1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InterCheckerAPI.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <functional>
30
31 using namespace clang;
32 using namespace ento;
33 using namespace std::placeholders;
34
35 namespace {
36 struct AnyArgExpr {
37 // FIXME: Remove constructor in C++17 to turn it into an aggregate.
AnyArgExpr__anon06fcc92d0111::AnyArgExpr38 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex)
39 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {}
40 const Expr *Expression;
41 unsigned ArgumentIndex;
42 };
43
44 struct SourceArgExpr : AnyArgExpr {
45 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17.
46 };
47
48 struct DestinationArgExpr : AnyArgExpr {
49 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
50 };
51
52 struct SizeArgExpr : AnyArgExpr {
53 using AnyArgExpr::AnyArgExpr; // FIXME: Same.
54 };
55
56 using ErrorMessage = SmallString<128>;
57 enum class AccessKind { write, read };
58
createOutOfBoundErrorMsg(StringRef FunctionDescription,AccessKind Access)59 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
60 AccessKind Access) {
61 ErrorMessage Message;
62 llvm::raw_svector_ostream Os(Message);
63
64 // Function classification like: Memory copy function
65 Os << toUppercase(FunctionDescription.front())
66 << &FunctionDescription.data()[1];
67
68 if (Access == AccessKind::write) {
69 Os << " overflows the destination buffer";
70 } else { // read access
71 Os << " accesses out-of-bound array element";
72 }
73
74 return Message;
75 }
76
77 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
78 class CStringChecker : public Checker< eval::Call,
79 check::PreStmt<DeclStmt>,
80 check::LiveSymbols,
81 check::DeadSymbols,
82 check::RegionChanges
83 > {
84 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
85 BT_NotCString, BT_AdditionOverflow, BT_UninitRead;
86
87 mutable const char *CurrentFunctionDescription;
88
89 public:
90 /// The filter is used to filter out the diagnostics which are not enabled by
91 /// the user.
92 struct CStringChecksFilter {
93 bool CheckCStringNullArg = false;
94 bool CheckCStringOutOfBounds = false;
95 bool CheckCStringBufferOverlap = false;
96 bool CheckCStringNotNullTerm = false;
97 bool CheckCStringUninitializedRead = false;
98
99 CheckerNameRef CheckNameCStringNullArg;
100 CheckerNameRef CheckNameCStringOutOfBounds;
101 CheckerNameRef CheckNameCStringBufferOverlap;
102 CheckerNameRef CheckNameCStringNotNullTerm;
103 CheckerNameRef CheckNameCStringUninitializedRead;
104 };
105
106 CStringChecksFilter Filter;
107
getTag()108 static void *getTag() { static int tag; return &tag; }
109
110 bool evalCall(const CallEvent &Call, CheckerContext &C) const;
111 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
112 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
113 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
114
115 ProgramStateRef
116 checkRegionChanges(ProgramStateRef state,
117 const InvalidatedSymbols *,
118 ArrayRef<const MemRegion *> ExplicitRegions,
119 ArrayRef<const MemRegion *> Regions,
120 const LocationContext *LCtx,
121 const CallEvent *Call) const;
122
123 using FnCheck = std::function<void(const CStringChecker *, CheckerContext &,
124 const CallExpr *)>;
125
126 CallDescriptionMap<FnCheck> Callbacks = {
127 {{CDF_MaybeBuiltin, "memcpy", 3},
128 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, false)},
129 {{CDF_MaybeBuiltin, "wmemcpy", 3},
130 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, true)},
131 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy},
132 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp},
133 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove},
134 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset},
135 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset},
136 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy},
137 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy},
138 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy},
139 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy},
140 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat},
141 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat},
142 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat},
143 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength},
144 {{CDF_MaybeBuiltin, "wcslen", 1}, &CStringChecker::evalstrLength},
145 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength},
146 {{CDF_MaybeBuiltin, "wcsnlen", 2}, &CStringChecker::evalstrnLength},
147 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp},
148 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp},
149 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp},
150 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp},
151 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep},
152 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy},
153 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp},
154 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero},
155 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero},
156 };
157
158 // These require a bit of special handling.
159 CallDescription StdCopy{{"std", "copy"}, 3},
160 StdCopyBackward{{"std", "copy_backward"}, 3};
161
162 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
163 void evalMemcpy(CheckerContext &C, const CallExpr *CE, bool IsWide) const;
164 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
165 void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
166 void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
167 void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
168 ProgramStateRef state, SizeArgExpr Size,
169 DestinationArgExpr Dest, SourceArgExpr Source,
170 bool Restricted, bool IsMempcpy, bool IsWide) const;
171
172 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
173
174 void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
175 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
176 void evalstrLengthCommon(CheckerContext &C,
177 const CallExpr *CE,
178 bool IsStrnlen = false) const;
179
180 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
181 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
182 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
183 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
184 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
185 bool IsBounded, ConcatFnKind appendK,
186 bool returnPtr = true) const;
187
188 void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
189 void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
190 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
191
192 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
193 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
194 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
195 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
196 void evalStrcmpCommon(CheckerContext &C,
197 const CallExpr *CE,
198 bool IsBounded = false,
199 bool IgnoreCase = false) const;
200
201 void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
202
203 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
204 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
205 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
206 void evalMemset(CheckerContext &C, const CallExpr *CE) const;
207 void evalBzero(CheckerContext &C, const CallExpr *CE) const;
208
209 // Utility methods
210 std::pair<ProgramStateRef , ProgramStateRef >
211 static assumeZero(CheckerContext &C,
212 ProgramStateRef state, SVal V, QualType Ty);
213
214 static ProgramStateRef setCStringLength(ProgramStateRef state,
215 const MemRegion *MR,
216 SVal strLength);
217 static SVal getCStringLengthForRegion(CheckerContext &C,
218 ProgramStateRef &state,
219 const Expr *Ex,
220 const MemRegion *MR,
221 bool hypothetical);
222 SVal getCStringLength(CheckerContext &C,
223 ProgramStateRef &state,
224 const Expr *Ex,
225 SVal Buf,
226 bool hypothetical = false) const;
227
228 const StringLiteral *getCStringLiteral(CheckerContext &C,
229 ProgramStateRef &state,
230 const Expr *expr,
231 SVal val) const;
232
233 static ProgramStateRef InvalidateBuffer(CheckerContext &C,
234 ProgramStateRef state,
235 const Expr *Ex, SVal V,
236 bool IsSourceBuffer,
237 const Expr *Size);
238
239 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
240 const MemRegion *MR);
241
242 static bool memsetAux(const Expr *DstBuffer, SVal CharE,
243 const Expr *Size, CheckerContext &C,
244 ProgramStateRef &State);
245
246 // Re-usable checks
247 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
248 AnyArgExpr Arg, SVal l) const;
249 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
250 AnyArgExpr Buffer, SVal Element,
251 AccessKind Access, bool IsWide = false) const;
252 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
253 AnyArgExpr Buffer, SizeArgExpr Size,
254 AccessKind Access,
255 bool IsWide = false) const;
256 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
257 SizeArgExpr Size, AnyArgExpr First,
258 AnyArgExpr Second, bool IsWide = false) const;
259 void emitOverlapBug(CheckerContext &C,
260 ProgramStateRef state,
261 const Stmt *First,
262 const Stmt *Second) const;
263
264 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
265 StringRef WarningMsg) const;
266 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
267 const Stmt *S, StringRef WarningMsg) const;
268 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
269 const Stmt *S, StringRef WarningMsg) const;
270 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
271 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State,
272 const Expr *E) const;
273 ProgramStateRef checkAdditionOverflow(CheckerContext &C,
274 ProgramStateRef state,
275 NonLoc left,
276 NonLoc right) const;
277
278 // Return true if the destination buffer of the copy function may be in bound.
279 // Expects SVal of Size to be positive and unsigned.
280 // Expects SVal of FirstBuf to be a FieldRegion.
281 static bool IsFirstBufInBound(CheckerContext &C,
282 ProgramStateRef state,
283 const Expr *FirstBuf,
284 const Expr *Size);
285 };
286
287 } //end anonymous namespace
288
REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength,const MemRegion *,SVal)289 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
290
291 //===----------------------------------------------------------------------===//
292 // Individual checks and utility methods.
293 //===----------------------------------------------------------------------===//
294
295 std::pair<ProgramStateRef , ProgramStateRef >
296 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
297 QualType Ty) {
298 Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
299 if (!val)
300 return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
301
302 SValBuilder &svalBuilder = C.getSValBuilder();
303 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
304 return state->assume(svalBuilder.evalEQ(state, *val, zero));
305 }
306
checkNonNull(CheckerContext & C,ProgramStateRef State,AnyArgExpr Arg,SVal l) const307 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
308 ProgramStateRef State,
309 AnyArgExpr Arg, SVal l) const {
310 // If a previous check has failed, propagate the failure.
311 if (!State)
312 return nullptr;
313
314 ProgramStateRef stateNull, stateNonNull;
315 std::tie(stateNull, stateNonNull) =
316 assumeZero(C, State, l, Arg.Expression->getType());
317
318 if (stateNull && !stateNonNull) {
319 if (Filter.CheckCStringNullArg) {
320 SmallString<80> buf;
321 llvm::raw_svector_ostream OS(buf);
322 assert(CurrentFunctionDescription);
323 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
324 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
325 << CurrentFunctionDescription;
326
327 emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
328 }
329 return nullptr;
330 }
331
332 // From here on, assume that the value is non-null.
333 assert(stateNonNull);
334 return stateNonNull;
335 }
336
337 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
CheckLocation(CheckerContext & C,ProgramStateRef state,AnyArgExpr Buffer,SVal Element,AccessKind Access,bool IsWide) const338 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
339 ProgramStateRef state,
340 AnyArgExpr Buffer, SVal Element,
341 AccessKind Access,
342 bool IsWide) const {
343
344 // If a previous check has failed, propagate the failure.
345 if (!state)
346 return nullptr;
347
348 // Check for out of bound array element access.
349 const MemRegion *R = Element.getAsRegion();
350 if (!R)
351 return state;
352
353 const auto *ER = dyn_cast<ElementRegion>(R);
354 if (!ER)
355 return state;
356
357 SValBuilder &svalBuilder = C.getSValBuilder();
358 ASTContext &Ctx = svalBuilder.getContext();
359
360 // Get the index of the accessed element.
