1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 using namespace ento; 32 33 namespace { 34 struct AnyArgExpr { 35 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 36 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 37 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 38 const Expr *Expression; 39 unsigned ArgumentIndex; 40 }; 41 42 struct SourceArgExpr : AnyArgExpr { 43 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 44 }; 45 46 struct DestinationArgExpr : AnyArgExpr { 47 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 48 }; 49 50 struct SizeArgExpr : AnyArgExpr { 51 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 52 }; 53 54 using ErrorMessage = SmallString<128>; 55 enum class AccessKind { write, read }; 56 57 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 58 AccessKind Access) { 59 ErrorMessage Message; 60 llvm::raw_svector_ostream Os(Message); 61 62 // Function classification like: Memory copy function 63 Os << toUppercase(FunctionDescription.front()) 64 << &FunctionDescription.data()[1]; 65 66 if (Access == AccessKind::write) { 67 Os << " overflows the destination buffer"; 68 } else { // read access 69 Os << " accesses out-of-bound array element"; 70 } 71 72 return Message; 73 } 74 75 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 76 class CStringChecker : public Checker< eval::Call, 77 check::PreStmt<DeclStmt>, 78 check::LiveSymbols, 79 check::DeadSymbols, 80 check::RegionChanges 81 > { 82 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 83 BT_NotCString, BT_AdditionOverflow, BT_UninitRead; 84 85 mutable const char *CurrentFunctionDescription; 86 87 public: 88 /// The filter is used to filter out the diagnostics which are not enabled by 89 /// the user. 90 struct CStringChecksFilter { 91 DefaultBool CheckCStringNullArg; 92 DefaultBool CheckCStringOutOfBounds; 93 DefaultBool CheckCStringBufferOverlap; 94 DefaultBool CheckCStringNotNullTerm; 95 DefaultBool CheckCStringUninitializedRead; 96 97 CheckerNameRef CheckNameCStringNullArg; 98 CheckerNameRef CheckNameCStringOutOfBounds; 99 CheckerNameRef CheckNameCStringBufferOverlap; 100 CheckerNameRef CheckNameCStringNotNullTerm; 101 CheckerNameRef CheckNameCStringUninitializedRead; 102 }; 103 104 CStringChecksFilter Filter; 105 106 static void *getTag() { static int tag; return &tag; } 107 108 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 109 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 110 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 111 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 112 113 ProgramStateRef 114 checkRegionChanges(ProgramStateRef state, 115 const InvalidatedSymbols *, 116 ArrayRef<const MemRegion *> ExplicitRegions, 117 ArrayRef<const MemRegion *> Regions, 118 const LocationContext *LCtx, 119 const CallEvent *Call) const; 120 121 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 122 const CallExpr *) const; 123 CallDescriptionMap<FnCheck> Callbacks = { 124 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 125 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 126 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 127 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 128 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 129 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 130 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 131 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 132 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 133 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 134 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 135 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 136 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 137 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 138 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 139 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 140 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 141 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 142 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 143 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 144 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 145 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 146 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 147 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 148 }; 149 150 // These require a bit of special handling. 151 CallDescription StdCopy{{"std", "copy"}, 3}, 152 StdCopyBackward{{"std", "copy_backward"}, 3}; 153 154 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 155 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 156 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 157 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 158 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 159 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 160 ProgramStateRef state, SizeArgExpr Size, 161 DestinationArgExpr Dest, SourceArgExpr Source, 162 bool Restricted, bool IsMempcpy) const; 163 164 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 165 166 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 167 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 168 void evalstrLengthCommon(CheckerContext &C, 169 const CallExpr *CE, 170 bool IsStrnlen = false) const; 171 172 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 173 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 174 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 175 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 176 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 177 bool IsBounded, ConcatFnKind appendK, 178 bool returnPtr = true) const; 179 180 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 181 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 182 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 183 184 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 185 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 186 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 187 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 188 void evalStrcmpCommon(CheckerContext &C, 189 const CallExpr *CE, 190 bool IsBounded = false, 191 bool IgnoreCase = false) const; 192 193 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 194 195 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 196 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 197 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 198 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 199 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 200 201 // Utility methods 202 std::pair<ProgramStateRef , ProgramStateRef > 203 static assumeZero(CheckerContext &C, 204 ProgramStateRef state, SVal V, QualType Ty); 205 206 static ProgramStateRef setCStringLength(ProgramStateRef state, 207 const MemRegion *MR, 208 SVal strLength); 209 static SVal getCStringLengthForRegion(CheckerContext &C, 210 ProgramStateRef &state, 211 const Expr *Ex, 212 const MemRegion *MR, 213 bool hypothetical); 214 SVal getCStringLength(CheckerContext &C, 215 ProgramStateRef &state, 216 const Expr *Ex, 217 SVal Buf, 218 bool hypothetical = false) const; 219 220 const StringLiteral *getCStringLiteral(CheckerContext &C, 221 ProgramStateRef &state, 222 const Expr *expr, 223 SVal val) const; 224 225 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 226 ProgramStateRef state, 227 const Expr *Ex, SVal V, 228 bool IsSourceBuffer, 229 const Expr *Size); 230 231 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 232 const MemRegion *MR); 233 234 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 235 const Expr *Size, CheckerContext &C, 236 ProgramStateRef &State); 237 238 // Re-usable checks 239 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 240 AnyArgExpr Arg, SVal l) const; 241 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 242 AnyArgExpr Buffer, SVal Element, 243 AccessKind Access) const; 244 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 245 AnyArgExpr Buffer, SizeArgExpr Size, 246 AccessKind Access) const; 247 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 248 SizeArgExpr Size, AnyArgExpr First, 249 AnyArgExpr Second) const; 250 void emitOverlapBug(CheckerContext &C, 251 ProgramStateRef state, 252 const Stmt *First, 253 const Stmt *Second) const; 254 255 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 256 StringRef WarningMsg) const; 257 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 258 const Stmt *S, StringRef WarningMsg) const; 259 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 260 const Stmt *S, StringRef WarningMsg) const; 261 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 262 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 263 ProgramStateRef state, 264 NonLoc left, 265 NonLoc right) const; 266 267 // Return true if the destination buffer of the copy function may be in bound. 268 // Expects SVal of Size to be positive and unsigned. 269 // Expects SVal of FirstBuf to be a FieldRegion. 270 static bool IsFirstBufInBound(CheckerContext &C, 271 ProgramStateRef state, 272 const Expr *FirstBuf, 273 const Expr *Size); 274 }; 275 276 } //end anonymous namespace 277 278 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 279 280 //===----------------------------------------------------------------------===// 281 // Individual checks and utility methods. 282 //===----------------------------------------------------------------------===// 283 284 std::pair<ProgramStateRef , ProgramStateRef > 285 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 286 QualType Ty) { 287 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 288 if (!val) 289 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 290 291 SValBuilder &svalBuilder = C.getSValBuilder(); 292 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 293 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 294 } 295 296 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 297 ProgramStateRef State, 298 AnyArgExpr Arg, SVal l) const { 299 // If a previous check has failed, propagate the failure. 300 if (!State) 301 return nullptr; 302 303 ProgramStateRef stateNull, stateNonNull; 304 std::tie(stateNull, stateNonNull) = 305 assumeZero(C, State, l, Arg.Expression->getType()); 306 307 if (stateNull && !stateNonNull) { 308 if (Filter.CheckCStringNullArg) { 309 SmallString<80> buf; 310 llvm::raw_svector_ostream OS(buf); 311 assert(CurrentFunctionDescription); 312 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 313 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 314 << CurrentFunctionDescription; 315 316 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 317 } 318 return nullptr; 319 } 320 321 // From here on, assume that the value is non-null. 322 assert(stateNonNull); 323 return stateNonNull; 324 } 325 326 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 327 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 328 ProgramStateRef state, 329 AnyArgExpr Buffer, SVal Element, 330 AccessKind Access) const { 331 332 // If a previous check has failed, propagate the failure. 