1 //== MIGChecker.cpp - MIG calling convention checker ------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines MIGChecker, a Mach Interface Generator calling convention
10 // checker. Namely, in MIG callback implementation the following rules apply:
11 // - When a server routine returns an error code that represents success, it
12 // must take ownership of resources passed to it (and eventually release
13 // them).
14 // - Additionally, when returning success, all out-parameters must be
15 // initialized.
16 // - When it returns any other error code, it must not take ownership,
17 // because the message and its out-of-line parameters will be destroyed
18 // by the client that called the function.
19 // For now we only check the last rule, as its violations lead to dangerous
20 // use-after-free exploits.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "clang/AST/Attr.h"
25 #include "clang/Analysis/AnyCall.h"
26 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28 #include "clang/StaticAnalyzer/Core/Checker.h"
29 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
33
34 using namespace clang;
35 using namespace ento;
36
37 namespace {
38 class MIGChecker : public Checker<check::PostCall, check::PreStmt<ReturnStmt>,
39 check::EndFunction> {
40 BugType BT{this, "Use-after-free (MIG calling convention violation)",
41 categories::MemoryError};
42
43 // The checker knows that an out-of-line object is deallocated if it is
44 // passed as an argument to one of these functions. If this object is
45 // additionally an argument of a MIG routine, the checker keeps track of that
46 // information and issues a warning when an error is returned from the
47 // respective routine.
48 std::vector<std::pair<CallDescription, unsigned>> Deallocators = {
49 #define CALL(required_args, deallocated_arg, ...) \
50 {{{__VA_ARGS__}, required_args}, deallocated_arg}
51 // E.g., if the checker sees a C function 'vm_deallocate' that is
52 // defined on class 'IOUserClient' that has exactly 3 parameters, it knows
53 // that argument #1 (starting from 0, i.e. the second argument) is going
54 // to be consumed in the sense of the MIG consume-on-success convention.
55 CALL(3, 1, "vm_deallocate"),
56 CALL(3, 1, "mach_vm_deallocate"),
57 CALL(2, 0, "mig_deallocate"),
58 CALL(2, 1, "mach_port_deallocate"),
59 CALL(1, 0, "device_deallocate"),
60 CALL(1, 0, "iokit_remove_connect_reference"),
61 CALL(1, 0, "iokit_remove_reference"),
62 CALL(1, 0, "iokit_release_port"),
63 CALL(1, 0, "ipc_port_release"),
64 CALL(1, 0, "ipc_port_release_sonce"),
65 CALL(1, 0, "ipc_voucher_attr_control_release"),
66 CALL(1, 0, "ipc_voucher_release"),
67 CALL(1, 0, "lock_set_dereference"),
68 CALL(1, 0, "memory_object_control_deallocate"),
69 CALL(1, 0, "pset_deallocate"),
70 CALL(1, 0, "semaphore_dereference"),
71 CALL(1, 0, "space_deallocate"),
72 CALL(1, 0, "space_inspect_deallocate"),
73 CALL(1, 0, "task_deallocate"),
74 CALL(1, 0, "task_inspect_deallocate"),
75 CALL(1, 0, "task_name_deallocate"),
76 CALL(1, 0, "thread_deallocate"),
77 CALL(1, 0, "thread_inspect_deallocate"),
78 CALL(1, 0, "upl_deallocate"),
79 CALL(1, 0, "vm_map_deallocate"),
80 // E.g., if the checker sees a method 'releaseAsyncReference64()' that is
81 // defined on class 'IOUserClient' that takes exactly 1 argument, it knows
82 // that the argument is going to be consumed in the sense of the MIG
83 // consume-on-success convention.