361 NonLoc Idx = ER->getIndex();
362
363 if (!IsWide) {
364 if (ER->getValueType() != Ctx.CharTy)
365 return state;
366 } else {
367 if (ER->getValueType() != Ctx.WideCharTy)
368 return state;
369
370 QualType SizeTy = Ctx.getSizeType();
371 NonLoc WideSize =
372 svalBuilder
373 .makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(),
374 SizeTy)
375 .castAs<NonLoc>();
376 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Mul, Idx, WideSize, SizeTy);
377 if (Offset.isUnknown())
378 return state;
379 Idx = Offset.castAs<NonLoc>();
380 }
381
382 // Get the size of the array.
383 const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
384 DefinedOrUnknownSVal Size =
385 getDynamicExtent(state, superReg, C.getSValBuilder());
386
387 ProgramStateRef StInBound, StOutBound;
388 std::tie(StInBound, StOutBound) = state->assumeInBoundDual(Idx, Size);
389 if (StOutBound && !StInBound) {
390 // These checks are either enabled by the CString out-of-bounds checker
391 // explicitly or implicitly by the Malloc checker.
392 // In the latter case we only do modeling but do not emit warning.
393 if (!Filter.CheckCStringOutOfBounds)
394 return nullptr;
395
396 // Emit a bug report.
397 ErrorMessage Message =
398 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
399 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
400 return nullptr;
401 }
402
403 // Ensure that we wouldn't read uninitialized value.
404 if (Access == AccessKind::read) {
405 if (Filter.CheckCStringUninitializedRead &&
406 StInBound->getSVal(ER).isUndef()) {
407 emitUninitializedReadBug(C, StInBound, Buffer.Expression);
408 return nullptr;
409 }
410 }
411
412 // Array bound check succeeded. From this point forward the array bound
413 // should always succeed.
414 return StInBound;
415 }
416
417 ProgramStateRef
CheckBufferAccess(CheckerContext & C,ProgramStateRef State,AnyArgExpr Buffer,SizeArgExpr Size,AccessKind Access,bool IsWide) const418 CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
419 AnyArgExpr Buffer, SizeArgExpr Size,
420 AccessKind Access, bool IsWide) const {
421 // If a previous check has failed, propagate the failure.
422 if (!State)
423 return nullptr;
424
425 SValBuilder &svalBuilder = C.getSValBuilder();
426 ASTContext &Ctx = svalBuilder.getContext();
427
428 QualType SizeTy = Size.Expression->getType();
429 QualType PtrTy = Ctx.getPointerType(IsWide ? Ctx.WideCharTy : Ctx.CharTy);
430
431 // Check that the first buffer is non-null.
432 SVal BufVal = C.getSVal(Buffer.Expression);
433 State = checkNonNull(C, State, Buffer, BufVal);
434 if (!State)
435 return nullptr;
436
437 // If out-of-bounds checking is turned off, skip the rest.
438 if (!Filter.CheckCStringOutOfBounds)
439 return State;
440
441 // Get the access length and make sure it is known.
442 // FIXME: This assumes the caller has already checked that the access length
443 // is positive. And that it's unsigned.
444 SVal LengthVal = C.getSVal(Size.Expression);
445 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
446 if (!Length)
447 return State;
448
449 // Compute the offset of the last element to be accessed: size-1.
450 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
451 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
452 if (Offset.isUnknown())
453 return nullptr;
454 NonLoc LastOffset = Offset.castAs<NonLoc>();
455
456 // Check that the first buffer is sufficiently long.
457 SVal BufStart =
458 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
459 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
460
461 SVal BufEnd =
462 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
463 State = CheckLocation(C, State, Buffer, BufEnd, Access, IsWide);
464
465 // If the buffer isn't large enough, abort.
466 if (!State)
467 return nullptr;
468 }
469
470 // Large enough or not, return this state!
471 return State;
472 }
473
CheckOverlap(CheckerContext & C,ProgramStateRef state,SizeArgExpr Size,AnyArgExpr First,AnyArgExpr Second,bool IsWide) const474 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
475 ProgramStateRef state,
476 SizeArgExpr Size, AnyArgExpr First,
477 AnyArgExpr Second,
478 bool IsWide) const {
479 if (!Filter.CheckCStringBufferOverlap)
480 return state;
481
482 // Do a simple check for overlap: if the two arguments are from the same
483 // buffer, see if the end of the first is greater than the start of the second
484 // or vice versa.
485
486 // If a previous check has failed, propagate the failure.
487 if (!state)
488 return nullptr;
489
490 ProgramStateRef stateTrue, stateFalse;
491
492 // Assume different address spaces cannot overlap.
493 if (First.Expression->getType()->getPointeeType().getAddressSpace() !=
494 Second.Expression->getType()->getPointeeType().getAddressSpace())
495 return state;
496
497 // Get the buffer values and make sure they're known locations.
498 const LocationContext *LCtx = C.getLocationContext();
499 SVal firstVal = state->getSVal(First.Expression, LCtx);
500 SVal secondVal = state->getSVal(Second.Expression, LCtx);
501
502 Optional<Loc> firstLoc = firstVal.getAs<Loc>();
503 if (!firstLoc)
504 return state;
505
506 Optional<Loc> secondLoc = secondVal.getAs<Loc>();
507 if (!secondLoc)
508 return state;
509
510 // Are the two values the same?
511 SValBuilder &svalBuilder = C.getSValBuilder();
512 std::tie(stateTrue, stateFalse) =
513 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
514
515 if (stateTrue && !stateFalse) {
516 // If the values are known to be equal, that's automatically an overlap.
517 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
518 return nullptr;
519 }
520
521 // assume the two expressions are not equal.
522 assert(stateFalse);
523 state = stateFalse;
524
525 // Which value comes first?
526 QualType cmpTy = svalBuilder.getConditionType();
527 SVal reverse =
528 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
529 Optional<DefinedOrUnknownSVal> reverseTest =
530 reverse.getAs<DefinedOrUnknownSVal>();
531 if (!reverseTest)
532 return state;
533
534 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
535 if (stateTrue) {
536 if (stateFalse) {
537 // If we don't know which one comes first, we can't perform this test.
538 return state;
539 } else {
540 // Switch the values so that firstVal is before secondVal.
541 std::swap(firstLoc, secondLoc);
542
543 // Switch the Exprs as well, so that they still correspond.
544 std::swap(First, Second);
545 }
546 }
547
548 // Get the length, and make sure it too is known.
549 SVal LengthVal = state->getSVal(Size.Expression, LCtx);
550 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
551 if (!Length)
552 return state;
553
554 // Convert the first buffer's start address to char*.
555 // Bail out if the cast fails.
556 ASTContext &Ctx = svalBuilder.getContext();
557 QualType CharPtrTy = Ctx.getPointerType(IsWide ? Ctx.WideCharTy : Ctx.CharTy);
558 SVal FirstStart =
559 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
560 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
561 if (!FirstStartLoc)
562 return state;
563
564 // Compute the end of the first buffer. Bail out if THAT fails.
565 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
566 *Length, CharPtrTy);
567 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
568 if (!FirstEndLoc)
569 return state;
570
571 // Is the end of the first buffer past the start of the second buffer?
572 SVal Overlap =
573 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
574 Optional<DefinedOrUnknownSVal> OverlapTest =
575 Overlap.getAs<DefinedOrUnknownSVal>();
576 if (!OverlapTest)
577 return state;
578
579 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
580
581 if (stateTrue && !stateFalse) {
582 // Overlap!
583 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
584 return nullptr;
585 }
586
587 // assume the two expressions don't overlap.
588 assert(stateFalse);
589 return stateFalse;
590 }
591
emitOverlapBug(CheckerContext & C,ProgramStateRef state,const Stmt * First,const Stmt * Second) const592 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
593 const Stmt *First, const Stmt *Second) const {
594 ExplodedNode *N = C.generateErrorNode(state);
595 if (!N)
596 return;
597
598 if (!BT_Overlap)
599 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
600 categories::UnixAPI, "Improper arguments"));
601
602 // Generate a report for this bug.
603 auto report = std::make_unique<PathSensitiveBugReport>(
604 *BT_Overlap, "Arguments must not be overlapping buffers", N);
605 report->addRange(First->getSourceRange());
606 report->addRange(Second->getSourceRange());
607
608 C.emitReport(std::move(report));
609 }
610
emitNullArgBug(CheckerContext & C,ProgramStateRef State,const Stmt * S,StringRef WarningMsg) const611 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
612 const Stmt *S, StringRef WarningMsg) const {
613 if (ExplodedNode *N = C.generateErrorNode(State)) {
614 if (!BT_Null)
615 BT_Null.reset(new BuiltinBug(
616 Filter.CheckNameCStringNullArg, categories::UnixAPI,
617 "Null pointer argument in call to byte string function"));
618
619 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
620 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
621 Report->addRange(S->getSourceRange());
622 if (const auto *Ex = dyn_cast<Expr>(S))
623 bugreporter::trackExpressionValue(N, Ex, *Report);
624 C.emitReport(std::move(Report));
625 }
626 }
627
emitUninitializedReadBug(CheckerContext & C,ProgramStateRef State,const Expr * E) const628 void CStringChecker::emitUninitializedReadBug(CheckerContext &C,
629 ProgramStateRef State,
630 const Expr *E) const {
631 if (ExplodedNode *N = C.generateErrorNode(State)) {
632 const char *Msg =
633 "Bytes string function accesses uninitialized/garbage values";
634 if (!BT_UninitRead)
635 BT_UninitRead.reset(
636 new BuiltinBug(Filter.CheckNameCStringUninitializedRead,
637 "Accessing unitialized/garbage values", Msg));
638
639 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_UninitRead.get());
640
641 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
642 Report->addRange(E->getSourceRange());
643 bugreporter::trackExpressionValue(N, E, *Report);
644 C.emitReport(std::move(Report));
645 }
646 }
647
emitOutOfBoundsBug(CheckerContext & C,ProgramStateRef State,const Stmt * S,StringRef WarningMsg) const648 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
649 ProgramStateRef State, const Stmt *S,
650 StringRef WarningMsg) const {
651 if (ExplodedNode *N = C.generateErrorNode(State)) {
652 if (!BT_Bounds)
653 BT_Bounds.reset(new BuiltinBug(
654 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
655 : Filter.CheckNameCStringNullArg,
656 "Out-of-bound array access",
657 "Byte string function accesses out-of-bound array element"));
658
659 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
660
661 // FIXME: It would be nice to eventually make this diagnostic more clear,
662 // e.g., by referencing the original declaration or by saying *why* this
663 // reference is outside the range.