333 if (!state) 334 return nullptr; 335 336 // Check for out of bound array element access. 337 const MemRegion *R = Element.getAsRegion(); 338 if (!R) 339 return state; 340 341 const auto *ER = dyn_cast<ElementRegion>(R); 342 if (!ER) 343 return state; 344 345 if (ER->getValueType() != C.getASTContext().CharTy) 346 return state; 347 348 // Get the size of the array. 349 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 350 DefinedOrUnknownSVal Size = 351 getDynamicExtent(state, superReg, C.getSValBuilder()); 352 353 // Get the index of the accessed element. 354 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 355 356 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 357 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 358 if (StOutBound && !StInBound) { 359 // These checks are either enabled by the CString out-of-bounds checker 360 // explicitly or implicitly by the Malloc checker. 361 // In the latter case we only do modeling but do not emit warning. 362 if (!Filter.CheckCStringOutOfBounds) 363 return nullptr; 364 365 // Emit a bug report. 366 ErrorMessage Message = 367 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 368 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 369 return nullptr; 370 } 371 372 // Ensure that we wouldn't read uninitialized value. 373 if (Access == AccessKind::read) { 374 if (Filter.CheckCStringUninitializedRead && 375 StInBound->getSVal(ER).isUndef()) { 376 emitUninitializedReadBug(C, StInBound, Buffer.Expression); 377 return nullptr; 378 } 379 } 380 381 // Array bound check succeeded. From this point forward the array bound 382 // should always succeed. 383 return StInBound; 384 } 385 386 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 387 ProgramStateRef State, 388 AnyArgExpr Buffer, 389 SizeArgExpr Size, 390 AccessKind Access) const { 391 // If a previous check has failed, propagate the failure. 392 if (!State) 393 return nullptr; 394 395 SValBuilder &svalBuilder = C.getSValBuilder(); 396 ASTContext &Ctx = svalBuilder.getContext(); 397 398 QualType SizeTy = Size.Expression->getType(); 399 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 400 401 // Check that the first buffer is non-null. 402 SVal BufVal = C.getSVal(Buffer.Expression); 403 State = checkNonNull(C, State, Buffer, BufVal); 404 if (!State) 405 return nullptr; 406 407 // If out-of-bounds checking is turned off, skip the rest. 408 if (!Filter.CheckCStringOutOfBounds) 409 return State; 410 411 // Get the access length and make sure it is known. 412 // FIXME: This assumes the caller has already checked that the access length 413 // is positive. And that it's unsigned. 414 SVal LengthVal = C.getSVal(Size.Expression); 415 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 416 if (!Length) 417 return State; 418 419 // Compute the offset of the last element to be accessed: size-1. 420 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 421 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 422 if (Offset.isUnknown()) 423 return nullptr; 424 NonLoc LastOffset = Offset.castAs<NonLoc>(); 425 426 // Check that the first buffer is sufficiently long. 427 SVal BufStart = 428 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 429 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 430 431 SVal BufEnd = 432 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 433 State = CheckLocation(C, State, Buffer, BufEnd, Access); 434 435 // If the buffer isn't large enough, abort. 436 if (!State) 437 return nullptr; 438 } 439 440 // Large enough or not, return this state! 441 return State; 442 } 443 444 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 445 ProgramStateRef state, 446 SizeArgExpr Size, AnyArgExpr First, 447 AnyArgExpr Second) const { 448 if (!Filter.CheckCStringBufferOverlap) 449 return state; 450 451 // Do a simple check for overlap: if the two arguments are from the same 452 // buffer, see if the end of the first is greater than the start of the second 453 // or vice versa. 454 455 // If a previous check has failed, propagate the failure. 456 if (!state) 457 return nullptr; 458 459 ProgramStateRef stateTrue, stateFalse; 460 461 // Get the buffer values and make sure they're known locations. 462 const LocationContext *LCtx = C.getLocationContext(); 463 SVal firstVal = state->getSVal(First.Expression, LCtx); 464 SVal secondVal = state->getSVal(Second.Expression, LCtx); 465 466 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 467 if (!firstLoc) 468 return state; 469 470 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 471 if (!secondLoc) 472 return state; 473 474 // Are the two values the same? 475 SValBuilder &svalBuilder = C.getSValBuilder(); 476 std::tie(stateTrue, stateFalse) = 477 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 478 479 if (stateTrue && !stateFalse) { 480 // If the values are known to be equal, that's automatically an overlap. 481 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 482 return nullptr; 483 } 484 485 // assume the two expressions are not equal. 486 assert(stateFalse); 487 state = stateFalse; 488 489 // Which value comes first? 490 QualType cmpTy = svalBuilder.getConditionType(); 491 SVal reverse = 492 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 493 Optional<DefinedOrUnknownSVal> reverseTest = 494 reverse.getAs<DefinedOrUnknownSVal>(); 495 if (!reverseTest) 496 return state; 497 498 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 499 if (stateTrue) { 500 if (stateFalse) { 501 // If we don't know which one comes first, we can't perform this test. 502 return state; 503 } else { 504 // Switch the values so that firstVal is before secondVal. 505 std::swap(firstLoc, secondLoc); 506 507 // Switch the Exprs as well, so that they still correspond. 508 std::swap(First, Second); 509 } 510 } 511 512 // Get the length, and make sure it too is known. 513 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 514 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 515 if (!Length) 516 return state; 517 518 // Convert the first buffer's start address to char*. 519 // Bail out if the cast fails. 520 ASTContext &Ctx = svalBuilder.getContext(); 521 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 522 SVal FirstStart = 523 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 524 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 525 if (!FirstStartLoc) 526 return state; 527 528 // Compute the end of the first buffer. Bail out if THAT fails. 529 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 530 *Length, CharPtrTy); 531 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 532 if (!FirstEndLoc) 533 return state; 534 535 // Is the end of the first buffer past the start of the second buffer? 536 SVal Overlap = 537 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 538 Optional<DefinedOrUnknownSVal> OverlapTest = 539 Overlap.getAs<DefinedOrUnknownSVal>(); 540 if (!OverlapTest) 541 return state; 542 543 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 544 545 if (stateTrue && !stateFalse) { 546 // Overlap! 547 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 548 return nullptr; 549 } 550 551 // assume the two expressions don't overlap. 552 assert(stateFalse); 553 return stateFalse; 554 } 555 556 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 557 const Stmt *First, const Stmt *Second) const { 558 ExplodedNode *N = C.generateErrorNode(state); 559 if (!N) 560 return; 561 562 if (!BT_Overlap) 563 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 564 categories::UnixAPI, "Improper arguments")); 565 566 // Generate a report for this bug. 567 auto report = std::make_unique<PathSensitiveBugReport>( 568 *BT_Overlap, "Arguments must not be overlapping buffers", N); 569 report->addRange(First->getSourceRange()); 570 report->addRange(Second->getSourceRange()); 571 572 C.emitReport(std::move(report)); 573 } 574 575 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 576 const Stmt *S, StringRef WarningMsg) const { 577 if (ExplodedNode *N = C.generateErrorNode(State)) { 578 if (!BT_Null) 579 BT_Null.reset(new BuiltinBug( 580 Filter.CheckNameCStringNullArg, categories::UnixAPI, 581 "Null pointer argument in call to byte string function")); 582 583 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 584 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 585 Report->addRange(S->getSourceRange()); 586 if (const auto *Ex = dyn_cast<Expr>(S)) 587 bugreporter::trackExpressionValue(N, Ex, *Report); 588 C.emitReport(std::move(Report)); 589 } 590 } 591 592 void CStringChecker::emitUninitializedReadBug(CheckerContext &C, 593 ProgramStateRef State, 594 const Expr *E) const { 595 if (ExplodedNode *N = C.generateErrorNode(State)) { 596 const char *Msg = 597 "Bytes string function accesses uninitialized/garbage values"; 598 if (!BT_UninitRead) 599 BT_UninitRead.reset( 600 new BuiltinBug(Filter.CheckNameCStringUninitializedRead, 601 "Accessing unitialized/garbage values", Msg)); 602 603 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_UninitRead.get()); 604 605 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N); 606 Report->addRange(E->getSourceRange()); 607 bugreporter::trackExpressionValue(N, E, *Report); 608 C.emitReport(std::move(Report)); 609 } 610 } 611 612 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 613 ProgramStateRef State, const Stmt *S, 614 StringRef WarningMsg) const { 615 if (ExplodedNode *N = C.generateErrorNode(State)) { 616 if (!BT_Bounds) 617 BT_Bounds.reset(new BuiltinBug( 618 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 619 : Filter.CheckNameCStringNullArg, 620 "Out-of-bound array access", 621 "Byte string function accesses out-of-bound array element")); 622 623 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 624 625 // FIXME: It would be nice to eventually make this diagnostic more clear, 626 // e.g., by referencing the original declaration or by saying *why* this 627 // reference is outside the range. 628 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 629 Report->addRange(S->getSourceRange()); 630 C.emitReport(std::move(Report)); 631 } 632 } 633 634 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 635 const Stmt *S, 636 StringRef WarningMsg) const { 637 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 638 if (!BT_NotCString) 639 BT_NotCString.reset(new BuiltinBug( 640 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 641 "Argument is not a null-terminated string.")); 642 643 auto Report = 644 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 645 646 Report->addRange(S->getSourceRange()); 647 C.emitReport(std::move(Report)); 648 } 649 } 650 651 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 652 ProgramStateRef State) const { 653 if (ExplodedNode *N = C.generateErrorNode(State)) { 654 if (!BT_AdditionOverflow) 655 BT_AdditionOverflow.reset( 656 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 657 "Sum of expressions causes overflow.")); 658 659 // This isn't a great error message, but this should never occur in real 660 // code anyway -- you'd have to create a buffer longer than a size_t can 661 // represent, which is sort of a contradiction. 