
2600
2601 // Emit constructors.
2602 auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) {
2603 auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2604 if (emitNoArgs)
2605 return false;
2606 if (arg->isFake())
2607 return emitFake;
2608 if (arg->isOptional())
2609 return emitOpt;
2610 return true;
2611 };
2612 if (Header)
2613 OS << " ";
2614 else
2615 OS << R.getName() << "Attr::";
2616 OS << R.getName()
2617 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2618 OS << '\n';
2619 for (auto const &ai : Args) {
2620 if (!shouldEmitArg(ai))
2621 continue;
2622 OS << " , ";
2623 ai->writeCtorParameters(OS);
2624 OS << "\n";
2625 }
2626
2627 OS << " )";
2628 if (Header) {
2629 OS << ";\n";
2630 return;
2631 }
2632 OS << "\n : " << SuperName << "(Ctx, CommonInfo, ";
2633 OS << "attr::" << R.getName() << ", "
2634 << (R.getValueAsBit("LateParsed") ? "true" : "false");
2635 if (Inheritable) {
2636 OS << ", "
2637 << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2638 : "false");
2639 }
2640 OS << ")\n";
2641
2642 for (auto const &ai : Args) {
2643 OS << " , ";
2644 if (!shouldEmitArg(ai)) {
2645 ai->writeCtorDefaultInitializers(OS);
2646 } else {
2647 ai->writeCtorInitializers(OS);
2648 }
2649 OS << "\n";
2650 }
2651 if (DelayedArgs) {
2652 OS << " , ";
2653 DelayedArgs->writeCtorDefaultInitializers(OS);
2654 OS << "\n";
2655 }
2656
2657 OS << " {\n";
2658
2659 for (auto const &ai : Args) {
2660 if (!shouldEmitArg(ai))
2661 continue;
2662 ai->writeCtorBody(OS);
2663 }
2664 OS << "}\n\n";
2665 };
2666
2667 if (Header)
2668 OS << "\n // Constructors\n";
2669
2670 // Emit a constructor that includes all the arguments.
2671 // This is necessary for cloning.
2672 emitCtor(true, true, false);
2673
2674 // Emit a constructor that takes all the non-fake arguments.
2675 if (HasFakeArg)
2676 emitCtor(true, false, false);
2677
2678 // Emit a constructor that takes all the non-fake, non-optional arguments.
2679 if (HasOptArg)
2680 emitCtor(false, false, false);
2681
2682 // Emit constructors that takes no arguments if none already exists.
2683 // This is used for delaying arguments.
2684 bool HasRequiredArgs = std::count_if(
2685 Args.begin(), Args.end(), [=](const std::unique_ptr<Argument> &arg) {
2686 return !arg->isFake() && !arg->isOptional();
2687 });
2688 if (DelayedArgs && HasRequiredArgs)
2689 emitCtor(false, false, true);
2690
2691 if (Header) {
2692 OS << '\n';
2693 OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
2694 OS << " void printPretty(raw_ostream &OS,\n"
2695 << " const PrintingPolicy &Policy) const;\n";
2696 OS << " const char *getSpelling() const;\n";
2697 }
2698
2699 if (!ElideSpelling) {
2700 assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
2701 if (Header)
2702 OS << " Spelling getSemanticSpelling() const;\n";
2703 else {
2704 OS << R.getName() << "Attr::Spelling " << R.getName()
2705 << "Attr::getSemanticSpelling() const {\n";
2706 WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2707 SemanticToSyntacticMap, OS);
2708 OS << "}\n";
2709 }
2710 }
2711
2712 if (Header)
2713 writeAttrAccessorDefinition(R, OS);
2714
2715 for (auto const &ai : Args) {
2716 if (Header) {
2717 ai->writeAccessors(OS);
2718 } else {
2719 ai->writeAccessorDefinitions(OS);
2720 }
2721 OS << "\n\n";
2722
2723 // Don't write conversion routines for fake arguments.
2724 if (ai->isFake()) continue;
2725
2726 if (ai->isEnumArg())
2727 static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
2728 Header);
2729 else if (ai->isVariadicEnumArg())
2730 static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
2731 OS, Header);
2732 }
2733
2734 if (Header) {
2735 if (DelayedArgs) {
2736 DelayedArgs->writeAccessors(OS);
2737 DelayedArgs->writeSetter(OS);
2738 }
2739
2740 OS << R.getValueAsString("AdditionalMembers");
2741 OS << "\n\n";
2742
2743 OS << " static bool classof(const Attr *A) { return A->getKind() == "
2744 << "attr::" << R.getName() << "; }\n";
2745
2746 OS << "};\n\n";
2747 } else {
2748 if (DelayedArgs)
2749 DelayedArgs->writeAccessorDefinitions(OS);
2750
2751 OS << R.getName() << "Attr *" << R.getName()
2752 << "Attr::clone(ASTContext &C) const {\n";
2753 OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this";
2754 for (auto const &ai : Args) {
2755 OS << ", ";
2756 ai->writeCloneArgs(OS);
2757 }
2758 OS << ");\n";
2759 OS << " A->Inherited = Inherited;\n";
2760 OS << " A->IsPackExpansion = IsPackExpansion;\n";
2761 OS << " A->setImplicit(Implicit);\n";
2762 if (DelayedArgs) {
2763 OS << " A->setDelayedArgs(C, ";
2764 DelayedArgs->writeCloneArgs(OS);
2765 OS << ");\n";
2766 }
2767 OS << " return A;\n}\n\n";
2768
2769 writePrettyPrintFunction(R, Args, OS);
2770 writeGetSpellingFunction(R, OS);
2771 }
2772 }
2773 }
2774 // Emits the class definitions for attributes.
EmitClangAttrClass(RecordKeeper & Records,raw_ostream & OS)2775 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
2776 emitSourceFileHeader("Attribute classes' definitions", OS);
2777
2778 OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2779 OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2780
2781 emitAttributes(Records, OS, true);
2782
2783 OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2784 }
2785
2786 // Emits the class method definitions for attributes.
EmitClangAttrImpl(RecordKeeper & Records,raw_ostream & OS)2787 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
2788 emitSourceFileHeader("Attribute classes' member function definitions", OS);
2789
2790 emitAttributes(Records, OS, false);
2791
2792 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2793
2794 // Instead of relying on virtual dispatch we just create a huge dispatch
2795 // switch. This is both smaller and faster than virtual functions.
2796 auto EmitFunc = [&](const char *Method) {
2797 OS << " switch (getKind()) {\n";
2798 for (const auto *Attr : Attrs) {
2799 const Record &R = *Attr;
2800 if (!R.getValueAsBit("ASTNode"))
2801 continue;
2802
2803 OS << " case attr::" << R.getName() << ":\n";
2804 OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
2805 << ";\n";
2806 }
2807 OS << " }\n";
2808 OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
2809 OS << "}\n\n";
2810 };
2811
2812 OS << "const char *Attr::getSpelling() const {\n";
2813 EmitFunc("getSpelling()");
2814
2815 OS << "Attr *Attr::clone(ASTContext &C) const {\n";
2816 EmitFunc("clone(C)");
2817
2818 OS << "void Attr::printPretty(raw_ostream &OS, "
2819 "const PrintingPolicy &Policy) const {\n";
2820 EmitFunc("printPretty(OS, Policy)");
2821 }
2822
emitAttrList(raw_ostream & OS,StringRef Class,const std::vector<Record * > & AttrList)2823 static void emitAttrList(raw_ostream &OS, StringRef Class,
2824 const std::vector<Record*> &AttrList) {
2825 for (auto Cur : AttrList) {
2826 OS << Class << "(" << Cur->getName() << ")\n";
2827 }
2828 }
2829
2830 // Determines if an attribute has a Pragma spelling.
AttrHasPragmaSpelling(const Record * R)2831 static bool AttrHasPragmaSpelling(const Record *R) {
2832 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
2833 return llvm::any_of(Spellings, [](const FlattenedSpelling &S) {
2834 return S.variety() == "Pragma";
2835 });
2836 }
2837
2838 namespace {
2839
2840 struct AttrClassDescriptor {
2841 const char * const MacroName;
2842 const char * const TableGenName;
2843 };
2844
2845 } // end anonymous namespace
2846
2847 static const AttrClassDescriptor AttrClassDescriptors[] = {
2848 { "ATTR", "Attr" },
2849 { "TYPE_ATTR", "TypeAttr" },
2850 { "STMT_ATTR", "StmtAttr" },
2851 { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
2852 { "INHERITABLE_ATTR", "InheritableAttr" },
2853 { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
2854 { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
2855 { "PARAMETER_ABI_ATTR", "ParameterABIAttr" }
2856 };
2857
emitDefaultDefine(raw_ostream & OS,StringRef name,const char * superName)2858 static void emitDefaultDefine(raw_ostream &OS, StringRef name,
2859 const char *superName) {
2860 OS << "#ifndef " << name << "\n";
2861 OS << "#define " << name << "(NAME) ";
2862 if (superName) OS << superName << "(NAME)";
2863 OS << "\n#endif\n\n";
2864 }
2865
2866 namespace {
2867
2868 /// A class of attributes.
2869 struct AttrClass {
2870 const AttrClassDescriptor &Descriptor;
2871 Record *TheRecord;
2872 AttrClass *SuperClass = nullptr;
2873 std::vector<AttrClass*> SubClasses;
2874 std::vector<Record*> Attrs;
2875
AttrClass__anon2ca3fa2f1511::AttrClass2876 AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
2877 : Descriptor(Descriptor), TheRecord(R) {}
2878
emitDefaultDefines__anon2ca3fa2f1511::AttrClass2879 void emitDefaultDefines(raw_ostream &OS) const {
2880 // Default the macro unless this is a root class (i.e. Attr).