664 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
665 Report->addRange(S->getSourceRange());
666 C.emitReport(std::move(Report));
667 }
668 }
669
emitNotCStringBug(CheckerContext & C,ProgramStateRef State,const Stmt * S,StringRef WarningMsg) const670 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
671 const Stmt *S,
672 StringRef WarningMsg) const {
673 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
674 if (!BT_NotCString)
675 BT_NotCString.reset(new BuiltinBug(
676 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
677 "Argument is not a null-terminated string."));
678
679 auto Report =
680 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
681
682 Report->addRange(S->getSourceRange());
683 C.emitReport(std::move(Report));
684 }
685 }
686
emitAdditionOverflowBug(CheckerContext & C,ProgramStateRef State) const687 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
688 ProgramStateRef State) const {
689 if (ExplodedNode *N = C.generateErrorNode(State)) {
690 if (!BT_AdditionOverflow)
691 BT_AdditionOverflow.reset(
692 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
693 "Sum of expressions causes overflow."));
694
695 // This isn't a great error message, but this should never occur in real
696 // code anyway -- you'd have to create a buffer longer than a size_t can
697 // represent, which is sort of a contradiction.
698 const char *WarningMsg =
699 "This expression will create a string whose length is too big to "
700 "be represented as a size_t";
701
702 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow,
703 WarningMsg, N);
704 C.emitReport(std::move(Report));
705 }
706 }
707
checkAdditionOverflow(CheckerContext & C,ProgramStateRef state,NonLoc left,NonLoc right) const708 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
709 ProgramStateRef state,
710 NonLoc left,
711 NonLoc right) const {
712 // If out-of-bounds checking is turned off, skip the rest.
713 if (!Filter.CheckCStringOutOfBounds)
714 return state;
715
716 // If a previous check has failed, propagate the failure.
717 if (!state)
718 return nullptr;
719
720 SValBuilder &svalBuilder = C.getSValBuilder();
721 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
722
723 QualType sizeTy = svalBuilder.getContext().getSizeType();
724 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
725 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
726
727 SVal maxMinusRight;
728 if (isa<nonloc::ConcreteInt>(right)) {
729 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
730 sizeTy);
731 } else {
732 // Try switching the operands. (The order of these two assignments is
733 // important!)
734 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
735 sizeTy);
736 left = right;
737 }
738
739 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
740 QualType cmpTy = svalBuilder.getConditionType();
741 // If left > max - right, we have an overflow.
742 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
743 *maxMinusRightNL, cmpTy);
744
745 ProgramStateRef stateOverflow, stateOkay;
746 std::tie(stateOverflow, stateOkay) =
747 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
748
749 if (stateOverflow && !stateOkay) {
750 // We have an overflow. Emit a bug report.
751 emitAdditionOverflowBug(C, stateOverflow);
752 return nullptr;
753 }
754
755 // From now on, assume an overflow didn't occur.
756 assert(stateOkay);
757 state = stateOkay;
758 }
759
760 return state;
761 }
762
setCStringLength(ProgramStateRef state,const MemRegion * MR,SVal strLength)763 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
764 const MemRegion *MR,
765 SVal strLength) {
766 assert(!strLength.isUndef() && "Attempt to set an undefined string length");
767
768 MR = MR->StripCasts();
769
770 switch (MR->getKind()) {
771 case MemRegion::StringRegionKind:
772 // FIXME: This can happen if we strcpy() into a string region. This is
773 // undefined [C99 6.4.5p6], but we should still warn about it.
774 return state;
775
776 case MemRegion::SymbolicRegionKind:
777 case MemRegion::AllocaRegionKind:
778 case MemRegion::NonParamVarRegionKind:
779 case MemRegion::ParamVarRegionKind:
780 case MemRegion::FieldRegionKind:
781 case MemRegion::ObjCIvarRegionKind:
782 // These are the types we can currently track string lengths for.
783 break;
784
785 case MemRegion::ElementRegionKind:
786 // FIXME: Handle element regions by upper-bounding the parent region's
787 // string length.
788 return state;
789
790 default:
791 // Other regions (mostly non-data) can't have a reliable C string length.
792 // For now, just ignore the change.
793 // FIXME: These are rare but not impossible. We should output some kind of
794 // warning for things like strcpy((char[]){'a', 0}, "b");
795 return state;
796 }
797
798 if (strLength.isUnknown())
799 return state->remove<CStringLength>(MR);
800
801 return state->set<CStringLength>(MR, strLength);
802 }
803
getCStringLengthForRegion(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,const MemRegion * MR,bool hypothetical)804 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
805 ProgramStateRef &state,
806 const Expr *Ex,
807 const MemRegion *MR,
808 bool hypothetical) {
809 if (!hypothetical) {
810 // If there's a recorded length, go ahead and return it.
811 const SVal *Recorded = state->get<CStringLength>(MR);
812 if (Recorded)
813 return *Recorded;
814 }
815
816 // Otherwise, get a new symbol and update the state.
817 SValBuilder &svalBuilder = C.getSValBuilder();
818 QualType sizeTy = svalBuilder.getContext().getSizeType();
819 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
820 MR, Ex, sizeTy,
821 C.getLocationContext(),
822 C.blockCount());
823
824 if (!hypothetical) {
825 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
826 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
827 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
828 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
829 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
830 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
831 fourInt);
832 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
833 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
834 maxLength, sizeTy);
835 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
836 }
837 state = state->set<CStringLength>(MR, strLength);
838 }
839
840 return strLength;
841 }
842
getCStringLength(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,SVal Buf,bool hypothetical) const843 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
844 const Expr *Ex, SVal Buf,
845 bool hypothetical) const {
846 const MemRegion *MR = Buf.getAsRegion();
847 if (!MR) {
848 // If we can't get a region, see if it's something we /know/ isn't a
849 // C string. In the context of locations, the only time we can issue such
850 // a warning is for labels.
851 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
852 if (Filter.CheckCStringNotNullTerm) {
853 SmallString<120> buf;
854 llvm::raw_svector_ostream os(buf);
855 assert(CurrentFunctionDescription);
856 os << "Argument to " << CurrentFunctionDescription
857 << " is the address of the label '" << Label->getLabel()->getName()
858 << "', which is not a null-terminated string";
859
860 emitNotCStringBug(C, state, Ex, os.str());
861 }
862 return UndefinedVal();
863 }
864
865 // If it's not a region and not a label, give up.
866 return UnknownVal();
867 }
868
869 // If we have a region, strip casts from it and see if we can figure out
870 // its length. For anything we can't figure out, just return UnknownVal.
871 MR = MR->StripCasts();
872
873 switch (MR->getKind()) {
874 case MemRegion::StringRegionKind: {
875 // Modifying the contents of string regions is undefined [C99 6.4.5p6],
876 // so we can assume that the byte length is the correct C string length.
877 SValBuilder &svalBuilder = C.getSValBuilder();
878 QualType sizeTy = svalBuilder.getContext().getSizeType();
879 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
880 return svalBuilder.makeIntVal(strLit->getLength(), sizeTy);
881 }
882 case MemRegion::SymbolicRegionKind:
883 case MemRegion::AllocaRegionKind:
884 case MemRegion::NonParamVarRegionKind:
885 case MemRegion::ParamVarRegionKind:
886 case MemRegion::FieldRegionKind:
887 case MemRegion::ObjCIvarRegionKind:
888 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
889 case MemRegion::CompoundLiteralRegionKind:
890 // FIXME: Can we track this? Is it necessary?
891 return UnknownVal();
892 case MemRegion::ElementRegionKind:
893 // FIXME: How can we handle this? It's not good enough to subtract the
894 // offset from the base string length; consider "123\x00567" and &a[5].
895 return UnknownVal();
896 default:
897 // Other regions (mostly non-data) can't have a reliable C string length.
898 // In this case, an error is emitted and UndefinedVal is returned.
899 // The caller should always be prepared to handle this case.
900 if (Filter.CheckCStringNotNullTerm) {
901 SmallString<120> buf;
902 llvm::raw_svector_ostream os(buf);
903
904 assert(CurrentFunctionDescription);
905 os << "Argument to " << CurrentFunctionDescription << " is ";
906
907 if (SummarizeRegion(os, C.getASTContext(), MR))
908 os << ", which is not a null-terminated string";
909 else
910 os << "not a null-terminated string";
911
912 emitNotCStringBug(C, state, Ex, os.str());
913 }
914 return UndefinedVal();
915 }
916 }
917
getCStringLiteral(CheckerContext & C,ProgramStateRef & state,const Expr * expr,SVal val) const918 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
919 ProgramStateRef &state, const Expr *expr, SVal val) const {
920
921 // Get the memory region pointed to by the val.
922 const MemRegion *bufRegion = val.getAsRegion();
923 if (!bufRegion)
924 return nullptr;
925
926 // Strip casts off the memory region.
927 bufRegion = bufRegion->StripCasts();
928
929 // Cast the memory region to a string region.
930 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
931 if (!strRegion)
932 return nullptr;
933
934 // Return the actual string in the string region.
935 return strRegion->getStringLiteral();
936 }
937
IsFirstBufInBound(CheckerContext & C,ProgramStateRef state,const Expr * FirstBuf,const Expr * Size)938 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
939 ProgramStateRef state,
940 const Expr *FirstBuf,
941 const Expr *Size) {
942 // If we do not know that the buffer is long enough we return 'true'.
943 // Otherwise the parent region of this field region would also get
944 // invalidated, which would lead to warnings based on an unknown state.
945
946 // Originally copied from CheckBufferAccess and CheckLocation.
947 SValBuilder &svalBuilder = C.getSValBuilder();
948 ASTContext &Ctx = svalBuilder.getContext();
949 const LocationContext *LCtx = C.getLocationContext();
950
951 QualType sizeTy = Size->getType();
952 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
953 SVal BufVal = state->getSVal(FirstBuf, LCtx);
954
955 SVal LengthVal = state->getSVal(Size, LCtx);
956 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
957 if (!Length)
958 return true; // cf top comment.
959
960 // Compute the offset of the last element to be accessed: size-1.
961 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
962 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
963 if (Offset.isUnknown())
964 return true; // cf top comment
965 NonLoc LastOffset = Offset.castAs<NonLoc>();
966
967 // Check that the first buffer is sufficiently long.
968 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
969 Optional<Loc> BufLoc = BufStart.getAs<Loc>();
970 if (!BufLoc)
971 return true; // cf top comment.
