1 //===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains two checkers. One helps the static analyzer core to track
10 // types, the other does type inference on Obj-C generics and report type
11 // errors.
12 //
13 // Dynamic Type Propagation:
14 // This checker defines the rules for dynamic type gathering and propagation.
15 //
16 // Generics Checker for Objective-C:
17 // This checker tries to find type errors that the compiler is not able to catch
18 // due to the implicit conversions that were introduced for backward
19 // compatibility.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "clang/AST/ParentMap.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28 #include "clang/StaticAnalyzer/Core/Checker.h"
29 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
34
35 using namespace clang;
36 using namespace ento;
37
38 // ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
39 // an auxiliary map that tracks more information about generic types, because in
40 // some cases the most derived type is not the most informative one about the
41 // type parameters. This types that are stored for each symbol in this map must
42 // be specialized.
43 // TODO: In some case the type stored in this map is exactly the same that is
44 // stored in DynamicTypeMap. We should no store duplicated information in those
45 // cases.
46 REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap, SymbolRef,
47 const ObjCObjectPointerType *)
48
49 namespace {
50 class DynamicTypePropagation:
51 public Checker< check::PreCall,
52 check::PostCall,
53 check::DeadSymbols,
54 check::PostStmt<CastExpr>,
55 check::PostStmt<CXXNewExpr>,
56 check::PreObjCMessage,
57 check::PostObjCMessage > {
58
59 /// Return a better dynamic type if one can be derived from the cast.
60 const ObjCObjectPointerType *getBetterObjCType(const Expr *CastE,
61 CheckerContext &C) const;
62
63 ExplodedNode *dynamicTypePropagationOnCasts(const CastExpr *CE,
64 ProgramStateRef &State,
65 CheckerContext &C) const;
66
67 mutable std::unique_ptr<BugType> ObjCGenericsBugType;
initBugType() const68 void initBugType() const {
69 if (!ObjCGenericsBugType)
70 ObjCGenericsBugType.reset(new BugType(
71 GenericCheckName, "Generics", categories::CoreFoundationObjectiveC));
72 }
73
74 class GenericsBugVisitor : public BugReporterVisitor {
75 public:
GenericsBugVisitor(SymbolRef S)76 GenericsBugVisitor(SymbolRef S) : Sym(S) {}
77
Profile(llvm::FoldingSetNodeID & ID) const78 void Profile(llvm::FoldingSetNodeID &ID) const override {
79 static int X = 0;
80 ID.AddPointer(&X);
81 ID.AddPointer(Sym);
82 }
83
84 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
85 BugReporterContext &BRC,
86 PathSensitiveBugReport &BR) override;
87
88 private:
89 // The tracked symbol.
90 SymbolRef Sym;
91 };
92
93 void reportGenericsBug(const ObjCObjectPointerType *From,
94 const ObjCObjectPointerType *To, ExplodedNode *N,
95 SymbolRef Sym, CheckerContext &C,
96 const Stmt *ReportedNode = nullptr) const;
97
98 public:
99 void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
100 void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
101 void checkPostStmt(const CastExpr *CastE, CheckerContext &C) const;
102 void checkPostStmt(const CXXNewExpr *NewE, CheckerContext &C) const;
103 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
104 void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
105 void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
106
107 /// This value is set to true, when the Generics checker is turned on.
108 bool CheckGenerics = false;
109 CheckerNameRef GenericCheckName;
110 };
111
isObjCClassType(QualType Type)112 bool isObjCClassType(QualType Type) {
113 if (const auto *PointerType = dyn_cast<ObjCObjectPointerType>(Type)) {
114 return PointerType->getObjectType()->isObjCClass();
115 }
116 return false;
117 }
118
119 struct RuntimeType {
120 const ObjCObjectType *Type = nullptr;
121 bool Precise = false;
122
operator bool__anon251d94890111::RuntimeType123 operator bool() const { return Type != nullptr; }
124 };
125
inferReceiverType(const ObjCMethodCall & Message,CheckerContext & C)126 RuntimeType inferReceiverType(const ObjCMethodCall &Message,
127 CheckerContext &C) {
128 const ObjCMessageExpr *MessageExpr = Message.getOriginExpr();
129
130 // Check if we can statically infer the actual type precisely.
131 //
132 // 1. Class is written directly in the message:
133 // \code
134 // [ActualClass classMethod];
135 // \endcode
136 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
137 return {MessageExpr->getClassReceiver()->getAs<ObjCObjectType>(),
138 /*Precise=*/true};
139 }
140
141 // 2. Receiver is 'super' from a class method (a.k.a 'super' is a
142 // class object).
143 // \code
144 // [super classMethod];
145 // \endcode
146 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperClass) {
147 return {MessageExpr->getSuperType()->getAs<ObjCObjectType>(),
148 /*Precise=*/true};
149 }
150
151 // 3. Receiver is 'super' from an instance method (a.k.a 'super' is an
152 // instance of a super class).
153 // \code
154 // [super instanceMethod];
155 // \encode
156 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
157 if (const auto *ObjTy =
158 MessageExpr->getSuperType()->getAs<ObjCObjectPointerType>())
159 return {ObjTy->getObjectType(), /*Precise=*/true};
160 }
161
162 const Expr *RecE = MessageExpr->getInstanceReceiver();
163
164 if (!RecE)
165 return {};
166
167 // Otherwise, let's try to get type information from our estimations of
168 // runtime types.
169 QualType InferredType;
170 SVal ReceiverSVal = C.getSVal(RecE);
171 ProgramStateRef State = C.getState();
172
173 if (const MemRegion *ReceiverRegion = ReceiverSVal.getAsRegion()) {
174 if (DynamicTypeInfo DTI = getDynamicTypeInfo(State, ReceiverRegion)) {
175 InferredType = DTI.getType().getCanonicalType();
176 }
177 }
178
179 if (SymbolRef ReceiverSymbol = ReceiverSVal.getAsSymbol()) {
180 if (InferredType.isNull()) {
181 InferredType = ReceiverSymbol->getType();
182 }
183
184 // If receiver is a Class object, we want to figure out the type it
185 // represents.