662 const char *WarningMsg = 663 "This expression will create a string whose length is too big to " 664 "be represented as a size_t"; 665 666 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow, 667 WarningMsg, N); 668 C.emitReport(std::move(Report)); 669 } 670 } 671 672 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 673 ProgramStateRef state, 674 NonLoc left, 675 NonLoc right) const { 676 // If out-of-bounds checking is turned off, skip the rest. 677 if (!Filter.CheckCStringOutOfBounds) 678 return state; 679 680 // If a previous check has failed, propagate the failure. 681 if (!state) 682 return nullptr; 683 684 SValBuilder &svalBuilder = C.getSValBuilder(); 685 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 686 687 QualType sizeTy = svalBuilder.getContext().getSizeType(); 688 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 689 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 690 691 SVal maxMinusRight; 692 if (right.getAs<nonloc::ConcreteInt>()) { 693 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 694 sizeTy); 695 } else { 696 // Try switching the operands. (The order of these two assignments is 697 // important!) 698 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 699 sizeTy); 700 left = right; 701 } 702 703 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 704 QualType cmpTy = svalBuilder.getConditionType(); 705 // If left > max - right, we have an overflow. 706 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 707 *maxMinusRightNL, cmpTy); 708 709 ProgramStateRef stateOverflow, stateOkay; 710 std::tie(stateOverflow, stateOkay) = 711 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 712 713 if (stateOverflow && !stateOkay) { 714 // We have an overflow. Emit a bug report. 715 emitAdditionOverflowBug(C, stateOverflow); 716 return nullptr; 717 } 718 719 // From now on, assume an overflow didn't occur. 720 assert(stateOkay); 721 state = stateOkay; 722 } 723 724 return state; 725 } 726 727 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 728 const MemRegion *MR, 729 SVal strLength) { 730 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 731 732 MR = MR->StripCasts(); 733 734 switch (MR->getKind()) { 735 case MemRegion::StringRegionKind: 736 // FIXME: This can happen if we strcpy() into a string region. This is 737 // undefined [C99 6.4.5p6], but we should still warn about it. 738 return state; 739 740 case MemRegion::SymbolicRegionKind: 741 case MemRegion::AllocaRegionKind: 742 case MemRegion::NonParamVarRegionKind: 743 case MemRegion::ParamVarRegionKind: 744 case MemRegion::FieldRegionKind: 745 case MemRegion::ObjCIvarRegionKind: 746 // These are the types we can currently track string lengths for. 747 break; 748 749 case MemRegion::ElementRegionKind: 750 // FIXME: Handle element regions by upper-bounding the parent region's 751 // string length. 752 return state; 753 754 default: 755 // Other regions (mostly non-data) can't have a reliable C string length. 756 // For now, just ignore the change. 757 // FIXME: These are rare but not impossible. We should output some kind of 758 // warning for things like strcpy((char[]){'a', 0}, "b"); 759 return state; 760 } 761 762 if (strLength.isUnknown()) 763 return state->remove<CStringLength>(MR); 764 765 return state->set<CStringLength>(MR, strLength); 766 } 767 768 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 769 ProgramStateRef &state, 770 const Expr *Ex, 771 const MemRegion *MR, 772 bool hypothetical) { 773 if (!hypothetical) { 774 // If there's a recorded length, go ahead and return it. 775 const SVal *Recorded = state->get<CStringLength>(MR); 776 if (Recorded) 777 return *Recorded; 778 } 779 780 // Otherwise, get a new symbol and update the state. 781 SValBuilder &svalBuilder = C.getSValBuilder(); 782 QualType sizeTy = svalBuilder.getContext().getSizeType(); 783 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 784 MR, Ex, sizeTy, 785 C.getLocationContext(), 786 C.blockCount()); 787 788 if (!hypothetical) { 789 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 790 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 791 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 792 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 793 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 794 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 795 fourInt); 796 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 797 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 798 maxLength, sizeTy); 799 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 800 } 801 state = state->set<CStringLength>(MR, strLength); 802 } 803 804 return strLength; 805 } 806 807 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 808 const Expr *Ex, SVal Buf, 809 bool hypothetical) const { 810 const MemRegion *MR = Buf.getAsRegion(); 811 if (!MR) { 812 // If we can't get a region, see if it's something we /know/ isn't a 813 // C string. In the context of locations, the only time we can issue such 814 // a warning is for labels. 815 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 816 if (Filter.CheckCStringNotNullTerm) { 817 SmallString<120> buf; 818 llvm::raw_svector_ostream os(buf); 819 assert(CurrentFunctionDescription); 820 os << "Argument to " << CurrentFunctionDescription 821 << " is the address of the label '" << Label->getLabel()->getName() 822 << "', which is not a null-terminated string"; 823 824 emitNotCStringBug(C, state, Ex, os.str()); 825 } 826 return UndefinedVal(); 827 } 828 829 // If it's not a region and not a label, give up. 830 return UnknownVal(); 831 } 832 833 // If we have a region, strip casts from it and see if we can figure out 834 // its length. For anything we can't figure out, just return UnknownVal. 835 MR = MR->StripCasts(); 836 837 switch (MR->getKind()) { 838 case MemRegion::StringRegionKind: { 839 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 840 // so we can assume that the byte length is the correct C string length. 841 SValBuilder &svalBuilder = C.getSValBuilder(); 842 QualType sizeTy = svalBuilder.getContext().getSizeType(); 843 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 844 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 845 } 846 case MemRegion::SymbolicRegionKind: 847 case MemRegion::AllocaRegionKind: 848 case MemRegion::NonParamVarRegionKind: 849 case MemRegion::ParamVarRegionKind: 850 case MemRegion::FieldRegionKind: 851 case MemRegion::ObjCIvarRegionKind: 852 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 853 case MemRegion::CompoundLiteralRegionKind: 854 // FIXME: Can we track this? Is it necessary? 855 return UnknownVal(); 856 case MemRegion::ElementRegionKind: 857 // FIXME: How can we handle this? It's not good enough to subtract the 858 // offset from the base string length; consider "123\x00567" and &a[5]. 859 return UnknownVal(); 860 default: 861 // Other regions (mostly non-data) can't have a reliable C string length. 862 // In this case, an error is emitted and UndefinedVal is returned. 863 // The caller should always be prepared to handle this case. 864 if (Filter.CheckCStringNotNullTerm) { 865 SmallString<120> buf; 866 llvm::raw_svector_ostream os(buf); 867 868 assert(CurrentFunctionDescription); 869 os << "Argument to " << CurrentFunctionDescription << " is "; 870 871 if (SummarizeRegion(os, C.getASTContext(), MR)) 872 os << ", which is not a null-terminated string"; 873 else 874 os << "not a null-terminated string"; 875 876 emitNotCStringBug(C, state, Ex, os.str()); 877 } 878 return UndefinedVal(); 879 } 880 } 881 882 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 883 ProgramStateRef &state, const Expr *expr, SVal val) const { 884 885 // Get the memory region pointed to by the val. 886 const MemRegion *bufRegion = val.getAsRegion(); 887 if (!bufRegion) 888 return nullptr; 889 890 // Strip casts off the memory region. 891 bufRegion = bufRegion->StripCasts(); 892 893 // Cast the memory region to a string region. 894 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 895 if (!strRegion) 896 return nullptr; 897 898 // Return the actual string in the string region. 899 return strRegion->getStringLiteral(); 900 } 901 902 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 903 ProgramStateRef state, 904 const Expr *FirstBuf, 905 const Expr *Size) { 906 // If we do not know that the buffer is long enough we return 'true'. 907 // Otherwise the parent region of this field region would also get 908 // invalidated, which would lead to warnings based on an unknown state. 909 910 // Originally copied from CheckBufferAccess and CheckLocation. 911 SValBuilder &svalBuilder = C.getSValBuilder(); 912 ASTContext &Ctx = svalBuilder.getContext(); 913 const LocationContext *LCtx = C.getLocationContext(); 914 915 QualType sizeTy = Size->getType(); 916 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 917 SVal BufVal = state->getSVal(FirstBuf, LCtx); 918 919 SVal LengthVal = state->getSVal(Size, LCtx); 920 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 921 if (!Length) 922 return true; // cf top comment. 923 924 // Compute the offset of the last element to be accessed: size-1. 925 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 926 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 927 if (Offset.isUnknown()) 928 return true; // cf top comment 929 NonLoc LastOffset = Offset.castAs<NonLoc>(); 930 931 // Check that the first buffer is sufficiently long. 932 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 933 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 934 if (!BufLoc) 935 return true; // cf top comment. 936 937 SVal BufEnd = 938 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 939 940 // Check for out of bound array element access. 941 const MemRegion *R = BufEnd.getAsRegion(); 942 if (!R) 943 return true; // cf top comment. 944 945 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 946 if (!ER) 947 return true; // cf top comment. 948 949 // FIXME: Does this crash when a non-standard definition 950 // of a library function is encountered? 951 assert(ER->getValueType() == C.getASTContext().CharTy && 952 "IsFirstBufInBound should only be called with char* ElementRegions"); 953 954 // Get the size of the array. 955 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 956 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder); 957 958 // Get the index of the accessed element. 959 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 960 961 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 962 963 return static_cast<bool>(StInBound); 964 } 965 966 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 967 ProgramStateRef state, 968 const Expr *E, SVal V, 969 bool IsSourceBuffer, 970 const Expr *Size) { 971 Optional<Loc> L = V.getAs<Loc>(); 972 if (!L) 973 return state; 974 975 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 976 // some assumptions about the value that CFRefCount can't. Even so, it should 977 // probably be refactored. 