972
973 SVal BufEnd =
974 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
975
976 // Check for out of bound array element access.
977 const MemRegion *R = BufEnd.getAsRegion();
978 if (!R)
979 return true; // cf top comment.
980
981 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
982 if (!ER)
983 return true; // cf top comment.
984
985 // FIXME: Does this crash when a non-standard definition
986 // of a library function is encountered?
987 assert(ER->getValueType() == C.getASTContext().CharTy &&
988 "IsFirstBufInBound should only be called with char* ElementRegions");
989
990 // Get the size of the array.
991 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
992 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder);
993
994 // Get the index of the accessed element.
995 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
996
997 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true);
998
999 return static_cast<bool>(StInBound);
1000 }
1001
InvalidateBuffer(CheckerContext & C,ProgramStateRef state,const Expr * E,SVal V,bool IsSourceBuffer,const Expr * Size)1002 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
1003 ProgramStateRef state,
1004 const Expr *E, SVal V,
1005 bool IsSourceBuffer,
1006 const Expr *Size) {
1007 Optional<Loc> L = V.getAs<Loc>();
1008 if (!L)
1009 return state;
1010
1011 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
1012 // some assumptions about the value that CFRefCount can't. Even so, it should
1013 // probably be refactored.
1014 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
1015 const MemRegion *R = MR->getRegion()->StripCasts();
1016
1017 // Are we dealing with an ElementRegion? If so, we should be invalidating
1018 // the super-region.
1019 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1020 R = ER->getSuperRegion();
1021 // FIXME: What about layers of ElementRegions?
1022 }
1023
1024 // Invalidate this region.
1025 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1026
1027 bool CausesPointerEscape = false;
1028 RegionAndSymbolInvalidationTraits ITraits;
1029 // Invalidate and escape only indirect regions accessible through the source
1030 // buffer.
1031 if (IsSourceBuffer) {
1032 ITraits.setTrait(R->getBaseRegion(),
1033 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1034 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1035 CausesPointerEscape = true;
1036 } else {
1037 const MemRegion::Kind& K = R->getKind();
1038 if (K == MemRegion::FieldRegionKind)
1039 if (Size && IsFirstBufInBound(C, state, E, Size)) {
1040 // If destination buffer is a field region and access is in bound,
1041 // do not invalidate its super region.
1042 ITraits.setTrait(
1043 R,
1044 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1045 }
1046 }
1047
1048 return state->invalidateRegions(R, E, C.blockCount(), LCtx,
1049 CausesPointerEscape, nullptr, nullptr,
1050 &ITraits);
1051 }
1052
1053 // If we have a non-region value by chance, just remove the binding.
1054 // FIXME: is this necessary or correct? This handles the non-Region
1055 // cases. Is it ever valid to store to these?
1056 return state->killBinding(*L);
1057 }
1058
SummarizeRegion(raw_ostream & os,ASTContext & Ctx,const MemRegion * MR)1059 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
1060 const MemRegion *MR) {
1061 switch (MR->getKind()) {
1062 case MemRegion::FunctionCodeRegionKind: {
1063 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
1064 os << "the address of the function '" << *FD << '\'';
1065 else
1066 os << "the address of a function";
1067 return true;
1068 }
1069 case MemRegion::BlockCodeRegionKind:
1070 os << "block text";
1071 return true;
1072 case MemRegion::BlockDataRegionKind:
1073 os << "a block";
1074 return true;
1075 case MemRegion::CXXThisRegionKind:
1076 case MemRegion::CXXTempObjectRegionKind:
1077 os << "a C++ temp object of type "
1078 << cast<TypedValueRegion>(MR)->getValueType();
1079 return true;
1080 case MemRegion::NonParamVarRegionKind:
1081 os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType();
1082 return true;
1083 case MemRegion::ParamVarRegionKind:
1084 os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType();
1085 return true;
1086 case MemRegion::FieldRegionKind:
1087 os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType();
1088 return true;
1089 case MemRegion::ObjCIvarRegionKind:
1090 os << "an instance variable of type "
1091 << cast<TypedValueRegion>(MR)->getValueType();
1092 return true;
1093 default:
1094 return false;
1095 }
1096 }
1097
memsetAux(const Expr * DstBuffer,SVal CharVal,const Expr * Size,CheckerContext & C,ProgramStateRef & State)1098 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1099 const Expr *Size, CheckerContext &C,
1100 ProgramStateRef &State) {
1101 SVal MemVal = C.getSVal(DstBuffer);
1102 SVal SizeVal = C.getSVal(Size);
1103 const MemRegion *MR = MemVal.getAsRegion();
1104 if (!MR)
1105 return false;
1106
1107 // We're about to model memset by producing a "default binding" in the Store.
1108 // Our current implementation - RegionStore - doesn't support default bindings
1109 // that don't cover the whole base region. So we should first get the offset
1110 // and the base region to figure out whether the offset of buffer is 0.
1111 RegionOffset Offset = MR->getAsOffset();
1112 const MemRegion *BR = Offset.getRegion();
1113
1114 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1115 if (!SizeNL)
1116 return false;
1117
1118 SValBuilder &svalBuilder = C.getSValBuilder();
1119 ASTContext &Ctx = C.getASTContext();
1120
1121 // void *memset(void *dest, int ch, size_t count);
1122 // For now we can only handle the case of offset is 0 and concrete char value.
1123 if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1124 Offset.getOffset() == 0) {
1125 // Get the base region's size.
1126 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
1127
1128 ProgramStateRef StateWholeReg, StateNotWholeReg;
1129 std::tie(StateWholeReg, StateNotWholeReg) =
1130 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1131
1132 // With the semantic of 'memset()', we should convert the CharVal to
1133 // unsigned char.
1134 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1135
1136 ProgramStateRef StateNullChar, StateNonNullChar;
1137 std::tie(StateNullChar, StateNonNullChar) =
1138 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1139
1140 if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1141 !StateNonNullChar) {
1142 // If the 'memset()' acts on the whole region of destination buffer and
1143 // the value of the second argument of 'memset()' is zero, bind the second
1144 // argument's value to the destination buffer with 'default binding'.
1145 // FIXME: Since there is no perfect way to bind the non-zero character, we
1146 // can only deal with zero value here. In the future, we need to deal with
1147 // the binding of non-zero value in the case of whole region.
1148 State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1149 C.getLocationContext());
1150 } else {
1151 // If the destination buffer's extent is not equal to the value of
1152 // third argument, just invalidate buffer.
1153 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1154 /*IsSourceBuffer*/ false, Size);
1155 }
1156
1157 if (StateNullChar && !StateNonNullChar) {
1158 // If the value of the second argument of 'memset()' is zero, set the
1159 // string length of destination buffer to 0 directly.
1160 State = setCStringLength(State, MR,
1161 svalBuilder.makeZeroVal(Ctx.getSizeType()));
1162 } else if (!StateNullChar && StateNonNullChar) {
1163 SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1164 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1165 C.getLocationContext(), C.blockCount());
1166
1167 // If the value of second argument is not zero, then the string length
1168 // is at least the size argument.
1169 SVal NewStrLenGESize = svalBuilder.evalBinOp(
1170 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1171
1172 State = setCStringLength(
1173 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1174 MR, NewStrLen);
1175 }
1176 } else {
1177 // If the offset is not zero and char value is not concrete, we can do
1178 // nothing but invalidate the buffer.
1179 State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1180 /*IsSourceBuffer*/ false, Size);
1181 }
1182 return true;
1183 }
1184
1185 //===----------------------------------------------------------------------===//
1186 // evaluation of individual function calls.
1187 //===----------------------------------------------------------------------===//
1188
evalCopyCommon(CheckerContext & C,const CallExpr * CE,ProgramStateRef state,SizeArgExpr Size,DestinationArgExpr Dest,SourceArgExpr Source,bool Restricted,bool IsMempcpy,bool IsWide) const1189 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE,
1190 ProgramStateRef state, SizeArgExpr Size,
1191 DestinationArgExpr Dest,
1192 SourceArgExpr Source, bool Restricted,
1193 bool IsMempcpy, bool IsWide) const {
1194 CurrentFunctionDescription = "memory copy function";
1195
1196 // See if the size argument is zero.
1197 const LocationContext *LCtx = C.getLocationContext();
1198 SVal sizeVal = state->getSVal(Size.Expression, LCtx);
1199 QualType sizeTy = Size.Expression->getType();
1200
1201 ProgramStateRef stateZeroSize, stateNonZeroSize;
1202 std::tie(stateZeroSize, stateNonZeroSize) =
1203 assumeZero(C, state, sizeVal, sizeTy);
1204
1205 // Get the value of the Dest.
1206 SVal destVal = state->getSVal(Dest.Expression, LCtx);
1207
1208 // If the size is zero, there won't be any actual memory access, so
1209 // just bind the return value to the destination buffer and return.
1210 if (stateZeroSize && !stateNonZeroSize) {
1211 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1212 C.addTransition(stateZeroSize);
1213 return;
1214 }
1215
1216 // If the size can be nonzero, we have to check the other arguments.
1217 if (stateNonZeroSize) {
1218 state = stateNonZeroSize;
1219
1220 // Ensure the destination is not null. If it is NULL there will be a
1221 // NULL pointer dereference.
1222 state = checkNonNull(C, state, Dest, destVal);
1223 if (!state)
1224 return;
1225
1226 // Get the value of the Src.
1227 SVal srcVal = state->getSVal(Source.Expression, LCtx);
1228
1229 // Ensure the source is not null. If it is NULL there will be a
1230 // NULL pointer dereference.
1231 state = checkNonNull(C, state, Source, srcVal);
1232 if (!state)
1233 return;
1234
1235 // Ensure the accesses are valid and that the buffers do not overlap.
1236 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, IsWide);
1237 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, IsWide);
1238
1239 if (Restricted)
1240 state = CheckOverlap(C, state, Size, Dest, Source, IsWide);
1241
1242 if (!state)
1243 return;
1244
1245 // If this is mempcpy, get the byte after the last byte copied and
1246 // bind the expr.
1247 if (IsMempcpy) {
1248 // Get the byte after the last byte copied.
1249 SValBuilder &SvalBuilder = C.getSValBuilder();
1250 ASTContext &Ctx = SvalBuilder.getContext();
1251 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1252 SVal DestRegCharVal =
1253 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
1254 SVal lastElement = C.getSValBuilder().evalBinOp(
1255 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
1256 // If we don't know how much we copied, we can at least
1257 // conjure a return value for later.