186 if (isObjCClassType(InferredType)) {
187 // We actually might have some info on what type is contained in there.
188 if (DynamicTypeInfo DTI =
189 getClassObjectDynamicTypeInfo(State, ReceiverSymbol)) {
190
191 // Types in Class objects can be ONLY Objective-C types
192 return {cast<ObjCObjectType>(DTI.getType()), !DTI.canBeASubClass()};
193 }
194
195 SVal SelfSVal = State->getSelfSVal(C.getLocationContext());
196
197 // Another way we can guess what is in Class object, is when it is a
198 // 'self' variable of the current class method.
199 if (ReceiverSVal == SelfSVal) {
200 // In this case, we should return the type of the enclosing class
201 // declaration.
202 if (const ObjCMethodDecl *MD =
203 dyn_cast<ObjCMethodDecl>(C.getStackFrame()->getDecl()))
204 if (const ObjCObjectType *ObjTy = dyn_cast<ObjCObjectType>(
205 MD->getClassInterface()->getTypeForDecl()))
206 return {ObjTy};
207 }
208 }
209 }
210
211 // Unfortunately, it seems like we have no idea what that type is.
212 if (InferredType.isNull()) {
213 return {};
214 }
215
216 // We can end up here if we got some dynamic type info and the
217 // receiver is not one of the known Class objects.
218 if (const auto *ReceiverInferredType =
219 dyn_cast<ObjCObjectPointerType>(InferredType)) {
220 return {ReceiverInferredType->getObjectType()};
221 }
222
223 // Any other type (like 'Class') is not really useful at this point.
224 return {};
225 }
226 } // end anonymous namespace
227
checkDeadSymbols(SymbolReaper & SR,CheckerContext & C) const228 void DynamicTypePropagation::checkDeadSymbols(SymbolReaper &SR,
229 CheckerContext &C) const {
230 ProgramStateRef State = removeDeadTypes(C.getState(), SR);
231 State = removeDeadClassObjectTypes(State, SR);
232
233 MostSpecializedTypeArgsMapTy TyArgMap =
234 State->get<MostSpecializedTypeArgsMap>();
235 for (MostSpecializedTypeArgsMapTy::iterator I = TyArgMap.begin(),
236 E = TyArgMap.end();
237 I != E; ++I) {
238 if (SR.isDead(I->first)) {
239 State = State->remove<MostSpecializedTypeArgsMap>(I->first);
240 }
241 }
242
243 C.addTransition(State);
244 }
245
recordFixedType(const MemRegion * Region,const CXXMethodDecl * MD,CheckerContext & C)246 static void recordFixedType(const MemRegion *Region, const CXXMethodDecl *MD,
247 CheckerContext &C) {
248 assert(Region);
249 assert(MD);
250
251 ASTContext &Ctx = C.getASTContext();
252 QualType Ty = Ctx.getPointerType(Ctx.getRecordType(MD->getParent()));
253
254 ProgramStateRef State = C.getState();
255 State = setDynamicTypeInfo(State, Region, Ty, /*CanBeSubClassed=*/false);
256 C.addTransition(State);
257 }
258
checkPreCall(const CallEvent & Call,CheckerContext & C) const259 void DynamicTypePropagation::checkPreCall(const CallEvent &Call,
260 CheckerContext &C) const {
261 if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
262 // C++11 [class.cdtor]p4: When a virtual function is called directly or
263 // indirectly from a constructor or from a destructor, including during
264 // the construction or destruction of the class's non-static data members,
265 // and the object to which the call applies is the object under
266 // construction or destruction, the function called is the final overrider
267 // in the constructor's or destructor's class and not one overriding it in
268 // a more-derived class.
269
270 switch (Ctor->getOriginExpr()->getConstructionKind()) {
271 case CXXConstructExpr::CK_Complete:
272 case CXXConstructExpr::CK_Delegating:
273 // No additional type info necessary.
274 return;
275 case CXXConstructExpr::CK_NonVirtualBase:
276 case CXXConstructExpr::CK_VirtualBase:
277 if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion())
278 recordFixedType(Target, Ctor->getDecl(), C);
279 return;
280 }
281
282 return;
283 }
284
285 if (const CXXDestructorCall *Dtor = dyn_cast<CXXDestructorCall>(&Call)) {
286 // C++11 [class.cdtor]p4 (see above)
287 if (!Dtor->isBaseDestructor())
288 return;
289
290 const MemRegion *Target = Dtor->getCXXThisVal().getAsRegion();
291 if (!Target)
292 return;
293
294 const Decl *D = Dtor->getDecl();
295 if (!D)
296 return;
297
298 recordFixedType(Target, cast<CXXDestructorDecl>(D), C);
299 return;
300 }
301 }
302
checkPostCall(const CallEvent & Call,CheckerContext & C) const303 void DynamicTypePropagation::checkPostCall(const CallEvent &Call,
304 CheckerContext &C) const {
305 // We can obtain perfect type info for return values from some calls.
306 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
307
308 // Get the returned value if it's a region.
309 const MemRegion *RetReg = Call.getReturnValue().getAsRegion();
310 if (!RetReg)
311 return;
312
313 ProgramStateRef State = C.getState();
314 const ObjCMethodDecl *D = Msg->getDecl();
315
316 if (D && D->hasRelatedResultType()) {
317 switch (Msg->getMethodFamily()) {
318 default:
319 break;
320
321 // We assume that the type of the object returned by alloc and new are the
322 // pointer to the object of the class specified in the receiver of the
323 // message.
324 case OMF_alloc:
325 case OMF_new: {
326 // Get the type of object that will get created.