2881 if (SuperClass) {
2882 emitDefaultDefine(OS, Descriptor.MacroName,
2883 SuperClass->Descriptor.MacroName);
2884 }
2885 }
2886
emitUndefs__anon2ca3fa2f1511::AttrClass2887 void emitUndefs(raw_ostream &OS) const {
2888 OS << "#undef " << Descriptor.MacroName << "\n";
2889 }
2890
emitAttrList__anon2ca3fa2f1511::AttrClass2891 void emitAttrList(raw_ostream &OS) const {
2892 for (auto SubClass : SubClasses) {
2893 SubClass->emitAttrList(OS);
2894 }
2895
2896 ::emitAttrList(OS, Descriptor.MacroName, Attrs);
2897 }
2898
classifyAttrOnRoot__anon2ca3fa2f1511::AttrClass2899 void classifyAttrOnRoot(Record *Attr) {
2900 bool result = classifyAttr(Attr);
2901 assert(result && "failed to classify on root"); (void) result;
2902 }
2903
emitAttrRange__anon2ca3fa2f1511::AttrClass2904 void emitAttrRange(raw_ostream &OS) const {
2905 OS << "ATTR_RANGE(" << Descriptor.TableGenName
2906 << ", " << getFirstAttr()->getName()
2907 << ", " << getLastAttr()->getName() << ")\n";
2908 }
2909
2910 private:
classifyAttr__anon2ca3fa2f1511::AttrClass2911 bool classifyAttr(Record *Attr) {
2912 // Check all the subclasses.
2913 for (auto SubClass : SubClasses) {
2914 if (SubClass->classifyAttr(Attr))
2915 return true;
2916 }
2917
2918 // It's not more specific than this class, but it might still belong here.
2919 if (Attr->isSubClassOf(TheRecord)) {
2920 Attrs.push_back(Attr);
2921 return true;
2922 }
2923
2924 return false;
2925 }
2926
getFirstAttr__anon2ca3fa2f1511::AttrClass2927 Record *getFirstAttr() const {
2928 if (!SubClasses.empty())
2929 return SubClasses.front()->getFirstAttr();
2930 return Attrs.front();
2931 }
2932
getLastAttr__anon2ca3fa2f1511::AttrClass2933 Record *getLastAttr() const {
2934 if (!Attrs.empty())
2935 return Attrs.back();
2936 return SubClasses.back()->getLastAttr();
2937 }
2938 };
2939
2940 /// The entire hierarchy of attribute classes.
2941 class AttrClassHierarchy {
2942 std::vector<std::unique_ptr<AttrClass>> Classes;
2943
2944 public:
AttrClassHierarchy(RecordKeeper & Records)2945 AttrClassHierarchy(RecordKeeper &Records) {
2946 // Find records for all the classes.
2947 for (auto &Descriptor : AttrClassDescriptors) {
2948 Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
2949 AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
2950 Classes.emplace_back(Class);
2951 }
2952
2953 // Link up the hierarchy.
2954 for (auto &Class : Classes) {
2955 if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
2956 Class->SuperClass = SuperClass;
2957 SuperClass->SubClasses.push_back(Class.get());
2958 }
2959 }
2960
2961 #ifndef NDEBUG
2962 for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
2963 assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
2964 "only the first class should be a root class!");
2965 }
2966 #endif
2967 }
2968
emitDefaultDefines(raw_ostream & OS) const2969 void emitDefaultDefines(raw_ostream &OS) const {
2970 for (auto &Class : Classes) {
2971 Class->emitDefaultDefines(OS);
2972 }
2973 }
2974
emitUndefs(raw_ostream & OS) const2975 void emitUndefs(raw_ostream &OS) const {
2976 for (auto &Class : Classes) {
2977 Class->emitUndefs(OS);
2978 }
2979 }
2980
emitAttrLists(raw_ostream & OS) const2981 void emitAttrLists(raw_ostream &OS) const {
2982 // Just start from the root class.
2983 Classes[0]->emitAttrList(OS);
2984 }
2985
emitAttrRanges(raw_ostream & OS) const2986 void emitAttrRanges(raw_ostream &OS) const {
2987 for (auto &Class : Classes)
2988 Class->emitAttrRange(OS);
2989 }
2990
classifyAttr(Record * Attr)2991 void classifyAttr(Record *Attr) {
2992 // Add the attribute to the root class.
2993 Classes[0]->classifyAttrOnRoot(Attr);
2994 }
2995
2996 private:
findClassByRecord(Record * R) const2997 AttrClass *findClassByRecord(Record *R) const {
2998 for (auto &Class : Classes) {
2999 if (Class->TheRecord == R)
3000 return Class.get();
3001 }
3002 return nullptr;
3003 }
3004
findSuperClass(Record * R) const3005 AttrClass *findSuperClass(Record *R) const {
3006 // TableGen flattens the superclass list, so we just need to walk it
3007 // in reverse.
3008 auto SuperClasses = R->getSuperClasses();
3009 for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
3010 auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
3011 if (SuperClass) return SuperClass;
3012 }
3013 return nullptr;
3014 }
3015 };
3016
3017 } // end anonymous namespace
3018
3019 namespace clang {
3020
3021 // Emits the enumeration list for attributes.
EmitClangAttrList(RecordKeeper & Records,raw_ostream & OS)3022 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
3023 emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
3024
3025 AttrClassHierarchy Hierarchy(Records);
3026
3027 // Add defaulting macro definitions.
3028 Hierarchy.emitDefaultDefines(OS);
3029 emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
3030
3031 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3032 std::vector<Record *> PragmaAttrs;
3033 for (auto *Attr : Attrs) {
3034 if (!Attr->getValueAsBit("ASTNode"))
3035 continue;
3036
3037 // Add the attribute to the ad-hoc groups.
3038 if (AttrHasPragmaSpelling(Attr))
3039 PragmaAttrs.push_back(Attr);
3040
3041 // Place it in the hierarchy.
3042 Hierarchy.classifyAttr(Attr);
3043 }
3044
3045 // Emit the main attribute list.
3046 Hierarchy.emitAttrLists(OS);
3047
3048 // Emit the ad hoc groups.
3049 emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
3050
3051 // Emit the attribute ranges.
3052 OS << "#ifdef ATTR_RANGE\n";
3053 Hierarchy.emitAttrRanges(OS);
3054 OS << "#undef ATTR_RANGE\n";
3055 OS << "#endif\n";
3056
3057 Hierarchy.emitUndefs(OS);
3058 OS << "#undef PRAGMA_SPELLING_ATTR\n";
3059 }
3060
3061 // Emits the enumeration list for attributes.
EmitClangAttrSubjectMatchRuleList(RecordKeeper & Records,raw_ostream & OS)3062 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
3063 emitSourceFileHeader(
3064 "List of all attribute subject matching rules that Clang recognizes", OS);
3065 PragmaClangAttributeSupport &PragmaAttributeSupport =
3066 getPragmaAttributeSupport(Records);
3067 emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
3068 PragmaAttributeSupport.emitMatchRuleList(OS);
3069 OS << "#undef ATTR_MATCH_RULE\n";
3070 }
3071
3072 // Emits the code to read an attribute from a precompiled header.
EmitClangAttrPCHRead(RecordKeeper & Records,raw_ostream & OS)3073 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
3074 emitSourceFileHeader("Attribute deserialization code", OS);
3075
3076 Record *InhClass = Records.getClass("InheritableAttr");
3077 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
3078 ArgRecords;
3079 std::vector<std::unique_ptr<Argument>> Args;
3080 std::unique_ptr<VariadicExprArgument> DelayedArgs;
3081
3082 OS << " switch (Kind) {\n";
3083 for (const auto *Attr : Attrs) {
3084 const Record &R = *Attr;
3085 if (!R.getValueAsBit("ASTNode"))
3086 continue;
3087
3088 OS << " case attr::" << R.getName() << ": {\n";
3089 if (R.isSubClassOf(InhClass))
3090 OS << " bool isInherited = Record.readInt();\n";
3091 OS << " bool isImplicit = Record.readInt();\n";
3092 OS << " bool isPackExpansion = Record.readInt();\n";
3093 DelayedArgs = nullptr;
3094 if (Attr->getValueAsBit("AcceptsExprPack")) {
3095 DelayedArgs =
3096 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
3097 DelayedArgs->writePCHReadDecls(OS);
3098 }
3099 ArgRecords = R.getValueAsListOfDefs("Args");
3100 Args.clear();
3101 for (const auto *Arg : ArgRecords) {
3102 Args.emplace_back(createArgument(*Arg, R.getName()));
3103 Args.back()->writePCHReadDecls(OS);
3104 }
3105 OS << " New = new (Context) " << R.getName() << "Attr(Context, Info";
3106 for (auto const &ri : Args) {
3107 OS << ", ";
3108 ri->writePCHReadArgs(OS);
3109 }
3110 OS << ");\n";
3111 if (R.isSubClassOf(InhClass))
3112 OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
3113 OS << " New->setImplicit(isImplicit);\n";
3114 OS << " New->setPackExpansion(isPackExpansion);\n";
3115 if (DelayedArgs) {
3116 OS << " cast<" << R.getName()
3117 << "Attr>(New)->setDelayedArgs(Context, ";
3118 DelayedArgs->writePCHReadArgs(OS);
3119 OS << ");\n";
3120 }
3121 OS << " break;\n";
3122 OS << " }\n";
3123 }
3124 OS << " }\n";
3125 }
3126
3127 // Emits the code to write an attribute to a precompiled header.
EmitClangAttrPCHWrite(RecordKeeper & Records,raw_ostream & OS)3128 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
3129 emitSourceFileHeader("Attribute serialization code", OS);
3130
3131 Record *InhClass = Records.getClass("InheritableAttr");
3132 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
3133
3134 OS << " switch (A->getKind()) {\n";
3135 for (const auto *Attr : Attrs) {
3136 const Record &R = *Attr;
3137 if (!R.getValueAsBit("ASTNode"))
3138 continue;
3139 OS << " case attr::" << R.getName() << ": {\n";
3140 Args = R.getValueAsListOfDefs("Args");
3141 if (R.isSubClassOf(InhClass) || !Args.empty())
3142 OS << " const auto *SA = cast<" << R.getName()
3143 << "Attr>(A);\n";
3144 if (R.isSubClassOf(InhClass))
3145 OS << " Record.push_back(SA->isInherited());\n";
3146 OS << " Record.push_back(A->isImplicit());\n";
3147 OS << " Record.push_back(A->isPackExpansion());\n";
3148 if (Attr->getValueAsBit("AcceptsExprPack"))
3149 VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS);
3150
3151 for (const auto *Arg : Args)
3152 createArgument(*Arg, R.getName())->writePCHWrite(OS);
3153 OS << " break;\n";
3154 OS << " }\n";
3155 }
3156 OS << " }\n";
3157 }
3158
3159 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
3160 // parameter with only a single check type, if applicable.