1258 if (lastElement.isUnknown())
1259 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1260 C.blockCount());
1261
1262 // The byte after the last byte copied is the return value.
1263 state = state->BindExpr(CE, LCtx, lastElement);
1264 } else {
1265 // All other copies return the destination buffer.
1266 // (Well, bcopy() has a void return type, but this won't hurt.)
1267 state = state->BindExpr(CE, LCtx, destVal);
1268 }
1269
1270 // Invalidate the destination (regular invalidation without pointer-escaping
1271 // the address of the top-level region).
1272 // FIXME: Even if we can't perfectly model the copy, we should see if we
1273 // can use LazyCompoundVals to copy the source values into the destination.
1274 // This would probably remove any existing bindings past the end of the
1275 // copied region, but that's still an improvement over blank invalidation.
1276 state =
1277 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression),
1278 /*IsSourceBuffer*/ false, Size.Expression);
1279
1280 // Invalidate the source (const-invalidation without const-pointer-escaping
1281 // the address of the top-level region).
1282 state = InvalidateBuffer(C, state, Source.Expression,
1283 C.getSVal(Source.Expression),
1284 /*IsSourceBuffer*/ true, nullptr);
1285
1286 C.addTransition(state);
1287 }
1288 }
1289
evalMemcpy(CheckerContext & C,const CallExpr * CE,bool IsWide) const1290 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE,
1291 bool IsWide) const {
1292 // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1293 // The return value is the address of the destination buffer.
1294 DestinationArgExpr Dest = {CE->getArg(0), 0};
1295 SourceArgExpr Src = {CE->getArg(1), 1};
1296 SizeArgExpr Size = {CE->getArg(2), 2};
1297
1298 ProgramStateRef State = C.getState();
1299
1300 constexpr bool IsRestricted = true;
1301 constexpr bool IsMempcpy = false;
1302 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy,
1303 IsWide);
1304 }
1305
evalMempcpy(CheckerContext & C,const CallExpr * CE) const1306 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1307 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1308 // The return value is a pointer to the byte following the last written byte.
1309 DestinationArgExpr Dest = {CE->getArg(0), 0};
1310 SourceArgExpr Src = {CE->getArg(1), 1};
1311 SizeArgExpr Size = {CE->getArg(2), 2};
1312
1313 constexpr bool IsRestricted = true;
1314 constexpr bool IsMempcpy = true;
1315 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy,
1316 false);
1317 }
1318
evalMemmove(CheckerContext & C,const CallExpr * CE) const1319 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1320 // void *memmove(void *dst, const void *src, size_t n);
1321 // The return value is the address of the destination buffer.
1322 DestinationArgExpr Dest = {CE->getArg(0), 0};
1323 SourceArgExpr Src = {CE->getArg(1), 1};
1324 SizeArgExpr Size = {CE->getArg(2), 2};
1325
1326 constexpr bool IsRestricted = false;
1327 constexpr bool IsMempcpy = false;
1328 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy,
1329 false);
1330 }
1331
evalBcopy(CheckerContext & C,const CallExpr * CE) const1332 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1333 // void bcopy(const void *src, void *dst, size_t n);
1334 SourceArgExpr Src(CE->getArg(0), 0);
1335 DestinationArgExpr Dest = {CE->getArg(1), 1};
1336 SizeArgExpr Size = {CE->getArg(2), 2};
1337
1338 constexpr bool IsRestricted = false;
1339 constexpr bool IsMempcpy = false;
1340 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy,
1341 false);
1342 }
1343
evalMemcmp(CheckerContext & C,const CallExpr * CE) const1344 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1345 // int memcmp(const void *s1, const void *s2, size_t n);
1346 CurrentFunctionDescription = "memory comparison function";
1347
1348 AnyArgExpr Left = {CE->getArg(0), 0};
1349 AnyArgExpr Right = {CE->getArg(1), 1};
1350 SizeArgExpr Size = {CE->getArg(2), 2};
1351
1352 ProgramStateRef State = C.getState();
1353 SValBuilder &Builder = C.getSValBuilder();
1354 const LocationContext *LCtx = C.getLocationContext();
1355
1356 // See if the size argument is zero.
1357 SVal sizeVal = State->getSVal(Size.Expression, LCtx);
1358 QualType sizeTy = Size.Expression->getType();
1359
1360 ProgramStateRef stateZeroSize, stateNonZeroSize;
1361 std::tie(stateZeroSize, stateNonZeroSize) =
1362 assumeZero(C, State, sizeVal, sizeTy);
1363
1364 // If the size can be zero, the result will be 0 in that case, and we don't
1365 // have to check either of the buffers.
1366 if (stateZeroSize) {
1367 State = stateZeroSize;
1368 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1369 C.addTransition(State);
1370 }
1371
1372 // If the size can be nonzero, we have to check the other arguments.
1373 if (stateNonZeroSize) {
1374 State = stateNonZeroSize;
1375 // If we know the two buffers are the same, we know the result is 0.
1376 // First, get the two buffers' addresses. Another checker will have already
1377 // made sure they're not undefined.
1378 DefinedOrUnknownSVal LV =
1379 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1380 DefinedOrUnknownSVal RV =
1381 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1382
1383 // See if they are the same.
1384 ProgramStateRef SameBuffer, NotSameBuffer;
1385 std::tie(SameBuffer, NotSameBuffer) =
1386 State->assume(Builder.evalEQ(State, LV, RV));
1387
1388 // If the two arguments are the same buffer, we know the result is 0,
1389 // and we only need to check one size.
1390 if (SameBuffer && !NotSameBuffer) {
1391 State = SameBuffer;
1392 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1393 if (State) {
1394 State =
1395 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType()));
1396 C.addTransition(State);
1397 }
1398 return;
1399 }
1400
1401 // If the two arguments might be different buffers, we have to check
1402 // the size of both of them.
1403 assert(NotSameBuffer);
1404 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read);
1405 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1406 if (State) {
1407 // The return value is the comparison result, which we don't know.
1408 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1409 State = State->BindExpr(CE, LCtx, CmpV);
1410 C.addTransition(State);
1411 }
1412 }
1413 }
1414
evalstrLength(CheckerContext & C,const CallExpr * CE) const1415 void CStringChecker::evalstrLength(CheckerContext &C,
1416 const CallExpr *CE) const {
1417 // size_t strlen(const char *s);
1418 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1419 }
1420
evalstrnLength(CheckerContext & C,const CallExpr * CE) const1421 void CStringChecker::evalstrnLength(CheckerContext &C,
1422 const CallExpr *CE) const {
1423 // size_t strnlen(const char *s, size_t maxlen);
1424 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1425 }
1426
evalstrLengthCommon(CheckerContext & C,const CallExpr * CE,bool IsStrnlen) const1427 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1428 bool IsStrnlen) const {
1429 CurrentFunctionDescription = "string length function";
1430 ProgramStateRef state = C.getState();
1431 const LocationContext *LCtx = C.getLocationContext();
1432
1433 if (IsStrnlen) {
1434 const Expr *maxlenExpr = CE->getArg(1);
1435 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1436
1437 ProgramStateRef stateZeroSize, stateNonZeroSize;
1438 std::tie(stateZeroSize, stateNonZeroSize) =
1439 assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1440
1441 // If the size can be zero, the result will be 0 in that case, and we don't
1442 // have to check the string itself.
1443 if (stateZeroSize) {
1444 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1445 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1446 C.addTransition(stateZeroSize);
1447 }
1448
1449 // If the size is GUARANTEED to be zero, we're done!
1450 if (!stateNonZeroSize)
1451 return;
1452
1453 // Otherwise, record the assumption that the size is nonzero.
1454 state = stateNonZeroSize;
1455 }
1456
1457 // Check that the string argument is non-null.
1458 AnyArgExpr Arg = {CE->getArg(0), 0};
1459 SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
1460 state = checkNonNull(C, state, Arg, ArgVal);
1461
1462 if (!state)
1463 return;
1464
1465 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
1466
1467 // If the argument isn't a valid C string, there's no valid state to
1468 // transition to.
1469 if (strLength.isUndef())
1470 return;
1471
1472 DefinedOrUnknownSVal result = UnknownVal();
1473
1474 // If the check is for strnlen() then bind the return value to no more than
1475 // the maxlen value.
1476 if (IsStrnlen) {
1477 QualType cmpTy = C.getSValBuilder().getConditionType();
1478
1479 // It's a little unfortunate to be getting this again,
1480 // but it's not that expensive...
1481 const Expr *maxlenExpr = CE->getArg(1);
1482 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1483
1484 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1485 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1486
1487 if (strLengthNL && maxlenValNL) {
1488 ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1489
1490 // Check if the strLength is greater than the maxlen.
1491 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1492 C.getSValBuilder()
1493 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1494 .castAs<DefinedOrUnknownSVal>());
1495
1496 if (stateStringTooLong && !stateStringNotTooLong) {
1497 // If the string is longer than maxlen, return maxlen.
1498 result = *maxlenValNL;
1499 } else if (stateStringNotTooLong && !stateStringTooLong) {
1500 // If the string is shorter than maxlen, return its length.
1501 result = *strLengthNL;
1502 }
1503 }
1504
1505 if (result.isUnknown()) {
1506 // If we don't have enough information for a comparison, there's
1507 // no guarantee the full string length will actually be returned.
1508 // All we know is the return value is the min of the string length
1509 // and the limit. This is better than nothing.
1510 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1511 C.blockCount());
1512 NonLoc resultNL = result.castAs<NonLoc>();
1513
1514 if (strLengthNL) {
1515 state = state->assume(C.getSValBuilder().evalBinOpNN(
1516 state, BO_LE, resultNL, *strLengthNL, cmpTy)
1517 .castAs<DefinedOrUnknownSVal>(), true);
1518 }
1519
1520 if (maxlenValNL) {
1521 state = state->assume(C.getSValBuilder().evalBinOpNN(
1522 state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1523 .castAs<DefinedOrUnknownSVal>(), true);
1524 }
1525 }
1526
1527 } else {
1528 // This is a plain strlen(), not strnlen().
1529 result = strLength.castAs<DefinedOrUnknownSVal>();
1530
1531 // If we don't know the length of the string, conjure a return
1532 // value, so it can be used in constraints, at least.
1533 if (result.isUnknown()) {
1534 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1535 C.blockCount());
1536 }
1537 }
1538
1539 // Bind the return value.