978 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 979 const MemRegion *R = MR->getRegion()->StripCasts(); 980 981 // Are we dealing with an ElementRegion? If so, we should be invalidating 982 // the super-region. 983 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 984 R = ER->getSuperRegion(); 985 // FIXME: What about layers of ElementRegions? 986 } 987 988 // Invalidate this region. 989 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 990 991 bool CausesPointerEscape = false; 992 RegionAndSymbolInvalidationTraits ITraits; 993 // Invalidate and escape only indirect regions accessible through the source 994 // buffer. 995 if (IsSourceBuffer) { 996 ITraits.setTrait(R->getBaseRegion(), 997 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 998 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 999 CausesPointerEscape = true; 1000 } else { 1001 const MemRegion::Kind& K = R->getKind(); 1002 if (K == MemRegion::FieldRegionKind) 1003 if (Size && IsFirstBufInBound(C, state, E, Size)) { 1004 // If destination buffer is a field region and access is in bound, 1005 // do not invalidate its super region. 1006 ITraits.setTrait( 1007 R, 1008 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1009 } 1010 } 1011 1012 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 1013 CausesPointerEscape, nullptr, nullptr, 1014 &ITraits); 1015 } 1016 1017 // If we have a non-region value by chance, just remove the binding. 1018 // FIXME: is this necessary or correct? This handles the non-Region 1019 // cases. Is it ever valid to store to these? 1020 return state->killBinding(*L); 1021 } 1022 1023 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1024 const MemRegion *MR) { 1025 switch (MR->getKind()) { 1026 case MemRegion::FunctionCodeRegionKind: { 1027 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 1028 os << "the address of the function '" << *FD << '\''; 1029 else 1030 os << "the address of a function"; 1031 return true; 1032 } 1033 case MemRegion::BlockCodeRegionKind: 1034 os << "block text"; 1035 return true; 1036 case MemRegion::BlockDataRegionKind: 1037 os << "a block"; 1038 return true; 1039 case MemRegion::CXXThisRegionKind: 1040 case MemRegion::CXXTempObjectRegionKind: 1041 os << "a C++ temp object of type " 1042 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1043 return true; 1044 case MemRegion::NonParamVarRegionKind: 1045 os << "a variable of type" 1046 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1047 return true; 1048 case MemRegion::ParamVarRegionKind: 1049 os << "a parameter of type" 1050 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1051 return true; 1052 case MemRegion::FieldRegionKind: 1053 os << "a field of type " 1054 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1055 return true; 1056 case MemRegion::ObjCIvarRegionKind: 1057 os << "an instance variable of type " 1058 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1059 return true; 1060 default: 1061 return false; 1062 } 1063 } 1064 1065 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1066 const Expr *Size, CheckerContext &C, 1067 ProgramStateRef &State) { 1068 SVal MemVal = C.getSVal(DstBuffer); 1069 SVal SizeVal = C.getSVal(Size); 1070 const MemRegion *MR = MemVal.getAsRegion(); 1071 if (!MR) 1072 return false; 1073 1074 // We're about to model memset by producing a "default binding" in the Store. 1075 // Our current implementation - RegionStore - doesn't support default bindings 1076 // that don't cover the whole base region. So we should first get the offset 1077 // and the base region to figure out whether the offset of buffer is 0. 1078 RegionOffset Offset = MR->getAsOffset(); 1079 const MemRegion *BR = Offset.getRegion(); 1080 1081 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1082 if (!SizeNL) 1083 return false; 1084 1085 SValBuilder &svalBuilder = C.getSValBuilder(); 1086 ASTContext &Ctx = C.getASTContext(); 1087 1088 // void *memset(void *dest, int ch, size_t count); 1089 // For now we can only handle the case of offset is 0 and concrete char value. 1090 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1091 Offset.getOffset() == 0) { 1092 // Get the base region's size. 1093 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1094 1095 ProgramStateRef StateWholeReg, StateNotWholeReg; 1096 std::tie(StateWholeReg, StateNotWholeReg) = 1097 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1098 1099 // With the semantic of 'memset()', we should convert the CharVal to 1100 // unsigned char. 1101 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1102 1103 ProgramStateRef StateNullChar, StateNonNullChar; 1104 std::tie(StateNullChar, StateNonNullChar) = 1105 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1106 1107 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1108 !StateNonNullChar) { 1109 // If the 'memset()' acts on the whole region of destination buffer and 1110 // the value of the second argument of 'memset()' is zero, bind the second 1111 // argument's value to the destination buffer with 'default binding'. 1112 // FIXME: Since there is no perfect way to bind the non-zero character, we 1113 // can only deal with zero value here. In the future, we need to deal with 1114 // the binding of non-zero value in the case of whole region. 1115 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1116 C.getLocationContext()); 1117 } else { 1118 // If the destination buffer's extent is not equal to the value of 1119 // third argument, just invalidate buffer. 1120 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1121 /*IsSourceBuffer*/ false, Size); 1122 } 1123 1124 if (StateNullChar && !StateNonNullChar) { 1125 // If the value of the second argument of 'memset()' is zero, set the 1126 // string length of destination buffer to 0 directly. 1127 State = setCStringLength(State, MR, 1128 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1129 } else if (!StateNullChar && StateNonNullChar) { 1130 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1131 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1132 C.getLocationContext(), C.blockCount()); 1133 1134 // If the value of second argument is not zero, then the string length 1135 // is at least the size argument. 1136 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1137 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1138 1139 State = setCStringLength( 1140 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1141 MR, NewStrLen); 1142 } 1143 } else { 1144 // If the offset is not zero and char value is not concrete, we can do 1145 // nothing but invalidate the buffer. 1146 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1147 /*IsSourceBuffer*/ false, Size); 1148 } 1149 return true; 1150 } 1151 1152 //===----------------------------------------------------------------------===// 1153 // evaluation of individual function calls. 1154 //===----------------------------------------------------------------------===// 1155 1156 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1157 ProgramStateRef state, SizeArgExpr Size, 1158 DestinationArgExpr Dest, 1159 SourceArgExpr Source, bool Restricted, 1160 bool IsMempcpy) const { 1161 CurrentFunctionDescription = "memory copy function"; 1162 1163 // See if the size argument is zero. 1164 const LocationContext *LCtx = C.getLocationContext(); 1165 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1166 QualType sizeTy = Size.Expression->getType(); 1167 1168 ProgramStateRef stateZeroSize, stateNonZeroSize; 1169 std::tie(stateZeroSize, stateNonZeroSize) = 1170 assumeZero(C, state, sizeVal, sizeTy); 1171 1172 // Get the value of the Dest. 1173 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1174 1175 // If the size is zero, there won't be any actual memory access, so 1176 // just bind the return value to the destination buffer and return. 1177 if (stateZeroSize && !stateNonZeroSize) { 1178 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1179 C.addTransition(stateZeroSize); 1180 return; 1181 } 1182 1183 // If the size can be nonzero, we have to check the other arguments. 1184 if (stateNonZeroSize) { 1185 state = stateNonZeroSize; 1186 1187 // Ensure the destination is not null. If it is NULL there will be a 1188 // NULL pointer dereference. 1189 state = checkNonNull(C, state, Dest, destVal); 1190 if (!state) 1191 return; 1192 1193 // Get the value of the Src. 1194 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1195 1196 // Ensure the source is not null. If it is NULL there will be a 1197 // NULL pointer dereference. 1198 state = checkNonNull(C, state, Source, srcVal); 1199 if (!state) 1200 return; 1201 1202 // Ensure the accesses are valid and that the buffers do not overlap. 1203 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write); 1204 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read); 1205 1206 if (Restricted) 1207 state = CheckOverlap(C, state, Size, Dest, Source); 1208 1209 if (!state) 1210 return; 1211 1212 // If this is mempcpy, get the byte after the last byte copied and 1213 // bind the expr. 1214 if (IsMempcpy) { 1215 // Get the byte after the last byte copied. 1216 SValBuilder &SvalBuilder = C.getSValBuilder(); 1217 ASTContext &Ctx = SvalBuilder.getContext(); 1218 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1219 SVal DestRegCharVal = 1220 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1221 SVal lastElement = C.getSValBuilder().evalBinOp( 1222 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1223 // If we don't know how much we copied, we can at least 1224 // conjure a return value for later. 1225 if (lastElement.isUnknown()) 1226 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1227 C.blockCount()); 1228 1229 // The byte after the last byte copied is the return value. 1230 state = state->BindExpr(CE, LCtx, lastElement); 1231 } else { 1232 // All other copies return the destination buffer. 1233 // (Well, bcopy() has a void return type, but this won't hurt.) 1234 state = state->BindExpr(CE, LCtx, destVal); 1235 } 1236 1237 // Invalidate the destination (regular invalidation without pointer-escaping 1238 // the address of the top-level region). 1239 // FIXME: Even if we can't perfectly model the copy, we should see if we 1240 // can use LazyCompoundVals to copy the source values into the destination. 1241 // This would probably remove any existing bindings past the end of the 1242 // copied region, but that's still an improvement over blank invalidation. 1243 state = 1244 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1245 /*IsSourceBuffer*/ false, Size.Expression); 1246 1247 // Invalidate the source (const-invalidation without const-pointer-escaping 1248 // the address of the top-level region). 