GenerateTargetSpecificAttrCheck(const Record * R,std::string & Test,std::string * FnName,StringRef ListName,StringRef CheckAgainst,StringRef Scope)3161 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
3162 std::string *FnName,
3163 StringRef ListName,
3164 StringRef CheckAgainst,
3165 StringRef Scope) {
3166 if (!R->isValueUnset(ListName)) {
3167 Test += " && (";
3168 std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
3169 for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3170 StringRef Part = *I;
3171 Test += CheckAgainst;
3172 Test += " == ";
3173 Test += Scope;
3174 Test += Part;
3175 if (I + 1 != E)
3176 Test += " || ";
3177 if (FnName)
3178 *FnName += Part;
3179 }
3180 Test += ")";
3181 return true;
3182 }
3183 return false;
3184 }
3185
3186 // Generate a conditional expression to check if the current target satisfies
3187 // the conditions for a TargetSpecificAttr record, and append the code for
3188 // those checks to the Test string. If the FnName string pointer is non-null,
3189 // append a unique suffix to distinguish this set of target checks from other
3190 // TargetSpecificAttr records.
GenerateTargetSpecificAttrChecks(const Record * R,std::vector<StringRef> & Arches,std::string & Test,std::string * FnName)3191 static bool GenerateTargetSpecificAttrChecks(const Record *R,
3192 std::vector<StringRef> &Arches,
3193 std::string &Test,
3194 std::string *FnName) {
3195 bool AnyTargetChecks = false;
3196
3197 // It is assumed that there will be an llvm::Triple object
3198 // named "T" and a TargetInfo object named "Target" within
3199 // scope that can be used to determine whether the attribute exists in
3200 // a given target.
3201 Test += "true";
3202 // If one or more architectures is specified, check those. Arches are handled
3203 // differently because GenerateTargetRequirements needs to combine the list
3204 // with ParseKind.
3205 if (!Arches.empty()) {
3206 AnyTargetChecks = true;
3207 Test += " && (";
3208 for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3209 StringRef Part = *I;
3210 Test += "T.getArch() == llvm::Triple::";
3211 Test += Part;
3212 if (I + 1 != E)
3213 Test += " || ";
3214 if (FnName)
3215 *FnName += Part;
3216 }
3217 Test += ")";
3218 }
3219
3220 // If the attribute is specific to particular OSes, check those.
3221 AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3222 R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3223
3224 // If one or more object formats is specified, check those.
3225 AnyTargetChecks |=
3226 GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3227 "T.getObjectFormat()", "llvm::Triple::");
3228
3229 // If custom code is specified, emit it.
3230 StringRef Code = R->getValueAsString("CustomCode");
3231 if (!Code.empty()) {
3232 AnyTargetChecks = true;
3233 Test += " && (";
3234 Test += Code;
3235 Test += ")";
3236 }
3237
3238 return AnyTargetChecks;
3239 }
3240
GenerateHasAttrSpellingStringSwitch(const std::vector<Record * > & Attrs,raw_ostream & OS,const std::string & Variety="",const std::string & Scope="")3241 static void GenerateHasAttrSpellingStringSwitch(
3242 const std::vector<Record *> &Attrs, raw_ostream &OS,
3243 const std::string &Variety = "", const std::string &Scope = "") {
3244 for (const auto *Attr : Attrs) {
3245 // C++11-style attributes have specific version information associated with
3246 // them. If the attribute has no scope, the version information must not
3247 // have the default value (1), as that's incorrect. Instead, the unscoped
3248 // attribute version information should be taken from the SD-6 standing
3249 // document, which can be found at:
3250 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3251 //
3252 // C2x-style attributes have the same kind of version information
3253 // associated with them. The unscoped attribute version information should
3254 // be taken from the specification of the attribute in the C Standard.
3255 int Version = 1;
3256
3257 if (Variety == "CXX11" || Variety == "C2x") {
3258 std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
3259 for (const auto &Spelling : Spellings) {
3260 if (Spelling->getValueAsString("Variety") == Variety) {
3261 Version = static_cast<int>(Spelling->getValueAsInt("Version"));
3262 if (Scope.empty() && Version == 1)
3263 PrintError(Spelling->getLoc(), "Standard attributes must have "
3264 "valid version information.");
3265 break;
3266 }
3267 }
3268 }
3269
3270 std::string Test;
3271 if (Attr->isSubClassOf("TargetSpecificAttr")) {
3272 const Record *R = Attr->getValueAsDef("Target");
3273 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3274 GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3275
3276 // If this is the C++11 variety, also add in the LangOpts test.
3277 if (Variety == "CXX11")
3278 Test += " && LangOpts.CPlusPlus11";
3279 else if (Variety == "C2x")
3280 Test += " && LangOpts.DoubleSquareBracketAttributes";
3281 } else if (Variety == "CXX11")
3282 // C++11 mode should be checked against LangOpts, which is presumed to be
3283 // present in the caller.
3284 Test = "LangOpts.CPlusPlus11";
3285 else if (Variety == "C2x")
3286 Test = "LangOpts.DoubleSquareBracketAttributes";
3287
3288 std::string TestStr =
3289 !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
3290 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
3291 for (const auto &S : Spellings)
3292 if (Variety.empty() || (Variety == S.variety() &&
3293 (Scope.empty() || Scope == S.nameSpace())))
3294 OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n";
3295 }
3296 OS << " .Default(0);\n";
3297 }
3298
3299 // Emits the list of spellings for attributes.
EmitClangAttrHasAttrImpl(RecordKeeper & Records,raw_ostream & OS)3300 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3301 emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
3302
3303 // Separate all of the attributes out into four group: generic, C++11, GNU,
3304 // and declspecs. Then generate a big switch statement for each of them.
3305 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3306 std::vector<Record *> Declspec, Microsoft, GNU, Pragma, HLSLSemantic;
3307 std::map<std::string, std::vector<Record *>> CXX, C2x;
3308
3309 // Walk over the list of all attributes, and split them out based on the
3310 // spelling variety.
3311 for (auto *R : Attrs) {
3312 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3313 for (const auto &SI : Spellings) {
3314 const std::string &Variety = SI.variety();
3315 if (Variety == "GNU")
3316 GNU.push_back(R);
3317 else if (Variety == "Declspec")
3318 Declspec.push_back(R);
3319 else if (Variety == "Microsoft")
3320 Microsoft.push_back(R);
3321 else if (Variety == "CXX11")
3322 CXX[SI.nameSpace()].push_back(R);
3323 else if (Variety == "C2x")
3324 C2x[SI.nameSpace()].push_back(R);
3325 else if (Variety == "Pragma")
3326 Pragma.push_back(R);
3327 else if (Variety == "HLSLSemantic")
3328 HLSLSemantic.push_back(R);
3329 }
3330 }
3331
3332 OS << "const llvm::Triple &T = Target.getTriple();\n";
3333 OS << "switch (Syntax) {\n";
3334 OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n";
3335 OS << " return llvm::StringSwitch<int>(Name)\n";
3336 GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3337 OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n";
3338 OS << " return llvm::StringSwitch<int>(Name)\n";
3339 GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3340 OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n";
3341 OS << " return llvm::StringSwitch<int>(Name)\n";
3342 GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3343 OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n";
3344 OS << " return llvm::StringSwitch<int>(Name)\n";
3345 GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3346 OS << "case AttributeCommonInfo::Syntax::AS_HLSLSemantic:\n";
3347 OS << " return llvm::StringSwitch<int>(Name)\n";
3348 GenerateHasAttrSpellingStringSwitch(HLSLSemantic, OS, "HLSLSemantic");
3349 auto fn = [&OS](const char *Spelling,
3350 const std::map<std::string, std::vector<Record *>> &List) {
3351 OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n";
3352 // C++11-style attributes are further split out based on the Scope.
3353 for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
3354 if (I != List.cbegin())
3355 OS << " else ";
3356 if (I->first.empty())
3357 OS << "if (ScopeName == \"\") {\n";
3358 else
3359 OS << "if (ScopeName == \"" << I->first << "\") {\n";
3360 OS << " return llvm::StringSwitch<int>(Name)\n";
3361 GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
3362 OS << "}";
3363 }
3364 OS << "\n} break;\n";
3365 };
3366 fn("CXX11", CXX);
3367 fn("C2x", C2x);
3368 OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n";
3369 OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n";
3370 OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n";
3371 OS << " return 0;\n";
3372
3373 OS << "}\n";
3374 }
3375
EmitClangAttrSpellingListIndex(RecordKeeper & Records,raw_ostream & OS)3376 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
3377 emitSourceFileHeader("Code to translate different attribute spellings "
3378 "into internal identifiers", OS);
3379
3380 OS << " switch (getParsedKind()) {\n";
3381 OS << " case IgnoredAttribute:\n";
3382 OS << " case UnknownAttribute:\n";
3383 OS << " case NoSemaHandlerAttribute:\n";
3384 OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3385
3386 ParsedAttrMap Attrs = getParsedAttrList(Records);
3387 for (const auto &I : Attrs) {
3388 const Record &R = *I.second;
3389 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3390 OS << " case AT_" << I.first << ": {\n";
3391 for (unsigned I = 0; I < Spellings.size(); ++ I) {
3392 OS << " if (Name == \"" << Spellings[I].name() << "\" && "
3393 << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
3394 << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
3395 << " return " << I << ";\n";
3396 }
3397
3398 OS << " break;\n";
3399 OS << " }\n";
3400 }
3401
3402 OS << " }\n";
3403 OS << " return 0;\n";
3404 }
3405
3406 // Emits code used by RecursiveASTVisitor to visit attributes
EmitClangAttrASTVisitor(RecordKeeper & Records,raw_ostream & OS)3407 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
3408 emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
3409
3410 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3411
3412 // Write method declarations for Traverse* methods.
3413 // We emit this here because we only generate methods for attributes that
3414 // are declared as ASTNodes.
3415 OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3416 for (const auto *Attr : Attrs) {
3417 const Record &R = *Attr;
3418 if (!R.getValueAsBit("ASTNode"))
3419 continue;
3420 OS << " bool Traverse"
3421 << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3422 OS << " bool Visit"
3423 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3424 << " return true; \n"
3425 << " }\n";
3426 }
3427 OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3428
3429 // Write individual Traverse* methods for each attribute class.