327 RuntimeType ObjTy = inferReceiverType(*Msg, C);
328
329 if (!ObjTy)
330 return;
331
332 QualType DynResTy =
333 C.getASTContext().getObjCObjectPointerType(QualType(ObjTy.Type, 0));
334 // We used to assume that whatever type we got from inferring the
335 // type is actually precise (and it is not exactly correct).
336 // A big portion of the existing behavior depends on that assumption
337 // (e.g. certain inlining won't take place). For this reason, we don't
338 // use ObjTy.Precise flag here.
339 //
340 // TODO: We should mitigate this problem some time in the future
341 // and replace hardcoded 'false' with '!ObjTy.Precise'.
342 C.addTransition(setDynamicTypeInfo(State, RetReg, DynResTy, false));
343 break;
344 }
345 case OMF_init: {
346 // Assume, the result of the init method has the same dynamic type as
347 // the receiver and propagate the dynamic type info.
348 const MemRegion *RecReg = Msg->getReceiverSVal().getAsRegion();
349 if (!RecReg)
350 return;
351 DynamicTypeInfo RecDynType = getDynamicTypeInfo(State, RecReg);
352 C.addTransition(setDynamicTypeInfo(State, RetReg, RecDynType));
353 break;
354 }
355 }
356 }
357 return;
358 }
359
360 if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
361 // We may need to undo the effects of our pre-call check.
362 switch (Ctor->getOriginExpr()->getConstructionKind()) {
363 case CXXConstructExpr::CK_Complete:
364 case CXXConstructExpr::CK_Delegating:
365 // No additional work necessary.
366 // Note: This will leave behind the actual type of the object for
367 // complete constructors, but arguably that's a good thing, since it
368 // means the dynamic type info will be correct even for objects
369 // constructed with operator new.
370 return;
371 case CXXConstructExpr::CK_NonVirtualBase:
372 case CXXConstructExpr::CK_VirtualBase:
373 if (const MemRegion *Target = Ctor->getCXXThisVal().getAsRegion()) {
374 // We just finished a base constructor. Now we can use the subclass's
375 // type when resolving virtual calls.
376 const LocationContext *LCtx = C.getLocationContext();
377
378 // FIXME: In C++17 classes with non-virtual bases may be treated as
379 // aggregates, and in such case no top-frame constructor will be called.
380 // Figure out if we need to do anything in this case.
381 // FIXME: Instead of relying on the ParentMap, we should have the
382 // trigger-statement (InitListExpr in this case) available in this
383 // callback, ideally as part of CallEvent.
384 if (isa_and_nonnull<InitListExpr>(
385 LCtx->getParentMap().getParent(Ctor->getOriginExpr())))
386 return;
387
388 recordFixedType(Target, cast<CXXConstructorDecl>(LCtx->getDecl()), C);
389 }
390 return;
391 }
392 }
393 }
394
395 /// TODO: Handle explicit casts.
396 /// Handle C++ casts.
397 ///
398 /// Precondition: the cast is between ObjCObjectPointers.
dynamicTypePropagationOnCasts(const CastExpr * CE,ProgramStateRef & State,CheckerContext & C) const399 ExplodedNode *DynamicTypePropagation::dynamicTypePropagationOnCasts(
400 const CastExpr *CE, ProgramStateRef &State, CheckerContext &C) const {
401 // We only track type info for regions.
402 const MemRegion *ToR = C.getSVal(CE).getAsRegion();
403 if (!ToR)
404 return C.getPredecessor();
405
406 if (isa<ExplicitCastExpr>(CE))
407 return C.getPredecessor();
408
409 if (const Type *NewTy = getBetterObjCType(CE, C)) {
410 State = setDynamicTypeInfo(State, ToR, QualType(NewTy, 0));
411 return C.addTransition(State);
412 }
413 return C.getPredecessor();
414 }
415
checkPostStmt(const CXXNewExpr * NewE,CheckerContext & C) const416 void DynamicTypePropagation::checkPostStmt(const CXXNewExpr *NewE,
417 CheckerContext &C) const {
418 if (NewE->isArray())
419 return;
420
421 // We only track dynamic type info for regions.
422 const MemRegion *MR = C.getSVal(NewE).getAsRegion();
423 if (!MR)
424 return;
425
426 C.addTransition(setDynamicTypeInfo(C.getState(), MR, NewE->getType(),
427 /*CanBeSubClassed=*/false));
428 }
429
430 // Return a better dynamic type if one can be derived from the cast.
431 // Compare the current dynamic type of the region and the new type to which we
432 // are casting. If the new type is lower in the inheritance hierarchy, pick it.
433 const ObjCObjectPointerType *
getBetterObjCType(const Expr * CastE,CheckerContext & C) const434 DynamicTypePropagation::getBetterObjCType(const Expr *CastE,
435 CheckerContext &C) const {
436 const MemRegion *ToR = C.getSVal(CastE).getAsRegion();
437 assert(ToR);
438
439 // Get the old and new types.
440 const ObjCObjectPointerType *NewTy =
441 CastE->getType()->getAs<ObjCObjectPointerType>();
442 if (!NewTy)
443 return nullptr;
444 QualType OldDTy = getDynamicTypeInfo(C.getState(), ToR).getType();
445 if (OldDTy.isNull()) {
446 return NewTy;
447 }
448 const ObjCObjectPointerType *OldTy =
449 OldDTy->getAs<ObjCObjectPointerType>();
450 if (!OldTy)
451 return nullptr;
452
453 // Id the old type is 'id', the new one is more precise.
454 if (OldTy->isObjCIdType() && !NewTy->isObjCIdType())
455 return NewTy;
456
457 // Return new if it's a subclass of old.