1249 state = InvalidateBuffer(C, state, Source.Expression, 1250 C.getSVal(Source.Expression), 1251 /*IsSourceBuffer*/ true, nullptr); 1252 1253 C.addTransition(state); 1254 } 1255 } 1256 1257 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1258 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1259 // The return value is the address of the destination buffer. 1260 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1261 SourceArgExpr Src = {CE->getArg(1), 1}; 1262 SizeArgExpr Size = {CE->getArg(2), 2}; 1263 1264 ProgramStateRef State = C.getState(); 1265 1266 constexpr bool IsRestricted = true; 1267 constexpr bool IsMempcpy = false; 1268 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy); 1269 } 1270 1271 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1272 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1273 // The return value is a pointer to the byte following the last written byte. 1274 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1275 SourceArgExpr Src = {CE->getArg(1), 1}; 1276 SizeArgExpr Size = {CE->getArg(2), 2}; 1277 1278 constexpr bool IsRestricted = true; 1279 constexpr bool IsMempcpy = true; 1280 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1281 } 1282 1283 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1284 // void *memmove(void *dst, const void *src, size_t n); 1285 // The return value is the address of the destination buffer. 1286 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1287 SourceArgExpr Src = {CE->getArg(1), 1}; 1288 SizeArgExpr Size = {CE->getArg(2), 2}; 1289 1290 constexpr bool IsRestricted = false; 1291 constexpr bool IsMempcpy = false; 1292 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1293 } 1294 1295 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1296 // void bcopy(const void *src, void *dst, size_t n); 1297 SourceArgExpr Src(CE->getArg(0), 0); 1298 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1299 SizeArgExpr Size = {CE->getArg(2), 2}; 1300 1301 constexpr bool IsRestricted = false; 1302 constexpr bool IsMempcpy = false; 1303 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1304 } 1305 1306 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1307 // int memcmp(const void *s1, const void *s2, size_t n); 1308 CurrentFunctionDescription = "memory comparison function"; 1309 1310 AnyArgExpr Left = {CE->getArg(0), 0}; 1311 AnyArgExpr Right = {CE->getArg(1), 1}; 1312 SizeArgExpr Size = {CE->getArg(2), 2}; 1313 1314 ProgramStateRef State = C.getState(); 1315 SValBuilder &Builder = C.getSValBuilder(); 1316 const LocationContext *LCtx = C.getLocationContext(); 1317 1318 // See if the size argument is zero. 1319 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1320 QualType sizeTy = Size.Expression->getType(); 1321 1322 ProgramStateRef stateZeroSize, stateNonZeroSize; 1323 std::tie(stateZeroSize, stateNonZeroSize) = 1324 assumeZero(C, State, sizeVal, sizeTy); 1325 1326 // If the size can be zero, the result will be 0 in that case, and we don't 1327 // have to check either of the buffers. 1328 if (stateZeroSize) { 1329 State = stateZeroSize; 1330 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1331 C.addTransition(State); 1332 } 1333 1334 // If the size can be nonzero, we have to check the other arguments. 1335 if (stateNonZeroSize) { 1336 State = stateNonZeroSize; 1337 // If we know the two buffers are the same, we know the result is 0. 1338 // First, get the two buffers' addresses. Another checker will have already 1339 // made sure they're not undefined. 1340 DefinedOrUnknownSVal LV = 1341 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1342 DefinedOrUnknownSVal RV = 1343 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1344 1345 // See if they are the same. 1346 ProgramStateRef SameBuffer, NotSameBuffer; 1347 std::tie(SameBuffer, NotSameBuffer) = 1348 State->assume(Builder.evalEQ(State, LV, RV)); 1349 1350 // If the two arguments are the same buffer, we know the result is 0, 1351 // and we only need to check one size. 1352 if (SameBuffer && !NotSameBuffer) { 1353 State = SameBuffer; 1354 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1355 if (State) { 1356 State = 1357 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1358 C.addTransition(State); 1359 } 1360 return; 1361 } 1362 1363 // If the two arguments might be different buffers, we have to check 1364 // the size of both of them. 1365 assert(NotSameBuffer); 1366 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read); 1367 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1368 if (State) { 1369 // The return value is the comparison result, which we don't know. 1370 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1371 State = State->BindExpr(CE, LCtx, CmpV); 1372 C.addTransition(State); 1373 } 1374 } 1375 } 1376 1377 void CStringChecker::evalstrLength(CheckerContext &C, 1378 const CallExpr *CE) const { 1379 // size_t strlen(const char *s); 1380 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1381 } 1382 1383 void CStringChecker::evalstrnLength(CheckerContext &C, 1384 const CallExpr *CE) const { 1385 // size_t strnlen(const char *s, size_t maxlen); 1386 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1387 } 1388 1389 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1390 bool IsStrnlen) const { 1391 CurrentFunctionDescription = "string length function"; 1392 ProgramStateRef state = C.getState(); 1393 const LocationContext *LCtx = C.getLocationContext(); 1394 1395 if (IsStrnlen) { 1396 const Expr *maxlenExpr = CE->getArg(1); 1397 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1398 1399 ProgramStateRef stateZeroSize, stateNonZeroSize; 1400 std::tie(stateZeroSize, stateNonZeroSize) = 1401 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1402 1403 // If the size can be zero, the result will be 0 in that case, and we don't 1404 // have to check the string itself. 1405 if (stateZeroSize) { 1406 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1407 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1408 C.addTransition(stateZeroSize); 1409 } 1410 1411 // If the size is GUARANTEED to be zero, we're done! 1412 if (!stateNonZeroSize) 1413 return; 1414 1415 // Otherwise, record the assumption that the size is nonzero. 1416 state = stateNonZeroSize; 1417 } 1418 1419 // Check that the string argument is non-null. 1420 AnyArgExpr Arg = {CE->getArg(0), 0}; 1421 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1422 state = checkNonNull(C, state, Arg, ArgVal); 1423 1424 if (!state) 1425 return; 1426 1427 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1428 1429 // If the argument isn't a valid C string, there's no valid state to 1430 // transition to. 1431 if (strLength.isUndef()) 1432 return; 1433 1434 DefinedOrUnknownSVal result = UnknownVal(); 1435 1436 // If the check is for strnlen() then bind the return value to no more than 1437 // the maxlen value. 1438 if (IsStrnlen) { 1439 QualType cmpTy = C.getSValBuilder().getConditionType(); 1440 1441 // It's a little unfortunate to be getting this again, 1442 // but it's not that expensive... 1443 const Expr *maxlenExpr = CE->getArg(1); 1444 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1445 1446 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1447 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1448 1449 if (strLengthNL && maxlenValNL) { 1450 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1451 1452 // Check if the strLength is greater than the maxlen. 1453 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1454 C.getSValBuilder() 1455 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1456 .castAs<DefinedOrUnknownSVal>()); 1457 1458 if (stateStringTooLong && !stateStringNotTooLong) { 1459 // If the string is longer than maxlen, return maxlen. 1460 result = *maxlenValNL; 1461 } else if (stateStringNotTooLong && !stateStringTooLong) { 1462 // If the string is shorter than maxlen, return its length. 1463 result = *strLengthNL; 1464 } 1465 } 1466 1467 if (result.isUnknown()) { 1468 // If we don't have enough information for a comparison, there's 1469 // no guarantee the full string length will actually be returned. 1470 // All we know is the return value is the min of the string length 1471 // and the limit. This is better than nothing. 1472 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1473 C.blockCount()); 1474 NonLoc resultNL = result.castAs<NonLoc>(); 1475 1476 if (strLengthNL) { 1477 state = state->assume(C.getSValBuilder().evalBinOpNN( 1478 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1479 .castAs<DefinedOrUnknownSVal>(), true); 1480 } 1481 1482 if (maxlenValNL) { 1483 state = state->assume(C.getSValBuilder().evalBinOpNN( 1484 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1485 .castAs<DefinedOrUnknownSVal>(), true); 1486 } 1487 } 1488 1489 } else { 1490 // This is a plain strlen(), not strnlen(). 1491 result = strLength.castAs<DefinedOrUnknownSVal>(); 1492 1493 // If we don't know the length of the string, conjure a return 1494 // value, so it can be used in constraints, at least. 1495 if (result.isUnknown()) { 1496 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1497 C.blockCount()); 1498 } 1499 } 1500 1501 // Bind the return value. 1502 assert(!result.isUnknown() && "Should have conjured a value by now"); 1503 state = state->BindExpr(CE, LCtx, result); 1504 C.addTransition(state); 1505 } 1506 1507 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1508 // char *strcpy(char *restrict dst, const char *restrict src); 1509 evalStrcpyCommon(C, CE, 1510 /* ReturnEnd = */ false, 1511 /* IsBounded = */ false, 1512 /* appendK = */ ConcatFnKind::none); 1513 } 1514 1515 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1516 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1517 evalStrcpyCommon(C, CE, 1518 /* ReturnEnd = */ false, 1519 /* IsBounded = */ true, 1520 /* appendK = */ ConcatFnKind::none); 1521 } 1522 1523 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1524 // char *stpcpy(char *restrict dst, const char *restrict src); 1525 evalStrcpyCommon(C, CE, 1526 /* ReturnEnd = */ true, 1527 /* IsBounded = */ false, 1528 /* appendK = */ ConcatFnKind::none); 1529 } 1530 1531 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1532 // size_t strlcpy(char *dest, const char *src, size_t size); 1533 evalStrcpyCommon(C, CE, 1534 /* ReturnEnd = */ true, 1535 /* IsBounded = */ true, 1536 /* appendK = */ ConcatFnKind::none, 1537 /* returnPtr = */ false); 1538 } 1539 1540 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1541 // char *strcat(char *restrict s1, const char *restrict s2); 1542 evalStrcpyCommon(C, CE, 1543 /* ReturnEnd = */ false, 1544 /* IsBounded = */ false, 1545 /* appendK = */ ConcatFnKind::strcat); 1546 } 1547 1548 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1549 // char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1550 evalStrcpyCommon(C, CE, 1551 /* ReturnEnd = */ false, 1552 /* IsBounded = */ true, 1553 /* appendK = */ ConcatFnKind::strcat); 1554 } 1555 1556 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1557 // size_t strlcat(char *dst, const char *src, size_t size); 1558 // It will append at most size - strlen(dst) - 1 bytes, 1559 // NULL-terminating the result. 