3430 for (const auto *Attr : Attrs) {
3431 const Record &R = *Attr;
3432 if (!R.getValueAsBit("ASTNode"))
3433 continue;
3434
3435 OS << "template <typename Derived>\n"
3436 << "bool VISITORCLASS<Derived>::Traverse"
3437 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3438 << " if (!getDerived().VisitAttr(A))\n"
3439 << " return false;\n"
3440 << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3441 << " return false;\n";
3442
3443 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3444 for (const auto *Arg : ArgRecords)
3445 createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3446
3447 if (Attr->getValueAsBit("AcceptsExprPack"))
3448 VariadicExprArgument("DelayedArgs", R.getName())
3449 .writeASTVisitorTraversal(OS);
3450
3451 OS << " return true;\n";
3452 OS << "}\n\n";
3453 }
3454
3455 // Write generic Traverse routine
3456 OS << "template <typename Derived>\n"
3457 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3458 << " if (!A)\n"
3459 << " return true;\n"
3460 << "\n"
3461 << " switch (A->getKind()) {\n";
3462
3463 for (const auto *Attr : Attrs) {
3464 const Record &R = *Attr;
3465 if (!R.getValueAsBit("ASTNode"))
3466 continue;
3467
3468 OS << " case attr::" << R.getName() << ":\n"
3469 << " return getDerived().Traverse" << R.getName() << "Attr("
3470 << "cast<" << R.getName() << "Attr>(A));\n";
3471 }
3472 OS << " }\n"; // end switch
3473 OS << " llvm_unreachable(\"bad attribute kind\");\n";
3474 OS << "}\n"; // end function
3475 OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
3476 }
3477
EmitClangAttrTemplateInstantiateHelper(const std::vector<Record * > & Attrs,raw_ostream & OS,bool AppliesToDecl)3478 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
3479 raw_ostream &OS,
3480 bool AppliesToDecl) {
3481
3482 OS << " switch (At->getKind()) {\n";
3483 for (const auto *Attr : Attrs) {
3484 const Record &R = *Attr;
3485 if (!R.getValueAsBit("ASTNode"))
3486 continue;
3487 OS << " case attr::" << R.getName() << ": {\n";
3488 bool ShouldClone = R.getValueAsBit("Clone") &&
3489 (!AppliesToDecl ||
3490 R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3491
3492 if (!ShouldClone) {
3493 OS << " return nullptr;\n";
3494 OS << " }\n";
3495 continue;
3496 }
3497
3498 OS << " const auto *A = cast<"
3499 << R.getName() << "Attr>(At);\n";
3500 bool TDependent = R.getValueAsBit("TemplateDependent");
3501
3502 if (!TDependent) {
3503 OS << " return A->clone(C);\n";
3504 OS << " }\n";
3505 continue;
3506 }
3507
3508 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3509 std::vector<std::unique_ptr<Argument>> Args;
3510 Args.reserve(ArgRecords.size());
3511
3512 for (const auto *ArgRecord : ArgRecords)
3513 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
3514
3515 for (auto const &ai : Args)
3516 ai->writeTemplateInstantiation(OS);
3517
3518 OS << " return new (C) " << R.getName() << "Attr(C, *A";
3519 for (auto const &ai : Args) {
3520 OS << ", ";
3521 ai->writeTemplateInstantiationArgs(OS);
3522 }
3523 OS << ");\n"
3524 << " }\n";
3525 }
3526 OS << " } // end switch\n"
3527 << " llvm_unreachable(\"Unknown attribute!\");\n"
3528 << " return nullptr;\n";
3529 }
3530
3531 // Emits code to instantiate dependent attributes on templates.
EmitClangAttrTemplateInstantiate(RecordKeeper & Records,raw_ostream & OS)3532 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
3533 emitSourceFileHeader("Template instantiation code for attributes", OS);
3534
3535 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3536
3537 OS << "namespace clang {\n"
3538 << "namespace sema {\n\n"
3539 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3540 << "Sema &S,\n"
3541 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3542 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
3543 OS << "}\n\n"
3544 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3545 << " ASTContext &C, Sema &S,\n"
3546 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3547 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
3548 OS << "}\n\n"
3549 << "} // end namespace sema\n"
3550 << "} // end namespace clang\n";
3551 }
3552
3553 // Emits the list of parsed attributes.
EmitClangAttrParsedAttrList(RecordKeeper & Records,raw_ostream & OS)3554 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
3555 emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
3556
3557 OS << "#ifndef PARSED_ATTR\n";
3558 OS << "#define PARSED_ATTR(NAME) NAME\n";
3559 OS << "#endif\n\n";
3560
3561 ParsedAttrMap Names = getParsedAttrList(Records);
3562 for (const auto &I : Names) {
3563 OS << "PARSED_ATTR(" << I.first << ")\n";
3564 }
3565 }
3566
isArgVariadic(const Record & R,StringRef AttrName)3567 static bool isArgVariadic(const Record &R, StringRef AttrName) {
3568 return createArgument(R, AttrName)->isVariadic();
3569 }
3570
emitArgInfo(const Record & R,raw_ostream & OS)3571 static void emitArgInfo(const Record &R, raw_ostream &OS) {
3572 // This function will count the number of arguments specified for the
3573 // attribute and emit the number of required arguments followed by the
3574 // number of optional arguments.
3575 std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
3576 unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0;
3577 bool HasVariadic = false;
3578 for (const auto *Arg : Args) {
3579 // If the arg is fake, it's the user's job to supply it: general parsing
3580 // logic shouldn't need to know anything about it.
3581 if (Arg->getValueAsBit("Fake"))
3582 continue;
3583 Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
3584 ++ArgMemberCount;
3585 if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
3586 HasVariadic = true;
3587 }
3588
3589 // If there is a variadic argument, we will set the optional argument count
3590 // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3591 OS << " /*NumArgs=*/" << ArgCount << ",\n";
3592 OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n";
3593 OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n";
3594 }
3595
GetDiagnosticSpelling(const Record & R)3596 static std::string GetDiagnosticSpelling(const Record &R) {
3597 std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
3598 if (!Ret.empty())
3599 return Ret;
3600
3601 // If we couldn't find the DiagSpelling in this object, we can check to see
3602 // if the object is one that has a base, and if it is, loop up to the Base
3603 // member recursively.
3604 if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
3605 return GetDiagnosticSpelling(*Base);
3606
3607 return "";
3608 }
3609
CalculateDiagnostic(const Record & S)3610 static std::string CalculateDiagnostic(const Record &S) {
3611 // If the SubjectList object has a custom diagnostic associated with it,
3612 // return that directly.
3613 const StringRef CustomDiag = S.getValueAsString("CustomDiag");
3614 if (!CustomDiag.empty())
3615 return ("\"" + Twine(CustomDiag) + "\"").str();
3616
3617 std::vector<std::string> DiagList;
3618 std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
3619 for (const auto *Subject : Subjects) {
3620 const Record &R = *Subject;
3621 // Get the diagnostic text from the Decl or Stmt node given.
3622 std::string V = GetDiagnosticSpelling(R);
3623 if (V.empty()) {
3624 PrintError(R.getLoc(),
3625 "Could not determine diagnostic spelling for the node: " +
3626 R.getName() + "; please add one to DeclNodes.td");
3627 } else {
3628 // The node may contain a list of elements itself, so split the elements
3629 // by a comma, and trim any whitespace.
3630 SmallVector<StringRef, 2> Frags;
3631 llvm::SplitString(V, Frags, ",");
3632 for (auto Str : Frags) {
3633 DiagList.push_back(std::string(Str.trim()));
3634 }
3635 }
3636 }
3637
3638 if (DiagList.empty()) {
3639 PrintFatalError(S.getLoc(),
3640 "Could not deduce diagnostic argument for Attr subjects");
3641 return "";
3642 }
3643
3644 // FIXME: this is not particularly good for localization purposes and ideally
3645 // should be part of the diagnostics engine itself with some sort of list
3646 // specifier.
3647
3648 // A single member of the list can be returned directly.
3649 if (DiagList.size() == 1)
3650 return '"' + DiagList.front() + '"';
3651
3652 if (DiagList.size() == 2)
3653 return '"' + DiagList[0] + " and " + DiagList[1] + '"';
3654
3655 // If there are more than two in the list, we serialize the first N - 1
3656 // elements with a comma. This leaves the string in the state: foo, bar,
3657 // baz (but misses quux). We can then add ", and " for the last element
3658 // manually.
3659 std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
3660 return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
3661 }
3662
GetSubjectWithSuffix(const Record * R)3663 static std::string GetSubjectWithSuffix(const Record *R) {
3664 const std::string &B = std::string(R->getName());
3665 if (B == "DeclBase")
3666 return "Decl";
3667 return B + "Decl";
3668 }
3669
functionNameForCustomAppertainsTo(const Record & Subject)3670 static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
3671 return "is" + Subject.getName().str();
3672 }
3673
GenerateCustomAppertainsTo(const Record & Subject,raw_ostream & OS)3674 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
3675 std::string FnName = functionNameForCustomAppertainsTo(Subject);
3676
3677 // If this code has already been generated, we don't need to do anything.
3678 static std::set<std::string> CustomSubjectSet;
3679 auto I = CustomSubjectSet.find(FnName);
3680 if (I != CustomSubjectSet.end())
3681 return;
3682
3683 // This only works with non-root Decls.
3684 Record *Base = Subject.getValueAsDef(BaseFieldName);
3685
3686 // Not currently support custom subjects within custom subjects.
3687 if (Base->isSubClassOf("SubsetSubject")) {
3688 PrintFatalError(Subject.getLoc(),
3689 "SubsetSubjects within SubsetSubjects is not supported");
3690 return;
3691 }
3692
3693 OS << "static bool " << FnName << "(const Decl *D) {\n";
3694 OS << " if (const auto *S = dyn_cast<";
3695 OS << GetSubjectWithSuffix(Base);
3696 OS << ">(D))\n";
3697 OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
3698 OS << " return false;\n";
3699 OS << "}\n\n";
3700
3701 CustomSubjectSet.insert(FnName);
3702 }
3703
GenerateAppertainsTo(const Record & Attr,raw_ostream & OS)3704 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
3705 // If the attribute does not contain a Subjects definition, then use the
3706 // default appertainsTo logic.
3707 if (Attr.isValueUnset("Subjects"))
3708 return;
3709
3710 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3711 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
3712
3713 // If the list of subjects is empty, it is assumed that the attribute
3714 // appertains to everything.
3715 if (Subjects.empty())
3716 return;
3717
3718 bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
3719
3720 // Split the subjects into declaration subjects and statement subjects.
3721 // FIXME: subset subjects are added to the declaration list until there are
3722 // enough statement attributes with custom subject needs to warrant
3723 // the implementation effort.