458 const ObjCInterfaceDecl *ToI = NewTy->getInterfaceDecl();
459 const ObjCInterfaceDecl *FromI = OldTy->getInterfaceDecl();
460 if (ToI && FromI && FromI->isSuperClassOf(ToI))
461 return NewTy;
462
463 return nullptr;
464 }
465
getMostInformativeDerivedClassImpl(const ObjCObjectPointerType * From,const ObjCObjectPointerType * To,const ObjCObjectPointerType * MostInformativeCandidate,ASTContext & C)466 static const ObjCObjectPointerType *getMostInformativeDerivedClassImpl(
467 const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
468 const ObjCObjectPointerType *MostInformativeCandidate, ASTContext &C) {
469 // Checking if from and to are the same classes modulo specialization.
470 if (From->getInterfaceDecl()->getCanonicalDecl() ==
471 To->getInterfaceDecl()->getCanonicalDecl()) {
472 if (To->isSpecialized()) {
473 assert(MostInformativeCandidate->isSpecialized());
474 return MostInformativeCandidate;
475 }
476 return From;
477 }
478
479 if (To->getObjectType()->getSuperClassType().isNull()) {
480 // If To has no super class and From and To aren't the same then
481 // To was not actually a descendent of From. In this case the best we can
482 // do is 'From'.
483 return From;
484 }
485
486 const auto *SuperOfTo =
487 To->getObjectType()->getSuperClassType()->castAs<ObjCObjectType>();
488 assert(SuperOfTo);
489 QualType SuperPtrOfToQual =
490 C.getObjCObjectPointerType(QualType(SuperOfTo, 0));
491 const auto *SuperPtrOfTo = SuperPtrOfToQual->castAs<ObjCObjectPointerType>();
492 if (To->isUnspecialized())
493 return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo, SuperPtrOfTo,
494 C);
495 else
496 return getMostInformativeDerivedClassImpl(From, SuperPtrOfTo,
497 MostInformativeCandidate, C);
498 }
499
500 /// A downcast may loose specialization information. E. g.:
501 /// MutableMap<T, U> : Map
502 /// The downcast to MutableMap looses the information about the types of the
503 /// Map (due to the type parameters are not being forwarded to Map), and in
504 /// general there is no way to recover that information from the
505 /// declaration. In order to have to most information, lets find the most
506 /// derived type that has all the type parameters forwarded.
507 ///
508 /// Get the a subclass of \p From (which has a lower bound \p To) that do not
509 /// loose information about type parameters. \p To has to be a subclass of
510 /// \p From. From has to be specialized.
511 static const ObjCObjectPointerType *
getMostInformativeDerivedClass(const ObjCObjectPointerType * From,const ObjCObjectPointerType * To,ASTContext & C)512 getMostInformativeDerivedClass(const ObjCObjectPointerType *From,
513 const ObjCObjectPointerType *To, ASTContext &C) {
514 return getMostInformativeDerivedClassImpl(From, To, To, C);
515 }
516
517 /// Inputs:
518 /// \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
519 /// bound might be the subclass of this type.
520 /// \param StaticUpperBound A static upper bound for a symbol.
521 /// \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
522 /// \param Current The type that was inferred for a symbol in a previous
523 /// context. Might be null when this is the first time that inference happens.
524 /// Precondition:
525 /// \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
526 /// is not null, it is specialized.
527 /// Possible cases:
528 /// (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
529 /// (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
530 /// (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
531 /// (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
532 /// Effect:
533 /// Use getMostInformativeDerivedClass with the upper and lower bound of the
534 /// set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
535 /// lower bound must be specialized. If the result differs from \p Current or
536 /// \p Current is null, store the result.
537 static bool
storeWhenMoreInformative(ProgramStateRef & State,SymbolRef Sym,const ObjCObjectPointerType * const * Current,const ObjCObjectPointerType * StaticLowerBound,const ObjCObjectPointerType * StaticUpperBound,ASTContext & C)538 storeWhenMoreInformative(ProgramStateRef &State, SymbolRef Sym,
539 const ObjCObjectPointerType *const *Current,
540 const ObjCObjectPointerType *StaticLowerBound,
541 const ObjCObjectPointerType *StaticUpperBound,
542 ASTContext &C) {
543 // TODO: The above 4 cases are not exhaustive. In particular, it is possible
544 // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
545 // or both.
546 //
547 // For example, suppose Foo<T> and Bar<T> are unrelated types.
548 //
549 // Foo<T> *f = ...
550 // Bar<T> *b = ...
551 //
552 // id t1 = b;
553 // f = t1;
554 // id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
555 //
556 // We should either constrain the callers of this function so that the stated
557 // preconditions hold (and assert it) or rewrite the function to expicitly
558 // handle the additional cases.
559
560 // Precondition
561 assert(StaticUpperBound->isSpecialized() ||
562 StaticLowerBound->isSpecialized());
563 assert(!Current || (*Current)->isSpecialized());
564
565 // Case (1)
566 if (!Current) {
567 if (StaticUpperBound->isUnspecialized()) {
568 State = State->set<MostSpecializedTypeArgsMap>(Sym, StaticLowerBound);
569 return true;
570 }
571 // Upper bound is specialized.
572 const ObjCObjectPointerType *WithMostInfo =
573 getMostInformativeDerivedClass(StaticUpperBound, StaticLowerBound, C);
574 State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
575 return true;
576 }
577
578 // Case (3)
579 if (C.canAssignObjCInterfaces(StaticLowerBound, *Current)) {
580 return false;
581 }
582
583 // Case (4)
584 if (C.canAssignObjCInterfaces(*Current, StaticUpperBound)) {
585 // The type arguments might not be forwarded at any point of inheritance.