1560 evalStrcpyCommon(C, CE, 1561 /* ReturnEnd = */ false, 1562 /* IsBounded = */ true, 1563 /* appendK = */ ConcatFnKind::strlcat, 1564 /* returnPtr = */ false); 1565 } 1566 1567 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1568 bool ReturnEnd, bool IsBounded, 1569 ConcatFnKind appendK, 1570 bool returnPtr) const { 1571 if (appendK == ConcatFnKind::none) 1572 CurrentFunctionDescription = "string copy function"; 1573 else 1574 CurrentFunctionDescription = "string concatenation function"; 1575 1576 ProgramStateRef state = C.getState(); 1577 const LocationContext *LCtx = C.getLocationContext(); 1578 1579 // Check that the destination is non-null. 1580 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1581 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1582 state = checkNonNull(C, state, Dst, DstVal); 1583 if (!state) 1584 return; 1585 1586 // Check that the source is non-null. 1587 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1588 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1589 state = checkNonNull(C, state, srcExpr, srcVal); 1590 if (!state) 1591 return; 1592 1593 // Get the string length of the source. 1594 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1595 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1596 1597 // Get the string length of the destination buffer. 1598 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1599 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1600 1601 // If the source isn't a valid C string, give up. 1602 if (strLength.isUndef()) 1603 return; 1604 1605 SValBuilder &svalBuilder = C.getSValBuilder(); 1606 QualType cmpTy = svalBuilder.getConditionType(); 1607 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1608 1609 // These two values allow checking two kinds of errors: 1610 // - actual overflows caused by a source that doesn't fit in the destination 1611 // - potential overflows caused by a bound that could exceed the destination 1612 SVal amountCopied = UnknownVal(); 1613 SVal maxLastElementIndex = UnknownVal(); 1614 const char *boundWarning = nullptr; 1615 1616 // FIXME: Why do we choose the srcExpr if the access has no size? 1617 // Note that the 3rd argument of the call would be the size parameter. 1618 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1619 state = CheckOverlap( 1620 C, state, 1621 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1622 srcExpr); 1623 1624 if (!state) 1625 return; 1626 1627 // If the function is strncpy, strncat, etc... it is bounded. 1628 if (IsBounded) { 1629 // Get the max number of characters to copy. 1630 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1631 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1632 1633 // Protect against misdeclared strncpy(). 1634 lenVal = 1635 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1636 1637 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1638 1639 // If we know both values, we might be able to figure out how much 1640 // we're copying. 1641 if (strLengthNL && lenValNL) { 1642 switch (appendK) { 1643 case ConcatFnKind::none: 1644 case ConcatFnKind::strcat: { 1645 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1646 // Check if the max number to copy is less than the length of the src. 1647 // If the bound is equal to the source length, strncpy won't null- 1648 // terminate the result! 1649 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1650 svalBuilder 1651 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1652 .castAs<DefinedOrUnknownSVal>()); 1653 1654 if (stateSourceTooLong && !stateSourceNotTooLong) { 1655 // Max number to copy is less than the length of the src, so the 1656 // actual strLength copied is the max number arg. 1657 state = stateSourceTooLong; 1658 amountCopied = lenVal; 1659 1660 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1661 // The source buffer entirely fits in the bound. 1662 state = stateSourceNotTooLong; 1663 amountCopied = strLength; 1664 } 1665 break; 1666 } 1667 case ConcatFnKind::strlcat: 1668 if (!dstStrLengthNL) 1669 return; 1670 1671 // amountCopied = min (size - dstLen - 1 , srcLen) 1672 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1673 *dstStrLengthNL, sizeTy); 1674 if (!freeSpace.getAs<NonLoc>()) 1675 return; 1676 freeSpace = 1677 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1678 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1679 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1680 1681 // While unlikely, it is possible that the subtraction is 1682 // too complex to compute, let's check whether it succeeded. 1683 if (!freeSpaceNL) 1684 return; 1685 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1686 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1687 1688 ProgramStateRef TrueState, FalseState; 1689 std::tie(TrueState, FalseState) = 1690 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1691 1692 // srcStrLength <= size - dstStrLength -1 1693 if (TrueState && !FalseState) { 1694 amountCopied = strLength; 1695 } 1696 1697 // srcStrLength > size - dstStrLength -1 1698 if (!TrueState && FalseState) { 1699 amountCopied = freeSpace; 1700 } 1701 1702 if (TrueState && FalseState) 1703 amountCopied = UnknownVal(); 1704 break; 1705 } 1706 } 1707 // We still want to know if the bound is known to be too large. 1708 if (lenValNL) { 1709 switch (appendK) { 1710 case ConcatFnKind::strcat: 1711 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1712 1713 // Get the string length of the destination. If the destination is 1714 // memory that can't have a string length, we shouldn't be copying 1715 // into it anyway. 1716 if (dstStrLength.isUndef()) 1717 return; 1718 1719 if (dstStrLengthNL) { 1720 maxLastElementIndex = svalBuilder.evalBinOpNN( 1721 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1722 1723 boundWarning = "Size argument is greater than the free space in the " 1724 "destination buffer"; 1725 } 1726 break; 1727 case ConcatFnKind::none: 1728 case ConcatFnKind::strlcat: 1729 // For strncpy and strlcat, this is just checking 1730 // that lenVal <= sizeof(dst). 1731 // (Yes, strncpy and strncat differ in how they treat termination. 1732 // strncat ALWAYS terminates, but strncpy doesn't.) 1733 1734 // We need a special case for when the copy size is zero, in which 1735 // case strncpy will do no work at all. Our bounds check uses n-1 1736 // as the last element accessed, so n == 0 is problematic. 1737 ProgramStateRef StateZeroSize, StateNonZeroSize; 1738 std::tie(StateZeroSize, StateNonZeroSize) = 1739 assumeZero(C, state, *lenValNL, sizeTy); 1740 1741 // If the size is known to be zero, we're done. 1742 if (StateZeroSize && !StateNonZeroSize) { 1743 if (returnPtr) { 1744 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1745 } else { 1746 if (appendK == ConcatFnKind::none) { 1747 // strlcpy returns strlen(src) 1748 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1749 } else { 1750 // strlcat returns strlen(src) + strlen(dst) 1751 SVal retSize = svalBuilder.evalBinOp( 1752 state, BO_Add, strLength, dstStrLength, sizeTy); 1753 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1754 } 1755 } 1756 C.addTransition(StateZeroSize); 1757 return; 1758 } 1759 1760 // Otherwise, go ahead and figure out the last element we'll touch. 1761 // We don't record the non-zero assumption here because we can't 1762 // be sure. We won't warn on a possible zero. 1763 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1764 maxLastElementIndex = 1765 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1766 boundWarning = "Size argument is greater than the length of the " 1767 "destination buffer"; 1768 break; 1769 } 1770 } 1771 } else { 1772 // The function isn't bounded. The amount copied should match the length 1773 // of the source buffer. 1774 amountCopied = strLength; 1775 } 1776 1777 assert(state); 1778 1779 // This represents the number of characters copied into the destination 1780 // buffer. (It may not actually be the strlen if the destination buffer 1781 // is not terminated.) 1782 SVal finalStrLength = UnknownVal(); 1783 SVal strlRetVal = UnknownVal(); 1784 1785 if (appendK == ConcatFnKind::none && !returnPtr) { 1786 // strlcpy returns the sizeof(src) 1787 strlRetVal = strLength; 1788 } 1789 1790 // If this is an appending function (strcat, strncat...) then set the 1791 // string length to strlen(src) + strlen(dst) since the buffer will 1792 // ultimately contain both. 1793 if (appendK != ConcatFnKind::none) { 1794 // Get the string length of the destination. If the destination is memory 1795 // that can't have a string length, we shouldn't be copying into it anyway. 1796 if (dstStrLength.isUndef()) 1797 return; 1798 1799 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1800 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1801 *dstStrLengthNL, sizeTy); 1802 } 1803 1804 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1805 1806 // If we know both string lengths, we might know the final string length. 1807 if (amountCopiedNL && dstStrLengthNL) { 1808 // Make sure the two lengths together don't overflow a size_t. 1809 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1810 if (!state) 1811 return; 1812 1813 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1814 *dstStrLengthNL, sizeTy); 1815 } 1816 1817 // If we couldn't get a single value for the final string length, 1818 // we can at least bound it by the individual lengths. 1819 if (finalStrLength.isUnknown()) { 1820 // Try to get a "hypothetical" string length symbol, which we can later 1821 // set as a real value if that turns out to be the case. 1822 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1823 assert(!finalStrLength.isUndef()); 1824 1825 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1826 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1827 // we overwrite dst string with the src 1828 // finalStrLength >= srcStrLength 1829 SVal sourceInResult = svalBuilder.evalBinOpNN( 1830 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1831 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1832 true); 1833 if (!state) 1834 return; 1835 } 1836 1837 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1838 // we extend the dst string with the src 1839 // finalStrLength >= dstStrLength 1840 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1841 *finalStrLengthNL, 1842 *dstStrLengthNL, 1843 cmpTy); 1844 state = 1845 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1846 if (!state) 1847 return; 1848 } 1849 } 1850 } 1851 1852 } else { 1853 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1854 // the final string length will match the input string length. 1855 finalStrLength = amountCopied; 1856 } 1857 1858 SVal Result; 1859 1860 if (returnPtr) { 1861 // The final result of the function will either be a pointer past the last 1862 // copied element, or a pointer to the start of the destination buffer. 