84 CALL(1, 0, "IOUserClient", "releaseAsyncReference64"),
85 CALL(1, 0, "IOUserClient", "releaseNotificationPort"),
86 #undef CALL
87 };
88
89 CallDescription OsRefRetain{"os_ref_retain", 1};
90
91 void checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const;
92
93 public:
94 void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
95
96 // HACK: We're making two attempts to find the bug: checkEndFunction
97 // should normally be enough but it fails when the return value is a literal
98 // that never gets put into the Environment and ends of function with multiple
99 // returns get agglutinated across returns, preventing us from obtaining
100 // the return value. The problem is similar to https://reviews.llvm.org/D25326
101 // but now we step into it in the top-level function.
checkPreStmt(const ReturnStmt * RS,CheckerContext & C) const102 void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const {
103 checkReturnAux(RS, C);
104 }
checkEndFunction(const ReturnStmt * RS,CheckerContext & C) const105 void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const {
106 checkReturnAux(RS, C);
107 }
108
109 };
110 } // end anonymous namespace
111
112 // A flag that says that the programmer has called a MIG destructor
113 // for at least one parameter.
REGISTER_TRAIT_WITH_PROGRAMSTATE(ReleasedParameter,bool)114 REGISTER_TRAIT_WITH_PROGRAMSTATE(ReleasedParameter, bool)
115 // A set of parameters for which the check is suppressed because
116 // reference counting is being performed.
117 REGISTER_SET_WITH_PROGRAMSTATE(RefCountedParameters, const ParmVarDecl *)
118
119 static const ParmVarDecl *getOriginParam(SVal V, CheckerContext &C,
120 bool IncludeBaseRegions = false) {
121 // TODO: We should most likely always include base regions here.
122 SymbolRef Sym = V.getAsSymbol(IncludeBaseRegions);
123 if (!Sym)
124 return nullptr;
125
126 // If we optimistically assume that the MIG routine never re-uses the storage
127 // that was passed to it as arguments when it invalidates it (but at most when
128 // it assigns to parameter variables directly), this procedure correctly
129 // determines if the value was loaded from the transitive closure of MIG
130 // routine arguments in the heap.
131 while (const MemRegion *MR = Sym->getOriginRegion()) {
132 const auto *VR = dyn_cast<VarRegion>(MR);
133 if (VR && VR->hasStackParametersStorage() &&
134 VR->getStackFrame()->inTopFrame())
135 return cast<ParmVarDecl>(VR->getDecl());
136
137 const SymbolicRegion *SR = MR->getSymbolicBase();
138 if (!SR)
139 return nullptr;
140
141 Sym = SR->getSymbol();
142 }
143
144 return nullptr;
145 }
146
isInMIGCall(CheckerContext & C)147 static bool isInMIGCall(CheckerContext &C) {
148 const LocationContext *LC = C.getLocationContext();
149 assert(LC && "Unknown location context");
150
151 const StackFrameContext *SFC;
152 // Find the top frame.
153 while (LC) {
154 SFC = LC->getStackFrame();
155 LC = SFC->getParent();
156 }
157
158 const Decl *D = SFC->getDecl();
159
160 if (Optional<AnyCall> AC = AnyCall::forDecl(D)) {
161 // Even though there's a Sema warning when the return type of an annotated
162 // function is not a kern_return_t, this warning isn't an error, so we need
163 // an extra check here.
164 // FIXME: AnyCall doesn't support blocks yet, so they remain unchecked
165 // for now.
166 if (!AC->getReturnType(C.getASTContext())
167 .getCanonicalType()->isSignedIntegerType())
168 return false;
169 }
170
171 if (D->hasAttr<MIGServerRoutineAttr>())
172 return true;
173
174 // See if there's an annotated method in the superclass.
175 if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
176 for (const auto *OMD: MD->overridden_methods())
177 if (OMD->hasAttr<MIGServerRoutineAttr>())
178 return true;
179
180 return false;
181 }
182
checkPostCall(const CallEvent & Call,CheckerContext & C) const183 void MIGChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const {
184 if (OsRefRetain.matches(Call)) {
185 // If the code is doing reference counting over the parameter,
186 // it opens up an opportunity for safely calling a destructor function.
187 // TODO: We should still check for over-releases.
188 if (const ParmVarDecl *PVD =
189 getOriginParam(Call.getArgSVal(0), C, /*IncludeBaseRegions=*/true)) {
190 // We never need to clean up the program state because these are
191 // top-level parameters anyway, so they're always live.