3724 std::vector<Record *> DeclSubjects, StmtSubjects;
3725 llvm::copy_if(
3726 Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
3727 return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
3728 });
3729 llvm::copy_if(Subjects, std::back_inserter(StmtSubjects),
3730 [](const Record *R) { return R->isSubClassOf("StmtNode"); });
3731
3732 // We should have sorted all of the subjects into two lists.
3733 // FIXME: this assertion will be wrong if we ever add type attribute subjects.
3734 assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
3735
3736 if (DeclSubjects.empty()) {
3737 // If there are no decl subjects but there are stmt subjects, diagnose
3738 // trying to apply a statement attribute to a declaration.
3739 if (!StmtSubjects.empty()) {
3740 OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
3741 OS << "const Decl *D) const override {\n";
3742 OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n";
3743 OS << " << AL << D->getLocation();\n";
3744 OS << " return false;\n";
3745 OS << "}\n\n";
3746 }
3747 } else {
3748 // Otherwise, generate an appertainsTo check specific to this attribute
3749 // which checks all of the given subjects against the Decl passed in.
3750 OS << "bool diagAppertainsToDecl(Sema &S, ";
3751 OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
3752 OS << " if (";
3753 for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
3754 // If the subject has custom code associated with it, use the generated
3755 // function for it. The function cannot be inlined into this check (yet)
3756 // because it requires the subject to be of a specific type, and were that
3757 // information inlined here, it would not support an attribute with
3758 // multiple custom subjects.
3759 if ((*I)->isSubClassOf("SubsetSubject"))
3760 OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
3761 else
3762 OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3763
3764 if (I + 1 != E)
3765 OS << " && ";
3766 }
3767 OS << ") {\n";
3768 OS << " S.Diag(Attr.getLoc(), diag::";
3769 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3770 : "err_attribute_wrong_decl_type_str");
3771 OS << ")\n";
3772 OS << " << Attr << ";
3773 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3774 OS << " return false;\n";
3775 OS << " }\n";
3776 OS << " return true;\n";
3777 OS << "}\n\n";
3778 }
3779
3780 if (StmtSubjects.empty()) {
3781 // If there are no stmt subjects but there are decl subjects, diagnose
3782 // trying to apply a declaration attribute to a statement.
3783 if (!DeclSubjects.empty()) {
3784 OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
3785 OS << "const Stmt *St) const override {\n";
3786 OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
3787 OS << " << AL << St->getBeginLoc();\n";
3788 OS << " return false;\n";
3789 OS << "}\n\n";
3790 }
3791 } else {
3792 // Now, do the same for statements.
3793 OS << "bool diagAppertainsToStmt(Sema &S, ";
3794 OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
3795 OS << " if (";
3796 for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
3797 OS << "!isa<" << (*I)->getName() << ">(St)";
3798 if (I + 1 != E)
3799 OS << " && ";
3800 }
3801 OS << ") {\n";
3802 OS << " S.Diag(Attr.getLoc(), diag::";
3803 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
3804 : "err_attribute_wrong_decl_type_str");
3805 OS << ")\n";
3806 OS << " << Attr << ";
3807 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
3808 OS << " return false;\n";
3809 OS << " }\n";
3810 OS << " return true;\n";
3811 OS << "}\n\n";
3812 }
3813 }
3814
3815 // Generates the mutual exclusion checks. The checks for parsed attributes are
3816 // written into OS and the checks for merging declaration attributes are
3817 // written into MergeOS.
GenerateMutualExclusionsChecks(const Record & Attr,const RecordKeeper & Records,raw_ostream & OS,raw_ostream & MergeDeclOS,raw_ostream & MergeStmtOS)3818 static void GenerateMutualExclusionsChecks(const Record &Attr,
3819 const RecordKeeper &Records,
3820 raw_ostream &OS,
3821 raw_ostream &MergeDeclOS,
3822 raw_ostream &MergeStmtOS) {
3823 // Find all of the definitions that inherit from MutualExclusions and include
3824 // the given attribute in the list of exclusions to generate the
3825 // diagMutualExclusion() check.
3826 std::vector<Record *> ExclusionsList =
3827 Records.getAllDerivedDefinitions("MutualExclusions");
3828
3829 // We don't do any of this magic for type attributes yet.
3830 if (Attr.isSubClassOf("TypeAttr"))
3831 return;
3832
3833 // This means the attribute is either a statement attribute, a decl
3834 // attribute, or both; find out which.
3835 bool CurAttrIsStmtAttr =
3836 Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr");
3837 bool CurAttrIsDeclAttr =
3838 !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr");
3839
3840 std::vector<std::string> DeclAttrs, StmtAttrs;
3841
3842 for (const Record *Exclusion : ExclusionsList) {
3843 std::vector<Record *> MutuallyExclusiveAttrs =
3844 Exclusion->getValueAsListOfDefs("Exclusions");
3845 auto IsCurAttr = [Attr](const Record *R) {
3846 return R->getName() == Attr.getName();
3847 };
3848 if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
3849 // This list of exclusions includes the attribute we're looking for, so
3850 // add the exclusive attributes to the proper list for checking.
3851 for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
3852 if (IsCurAttr(AttrToExclude))
3853 continue;
3854
3855 if (CurAttrIsStmtAttr)
3856 StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3857 if (CurAttrIsDeclAttr)
3858 DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
3859 }
3860 }
3861 }
3862
3863 // If there are any decl or stmt attributes, silence -Woverloaded-virtual
3864 // warnings for them both.
3865 if (!DeclAttrs.empty() || !StmtAttrs.empty())
3866 OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n";
3867
3868 // If we discovered any decl or stmt attributes to test for, generate the
3869 // predicates for them now.
3870 if (!DeclAttrs.empty()) {
3871 // Generate the ParsedAttrInfo subclass logic for declarations.
3872 OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
3873 << "const Decl *D) const override {\n";
3874 for (const std::string &A : DeclAttrs) {
3875 OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n";
3876 OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
3877 << " << AL << A;\n";
3878 OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
3879 OS << " \nreturn false;\n";
3880 OS << " }\n";
3881 }
3882 OS << " return true;\n";
3883 OS << " }\n\n";
3884
3885 // Also generate the declaration attribute merging logic if the current
3886 // attribute is one that can be inheritted on a declaration. It is assumed
3887 // this code will be executed in the context of a function with parameters:
3888 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
3889 // true on success).
3890 if (Attr.isSubClassOf("InheritableAttr")) {
3891 MergeDeclOS << " if (const auto *Second = dyn_cast<"
3892 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3893 for (const std::string &A : DeclAttrs) {
3894 MergeDeclOS << " if (const auto *First = D->getAttr<" << A
3895 << ">()) {\n";
3896 MergeDeclOS << " S.Diag(First->getLocation(), "
3897 << "diag::err_attributes_are_not_compatible) << First << "
3898 << "Second;\n";
3899 MergeDeclOS << " S.Diag(Second->getLocation(), "
3900 << "diag::note_conflicting_attribute);\n";
3901 MergeDeclOS << " return false;\n";
3902 MergeDeclOS << " }\n";
3903 }
3904 MergeDeclOS << " return true;\n";
3905 MergeDeclOS << " }\n";
3906 }
3907 }
3908
3909 // Statement attributes are a bit different from declarations. With
3910 // declarations, each attribute is added to the declaration as it is
3911 // processed, and so you can look on the Decl * itself to see if there is a
3912 // conflicting attribute. Statement attributes are processed as a group
3913 // because AttributedStmt needs to tail-allocate all of the attribute nodes
3914 // at once. This means we cannot check whether the statement already contains
3915 // an attribute to check for the conflict. Instead, we need to check whether
3916 // the given list of semantic attributes contain any conflicts. It is assumed
3917 // this code will be executed in the context of a function with parameters:
3918 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
3919 // loop which loops over the container C with a loop variable named A to
3920 // represent the current attribute to check for conflicts.
3921 //
3922 // FIXME: it would be nice not to walk over the list of potential attributes
3923 // to apply to the statement more than once, but statements typically don't
3924 // have long lists of attributes on them, so re-walking the list should not
3925 // be an expensive operation.
3926 if (!StmtAttrs.empty()) {
3927 MergeStmtOS << " if (const auto *Second = dyn_cast<"
3928 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
3929 MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) "
3930 << "{ return isa<";
3931 interleave(
3932 StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; },
3933 [&] { MergeStmtOS << ", "; });
3934 MergeStmtOS << ">(Check); });\n";
3935 MergeStmtOS << " if (Iter != C.end()) {\n";
3936 MergeStmtOS << " S.Diag((*Iter)->getLocation(), "
3937 << "diag::err_attributes_are_not_compatible) << *Iter << "
3938 << "Second;\n";
3939 MergeStmtOS << " S.Diag(Second->getLocation(), "
3940 << "diag::note_conflicting_attribute);\n";
3941 MergeStmtOS << " return false;\n";
3942 MergeStmtOS << " }\n";
3943 MergeStmtOS << " }\n";
3944 }
3945 }
3946
3947 static void
emitAttributeMatchRules(PragmaClangAttributeSupport & PragmaAttributeSupport,raw_ostream & OS)3948 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
3949 raw_ostream &OS) {
3950 OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
3951 << AttributeSubjectMatchRule::EnumName << " rule) {\n";
3952 OS << " switch (rule) {\n";
3953 for (const auto &Rule : PragmaAttributeSupport.Rules) {
3954 if (Rule.isAbstractRule()) {
3955 OS << " case " << Rule.getEnumValue() << ":\n";
3956 OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
3957 OS << " return false;\n";
3958 continue;
3959 }
3960 std::vector<Record *> Subjects = Rule.getSubjects();
3961 assert(!Subjects.empty() && "Missing subjects");
3962 OS << " case " << Rule.getEnumValue() << ":\n";
3963 OS << " return ";
3964 for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
3965 // If the subject has custom code associated with it, use the function
3966 // that was generated for GenerateAppertainsTo to check if the declaration
3967 // is valid.
3968 if ((*I)->isSubClassOf("SubsetSubject"))
3969 OS << functionNameForCustomAppertainsTo(**I) << "(D)";
3970 else
3971 OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
3972
3973 if (I + 1 != E)
3974 OS << " || ";
3975 }
3976 OS << ";\n";
3977 }
3978 OS << " }\n";
3979 OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
3980 OS << "}\n\n";
3981 }
3982
GenerateLangOptRequirements(const Record & R,raw_ostream & OS)3983 static void GenerateLangOptRequirements(const Record &R,
3984 raw_ostream &OS) {
3985 // If the attribute has an empty or unset list of language requirements,
3986 // use the default handler.