1863 Result = (ReturnEnd ? UnknownVal() : DstVal); 1864 } else { 1865 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1866 //strlcpy, strlcat 1867 Result = strlRetVal; 1868 else 1869 Result = finalStrLength; 1870 } 1871 1872 assert(state); 1873 1874 // If the destination is a MemRegion, try to check for a buffer overflow and 1875 // record the new string length. 1876 if (Optional<loc::MemRegionVal> dstRegVal = 1877 DstVal.getAs<loc::MemRegionVal>()) { 1878 QualType ptrTy = Dst.Expression->getType(); 1879 1880 // If we have an exact value on a bounded copy, use that to check for 1881 // overflows, rather than our estimate about how much is actually copied. 1882 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1883 SVal maxLastElement = 1884 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1885 1886 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1887 if (!state) 1888 return; 1889 } 1890 1891 // Then, if the final length is known... 1892 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1893 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1894 *knownStrLength, ptrTy); 1895 1896 // ...and we haven't checked the bound, we'll check the actual copy. 1897 if (!boundWarning) { 1898 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1899 if (!state) 1900 return; 1901 } 1902 1903 // If this is a stpcpy-style copy, the last element is the return value. 1904 if (returnPtr && ReturnEnd) 1905 Result = lastElement; 1906 } 1907 1908 // Invalidate the destination (regular invalidation without pointer-escaping 1909 // the address of the top-level region). This must happen before we set the 1910 // C string length because invalidation will clear the length. 1911 // FIXME: Even if we can't perfectly model the copy, we should see if we 1912 // can use LazyCompoundVals to copy the source values into the destination. 1913 // This would probably remove any existing bindings past the end of the 1914 // string, but that's still an improvement over blank invalidation. 1915 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1916 /*IsSourceBuffer*/ false, nullptr); 1917 1918 // Invalidate the source (const-invalidation without const-pointer-escaping 1919 // the address of the top-level region). 1920 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1921 /*IsSourceBuffer*/ true, nullptr); 1922 1923 // Set the C string length of the destination, if we know it. 1924 if (IsBounded && (appendK == ConcatFnKind::none)) { 1925 // strncpy is annoying in that it doesn't guarantee to null-terminate 1926 // the result string. If the original string didn't fit entirely inside 1927 // the bound (including the null-terminator), we don't know how long the 1928 // result is. 1929 if (amountCopied != strLength) 1930 finalStrLength = UnknownVal(); 1931 } 1932 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1933 } 1934 1935 assert(state); 1936 1937 if (returnPtr) { 1938 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1939 // overflow, we still need a result. Conjure a return value. 1940 if (ReturnEnd && Result.isUnknown()) { 1941 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1942 } 1943 } 1944 // Set the return value. 1945 state = state->BindExpr(CE, LCtx, Result); 1946 C.addTransition(state); 1947 } 1948 1949 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1950 //int strcmp(const char *s1, const char *s2); 1951 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1952 } 1953 1954 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1955 //int strncmp(const char *s1, const char *s2, size_t n); 1956 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1957 } 1958 1959 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1960 const CallExpr *CE) const { 1961 //int strcasecmp(const char *s1, const char *s2); 1962 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1963 } 1964 1965 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1966 const CallExpr *CE) const { 1967 //int strncasecmp(const char *s1, const char *s2, size_t n); 1968 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1969 } 1970 1971 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1972 bool IsBounded, bool IgnoreCase) const { 1973 CurrentFunctionDescription = "string comparison function"; 1974 ProgramStateRef state = C.getState(); 1975 const LocationContext *LCtx = C.getLocationContext(); 1976 1977 // Check that the first string is non-null 1978 AnyArgExpr Left = {CE->getArg(0), 0}; 1979 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 1980 state = checkNonNull(C, state, Left, LeftVal); 1981 if (!state) 1982 return; 1983 1984 // Check that the second string is non-null. 1985 AnyArgExpr Right = {CE->getArg(1), 1}; 1986 SVal RightVal = state->getSVal(Right.Expression, LCtx); 1987 state = checkNonNull(C, state, Right, RightVal); 1988 if (!state) 1989 return; 1990 1991 // Get the string length of the first string or give up. 1992 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 1993 if (LeftLength.isUndef()) 1994 return; 1995 1996 // Get the string length of the second string or give up. 1997 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 1998 if (RightLength.isUndef()) 1999 return; 2000 2001 // If we know the two buffers are the same, we know the result is 0. 2002 // First, get the two buffers' addresses. Another checker will have already 2003 // made sure they're not undefined. 2004 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 2005 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 2006 2007 // See if they are the same. 2008 SValBuilder &svalBuilder = C.getSValBuilder(); 2009 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 2010 ProgramStateRef StSameBuf, StNotSameBuf; 2011 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 2012 2013 // If the two arguments might be the same buffer, we know the result is 0, 2014 // and we only need to check one size. 2015 if (StSameBuf) { 2016 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 2017 svalBuilder.makeZeroVal(CE->getType())); 2018 C.addTransition(StSameBuf); 2019 2020 // If the two arguments are GUARANTEED to be the same, we're done! 2021 if (!StNotSameBuf) 2022 return; 2023 } 2024 2025 assert(StNotSameBuf); 2026 state = StNotSameBuf; 2027 2028 // At this point we can go about comparing the two buffers. 2029 // For now, we only do this if they're both known string literals. 2030 2031 // Attempt to extract string literals from both expressions. 2032 const StringLiteral *LeftStrLiteral = 2033 getCStringLiteral(C, state, Left.Expression, LeftVal); 2034 const StringLiteral *RightStrLiteral = 2035 getCStringLiteral(C, state, Right.Expression, RightVal); 2036 bool canComputeResult = false; 2037 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2038 C.blockCount()); 2039 2040 if (LeftStrLiteral && RightStrLiteral) { 2041 StringRef LeftStrRef = LeftStrLiteral->getString(); 2042 StringRef RightStrRef = RightStrLiteral->getString(); 2043 2044 if (IsBounded) { 2045 // Get the max number of characters to compare. 2046 const Expr *lenExpr = CE->getArg(2); 2047 SVal lenVal = state->getSVal(lenExpr, LCtx); 2048 2049 // If the length is known, we can get the right substrings. 2050 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2051 // Create substrings of each to compare the prefix. 2052 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2053 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2054 canComputeResult = true; 2055 } 2056 } else { 2057 // This is a normal, unbounded strcmp. 2058 canComputeResult = true; 2059 } 2060 2061 if (canComputeResult) { 2062 // Real strcmp stops at null characters. 2063 size_t s1Term = LeftStrRef.find('\0'); 2064 if (s1Term != StringRef::npos) 2065 LeftStrRef = LeftStrRef.substr(0, s1Term); 2066 2067 size_t s2Term = RightStrRef.find('\0'); 2068 if (s2Term != StringRef::npos) 2069 RightStrRef = RightStrRef.substr(0, s2Term); 2070 2071 // Use StringRef's comparison methods to compute the actual result. 2072 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2073 : LeftStrRef.compare(RightStrRef); 2074 2075 // The strcmp function returns an integer greater than, equal to, or less 2076 // than zero, [c11, p7.24.4.2]. 2077 if (compareRes == 0) { 2078 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2079 } 2080 else { 2081 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2082 // Constrain strcmp's result range based on the result of StringRef's 2083 // comparison methods. 2084 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2085 SVal compareWithZero = 2086 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2087 svalBuilder.getConditionType()); 2088 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2089 state = state->assume(compareWithZeroVal, true); 2090 } 2091 } 2092 } 2093 2094 state = state->BindExpr(CE, LCtx, resultVal); 2095 2096 // Record this as a possible path. 2097 C.addTransition(state); 2098 } 2099 2100 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2101 // char *strsep(char **stringp, const char *delim); 2102 // Verify whether the search string parameter matches the return type. 2103 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2104 2105 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2106 if (CharPtrTy.isNull() || 2107 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2108 return; 2109 2110 CurrentFunctionDescription = "strsep()"; 2111 ProgramStateRef State = C.getState(); 2112 const LocationContext *LCtx = C.getLocationContext(); 2113 2114 // Check that the search string pointer is non-null (though it may point to 2115 // a null string). 2116 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2117 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2118 if (!State) 2119 return; 2120 2121 // Check that the delimiter string is non-null. 2122 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2123 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2124 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2125 if (!State) 2126 return; 2127 2128 SValBuilder &SVB = C.getSValBuilder(); 2129 SVal Result; 2130 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2131 // Get the current value of the search string pointer, as a char*. 2132 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2133 2134 // Invalidate the search string, representing the change of one delimiter 2135 // character to NUL. 2136 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2137 /*IsSourceBuffer*/ false, nullptr); 2138 2139 // Overwrite the search string pointer. The new value is either an address 2140 // further along in the same string, or NULL if there are no more tokens. 2141 State = State->bindLoc(*SearchStrLoc, 2142 SVB.conjureSymbolVal(getTag(), 2143 CE, 2144 LCtx, 2145 CharPtrTy, 2146 C.blockCount()), 2147 LCtx); 2148 } else { 2149 assert(SearchStrVal.isUnknown()); 2150 // Conjure a symbolic value. It's the best we can do. 2151 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2152 } 2153 2154 // Set the return value, and finish. 