1540 assert(!result.isUnknown() && "Should have conjured a value by now");
1541 state = state->BindExpr(CE, LCtx, result);
1542 C.addTransition(state);
1543 }
1544
evalStrcpy(CheckerContext & C,const CallExpr * CE) const1545 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1546 // char *strcpy(char *restrict dst, const char *restrict src);
1547 evalStrcpyCommon(C, CE,
1548 /* ReturnEnd = */ false,
1549 /* IsBounded = */ false,
1550 /* appendK = */ ConcatFnKind::none);
1551 }
1552
evalStrncpy(CheckerContext & C,const CallExpr * CE) const1553 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1554 // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1555 evalStrcpyCommon(C, CE,
1556 /* ReturnEnd = */ false,
1557 /* IsBounded = */ true,
1558 /* appendK = */ ConcatFnKind::none);
1559 }
1560
evalStpcpy(CheckerContext & C,const CallExpr * CE) const1561 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1562 // char *stpcpy(char *restrict dst, const char *restrict src);
1563 evalStrcpyCommon(C, CE,
1564 /* ReturnEnd = */ true,
1565 /* IsBounded = */ false,
1566 /* appendK = */ ConcatFnKind::none);
1567 }
1568
evalStrlcpy(CheckerContext & C,const CallExpr * CE) const1569 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1570 // size_t strlcpy(char *dest, const char *src, size_t size);
1571 evalStrcpyCommon(C, CE,
1572 /* ReturnEnd = */ true,
1573 /* IsBounded = */ true,
1574 /* appendK = */ ConcatFnKind::none,
1575 /* returnPtr = */ false);
1576 }
1577
evalStrcat(CheckerContext & C,const CallExpr * CE) const1578 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1579 // char *strcat(char *restrict s1, const char *restrict s2);
1580 evalStrcpyCommon(C, CE,
1581 /* ReturnEnd = */ false,
1582 /* IsBounded = */ false,
1583 /* appendK = */ ConcatFnKind::strcat);
1584 }
1585
evalStrncat(CheckerContext & C,const CallExpr * CE) const1586 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1587 // char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1588 evalStrcpyCommon(C, CE,
1589 /* ReturnEnd = */ false,
1590 /* IsBounded = */ true,
1591 /* appendK = */ ConcatFnKind::strcat);
1592 }
1593
evalStrlcat(CheckerContext & C,const CallExpr * CE) const1594 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1595 // size_t strlcat(char *dst, const char *src, size_t size);
1596 // It will append at most size - strlen(dst) - 1 bytes,
1597 // NULL-terminating the result.
1598 evalStrcpyCommon(C, CE,
1599 /* ReturnEnd = */ false,
1600 /* IsBounded = */ true,
1601 /* appendK = */ ConcatFnKind::strlcat,
1602 /* returnPtr = */ false);
1603 }
1604
evalStrcpyCommon(CheckerContext & C,const CallExpr * CE,bool ReturnEnd,bool IsBounded,ConcatFnKind appendK,bool returnPtr) const1605 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1606 bool ReturnEnd, bool IsBounded,
1607 ConcatFnKind appendK,
1608 bool returnPtr) const {
1609 if (appendK == ConcatFnKind::none)
1610 CurrentFunctionDescription = "string copy function";
1611 else
1612 CurrentFunctionDescription = "string concatenation function";
1613
1614 ProgramStateRef state = C.getState();
1615 const LocationContext *LCtx = C.getLocationContext();
1616
1617 // Check that the destination is non-null.
1618 DestinationArgExpr Dst = {CE->getArg(0), 0};
1619 SVal DstVal = state->getSVal(Dst.Expression, LCtx);
1620 state = checkNonNull(C, state, Dst, DstVal);
1621 if (!state)
1622 return;
1623
1624 // Check that the source is non-null.
1625 SourceArgExpr srcExpr = {CE->getArg(1), 1};
1626 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
1627 state = checkNonNull(C, state, srcExpr, srcVal);
1628 if (!state)
1629 return;
1630
1631 // Get the string length of the source.
1632 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
1633 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1634
1635 // Get the string length of the destination buffer.
1636 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
1637 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1638
1639 // If the source isn't a valid C string, give up.
1640 if (strLength.isUndef())
1641 return;
1642
1643 SValBuilder &svalBuilder = C.getSValBuilder();
1644 QualType cmpTy = svalBuilder.getConditionType();
1645 QualType sizeTy = svalBuilder.getContext().getSizeType();
1646
1647 // These two values allow checking two kinds of errors:
1648 // - actual overflows caused by a source that doesn't fit in the destination
1649 // - potential overflows caused by a bound that could exceed the destination
1650 SVal amountCopied = UnknownVal();
1651 SVal maxLastElementIndex = UnknownVal();
1652 const char *boundWarning = nullptr;
1653
1654 // FIXME: Why do we choose the srcExpr if the access has no size?
1655 // Note that the 3rd argument of the call would be the size parameter.
1656 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex};
1657 state = CheckOverlap(
1658 C, state,
1659 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst,
1660 srcExpr);
1661
1662 if (!state)
1663 return;
1664
1665 // If the function is strncpy, strncat, etc... it is bounded.
1666 if (IsBounded) {
1667 // Get the max number of characters to copy.
1668 SizeArgExpr lenExpr = {CE->getArg(2), 2};
1669 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
1670
1671 // Protect against misdeclared strncpy().
1672 lenVal =
1673 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
1674
1675 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1676
1677 // If we know both values, we might be able to figure out how much
1678 // we're copying.
1679 if (strLengthNL && lenValNL) {
1680 switch (appendK) {
1681 case ConcatFnKind::none:
1682 case ConcatFnKind::strcat: {
1683 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1684 // Check if the max number to copy is less than the length of the src.
1685 // If the bound is equal to the source length, strncpy won't null-
1686 // terminate the result!
1687 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1688 svalBuilder
1689 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1690 .castAs<DefinedOrUnknownSVal>());
1691
1692 if (stateSourceTooLong && !stateSourceNotTooLong) {
1693 // Max number to copy is less than the length of the src, so the
1694 // actual strLength copied is the max number arg.
1695 state = stateSourceTooLong;
1696 amountCopied = lenVal;
1697
1698 } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1699 // The source buffer entirely fits in the bound.
1700 state = stateSourceNotTooLong;
1701 amountCopied = strLength;
1702 }
1703 break;
1704 }
1705 case ConcatFnKind::strlcat:
1706 if (!dstStrLengthNL)
1707 return;
1708
1709 // amountCopied = min (size - dstLen - 1 , srcLen)
1710 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1711 *dstStrLengthNL, sizeTy);
1712 if (!isa<NonLoc>(freeSpace))
1713 return;
1714 freeSpace =
1715 svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1716 svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1717 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1718
1719 // While unlikely, it is possible that the subtraction is
1720 // too complex to compute, let's check whether it succeeded.
1721 if (!freeSpaceNL)
1722 return;
1723 SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1724 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1725
1726 ProgramStateRef TrueState, FalseState;
1727 std::tie(TrueState, FalseState) =
1728 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1729
1730 // srcStrLength <= size - dstStrLength -1
1731 if (TrueState && !FalseState) {
1732 amountCopied = strLength;
1733 }
1734
1735 // srcStrLength > size - dstStrLength -1
1736 if (!TrueState && FalseState) {
1737 amountCopied = freeSpace;
1738 }
1739
1740 if (TrueState && FalseState)
1741 amountCopied = UnknownVal();
1742 break;
1743 }
1744 }
1745 // We still want to know if the bound is known to be too large.
1746 if (lenValNL) {
1747 switch (appendK) {
1748 case ConcatFnKind::strcat:
1749 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1750
1751 // Get the string length of the destination. If the destination is
1752 // memory that can't have a string length, we shouldn't be copying
1753 // into it anyway.
1754 if (dstStrLength.isUndef())
1755 return;
1756
1757 if (dstStrLengthNL) {
1758 maxLastElementIndex = svalBuilder.evalBinOpNN(
1759 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1760
1761 boundWarning = "Size argument is greater than the free space in the "
1762 "destination buffer";
1763 }
1764 break;
1765 case ConcatFnKind::none:
1766 case ConcatFnKind::strlcat:
1767 // For strncpy and strlcat, this is just checking
1768 // that lenVal <= sizeof(dst).
1769 // (Yes, strncpy and strncat differ in how they treat termination.
1770 // strncat ALWAYS terminates, but strncpy doesn't.)
1771
1772 // We need a special case for when the copy size is zero, in which
1773 // case strncpy will do no work at all. Our bounds check uses n-1
1774 // as the last element accessed, so n == 0 is problematic.
1775 ProgramStateRef StateZeroSize, StateNonZeroSize;
1776 std::tie(StateZeroSize, StateNonZeroSize) =
1777 assumeZero(C, state, *lenValNL, sizeTy);
1778
1779 // If the size is known to be zero, we're done.
1780 if (StateZeroSize && !StateNonZeroSize) {
1781 if (returnPtr) {
1782 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1783 } else {
1784 if (appendK == ConcatFnKind::none) {
1785 // strlcpy returns strlen(src)
1786 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
1787 } else {
1788 // strlcat returns strlen(src) + strlen(dst)
1789 SVal retSize = svalBuilder.evalBinOp(
1790 state, BO_Add, strLength, dstStrLength, sizeTy);
1791 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
1792 }
1793 }
1794 C.addTransition(StateZeroSize);
1795 return;
1796 }
1797
1798 // Otherwise, go ahead and figure out the last element we'll touch.
1799 // We don't record the non-zero assumption here because we can't
1800 // be sure. We won't warn on a possible zero.
1801 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1802 maxLastElementIndex =
1803 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1804 boundWarning = "Size argument is greater than the length of the "
1805 "destination buffer";
1806 break;
1807 }
1808 }
1809 } else {
1810 // The function isn't bounded. The amount copied should match the length
1811 // of the source buffer.
1812 amountCopied = strLength;
1813 }
1814
1815 assert(state);
1816
1817 // This represents the number of characters copied into the destination
1818 // buffer. (It may not actually be the strlen if the destination buffer
1819 // is not terminated.)
1820 SVal finalStrLength = UnknownVal();
1821 SVal strlRetVal = UnknownVal();
1822
1823 if (appendK == ConcatFnKind::none && !returnPtr) {
1824 // strlcpy returns the sizeof(src)
1825 strlRetVal = strLength;
1826 }
1827
1828 // If this is an appending function (strcat, strncat...) then set the
1829 // string length to strlen(src) + strlen(dst) since the buffer will
1830 // ultimately contain both.