3987 std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
3988 if (LangOpts.empty())
3989 return;
3990
3991 OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
3992 OS << " return " << GenerateTestExpression(LangOpts) << ";\n";
3993 OS << "}\n\n";
3994 }
3995
GenerateTargetRequirements(const Record & Attr,const ParsedAttrMap & Dupes,raw_ostream & OS)3996 static void GenerateTargetRequirements(const Record &Attr,
3997 const ParsedAttrMap &Dupes,
3998 raw_ostream &OS) {
3999 // If the attribute is not a target specific attribute, use the default
4000 // target handler.
4001 if (!Attr.isSubClassOf("TargetSpecificAttr"))
4002 return;
4003
4004 // Get the list of architectures to be tested for.
4005 const Record *R = Attr.getValueAsDef("Target");
4006 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
4007
4008 // If there are other attributes which share the same parsed attribute kind,
4009 // such as target-specific attributes with a shared spelling, collapse the
4010 // duplicate architectures. This is required because a shared target-specific
4011 // attribute has only one ParsedAttr::Kind enumeration value, but it
4012 // applies to multiple target architectures. In order for the attribute to be
4013 // considered valid, all of its architectures need to be included.
4014 if (!Attr.isValueUnset("ParseKind")) {
4015 const StringRef APK = Attr.getValueAsString("ParseKind");
4016 for (const auto &I : Dupes) {
4017 if (I.first == APK) {
4018 std::vector<StringRef> DA =
4019 I.second->getValueAsDef("Target")->getValueAsListOfStrings(
4020 "Arches");
4021 Arches.insert(Arches.end(), DA.begin(), DA.end());
4022 }
4023 }
4024 }
4025
4026 std::string FnName = "isTarget";
4027 std::string Test;
4028 bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
4029
4030 OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
4031 if (UsesT)
4032 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4033 OS << " return " << Test << ";\n";
4034 OS << "}\n\n";
4035 }
4036
GenerateSpellingIndexToSemanticSpelling(const Record & Attr,raw_ostream & OS)4037 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
4038 raw_ostream &OS) {
4039 // If the attribute does not have a semantic form, we can bail out early.
4040 if (!Attr.getValueAsBit("ASTNode"))
4041 return;
4042
4043 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4044
4045 // If there are zero or one spellings, or all of the spellings share the same
4046 // name, we can also bail out early.
4047 if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
4048 return;
4049
4050 // Generate the enumeration we will use for the mapping.
4051 SemanticSpellingMap SemanticToSyntacticMap;
4052 std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
4053 std::string Name = Attr.getName().str() + "AttrSpellingMap";
4054
4055 OS << "unsigned spellingIndexToSemanticSpelling(";
4056 OS << "const ParsedAttr &Attr) const override {\n";
4057 OS << Enum;
4058 OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
4059 WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
4060 OS << "}\n\n";
4061 }
4062
GenerateHandleDeclAttribute(const Record & Attr,raw_ostream & OS)4063 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
4064 // Only generate if Attr can be handled simply.
4065 if (!Attr.getValueAsBit("SimpleHandler"))
4066 return;
4067
4068 // Generate a function which just converts from ParsedAttr to the Attr type.
4069 OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
4070 OS << "const ParsedAttr &Attr) const override {\n";
4071 OS << " D->addAttr(::new (S.Context) " << Attr.getName();
4072 OS << "Attr(S.Context, Attr));\n";
4073 OS << " return AttributeApplied;\n";
4074 OS << "}\n\n";
4075 }
4076
isParamExpr(const Record * Arg)4077 static bool isParamExpr(const Record *Arg) {
4078 return !Arg->getSuperClasses().empty() &&
4079 llvm::StringSwitch<bool>(
4080 Arg->getSuperClasses().back().first->getName())
4081 .Case("ExprArgument", true)
4082 .Case("VariadicExprArgument", true)
4083 .Default(false);
4084 }
4085
GenerateIsParamExpr(const Record & Attr,raw_ostream & OS)4086 void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) {
4087 OS << "bool isParamExpr(size_t N) const override {\n";
4088 OS << " return ";
4089 auto Args = Attr.getValueAsListOfDefs("Args");
4090 for (size_t I = 0; I < Args.size(); ++I)
4091 if (isParamExpr(Args[I]))
4092 OS << "(N == " << I << ") || ";
4093 OS << "false;\n";
4094 OS << "}\n\n";
4095 }
4096
GenerateHandleAttrWithDelayedArgs(RecordKeeper & Records,raw_ostream & OS)4097 void GenerateHandleAttrWithDelayedArgs(RecordKeeper &Records, raw_ostream &OS) {
4098 OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, ";
4099 OS << "const ParsedAttr &Attr) {\n";
4100 OS << " SmallVector<Expr *, 4> ArgExprs;\n";
4101 OS << " ArgExprs.reserve(Attr.getNumArgs());\n";
4102 OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n";
4103 OS << " assert(!Attr.isArgIdent(I));\n";
4104 OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n";
4105 OS << " }\n";
4106 OS << " clang::Attr *CreatedAttr = nullptr;\n";
4107 OS << " switch (Attr.getKind()) {\n";
4108 OS << " default:\n";
4109 OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n";
4110 ParsedAttrMap Attrs = getParsedAttrList(Records);
4111 for (const auto &I : Attrs) {
4112 const Record &R = *I.second;
4113 if (!R.getValueAsBit("AcceptsExprPack"))
4114 continue;
4115 OS << " case ParsedAttr::AT_" << I.first << ": {\n";
4116 OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs";
4117 OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n";
4118 OS << " break;\n";
4119 OS << " }\n";
4120 }
4121 OS << " }\n";
4122 OS << " D->addAttr(CreatedAttr);\n";
4123 OS << "}\n\n";
4124 }
4125
IsKnownToGCC(const Record & Attr)4126 static bool IsKnownToGCC(const Record &Attr) {
4127 // Look at the spellings for this subject; if there are any spellings which
4128 // claim to be known to GCC, the attribute is known to GCC.
4129 return llvm::any_of(
4130 GetFlattenedSpellings(Attr),
4131 [](const FlattenedSpelling &S) { return S.knownToGCC(); });
4132 }
4133
4134 /// Emits the parsed attribute helpers
EmitClangAttrParsedAttrImpl(RecordKeeper & Records,raw_ostream & OS)4135 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
4136 emitSourceFileHeader("Parsed attribute helpers", OS);
4137
4138 OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
4139 << "!defined(WANT_STMT_MERGE_LOGIC)\n";
4140 PragmaClangAttributeSupport &PragmaAttributeSupport =
4141 getPragmaAttributeSupport(Records);
4142
4143 // Get the list of parsed attributes, and accept the optional list of
4144 // duplicates due to the ParseKind.
4145 ParsedAttrMap Dupes;
4146 ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
4147
4148 // Generate all of the custom appertainsTo functions that the attributes
4149 // will be using.
4150 for (auto I : Attrs) {
4151 const Record &Attr = *I.second;
4152 if (Attr.isValueUnset("Subjects"))
4153 continue;
4154 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
4155 for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
4156 if (Subject->isSubClassOf("SubsetSubject"))
4157 GenerateCustomAppertainsTo(*Subject, OS);
4158 }
4159
4160 // This stream is used to collect all of the declaration attribute merging
4161 // logic for performing mutual exclusion checks. This gets emitted at the
4162 // end of the file in a helper function of its own.
4163 std::string DeclMergeChecks, StmtMergeChecks;
4164 raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
4165
4166 // Generate a ParsedAttrInfo struct for each of the attributes.
4167 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4168 // TODO: If the attribute's kind appears in the list of duplicates, that is
4169 // because it is a target-specific attribute that appears multiple times.
4170 // It would be beneficial to test whether the duplicates are "similar
4171 // enough" to each other to not cause problems. For instance, check that
4172 // the spellings are identical, and custom parsing rules match, etc.
4173
4174 // We need to generate struct instances based off ParsedAttrInfo from
4175 // ParsedAttr.cpp.
4176 const std::string &AttrName = I->first;
4177 const Record &Attr = *I->second;
4178 auto Spellings = GetFlattenedSpellings(Attr);
4179 if (!Spellings.empty()) {
4180 OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
4181 << "Spellings[] = {\n";
4182 for (const auto &S : Spellings) {
4183 const std::string &RawSpelling = S.name();
4184 std::string Spelling;
4185 if (!S.nameSpace().empty())
4186 Spelling += S.nameSpace() + "::";
4187 if (S.variety() == "GNU")
4188 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4189 else
4190 Spelling += RawSpelling;
4191 OS << " {AttributeCommonInfo::AS_" << S.variety();
4192 OS << ", \"" << Spelling << "\"},\n";
4193 }
4194 OS << "};\n";
4195 }
4196
4197 std::vector<std::string> ArgNames;
4198 for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) {
4199 bool UnusedUnset;
4200 if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset))
4201 continue;
4202 ArgNames.push_back(Arg->getValueAsString("Name").str());
4203 for (const auto &Class : Arg->getSuperClasses()) {
4204 if (Class.first->getName().startswith("Variadic")) {
4205 ArgNames.back().append("...");
4206 break;
4207 }
4208 }
4209 }
4210 if (!ArgNames.empty()) {
4211 OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
4212 for (const auto &N : ArgNames)
4213 OS << '"' << N << "\",";
4214 OS << "};\n";
4215 }
4216
4217 OS << "struct ParsedAttrInfo" << I->first
4218 << " final : public ParsedAttrInfo {\n";
4219 OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n";
4220 OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n";
4221 emitArgInfo(Attr, OS);
4222 OS << " /*HasCustomParsing=*/";
4223 OS << Attr.getValueAsBit("HasCustomParsing") << ",\n";
4224 OS << " /*AcceptsExprPack=*/";
4225 OS << Attr.getValueAsBit("AcceptsExprPack") << ",\n";
4226 OS << " /*IsTargetSpecific=*/";
4227 OS << Attr.isSubClassOf("TargetSpecificAttr") << ",\n";
4228 OS << " /*IsType=*/";
4229 OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr"))
4230 << ",\n";
4231 OS << " /*IsStmt=*/";
4232 OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
4233 << ",\n";
4234 OS << " /*IsKnownToGCC=*/";
4235 OS << IsKnownToGCC(Attr) << ",\n";
4236 OS << " /*IsSupportedByPragmaAttribute=*/";
4237 OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ",\n";
4238 if (!Spellings.empty())
4239 OS << " /*Spellings=*/" << I->first << "Spellings,\n";
4240 else
4241 OS << " /*Spellings=*/{},\n";
4242 if (!ArgNames.empty())
4243 OS << " /*ArgNames=*/" << I->first << "ArgNames";
4244 else
4245 OS << " /*ArgNames=*/{}";
4246 OS << ") {}\n";
4247 GenerateAppertainsTo(Attr, OS);
4248 GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
4249 GenerateLangOptRequirements(Attr, OS);
4250 GenerateTargetRequirements(Attr, Dupes, OS);
4251 GenerateSpellingIndexToSemanticSpelling(Attr, OS);
4252 PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
4253 GenerateHandleDeclAttribute(Attr, OS);
4254 GenerateIsParamExpr(Attr, OS);
4255 OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
4256 OS << "};\n";
4257 OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4258 << "::Instance;\n";
4259 }
4260
4261 OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4262 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4263 OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4264 }
4265 OS << "};\n\n";
4266
4267 // Generate function for handling attributes with delayed arguments
4268 GenerateHandleAttrWithDelayedArgs(Records, OS);
4269
4270 // Generate the attribute match rules.