2155 State = State->BindExpr(CE, LCtx, Result); 2156 C.addTransition(State); 2157 } 2158 2159 // These should probably be moved into a C++ standard library checker. 2160 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2161 evalStdCopyCommon(C, CE); 2162 } 2163 2164 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2165 const CallExpr *CE) const { 2166 evalStdCopyCommon(C, CE); 2167 } 2168 2169 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2170 const CallExpr *CE) const { 2171 if (!CE->getArg(2)->getType()->isPointerType()) 2172 return; 2173 2174 ProgramStateRef State = C.getState(); 2175 2176 const LocationContext *LCtx = C.getLocationContext(); 2177 2178 // template <class _InputIterator, class _OutputIterator> 2179 // _OutputIterator 2180 // copy(_InputIterator __first, _InputIterator __last, 2181 // _OutputIterator __result) 2182 2183 // Invalidate the destination buffer 2184 const Expr *Dst = CE->getArg(2); 2185 SVal DstVal = State->getSVal(Dst, LCtx); 2186 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2187 /*Size=*/nullptr); 2188 2189 SValBuilder &SVB = C.getSValBuilder(); 2190 2191 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2192 State = State->BindExpr(CE, LCtx, ResultVal); 2193 2194 C.addTransition(State); 2195 } 2196 2197 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2198 // void *memset(void *s, int c, size_t n); 2199 CurrentFunctionDescription = "memory set function"; 2200 2201 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2202 AnyArgExpr CharE = {CE->getArg(1), 1}; 2203 SizeArgExpr Size = {CE->getArg(2), 2}; 2204 2205 ProgramStateRef State = C.getState(); 2206 2207 // See if the size argument is zero. 2208 const LocationContext *LCtx = C.getLocationContext(); 2209 SVal SizeVal = C.getSVal(Size.Expression); 2210 QualType SizeTy = Size.Expression->getType(); 2211 2212 ProgramStateRef ZeroSize, NonZeroSize; 2213 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2214 2215 // Get the value of the memory area. 2216 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2217 2218 // If the size is zero, there won't be any actual memory access, so 2219 // just bind the return value to the buffer and return. 2220 if (ZeroSize && !NonZeroSize) { 2221 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2222 C.addTransition(ZeroSize); 2223 return; 2224 } 2225 2226 // Ensure the memory area is not null. 2227 // If it is NULL there will be a NULL pointer dereference. 2228 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2229 if (!State) 2230 return; 2231 2232 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2233 if (!State) 2234 return; 2235 2236 // According to the values of the arguments, bind the value of the second 2237 // argument to the destination buffer and set string length, or just 2238 // invalidate the destination buffer. 2239 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2240 Size.Expression, C, State)) 2241 return; 2242 2243 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2244 C.addTransition(State); 2245 } 2246 2247 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2248 CurrentFunctionDescription = "memory clearance function"; 2249 2250 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2251 SizeArgExpr Size = {CE->getArg(1), 1}; 2252 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2253 2254 ProgramStateRef State = C.getState(); 2255 2256 // See if the size argument is zero. 2257 SVal SizeVal = C.getSVal(Size.Expression); 2258 QualType SizeTy = Size.Expression->getType(); 2259 2260 ProgramStateRef StateZeroSize, StateNonZeroSize; 2261 std::tie(StateZeroSize, StateNonZeroSize) = 2262 assumeZero(C, State, SizeVal, SizeTy); 2263 2264 // If the size is zero, there won't be any actual memory access, 2265 // In this case we just return. 2266 if (StateZeroSize && !StateNonZeroSize) { 2267 C.addTransition(StateZeroSize); 2268 return; 2269 } 2270 2271 // Get the value of the memory area. 2272 SVal MemVal = C.getSVal(Buffer.Expression); 2273 2274 // Ensure the memory area is not null. 2275 // If it is NULL there will be a NULL pointer dereference. 2276 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2277 if (!State) 2278 return; 2279 2280 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2281 if (!State) 2282 return; 2283 2284 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2285 return; 2286 2287 C.addTransition(State); 2288 } 2289 2290 //===----------------------------------------------------------------------===// 2291 // The driver method, and other Checker callbacks. 2292 //===----------------------------------------------------------------------===// 2293 2294 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2295 CheckerContext &C) const { 2296 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2297 if (!CE) 2298 return nullptr; 2299 2300 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2301 if (!FD) 2302 return nullptr; 2303 2304 if (StdCopy.matches(Call)) 2305 return &CStringChecker::evalStdCopy; 2306 if (StdCopyBackward.matches(Call)) 2307 return &CStringChecker::evalStdCopyBackward; 2308 2309 // Pro-actively check that argument types are safe to do arithmetic upon. 2310 // We do not want to crash if someone accidentally passes a structure 2311 // into, say, a C++ overload of any of these functions. We could not check 2312 // that for std::copy because they may have arguments of other types. 2313 for (auto I : CE->arguments()) { 2314 QualType T = I->getType(); 2315 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2316 return nullptr; 2317 } 2318 2319 const FnCheck *Callback = Callbacks.lookup(Call); 2320 if (Callback) 2321 return *Callback; 2322 2323 return nullptr; 2324 } 2325 2326 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2327 FnCheck Callback = identifyCall(Call, C); 2328 2329 // If the callee isn't a string function, let another checker handle it. 2330 if (!Callback) 2331 return false; 2332 2333 // Check and evaluate the call. 2334 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2335 (this->*Callback)(C, CE); 2336 2337 // If the evaluate call resulted in no change, chain to the next eval call 2338 // handler. 2339 // Note, the custom CString evaluation calls assume that basic safety 2340 // properties are held. However, if the user chooses to turn off some of these 2341 // checks, we ignore the issues and leave the call evaluation to a generic 2342 // handler. 2343 return C.isDifferent(); 2344 } 2345 2346 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2347 // Record string length for char a[] = "abc"; 2348 ProgramStateRef state = C.getState(); 2349 2350 for (const auto *I : DS->decls()) { 2351 const VarDecl *D = dyn_cast<VarDecl>(I); 2352 if (!D) 2353 continue; 2354 2355 // FIXME: Handle array fields of structs. 2356 if (!D->getType()->isArrayType()) 2357 continue; 2358 2359 const Expr *Init = D->getInit(); 2360 if (!Init) 2361 continue; 2362 if (!isa<StringLiteral>(Init)) 2363 continue; 2364 2365 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2366 const MemRegion *MR = VarLoc.getAsRegion(); 2367 if (!MR) 2368 continue; 2369 2370 SVal StrVal = C.getSVal(Init); 2371 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2372 DefinedOrUnknownSVal strLength = 2373 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2374 2375 state = state->set<CStringLength>(MR, strLength); 2376 } 2377 2378 C.addTransition(state); 2379 } 2380 2381 ProgramStateRef 2382 CStringChecker::checkRegionChanges(ProgramStateRef state, 2383 const InvalidatedSymbols *, 2384 ArrayRef<const MemRegion *> ExplicitRegions, 2385 ArrayRef<const MemRegion *> Regions, 2386 const LocationContext *LCtx, 2387 const CallEvent *Call) const { 2388 CStringLengthTy Entries = state->get<CStringLength>(); 2389 if (Entries.isEmpty()) 2390 return state; 2391 2392 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2393 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2394 2395 // First build sets for the changed regions and their super-regions. 2396 for (ArrayRef<const MemRegion *>::iterator 2397 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2398 const MemRegion *MR = *I; 2399 Invalidated.insert(MR); 2400 2401 SuperRegions.insert(MR); 2402 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2403 MR = SR->getSuperRegion(); 2404 SuperRegions.insert(MR); 2405 } 2406 } 2407 2408 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2409 2410 // Then loop over the entries in the current state. 2411 for (CStringLengthTy::iterator I = Entries.begin(), 2412 E = Entries.end(); I != E; ++I) { 2413 const MemRegion *MR = I.getKey(); 2414 2415 // Is this entry for a super-region of a changed region? 2416 if (SuperRegions.count(MR)) { 2417 Entries = F.remove(Entries, MR); 2418 continue; 2419 } 2420 2421 // Is this entry for a sub-region of a changed region? 2422 const MemRegion *Super = MR; 2423 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2424 Super = SR->getSuperRegion(); 2425 if (Invalidated.count(Super)) { 2426 Entries = F.remove(Entries, MR); 2427 break; 2428 } 2429 } 2430 } 2431 2432 return state->set<CStringLength>(Entries); 2433 } 2434 2435 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2436 SymbolReaper &SR) const { 2437 // Mark all symbols in our string length map as valid. 2438 CStringLengthTy Entries = state->get<CStringLength>(); 2439 2440 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2441 I != E; ++I) { 2442 SVal Len = I.getData(); 2443 2444 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2445 se = Len.symbol_end(); si != se; ++si) 2446 SR.markInUse(*si); 2447 } 2448 } 2449 2450 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2451 CheckerContext &C) const { 2452 ProgramStateRef state = C.getState(); 2453 CStringLengthTy Entries = state->get<CStringLength>(); 2454 if (Entries.isEmpty()) 2455 return; 2456 2457 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2458 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2459 I != E; ++I) { 2460 SVal Len = I.getData(); 2461 if (SymbolRef Sym = Len.getAsSymbol()) { 2462 if (SR.isDead(Sym)) 2463 Entries = F.remove(Entries, I.getKey()); 2464 } 2465 } 2466 2467 state = state->set<CStringLength>(Entries); 2468 C.addTransition(state); 2469 } 2470 2471 void ento::registerCStringModeling(CheckerManager &Mgr) { 2472 Mgr.registerChecker<CStringChecker>(); 2473 } 2474 2475 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2476 return true; 2477 } 2478 2479 #define REGISTER_CHECKER(name) \ 2480 void ento::register##name(CheckerManager &mgr) { \ 2481 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2482 checker->Filter.Check##name = true; \ 2483 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2484 } \ 2485 \ 2486 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2487 2488 REGISTER_CHECKER(CStringNullArg) 2489 REGISTER_CHECKER(CStringOutOfBounds) 2490 REGISTER_CHECKER(CStringBufferOverlap) 2491 REGISTER_CHECKER(CStringNotNullTerm) 2492 REGISTER_CHECKER(CStringUninitializedRead)