192 C.addTransition(C.getState()->add<RefCountedParameters>(PVD));
193 }
194 return;
195 }
196
197 if (!isInMIGCall(C))
198 return;
199
200 auto I = llvm::find_if(Deallocators,
201 [&](const std::pair<CallDescription, unsigned> &Item) {
202 return Item.first.matches(Call);
203 });
204 if (I == Deallocators.end())
205 return;
206
207 ProgramStateRef State = C.getState();
208 unsigned ArgIdx = I->second;
209 SVal Arg = Call.getArgSVal(ArgIdx);
210 const ParmVarDecl *PVD = getOriginParam(Arg, C);
211 if (!PVD || State->contains<RefCountedParameters>(PVD))
212 return;
213
214 const NoteTag *T =
215 C.getNoteTag([this, PVD](PathSensitiveBugReport &BR) -> std::string {
216 if (&BR.getBugType() != &BT)
217 return "";
218 SmallString<64> Str;
219 llvm::raw_svector_ostream OS(Str);
220 OS << "Value passed through parameter '" << PVD->getName()
221 << "\' is deallocated";
222 return std::string(OS.str());
223 });
224 C.addTransition(State->set<ReleasedParameter>(true), T);
225 }
226
227 // Returns true if V can potentially represent a "successful" kern_return_t.
mayBeSuccess(SVal V,CheckerContext & C)228 static bool mayBeSuccess(SVal V, CheckerContext &C) {
229 ProgramStateRef State = C.getState();
230
231 // Can V represent KERN_SUCCESS?
232 if (!State->isNull(V).isConstrainedFalse())
233 return true;
234
235 SValBuilder &SVB = C.getSValBuilder();
236 ASTContext &ACtx = C.getASTContext();
237
238 // Can V represent MIG_NO_REPLY?
239 static const int MigNoReply = -305;
240 V = SVB.evalEQ(C.getState(), V, SVB.makeIntVal(MigNoReply, ACtx.IntTy));
241 if (!State->isNull(V).isConstrainedTrue())
242 return true;
243
244 // If none of the above, it's definitely an error.
245 return false;
246 }
247
checkReturnAux(const ReturnStmt * RS,CheckerContext & C) const248 void MIGChecker::checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const {
249 // It is very unlikely that a MIG callback will be called from anywhere
250 // within the project under analysis and the caller isn't itself a routine
251 // that follows the MIG calling convention. Therefore we're safe to believe
252 // that it's always the top frame that is of interest. There's a slight chance
253 // that the user would want to enforce the MIG calling convention upon
254 // a random routine in the middle of nowhere, but given that the convention is
255 // fairly weird and hard to follow in the first place, there's relatively
256 // little motivation to spread it this way.
257 if (!C.inTopFrame())
258 return;
259
260 if (!isInMIGCall(C))
261 return;
262
263 // We know that the function is non-void, but what if the return statement
264 // is not there in the code? It's not a compile error, we should not crash.
265 if (!RS)
266 return;
267
268 ProgramStateRef State = C.getState();
269 if (!State->get<ReleasedParameter>())
270 return;
271
272 SVal V = C.getSVal(RS);
273 if (mayBeSuccess(V, C))
274 return;
275
276 ExplodedNode *N = C.generateErrorNode();
277 if (!N)
278 return;
279
280 auto R = std::make_unique<PathSensitiveBugReport>(
281 BT,
282 "MIG callback fails with error after deallocating argument value. "
283 "This is a use-after-free vulnerability because the caller will try to "
284 "deallocate it again",
285 N);
286
287 R->addRange(RS->getSourceRange());
288 bugreporter::trackExpressionValue(
289 N, RS->getRetValue(), *R,
290 {bugreporter::TrackingKind::Thorough, /*EnableNullFPSuppression=*/false});
291 C.emitReport(std::move(R));
292 }
293
registerMIGChecker(CheckerManager & Mgr)294 void ento::registerMIGChecker(CheckerManager &Mgr) {
295 Mgr.registerChecker<MIGChecker>();
296 }
297
shouldRegisterMIGChecker(const CheckerManager & mgr)298 bool ento::shouldRegisterMIGChecker(const CheckerManager &mgr) {
299 return true;
300 }
301