586 const ObjCObjectPointerType *WithMostInfo =
587 getMostInformativeDerivedClass(*Current, StaticUpperBound, C);
588 WithMostInfo =
589 getMostInformativeDerivedClass(WithMostInfo, StaticLowerBound, C);
590 if (WithMostInfo == *Current)
591 return false;
592 State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
593 return true;
594 }
595
596 // Case (2)
597 const ObjCObjectPointerType *WithMostInfo =
598 getMostInformativeDerivedClass(*Current, StaticLowerBound, C);
599 if (WithMostInfo != *Current) {
600 State = State->set<MostSpecializedTypeArgsMap>(Sym, WithMostInfo);
601 return true;
602 }
603
604 return false;
605 }
606
607 /// Type inference based on static type information that is available for the
608 /// cast and the tracked type information for the given symbol. When the tracked
609 /// symbol and the destination type of the cast are unrelated, report an error.
checkPostStmt(const CastExpr * CE,CheckerContext & C) const610 void DynamicTypePropagation::checkPostStmt(const CastExpr *CE,
611 CheckerContext &C) const {
612 if (CE->getCastKind() != CK_BitCast)
613 return;
614
615 QualType OriginType = CE->getSubExpr()->getType();
616 QualType DestType = CE->getType();
617
618 const auto *OrigObjectPtrType = OriginType->getAs<ObjCObjectPointerType>();
619 const auto *DestObjectPtrType = DestType->getAs<ObjCObjectPointerType>();
620
621 if (!OrigObjectPtrType || !DestObjectPtrType)
622 return;
623
624 ProgramStateRef State = C.getState();
625 ExplodedNode *AfterTypeProp = dynamicTypePropagationOnCasts(CE, State, C);
626
627 ASTContext &ASTCtxt = C.getASTContext();
628
629 // This checker detects the subtyping relationships using the assignment
630 // rules. In order to be able to do this the kindofness must be stripped
631 // first. The checker treats every type as kindof type anyways: when the
632 // tracked type is the subtype of the static type it tries to look up the
633 // methods in the tracked type first.
634 OrigObjectPtrType = OrigObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
635 DestObjectPtrType = DestObjectPtrType->stripObjCKindOfTypeAndQuals(ASTCtxt);
636
637 if (OrigObjectPtrType->isUnspecialized() &&
638 DestObjectPtrType->isUnspecialized())
639 return;
640
641 SymbolRef Sym = C.getSVal(CE).getAsSymbol();
642 if (!Sym)
643 return;
644
645 const ObjCObjectPointerType *const *TrackedType =
646 State->get<MostSpecializedTypeArgsMap>(Sym);
647
648 if (isa<ExplicitCastExpr>(CE)) {
649 // Treat explicit casts as an indication from the programmer that the
650 // Objective-C type system is not rich enough to express the needed
651 // invariant. In such cases, forget any existing information inferred
652 // about the type arguments. We don't assume the casted-to specialized
653 // type here because the invariant the programmer specifies in the cast
654 // may only hold at this particular program point and not later ones.
655 // We don't want a suppressing cast to require a cascade of casts down the
656 // line.
657 if (TrackedType) {
658 State = State->remove<MostSpecializedTypeArgsMap>(Sym);
659 C.addTransition(State, AfterTypeProp);
660 }
661 return;
662 }
663
664 // Check which assignments are legal.
665 bool OrigToDest =
666 ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, OrigObjectPtrType);
667 bool DestToOrig =
668 ASTCtxt.canAssignObjCInterfaces(OrigObjectPtrType, DestObjectPtrType);
669
670 // The tracked type should be the sub or super class of the static destination
671 // type. When an (implicit) upcast or a downcast happens according to static
672 // types, and there is no subtyping relationship between the tracked and the
673 // static destination types, it indicates an error.
674 if (TrackedType &&
675 !ASTCtxt.canAssignObjCInterfaces(DestObjectPtrType, *TrackedType) &&
676 !ASTCtxt.canAssignObjCInterfaces(*TrackedType, DestObjectPtrType)) {
677 static CheckerProgramPointTag IllegalConv(this, "IllegalConversion");
678 ExplodedNode *N = C.addTransition(State, AfterTypeProp, &IllegalConv);
679 reportGenericsBug(*TrackedType, DestObjectPtrType, N, Sym, C);
680 return;
681 }
682
683 // Handle downcasts and upcasts.
684
685 const ObjCObjectPointerType *LowerBound = DestObjectPtrType;
686 const ObjCObjectPointerType *UpperBound = OrigObjectPtrType;
687 if (OrigToDest && !DestToOrig)
688 std::swap(LowerBound, UpperBound);
689
690 // The id type is not a real bound. Eliminate it.
691 LowerBound = LowerBound->isObjCIdType() ? UpperBound : LowerBound;
692 UpperBound = UpperBound->isObjCIdType() ? LowerBound : UpperBound;
693
694 if (storeWhenMoreInformative(State, Sym, TrackedType, LowerBound, UpperBound,
695 ASTCtxt)) {
696 C.addTransition(State, AfterTypeProp);
697 }
698 }
699
stripCastsAndSugar(const Expr * E)700 static const Expr *stripCastsAndSugar(const Expr *E) {
701 E = E->IgnoreParenImpCasts();
702 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
703 E = POE->getSyntacticForm()->IgnoreParenImpCasts();
704 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
705 E = OVE->getSourceExpr()->IgnoreParenImpCasts();
706 return E;
707 }
708
isObjCTypeParamDependent(QualType Type)709 static bool isObjCTypeParamDependent(QualType Type) {
710 // It is illegal to typedef parameterized types inside an interface. Therefore
711 // an Objective-C type can only be dependent on a type parameter when the type
712 // parameter structurally present in the type itself.
713 class IsObjCTypeParamDependentTypeVisitor
714 : public RecursiveASTVisitor<IsObjCTypeParamDependentTypeVisitor> {
715 public:
716 IsObjCTypeParamDependentTypeVisitor() : Result(false) {}
717 bool VisitObjCTypeParamType(const ObjCTypeParamType *Type) {
718 if (isa<ObjCTypeParamDecl>(Type->getDecl())) {
719 Result = true;
720 return false;
721 }
722 return true;
723 }
724
725 bool Result;
726 };
727
728 IsObjCTypeParamDependentTypeVisitor Visitor;
729 Visitor.TraverseType(Type);
730 return Visitor.Result;
731 }
732
733 /// A method might not be available in the interface indicated by the static
734 /// type. However it might be available in the tracked type. In order to
735 /// properly substitute the type parameters we need the declaration context of
736 /// the method. The more specialized the enclosing class of the method is, the
737 /// more likely that the parameter substitution will be successful.