4271 emitAttributeMatchRules(PragmaAttributeSupport, OS);
4272
4273 OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4274
4275 // Write out the declaration merging check logic.
4276 OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4277 << "const Attr *A) {\n";
4278 OS << MergeDeclOS.str();
4279 OS << " return true;\n";
4280 OS << "}\n\n";
4281
4282 OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4283
4284 // Write out the statement merging check logic.
4285 OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4286 << "const SmallVectorImpl<const Attr *> &C) {\n";
4287 OS << " for (const Attr *A : C) {\n";
4288 OS << MergeStmtOS.str();
4289 OS << " }\n";
4290 OS << " return true;\n";
4291 OS << "}\n\n";
4292
4293 OS << "#endif\n";
4294 }
4295
4296 // Emits the kind list of parsed attributes
EmitClangAttrParsedAttrKinds(RecordKeeper & Records,raw_ostream & OS)4297 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
4298 emitSourceFileHeader("Attribute name matcher", OS);
4299
4300 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4301 std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4302 Keywords, Pragma, C2x, HLSLSemantic;
4303 std::set<std::string> Seen;
4304 for (const auto *A : Attrs) {
4305 const Record &Attr = *A;
4306
4307 bool SemaHandler = Attr.getValueAsBit("SemaHandler");
4308 bool Ignored = Attr.getValueAsBit("Ignored");
4309 if (SemaHandler || Ignored) {
4310 // Attribute spellings can be shared between target-specific attributes,
4311 // and can be shared between syntaxes for the same attribute. For
4312 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4313 // specific attribute, or MSP430-specific attribute. Additionally, an
4314 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4315 // for the same semantic attribute. Ultimately, we need to map each of
4316 // these to a single AttributeCommonInfo::Kind value, but the
4317 // StringMatcher class cannot handle duplicate match strings. So we
4318 // generate a list of string to match based on the syntax, and emit
4319 // multiple string matchers depending on the syntax used.
4320 std::string AttrName;
4321 if (Attr.isSubClassOf("TargetSpecificAttr") &&
4322 !Attr.isValueUnset("ParseKind")) {
4323 AttrName = std::string(Attr.getValueAsString("ParseKind"));
4324 if (!Seen.insert(AttrName).second)
4325 continue;
4326 } else
4327 AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
4328
4329 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4330 for (const auto &S : Spellings) {
4331 const std::string &RawSpelling = S.name();
4332 std::vector<StringMatcher::StringPair> *Matches = nullptr;
4333 std::string Spelling;
4334 const std::string &Variety = S.variety();
4335 if (Variety == "CXX11") {
4336 Matches = &CXX11;
4337 if (!S.nameSpace().empty())
4338 Spelling += S.nameSpace() + "::";
4339 } else if (Variety == "C2x") {
4340 Matches = &C2x;
4341 if (!S.nameSpace().empty())
4342 Spelling += S.nameSpace() + "::";
4343 } else if (Variety == "GNU")
4344 Matches = &GNU;
4345 else if (Variety == "Declspec")
4346 Matches = &Declspec;
4347 else if (Variety == "Microsoft")
4348 Matches = &Microsoft;
4349 else if (Variety == "Keyword")
4350 Matches = &Keywords;
4351 else if (Variety == "Pragma")
4352 Matches = &Pragma;
4353 else if (Variety == "HLSLSemantic")
4354 Matches = &HLSLSemantic;
4355
4356 assert(Matches && "Unsupported spelling variety found");
4357
4358 if (Variety == "GNU")
4359 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4360 else
4361 Spelling += RawSpelling;
4362
4363 if (SemaHandler)
4364 Matches->push_back(StringMatcher::StringPair(
4365 Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
4366 else
4367 Matches->push_back(StringMatcher::StringPair(
4368 Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
4369 }
4370 }
4371 }
4372
4373 OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4374 OS << "AttributeCommonInfo::Syntax Syntax) {\n";
4375 OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4376 StringMatcher("Name", GNU, OS).Emit();
4377 OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4378 StringMatcher("Name", Declspec, OS).Emit();
4379 OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4380 StringMatcher("Name", Microsoft, OS).Emit();
4381 OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4382 StringMatcher("Name", CXX11, OS).Emit();
4383 OS << " } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n";
4384 StringMatcher("Name", C2x, OS).Emit();
4385 OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4386 OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4387 StringMatcher("Name", Keywords, OS).Emit();
4388 OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4389 StringMatcher("Name", Pragma, OS).Emit();
4390 OS << " } else if (AttributeCommonInfo::AS_HLSLSemantic == Syntax) {\n";
4391 StringMatcher("Name", HLSLSemantic, OS).Emit();
4392 OS << " }\n";
4393 OS << " return AttributeCommonInfo::UnknownAttribute;\n"
4394 << "}\n";
4395 }
4396
4397 // Emits the code to dump an attribute.
EmitClangAttrTextNodeDump(RecordKeeper & Records,raw_ostream & OS)4398 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
4399 emitSourceFileHeader("Attribute text node dumper", OS);
4400
4401 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4402 for (const auto *Attr : Attrs) {
4403 const Record &R = *Attr;
4404 if (!R.getValueAsBit("ASTNode"))
4405 continue;
4406
4407 // If the attribute has a semantically-meaningful name (which is determined
4408 // by whether there is a Spelling enumeration for it), then write out the
4409 // spelling used for the attribute.
4410
4411 std::string FunctionContent;
4412 llvm::raw_string_ostream SS(FunctionContent);
4413
4414 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
4415 if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
4416 SS << " OS << \" \" << A->getSpelling();\n";
4417
4418 Args = R.getValueAsListOfDefs("Args");
4419 for (const auto *Arg : Args)
4420 createArgument(*Arg, R.getName())->writeDump(SS);
4421
4422 if (Attr->getValueAsBit("AcceptsExprPack"))
4423 VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS);
4424
4425 if (SS.tell()) {
4426 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4427 << "Attr *A) {\n";
4428 if (!Args.empty())
4429 OS << " const auto *SA = cast<" << R.getName()
4430 << "Attr>(A); (void)SA;\n";
4431 OS << SS.str();
4432 OS << " }\n";
4433 }
4434 }
4435 }
4436
EmitClangAttrNodeTraverse(RecordKeeper & Records,raw_ostream & OS)4437 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
4438 emitSourceFileHeader("Attribute text node traverser", OS);
4439
4440 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4441 for (const auto *Attr : Attrs) {
4442 const Record &R = *Attr;
4443 if (!R.getValueAsBit("ASTNode"))
4444 continue;
4445
4446 std::string FunctionContent;
4447 llvm::raw_string_ostream SS(FunctionContent);
4448
4449 Args = R.getValueAsListOfDefs("Args");
4450 for (const auto *Arg : Args)
4451 createArgument(*Arg, R.getName())->writeDumpChildren(SS);
4452 if (Attr->getValueAsBit("AcceptsExprPack"))
4453 VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(SS);
4454 if (SS.tell()) {
4455 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4456 << "Attr *A) {\n";
4457 if (!Args.empty())
4458 OS << " const auto *SA = cast<" << R.getName()
4459 << "Attr>(A); (void)SA;\n";
4460 OS << SS.str();
4461 OS << " }\n";
4462 }
4463 }
4464 }
4465
EmitClangAttrParserStringSwitches(RecordKeeper & Records,raw_ostream & OS)4466 void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
4467 raw_ostream &OS) {
4468 emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
4469 emitClangAttrArgContextList(Records, OS);
4470 emitClangAttrIdentifierArgList(Records, OS);
4471 emitClangAttrVariadicIdentifierArgList(Records, OS);
4472 emitClangAttrThisIsaIdentifierArgList(Records, OS);
4473 emitClangAttrAcceptsExprPack(Records, OS);
4474 emitClangAttrTypeArgList(Records, OS);
4475 emitClangAttrLateParsedList(Records, OS);
4476 }
4477
EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper & Records,raw_ostream & OS)4478 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
4479 raw_ostream &OS) {
4480 getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
4481 }
4482
EmitClangAttrDocTable(RecordKeeper & Records,raw_ostream & OS)4483 void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) {
4484 emitSourceFileHeader("Clang attribute documentation", OS);
4485
4486 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4487 for (const auto *A : Attrs) {
4488 if (!A->getValueAsBit("ASTNode"))
4489 continue;
4490 std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation");
4491 assert(!Docs.empty());
4492 // Only look at the first documentation if there are several.
4493 // (Currently there's only one such attr, revisit if this becomes common).