1831 if (appendK != ConcatFnKind::none) {
1832 // Get the string length of the destination. If the destination is memory
1833 // that can't have a string length, we shouldn't be copying into it anyway.
1834 if (dstStrLength.isUndef())
1835 return;
1836
1837 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1838 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1839 *dstStrLengthNL, sizeTy);
1840 }
1841
1842 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1843
1844 // If we know both string lengths, we might know the final string length.
1845 if (amountCopiedNL && dstStrLengthNL) {
1846 // Make sure the two lengths together don't overflow a size_t.
1847 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1848 if (!state)
1849 return;
1850
1851 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1852 *dstStrLengthNL, sizeTy);
1853 }
1854
1855 // If we couldn't get a single value for the final string length,
1856 // we can at least bound it by the individual lengths.
1857 if (finalStrLength.isUnknown()) {
1858 // Try to get a "hypothetical" string length symbol, which we can later
1859 // set as a real value if that turns out to be the case.
1860 finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1861 assert(!finalStrLength.isUndef());
1862
1863 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1864 if (amountCopiedNL && appendK == ConcatFnKind::none) {
1865 // we overwrite dst string with the src
1866 // finalStrLength >= srcStrLength
1867 SVal sourceInResult = svalBuilder.evalBinOpNN(
1868 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1869 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1870 true);
1871 if (!state)
1872 return;
1873 }
1874
1875 if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1876 // we extend the dst string with the src
1877 // finalStrLength >= dstStrLength
1878 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1879 *finalStrLengthNL,
1880 *dstStrLengthNL,
1881 cmpTy);
1882 state =
1883 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1884 if (!state)
1885 return;
1886 }
1887 }
1888 }
1889
1890 } else {
1891 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1892 // the final string length will match the input string length.
1893 finalStrLength = amountCopied;
1894 }
1895
1896 SVal Result;
1897
1898 if (returnPtr) {
1899 // The final result of the function will either be a pointer past the last
1900 // copied element, or a pointer to the start of the destination buffer.
1901 Result = (ReturnEnd ? UnknownVal() : DstVal);
1902 } else {
1903 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
1904 //strlcpy, strlcat
1905 Result = strlRetVal;
1906 else
1907 Result = finalStrLength;
1908 }
1909
1910 assert(state);
1911
1912 // If the destination is a MemRegion, try to check for a buffer overflow and
1913 // record the new string length.
1914 if (Optional<loc::MemRegionVal> dstRegVal =
1915 DstVal.getAs<loc::MemRegionVal>()) {
1916 QualType ptrTy = Dst.Expression->getType();
1917
1918 // If we have an exact value on a bounded copy, use that to check for
1919 // overflows, rather than our estimate about how much is actually copied.
1920 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1921 SVal maxLastElement =
1922 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
1923
1924 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
1925 if (!state)
1926 return;
1927 }
1928
1929 // Then, if the final length is known...
1930 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1931 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1932 *knownStrLength, ptrTy);
1933
1934 // ...and we haven't checked the bound, we'll check the actual copy.
1935 if (!boundWarning) {
1936 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
1937 if (!state)
1938 return;
1939 }
1940
1941 // If this is a stpcpy-style copy, the last element is the return value.
1942 if (returnPtr && ReturnEnd)
1943 Result = lastElement;
1944 }
1945
1946 // Invalidate the destination (regular invalidation without pointer-escaping
1947 // the address of the top-level region). This must happen before we set the
1948 // C string length because invalidation will clear the length.
1949 // FIXME: Even if we can't perfectly model the copy, we should see if we
1950 // can use LazyCompoundVals to copy the source values into the destination.
1951 // This would probably remove any existing bindings past the end of the
1952 // string, but that's still an improvement over blank invalidation.
1953 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal,
1954 /*IsSourceBuffer*/ false, nullptr);
1955
1956 // Invalidate the source (const-invalidation without const-pointer-escaping
1957 // the address of the top-level region).
1958 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal,
1959 /*IsSourceBuffer*/ true, nullptr);
1960
1961 // Set the C string length of the destination, if we know it.
1962 if (IsBounded && (appendK == ConcatFnKind::none)) {
1963 // strncpy is annoying in that it doesn't guarantee to null-terminate
1964 // the result string. If the original string didn't fit entirely inside
1965 // the bound (including the null-terminator), we don't know how long the
1966 // result is.
1967 if (amountCopied != strLength)
1968 finalStrLength = UnknownVal();
1969 }
1970 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1971 }
1972
1973 assert(state);
1974
1975 if (returnPtr) {
1976 // If this is a stpcpy-style copy, but we were unable to check for a buffer
1977 // overflow, we still need a result. Conjure a return value.
1978 if (ReturnEnd && Result.isUnknown()) {
1979 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1980 }
1981 }
1982 // Set the return value.
1983 state = state->BindExpr(CE, LCtx, Result);
1984 C.addTransition(state);
1985 }
1986
evalStrcmp(CheckerContext & C,const CallExpr * CE) const1987 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1988 //int strcmp(const char *s1, const char *s2);
1989 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
1990 }
1991
evalStrncmp(CheckerContext & C,const CallExpr * CE) const1992 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1993 //int strncmp(const char *s1, const char *s2, size_t n);
1994 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
1995 }
1996
evalStrcasecmp(CheckerContext & C,const CallExpr * CE) const1997 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1998 const CallExpr *CE) const {
1999 //int strcasecmp(const char *s1, const char *s2);
2000 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
2001 }
2002
evalStrncasecmp(CheckerContext & C,const CallExpr * CE) const2003 void CStringChecker::evalStrncasecmp(CheckerContext &C,
2004 const CallExpr *CE) const {
2005 //int strncasecmp(const char *s1, const char *s2, size_t n);
2006 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
2007 }
2008
evalStrcmpCommon(CheckerContext & C,const CallExpr * CE,bool IsBounded,bool IgnoreCase) const2009 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
2010 bool IsBounded, bool IgnoreCase) const {
2011 CurrentFunctionDescription = "string comparison function";
2012 ProgramStateRef state = C.getState();
2013 const LocationContext *LCtx = C.getLocationContext();
2014
2015 // Check that the first string is non-null
2016 AnyArgExpr Left = {CE->getArg(0), 0};
2017 SVal LeftVal = state->getSVal(Left.Expression, LCtx);
2018 state = checkNonNull(C, state, Left, LeftVal);
2019 if (!state)
2020 return;
2021
2022 // Check that the second string is non-null.
2023 AnyArgExpr Right = {CE->getArg(1), 1};
2024 SVal RightVal = state->getSVal(Right.Expression, LCtx);
2025 state = checkNonNull(C, state, Right, RightVal);
2026 if (!state)
2027 return;
2028
2029 // Get the string length of the first string or give up.
2030 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
2031 if (LeftLength.isUndef())
2032 return;
2033
2034 // Get the string length of the second string or give up.
2035 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
2036 if (RightLength.isUndef())
2037 return;
2038
2039 // If we know the two buffers are the same, we know the result is 0.
2040 // First, get the two buffers' addresses. Another checker will have already
2041 // made sure they're not undefined.
2042 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
2043 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
2044
2045 // See if they are the same.
2046 SValBuilder &svalBuilder = C.getSValBuilder();
2047 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
2048 ProgramStateRef StSameBuf, StNotSameBuf;
2049 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
2050
2051 // If the two arguments might be the same buffer, we know the result is 0,
2052 // and we only need to check one size.
2053 if (StSameBuf) {
2054 StSameBuf = StSameBuf->BindExpr(CE, LCtx,
2055 svalBuilder.makeZeroVal(CE->getType()));
2056 C.addTransition(StSameBuf);
2057
2058 // If the two arguments are GUARANTEED to be the same, we're done!
2059 if (!StNotSameBuf)
2060 return;
2061 }
2062
2063 assert(StNotSameBuf);
2064 state = StNotSameBuf;
2065
2066 // At this point we can go about comparing the two buffers.
2067 // For now, we only do this if they're both known string literals.
2068
2069 // Attempt to extract string literals from both expressions.
2070 const StringLiteral *LeftStrLiteral =
2071 getCStringLiteral(C, state, Left.Expression, LeftVal);
2072 const StringLiteral *RightStrLiteral =
2073 getCStringLiteral(C, state, Right.Expression, RightVal);
2074 bool canComputeResult = false;
2075 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
2076 C.blockCount());
2077
2078 if (LeftStrLiteral && RightStrLiteral) {
2079 StringRef LeftStrRef = LeftStrLiteral->getString();
2080 StringRef RightStrRef = RightStrLiteral->getString();
2081
2082 if (IsBounded) {
2083 // Get the max number of characters to compare.
2084 const Expr *lenExpr = CE->getArg(2);
2085 SVal lenVal = state->getSVal(lenExpr, LCtx);
2086
2087 // If the length is known, we can get the right substrings.
2088 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2089 // Create substrings of each to compare the prefix.
2090 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
2091 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
2092 canComputeResult = true;
2093 }
2094 } else {
2095 // This is a normal, unbounded strcmp.
2096 canComputeResult = true;
2097 }
2098
2099 if (canComputeResult) {
2100 // Real strcmp stops at null characters.
2101 size_t s1Term = LeftStrRef.find('\0');
2102 if (s1Term != StringRef::npos)
2103 LeftStrRef = LeftStrRef.substr(0, s1Term);
2104
2105 size_t s2Term = RightStrRef.find('\0');
2106 if (s2Term != StringRef::npos)
2107 RightStrRef = RightStrRef.substr(0, s2Term);
2108
2109 // Use StringRef's comparison methods to compute the actual result.
2110 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
2111 : LeftStrRef.compare(RightStrRef);
2112
2113 // The strcmp function returns an integer greater than, equal to, or less
2114 // than zero, [c11, p7.24.4.2].
2115 if (compareRes == 0) {
2116 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2117 }
2118 else {
2119 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2120 // Constrain strcmp's result range based on the result of StringRef's
2121 // comparison methods.
2122 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2123 SVal compareWithZero =
2124 svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2125 svalBuilder.getConditionType());
2126 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2127 state = state->assume(compareWithZeroVal, true);
2128 }
2129 }
2130 }
2131
2132 state = state->BindExpr(CE, LCtx, resultVal);
2133
2134 // Record this as a possible path.