738 static const ObjCMethodDecl *
findMethodDecl(const ObjCMessageExpr * MessageExpr,const ObjCObjectPointerType * TrackedType,ASTContext & ASTCtxt)739 findMethodDecl(const ObjCMessageExpr *MessageExpr,
740 const ObjCObjectPointerType *TrackedType, ASTContext &ASTCtxt) {
741 const ObjCMethodDecl *Method = nullptr;
742
743 QualType ReceiverType = MessageExpr->getReceiverType();
744 const auto *ReceiverObjectPtrType =
745 ReceiverType->getAs<ObjCObjectPointerType>();
746
747 // Do this "devirtualization" on instance and class methods only. Trust the
748 // static type on super and super class calls.
749 if (MessageExpr->getReceiverKind() == ObjCMessageExpr::Instance ||
750 MessageExpr->getReceiverKind() == ObjCMessageExpr::Class) {
751 // When the receiver type is id, Class, or some super class of the tracked
752 // type, look up the method in the tracked type, not in the receiver type.
753 // This way we preserve more information.
754 if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType() ||
755 ASTCtxt.canAssignObjCInterfaces(ReceiverObjectPtrType, TrackedType)) {
756 const ObjCInterfaceDecl *InterfaceDecl = TrackedType->getInterfaceDecl();
757 // The method might not be found.
758 Selector Sel = MessageExpr->getSelector();
759 Method = InterfaceDecl->lookupInstanceMethod(Sel);
760 if (!Method)
761 Method = InterfaceDecl->lookupClassMethod(Sel);
762 }
763 }
764
765 // Fallback to statick method lookup when the one based on the tracked type
766 // failed.
767 return Method ? Method : MessageExpr->getMethodDecl();
768 }
769
770 /// Get the returned ObjCObjectPointerType by a method based on the tracked type
771 /// information, or null pointer when the returned type is not an
772 /// ObjCObjectPointerType.
getReturnTypeForMethod(const ObjCMethodDecl * Method,ArrayRef<QualType> TypeArgs,const ObjCObjectPointerType * SelfType,ASTContext & C)773 static QualType getReturnTypeForMethod(
774 const ObjCMethodDecl *Method, ArrayRef<QualType> TypeArgs,
775 const ObjCObjectPointerType *SelfType, ASTContext &C) {
776 QualType StaticResultType = Method->getReturnType();
777
778 // Is the return type declared as instance type?
779 if (StaticResultType == C.getObjCInstanceType())
780 return QualType(SelfType, 0);
781
782 // Check whether the result type depends on a type parameter.
783 if (!isObjCTypeParamDependent(StaticResultType))
784 return QualType();
785
786 QualType ResultType = StaticResultType.substObjCTypeArgs(
787 C, TypeArgs, ObjCSubstitutionContext::Result);
788
789 return ResultType;
790 }
791
792 /// When the receiver has a tracked type, use that type to validate the
793 /// argumments of the message expression and the return value.
checkPreObjCMessage(const ObjCMethodCall & M,CheckerContext & C) const794 void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall &M,
795 CheckerContext &C) const {
796 ProgramStateRef State = C.getState();
797 SymbolRef Sym = M.getReceiverSVal().getAsSymbol();
798 if (!Sym)
799 return;
800
801 const ObjCObjectPointerType *const *TrackedType =
802 State->get<MostSpecializedTypeArgsMap>(Sym);
803 if (!TrackedType)
804 return;
805
806 // Get the type arguments from tracked type and substitute type arguments
807 // before do the semantic check.
808
809 ASTContext &ASTCtxt = C.getASTContext();
810 const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
811 const ObjCMethodDecl *Method =
812 findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
813
814 // It is possible to call non-existent methods in Obj-C.
815 if (!Method)
816 return;
817
818 // If the method is declared on a class that has a non-invariant
819 // type parameter, don't warn about parameter mismatches after performing
820 // substitution. This prevents warning when the programmer has purposely
821 // casted the receiver to a super type or unspecialized type but the analyzer
822 // has a more precise tracked type than the programmer intends at the call
823 // site.
824 //
825 // For example, consider NSArray (which has a covariant type parameter)
826 // and NSMutableArray (a subclass of NSArray where the type parameter is
827 // invariant):
828 // NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
829 //
830 // [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
831 // NSArray<NSObject *> *other = [a arrayByAddingObject:number] // Safe
832 //
833 // [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
834 //
835
836 const ObjCInterfaceDecl *Interface = Method->getClassInterface();
837 if (!Interface)
838 return;
839
840 ObjCTypeParamList *TypeParams = Interface->getTypeParamList();
841 if (!TypeParams)
842 return;
843
844 for (ObjCTypeParamDecl *TypeParam : *TypeParams) {
845 if (TypeParam->getVariance() != ObjCTypeParamVariance::Invariant)
846 return;
847 }
848
849 Optional<ArrayRef<QualType>> TypeArgs =
850 (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
851 // This case might happen when there is an unspecialized override of a
852 // specialized method.