4494 StringRef Text =
4495 Docs.front()->getValueAsOptionalString("Content").value_or("");
4496 OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
4497 << "R\"reST(" << Text.trim() << ")reST\";\n";
4498 }
4499 }
4500
4501 enum class SpellingKind : size_t {
4502 GNU,
4503 CXX11,
4504 C2x,
4505 Declspec,
4506 Microsoft,
4507 Keyword,
4508 Pragma,
4509 HLSLSemantic,
4510 NumSpellingKinds
4511 };
4512 static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds;
4513
4514 class SpellingList {
4515 std::vector<std::string> Spellings[NumSpellingKinds];
4516
4517 public:
operator [](SpellingKind K) const4518 ArrayRef<std::string> operator[](SpellingKind K) const {
4519 return Spellings[(size_t)K];
4520 }
4521
add(const Record & Attr,FlattenedSpelling Spelling)4522 void add(const Record &Attr, FlattenedSpelling Spelling) {
4523 SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
4524 .Case("GNU", SpellingKind::GNU)
4525 .Case("CXX11", SpellingKind::CXX11)
4526 .Case("C2x", SpellingKind::C2x)
4527 .Case("Declspec", SpellingKind::Declspec)
4528 .Case("Microsoft", SpellingKind::Microsoft)
4529 .Case("Keyword", SpellingKind::Keyword)
4530 .Case("Pragma", SpellingKind::Pragma)
4531 .Case("HLSLSemantic", SpellingKind::HLSLSemantic);
4532 std::string Name;
4533 if (!Spelling.nameSpace().empty()) {
4534 switch (Kind) {
4535 case SpellingKind::CXX11:
4536 case SpellingKind::C2x:
4537 Name = Spelling.nameSpace() + "::";
4538 break;
4539 case SpellingKind::Pragma:
4540 Name = Spelling.nameSpace() + " ";
4541 break;
4542 default:
4543 PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
4544 }
4545 }
4546 Name += Spelling.name();
4547
4548 Spellings[(size_t)Kind].push_back(Name);
4549 }
4550 };
4551
4552 class DocumentationData {
4553 public:
4554 const Record *Documentation;
4555 const Record *Attribute;
4556 std::string Heading;
4557 SpellingList SupportedSpellings;
4558
DocumentationData(const Record & Documentation,const Record & Attribute,std::pair<std::string,SpellingList> HeadingAndSpellings)4559 DocumentationData(const Record &Documentation, const Record &Attribute,
4560 std::pair<std::string, SpellingList> HeadingAndSpellings)
4561 : Documentation(&Documentation), Attribute(&Attribute),
4562 Heading(std::move(HeadingAndSpellings.first)),
4563 SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
4564 };
4565
WriteCategoryHeader(const Record * DocCategory,raw_ostream & OS)4566 static void WriteCategoryHeader(const Record *DocCategory,
4567 raw_ostream &OS) {
4568 const StringRef Name = DocCategory->getValueAsString("Name");
4569 OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
4570
4571 // If there is content, print that as well.
4572 const StringRef ContentStr = DocCategory->getValueAsString("Content");
4573 // Trim leading and trailing newlines and spaces.
4574 OS << ContentStr.trim();
4575
4576 OS << "\n\n";
4577 }
4578
4579 static std::pair<std::string, SpellingList>
GetAttributeHeadingAndSpellings(const Record & Documentation,const Record & Attribute,StringRef Cat)4580 GetAttributeHeadingAndSpellings(const Record &Documentation,
4581 const Record &Attribute,
4582 StringRef Cat) {
4583 // FIXME: there is no way to have a per-spelling category for the attribute
4584 // documentation. This may not be a limiting factor since the spellings
4585 // should generally be consistently applied across the category.
4586
4587 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
4588 if (Spellings.empty())
4589 PrintFatalError(Attribute.getLoc(),
4590 "Attribute has no supported spellings; cannot be "
4591 "documented");
4592
4593 // Determine the heading to be used for this attribute.
4594 std::string Heading = std::string(Documentation.getValueAsString("Heading"));
4595 if (Heading.empty()) {
4596 // If there's only one spelling, we can simply use that.
4597 if (Spellings.size() == 1)
4598 Heading = Spellings.begin()->name();
4599 else {
4600 std::set<std::string> Uniques;
4601 for (auto I = Spellings.begin(), E = Spellings.end();
4602 I != E; ++I) {
4603 std::string Spelling =
4604 std::string(NormalizeNameForSpellingComparison(I->name()));
4605 Uniques.insert(Spelling);
4606 }
4607 // If the semantic map has only one spelling, that is sufficient for our
4608 // needs.
4609 if (Uniques.size() == 1)
4610 Heading = *Uniques.begin();
4611 // If it's in the undocumented category, just construct a header by
4612 // concatenating all the spellings. Might not be great, but better than
4613 // nothing.
4614 else if (Cat == "Undocumented")
4615 Heading = llvm::join(Uniques.begin(), Uniques.end(), ", ");
4616 }
4617 }
4618
4619 // If the heading is still empty, it is an error.
4620 if (Heading.empty())
4621 PrintFatalError(Attribute.getLoc(),
4622 "This attribute requires a heading to be specified");
4623
4624 SpellingList SupportedSpellings;
4625 for (const auto &I : Spellings)
4626 SupportedSpellings.add(Attribute, I);
4627
4628 return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
4629 }
4630
WriteDocumentation(RecordKeeper & Records,const DocumentationData & Doc,raw_ostream & OS)4631 static void WriteDocumentation(RecordKeeper &Records,
4632 const DocumentationData &Doc, raw_ostream &OS) {
4633 OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
4634
4635 // List what spelling syntaxes the attribute supports.
4636 OS << ".. csv-table:: Supported Syntaxes\n";
4637 OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\",";
4638 OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\",";
4639 OS << " \"HLSL Semantic\"\n\n \"";
4640 for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
4641 SpellingKind K = (SpellingKind)Kind;
4642 // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4643 // support them.
4644 if (K == SpellingKind::Microsoft)
4645 continue;
4646
4647 bool PrintedAny = false;
4648 for (StringRef Spelling : Doc.SupportedSpellings[K]) {
4649 if (PrintedAny)
4650 OS << " |br| ";
4651 OS << "``" << Spelling << "``";
4652 PrintedAny = true;
4653 }
4654
4655 OS << "\",\"";
4656 }
4657
4658 if (getPragmaAttributeSupport(Records).isAttributedSupported(
4659 *Doc.Attribute))
4660 OS << "Yes";
4661 OS << "\"\n\n";
4662
4663 // If the attribute is deprecated, print a message about it, and possibly
4664 // provide a replacement attribute.
4665 if (!Doc.Documentation->isValueUnset("Deprecated")) {
4666 OS << "This attribute has been deprecated, and may be removed in a future "
4667 << "version of Clang.";
4668 const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
4669 const StringRef Replacement = Deprecated.getValueAsString("Replacement");
4670 if (!Replacement.empty())
4671 OS << " This attribute has been superseded by ``" << Replacement
4672 << "``.";
4673 OS << "\n\n";
4674 }
4675
4676 const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
4677 // Trim leading and trailing newlines and spaces.
4678 OS << ContentStr.trim();
4679
4680 OS << "\n\n\n";
4681 }
4682
EmitClangAttrDocs(RecordKeeper & Records,raw_ostream & OS)4683 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
4684 // Get the documentation introduction paragraph.
4685 const Record *Documentation = Records.getDef("GlobalDocumentation");
4686 if (!Documentation) {
4687 PrintFatalError("The Documentation top-level definition is missing, "
4688 "no documentation will be generated.");
4689 return;
4690 }
4691
4692 OS << Documentation->getValueAsString("Intro") << "\n";
4693
4694 // Gather the Documentation lists from each of the attributes, based on the
4695 // category provided.
4696 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4697 struct CategoryLess {
4698 bool operator()(const Record *L, const Record *R) const {
4699 return L->getValueAsString("Name") < R->getValueAsString("Name");
4700 }
4701 };
4702 std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
4703 SplitDocs;
4704 for (const auto *A : Attrs) {
4705 const Record &Attr = *A;
4706 std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
4707 for (const auto *D : Docs) {
4708 const Record &Doc = *D;
4709 const Record *Category = Doc.getValueAsDef("Category");
4710 // If the category is "InternalOnly", then there cannot be any other
4711 // documentation categories (otherwise, the attribute would be
4712 // emitted into the docs).
4713 const StringRef Cat = Category->getValueAsString("Name");
4714 bool InternalOnly = Cat == "InternalOnly";
4715 if (InternalOnly && Docs.size() > 1)
4716 PrintFatalError(Doc.getLoc(),
4717 "Attribute is \"InternalOnly\", but has multiple "
4718 "documentation categories");
4719
4720 if (!InternalOnly)
4721 SplitDocs[Category].push_back(DocumentationData(
4722 Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr, Cat)));
4723 }
4724 }
4725
4726 // Having split the attributes out based on what documentation goes where,
4727 // we can begin to generate sections of documentation.
4728 for (auto &I : SplitDocs) {
4729 WriteCategoryHeader(I.first, OS);
4730
4731 llvm::sort(I.second,
4732 [](const DocumentationData &D1, const DocumentationData &D2) {
4733 return D1.Heading < D2.Heading;
4734 });
4735
4736 // Walk over each of the attributes in the category and write out their
4737 // documentation.
4738 for (const auto &Doc : I.second)
4739 WriteDocumentation(Records, Doc, OS);
4740 }
4741 }
4742
EmitTestPragmaAttributeSupportedAttributes(RecordKeeper & Records,raw_ostream & OS)4743 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
4744 raw_ostream &OS) {
4745 PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
4746 ParsedAttrMap Attrs = getParsedAttrList(Records);
4747 OS << "#pragma clang attribute supports the following attributes:\n";
4748 for (const auto &I : Attrs) {
4749 if (!Support.isAttributedSupported(*I.second))
4750 continue;
4751 OS << I.first;
4752 if (I.second->isValueUnset("Subjects")) {
4753 OS << " ()\n";
4754 continue;
4755 }
4756 const Record *SubjectObj = I.second->getValueAsDef("Subjects");
4757 std::vector<Record *> Subjects =
4758 SubjectObj->getValueAsListOfDefs("Subjects");
4759 OS << " (";
4760 bool PrintComma = false;
4761 for (const auto &Subject : llvm::enumerate(Subjects)) {
4762 if (!isSupportedPragmaClangAttributeSubject(*Subject.value()))
4763 continue;
4764 if (PrintComma)
4765 OS << ", ";
4766 PrintComma = true;
4767 PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
4768 Support.SubjectsToRules.find(Subject.value())->getSecond();
4769 if (RuleSet.isRule()) {
4770 OS << RuleSet.getRule().getEnumValueName();
4771 continue;
4772 }
4773 OS << "(";
4774 for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
4775 if (Rule.index())
4776 OS << ", ";
4777 OS << Rule.value().getEnumValueName();
4778 }
4779 OS << ")";
4780 }
4781 OS << ")\n";
4782 }
4783 OS << "End of supported attributes.\n";
4784 }
4785
4786 } // end namespace clang
4787