853 if (!TypeArgs)
854 return;
855
856 for (unsigned i = 0; i < Method->param_size(); i++) {
857 const Expr *Arg = MessageExpr->getArg(i);
858 const ParmVarDecl *Param = Method->parameters()[i];
859
860 QualType OrigParamType = Param->getType();
861 if (!isObjCTypeParamDependent(OrigParamType))
862 continue;
863
864 QualType ParamType = OrigParamType.substObjCTypeArgs(
865 ASTCtxt, *TypeArgs, ObjCSubstitutionContext::Parameter);
866 // Check if it can be assigned
867 const auto *ParamObjectPtrType = ParamType->getAs<ObjCObjectPointerType>();
868 const auto *ArgObjectPtrType =
869 stripCastsAndSugar(Arg)->getType()->getAs<ObjCObjectPointerType>();
870 if (!ParamObjectPtrType || !ArgObjectPtrType)
871 continue;
872
873 // Check if we have more concrete tracked type that is not a super type of
874 // the static argument type.
875 SVal ArgSVal = M.getArgSVal(i);
876 SymbolRef ArgSym = ArgSVal.getAsSymbol();
877 if (ArgSym) {
878 const ObjCObjectPointerType *const *TrackedArgType =
879 State->get<MostSpecializedTypeArgsMap>(ArgSym);
880 if (TrackedArgType &&
881 ASTCtxt.canAssignObjCInterfaces(ArgObjectPtrType, *TrackedArgType)) {
882 ArgObjectPtrType = *TrackedArgType;
883 }
884 }
885
886 // Warn when argument is incompatible with the parameter.
887 if (!ASTCtxt.canAssignObjCInterfaces(ParamObjectPtrType,
888 ArgObjectPtrType)) {
889 static CheckerProgramPointTag Tag(this, "ArgTypeMismatch");
890 ExplodedNode *N = C.addTransition(State, &Tag);
891 reportGenericsBug(ArgObjectPtrType, ParamObjectPtrType, N, Sym, C, Arg);
892 return;
893 }
894 }
895 }
896
897 /// This callback is used to infer the types for Class variables. This info is
898 /// used later to validate messages that sent to classes. Class variables are
899 /// initialized with by invoking the 'class' method on a class.
900 /// This method is also used to infer the type information for the return
901 /// types.
902 // TODO: right now it only tracks generic types. Extend this to track every
903 // type in the DynamicTypeMap and diagnose type errors!
checkPostObjCMessage(const ObjCMethodCall & M,CheckerContext & C) const904 void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall &M,
905 CheckerContext &C) const {
906 const ObjCMessageExpr *MessageExpr = M.getOriginExpr();
907
908 SymbolRef RetSym = M.getReturnValue().getAsSymbol();
909 if (!RetSym)
910 return;
911
912 Selector Sel = MessageExpr->getSelector();
913 ProgramStateRef State = C.getState();
914
915 // Here we try to propagate information on Class objects.
916 if (Sel.getAsString() == "class") {
917 // We try to figure out the type from the receiver of the 'class' message.
918 if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
919
920 ReceiverRuntimeType.Type->getSuperClassType();
921 QualType ReceiverClassType(ReceiverRuntimeType.Type, 0);
922
923 // We want to consider only precise information on generics.
924 if (ReceiverRuntimeType.Type->isSpecialized() &&
925 ReceiverRuntimeType.Precise) {
926 QualType ReceiverClassPointerType =
927 C.getASTContext().getObjCObjectPointerType(ReceiverClassType);
928 const auto *InferredType =
929 ReceiverClassPointerType->castAs<ObjCObjectPointerType>();
930 State = State->set<MostSpecializedTypeArgsMap>(RetSym, InferredType);
931 }
932
933 // Constrain the resulting class object to the inferred type.
934 State = setClassObjectDynamicTypeInfo(State, RetSym, ReceiverClassType,
935 !ReceiverRuntimeType.Precise);
936
937 C.addTransition(State);
938 return;
939 }
940 }
941
942 if (Sel.getAsString() == "superclass") {
943 // We try to figure out the type from the receiver of the 'superclass'
944 // message.
945 if (RuntimeType ReceiverRuntimeType = inferReceiverType(M, C)) {
946
947 // Result type would be a super class of the receiver's type.
948 QualType ReceiversSuperClass =
949 ReceiverRuntimeType.Type->getSuperClassType();
950
951 // Check if it really had super class.
952 //
953 // TODO: we can probably pay closer attention to cases when the class
954 // object can be 'nil' as the result of such message.
955 if (!ReceiversSuperClass.isNull()) {
956 // Constrain the resulting class object to the inferred type.
957 State = setClassObjectDynamicTypeInfo(
958 State, RetSym, ReceiversSuperClass, !ReceiverRuntimeType.Precise);
959
960 C.addTransition(State);
961 }
962 return;
963 }
964 }
965
966 // Tracking for return types.
967 SymbolRef RecSym = M.getReceiverSVal().getAsSymbol();
968 if (!RecSym)
969 return;
970
971 const ObjCObjectPointerType *const *TrackedType =
972 State->get<MostSpecializedTypeArgsMap>(RecSym);
973 if (!TrackedType)
974 return;
975
976 ASTContext &ASTCtxt = C.getASTContext();
977 const ObjCMethodDecl *Method =
978 findMethodDecl(MessageExpr, *TrackedType, ASTCtxt);
979 if (!Method)
980 return;
981
982 Optional<ArrayRef<QualType>> TypeArgs =
983 (*TrackedType)->getObjCSubstitutions(Method->getDeclContext());
984 if (!TypeArgs)
985 return;
986
987 QualType ResultType =
988 getReturnTypeForMethod(Method, *TypeArgs, *TrackedType, ASTCtxt);
989 // The static type is the same as the deduced type.
990 if (ResultType.isNull())
991 return;
992
993 const MemRegion *RetRegion = M.getReturnValue().getAsRegion();
994 ExplodedNode *Pred = C.getPredecessor();
995 // When there is an entry available for the return symbol in DynamicTypeMap,
996 // the call was inlined, and the information in the DynamicTypeMap is should
997 // be precise.
998 if (RetRegion && !getRawDynamicTypeInfo(State, RetRegion)) {
999 // TODO: we have duplicated information in DynamicTypeMap and
1000 // MostSpecializedTypeArgsMap. We should only store anything in the later if
1001 // the stored data differs from the one stored in the former.
1002 State = setDynamicTypeInfo(State, RetRegion, ResultType,
1003 /*CanBeSubClassed=*/true);
1004 Pred = C.addTransition(State);
1005 }
1006
1007 const auto *ResultPtrType = ResultType->getAs<ObjCObjectPointerType>();
1008
1009 if (!ResultPtrType || ResultPtrType->isUnspecialized())
1010 return;
1011
1012 // When the result is a specialized type and it is not tracked yet, track it
1013 // for the result symbol.
1014 if (!State->get<MostSpecializedTypeArgsMap>(RetSym)) {
1015 State = State->set<MostSpecializedTypeArgsMap>(RetSym, ResultPtrType);
1016 C.addTransition(State, Pred);
1017 }
1018 }
1019
reportGenericsBug(const ObjCObjectPointerType * From,const ObjCObjectPointerType * To,ExplodedNode * N,SymbolRef Sym,CheckerContext & C,const Stmt * ReportedNode) const1020 void DynamicTypePropagation::reportGenericsBug(
1021 const ObjCObjectPointerType *From, const ObjCObjectPointerType *To,
1022 ExplodedNode *N, SymbolRef Sym, CheckerContext &C,
1023 const Stmt *ReportedNode) const {
1024 if (!CheckGenerics)
1025 return;
1026
1027 initBugType();
1028 SmallString<192> Buf;
1029 llvm::raw_svector_ostream OS(Buf);
1030 OS << "Conversion from value of type '";
1031 QualType::print(From, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1032 OS << "' to incompatible type '";
1033 QualType::print(To, Qualifiers(), OS, C.getLangOpts(), llvm::Twine());
1034 OS << "'";
1035 auto R = std::make_unique<PathSensitiveBugReport>(*ObjCGenericsBugType,
1036 OS.str(), N);
1037 R->markInteresting(Sym);
1038 R->addVisitor(std::make_unique<GenericsBugVisitor>(Sym));
1039 if (ReportedNode)
1040 R->addRange(ReportedNode->getSourceRange());
1041 C.emitReport(std::move(R));
1042 }
1043
VisitNode(const ExplodedNode * N,BugReporterContext & BRC,PathSensitiveBugReport & BR)1044 PathDiagnosticPieceRef DynamicTypePropagation::GenericsBugVisitor::VisitNode(
1045 const ExplodedNode *N, BugReporterContext &BRC,
1046 PathSensitiveBugReport &BR) {
1047 ProgramStateRef state = N->getState();
1048 ProgramStateRef statePrev = N->getFirstPred()->getState();
1049
1050 const ObjCObjectPointerType *const *TrackedType =
1051 state->get<MostSpecializedTypeArgsMap>(Sym);
1052 const ObjCObjectPointerType *const *TrackedTypePrev =
1053 statePrev->get<MostSpecializedTypeArgsMap>(Sym);
1054 if (!TrackedType)
1055 return nullptr;
1056
1057 if (TrackedTypePrev && *TrackedTypePrev == *TrackedType)
1058 return nullptr;
1059
1060 // Retrieve the associated statement.
1061 const Stmt *S = N->getStmtForDiagnostics();
1062 if (!S)
1063 return nullptr;
1064
1065 const LangOptions &LangOpts = BRC.getASTContext().getLangOpts();
1066
1067 SmallString<256> Buf;
1068 llvm::raw_svector_ostream OS(Buf);
1069 OS << "Type '";
1070 QualType::print(*TrackedType, Qualifiers(), OS, LangOpts, llvm::Twine());
1071 OS << "' is inferred from ";
1072
1073 if (const auto *ExplicitCast = dyn_cast<ExplicitCastExpr>(S)) {
1074 OS << "explicit cast (from '";
1075 QualType::print(ExplicitCast->getSubExpr()->getType().getTypePtr(),
1076 Qualifiers(), OS, LangOpts, llvm::Twine());
1077 OS << "' to '";
1078 QualType::print(ExplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1079 LangOpts, llvm::Twine());
1080 OS << "')";
1081 } else if (const auto *ImplicitCast = dyn_cast<ImplicitCastExpr>(S)) {
1082 OS << "implicit cast (from '";
1083 QualType::print(ImplicitCast->getSubExpr()->getType().getTypePtr(),
1084 Qualifiers(), OS, LangOpts, llvm::Twine());
1085 OS << "' to '";
1086 QualType::print(ImplicitCast->getType().getTypePtr(), Qualifiers(), OS,
1087 LangOpts, llvm::Twine());
1088 OS << "')";
1089 } else {
1090 OS << "this context";
1091 }
1092
1093 // Generate the extra diagnostic.
1094 PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
1095 N->getLocationContext());
1096 return std::make_shared<PathDiagnosticEventPiece>(Pos, OS.str(), true);
1097 }
1098
1099 /// Register checkers.
registerObjCGenericsChecker(CheckerManager & mgr)1100 void ento::registerObjCGenericsChecker(CheckerManager &mgr) {
1101 DynamicTypePropagation *checker = mgr.getChecker<DynamicTypePropagation>();
1102 checker->CheckGenerics = true;
1103 checker->GenericCheckName = mgr.getCurrentCheckerName();
1104 }
1105
shouldRegisterObjCGenericsChecker(const CheckerManager & mgr)1106 bool ento::shouldRegisterObjCGenericsChecker(const CheckerManager &mgr) {
1107 return true;
1108 }
1109
registerDynamicTypePropagation(CheckerManager & mgr)1110 void ento::registerDynamicTypePropagation(CheckerManager &mgr) {
1111 mgr.registerChecker<DynamicTypePropagation>();
1112 }
1113
shouldRegisterDynamicTypePropagation(const CheckerManager & mgr)1114 bool ento::shouldRegisterDynamicTypePropagation(const CheckerManager &mgr) {
1115 return true;
1116 }
1117