2135 C.addTransition(state);
2136 }
2137
evalStrsep(CheckerContext & C,const CallExpr * CE) const2138 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2139 // char *strsep(char **stringp, const char *delim);
2140 // Verify whether the search string parameter matches the return type.
2141 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0};
2142
2143 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
2144 if (CharPtrTy.isNull() ||
2145 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2146 return;
2147
2148 CurrentFunctionDescription = "strsep()";
2149 ProgramStateRef State = C.getState();
2150 const LocationContext *LCtx = C.getLocationContext();
2151
2152 // Check that the search string pointer is non-null (though it may point to
2153 // a null string).
2154 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
2155 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2156 if (!State)
2157 return;
2158
2159 // Check that the delimiter string is non-null.
2160 AnyArgExpr DelimStr = {CE->getArg(1), 1};
2161 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
2162 State = checkNonNull(C, State, DelimStr, DelimStrVal);
2163 if (!State)
2164 return;
2165
2166 SValBuilder &SVB = C.getSValBuilder();
2167 SVal Result;
2168 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2169 // Get the current value of the search string pointer, as a char*.
2170 Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2171
2172 // Invalidate the search string, representing the change of one delimiter
2173 // character to NUL.
2174 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result,
2175 /*IsSourceBuffer*/ false, nullptr);
2176
2177 // Overwrite the search string pointer. The new value is either an address
2178 // further along in the same string, or NULL if there are no more tokens.
2179 State = State->bindLoc(*SearchStrLoc,
2180 SVB.conjureSymbolVal(getTag(),
2181 CE,
2182 LCtx,
2183 CharPtrTy,
2184 C.blockCount()),
2185 LCtx);
2186 } else {
2187 assert(SearchStrVal.isUnknown());
2188 // Conjure a symbolic value. It's the best we can do.
2189 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2190 }
2191
2192 // Set the return value, and finish.
2193 State = State->BindExpr(CE, LCtx, Result);
2194 C.addTransition(State);
2195 }
2196
2197 // These should probably be moved into a C++ standard library checker.
evalStdCopy(CheckerContext & C,const CallExpr * CE) const2198 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2199 evalStdCopyCommon(C, CE);
2200 }
2201
evalStdCopyBackward(CheckerContext & C,const CallExpr * CE) const2202 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2203 const CallExpr *CE) const {
2204 evalStdCopyCommon(C, CE);
2205 }
2206
evalStdCopyCommon(CheckerContext & C,const CallExpr * CE) const2207 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2208 const CallExpr *CE) const {
2209 if (!CE->getArg(2)->getType()->isPointerType())
2210 return;
2211
2212 ProgramStateRef State = C.getState();
2213
2214 const LocationContext *LCtx = C.getLocationContext();
2215
2216 // template <class _InputIterator, class _OutputIterator>
2217 // _OutputIterator
2218 // copy(_InputIterator __first, _InputIterator __last,
2219 // _OutputIterator __result)
2220
2221 // Invalidate the destination buffer
2222 const Expr *Dst = CE->getArg(2);
2223 SVal DstVal = State->getSVal(Dst, LCtx);
2224 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2225 /*Size=*/nullptr);
2226
2227 SValBuilder &SVB = C.getSValBuilder();
2228
2229 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2230 State = State->BindExpr(CE, LCtx, ResultVal);
2231
2232 C.addTransition(State);
2233 }
2234
evalMemset(CheckerContext & C,const CallExpr * CE) const2235 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2236 // void *memset(void *s, int c, size_t n);
2237 CurrentFunctionDescription = "memory set function";
2238
2239 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2240 AnyArgExpr CharE = {CE->getArg(1), 1};
2241 SizeArgExpr Size = {CE->getArg(2), 2};
2242
2243 ProgramStateRef State = C.getState();
2244
2245 // See if the size argument is zero.
2246 const LocationContext *LCtx = C.getLocationContext();
2247 SVal SizeVal = C.getSVal(Size.Expression);
2248 QualType SizeTy = Size.Expression->getType();
2249
2250 ProgramStateRef ZeroSize, NonZeroSize;
2251 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
2252
2253 // Get the value of the memory area.
2254 SVal BufferPtrVal = C.getSVal(Buffer.Expression);
2255
2256 // If the size is zero, there won't be any actual memory access, so
2257 // just bind the return value to the buffer and return.
2258 if (ZeroSize && !NonZeroSize) {
2259 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal);
2260 C.addTransition(ZeroSize);
2261 return;
2262 }
2263
2264 // Ensure the memory area is not null.
2265 // If it is NULL there will be a NULL pointer dereference.
2266 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
2267 if (!State)
2268 return;
2269
2270 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2271 if (!State)
2272 return;
2273
2274 // According to the values of the arguments, bind the value of the second
2275 // argument to the destination buffer and set string length, or just
2276 // invalidate the destination buffer.
2277 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
2278 Size.Expression, C, State))
2279 return;
2280
2281 State = State->BindExpr(CE, LCtx, BufferPtrVal);
2282 C.addTransition(State);
2283 }
2284
evalBzero(CheckerContext & C,const CallExpr * CE) const2285 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2286 CurrentFunctionDescription = "memory clearance function";
2287
2288 DestinationArgExpr Buffer = {CE->getArg(0), 0};
2289 SizeArgExpr Size = {CE->getArg(1), 1};
2290 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2291
2292 ProgramStateRef State = C.getState();
2293
2294 // See if the size argument is zero.
2295 SVal SizeVal = C.getSVal(Size.Expression);
2296 QualType SizeTy = Size.Expression->getType();
2297
2298 ProgramStateRef StateZeroSize, StateNonZeroSize;
2299 std::tie(StateZeroSize, StateNonZeroSize) =
2300 assumeZero(C, State, SizeVal, SizeTy);
2301
2302 // If the size is zero, there won't be any actual memory access,
2303 // In this case we just return.
2304 if (StateZeroSize && !StateNonZeroSize) {
2305 C.addTransition(StateZeroSize);
2306 return;
2307 }
2308
2309 // Get the value of the memory area.
2310 SVal MemVal = C.getSVal(Buffer.Expression);
2311
2312 // Ensure the memory area is not null.
2313 // If it is NULL there will be a NULL pointer dereference.
2314 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
2315 if (!State)
2316 return;
2317
2318 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2319 if (!State)
2320 return;
2321
2322 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
2323 return;
2324
2325 C.addTransition(State);
2326 }
2327
2328 //===----------------------------------------------------------------------===//
2329 // The driver method, and other Checker callbacks.
2330 //===----------------------------------------------------------------------===//
2331
identifyCall(const CallEvent & Call,CheckerContext & C) const2332 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2333 CheckerContext &C) const {
2334 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2335 if (!CE)
2336 return nullptr;
2337
2338 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2339 if (!FD)
2340 return nullptr;
2341
2342 if (StdCopy.matches(Call))
2343 return &CStringChecker::evalStdCopy;
2344 if (StdCopyBackward.matches(Call))
2345 return &CStringChecker::evalStdCopyBackward;
2346
2347 // Pro-actively check that argument types are safe to do arithmetic upon.
2348 // We do not want to crash if someone accidentally passes a structure
2349 // into, say, a C++ overload of any of these functions. We could not check
2350 // that for std::copy because they may have arguments of other types.
2351 for (auto I : CE->arguments()) {
2352 QualType T = I->getType();
2353 if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2354 return nullptr;
2355 }
2356
2357 const FnCheck *Callback = Callbacks.lookup(Call);
2358 if (Callback)
2359 return *Callback;
2360
2361 return nullptr;
2362 }
2363
evalCall(const CallEvent & Call,CheckerContext & C) const2364 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2365 FnCheck Callback = identifyCall(Call, C);
2366
2367 // If the callee isn't a string function, let another checker handle it.
2368 if (!Callback)
2369 return false;
2370
2371 // Check and evaluate the call.
2372 const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2373 Callback(this, C, CE);
2374
2375 // If the evaluate call resulted in no change, chain to the next eval call
2376 // handler.
2377 // Note, the custom CString evaluation calls assume that basic safety
2378 // properties are held. However, if the user chooses to turn off some of these
2379 // checks, we ignore the issues and leave the call evaluation to a generic
2380 // handler.
2381 return C.isDifferent();
2382 }
2383
checkPreStmt(const DeclStmt * DS,CheckerContext & C) const2384 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2385 // Record string length for char a[] = "abc";
2386 ProgramStateRef state = C.getState();
2387
2388 for (const auto *I : DS->decls()) {
2389 const VarDecl *D = dyn_cast<VarDecl>(I);
2390 if (!D)
2391 continue;
2392
2393 // FIXME: Handle array fields of structs.
2394 if (!D->getType()->isArrayType())
2395 continue;
2396
2397 const Expr *Init = D->getInit();
2398 if (!Init)
2399 continue;
2400 if (!isa<StringLiteral>(Init))
2401 continue;
2402
2403 Loc VarLoc = state->getLValue(D, C.getLocationContext());
2404 const MemRegion *MR = VarLoc.getAsRegion();
2405 if (!MR)
2406 continue;
2407
2408 SVal StrVal = C.getSVal(Init);
2409 assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2410 DefinedOrUnknownSVal strLength =
2411 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2412
2413 state = state->set<CStringLength>(MR, strLength);
2414 }
2415
2416 C.addTransition(state);
2417 }
2418
2419 ProgramStateRef
checkRegionChanges(ProgramStateRef state,const InvalidatedSymbols *,ArrayRef<const MemRegion * > ExplicitRegions,ArrayRef<const MemRegion * > Regions,const LocationContext * LCtx,const CallEvent * Call) const2420 CStringChecker::checkRegionChanges(ProgramStateRef state,
2421 const InvalidatedSymbols *,
2422 ArrayRef<const MemRegion *> ExplicitRegions,
2423 ArrayRef<const MemRegion *> Regions,
2424 const LocationContext *LCtx,
2425 const CallEvent *Call) const {
2426 CStringLengthTy Entries = state->get<CStringLength>();
2427 if (Entries.isEmpty())
2428 return state;
2429
2430 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2431 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2432
2433 // First build sets for the changed regions and their super-regions.
2434 for (ArrayRef<const MemRegion *>::iterator
2435 I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2436 const MemRegion *MR = *I;
2437 Invalidated.insert(MR);
2438
2439 SuperRegions.insert(MR);
2440 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2441 MR = SR->getSuperRegion();
2442 SuperRegions.insert(MR);
2443 }
2444 }
2445
2446 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2447
2448 // Then loop over the entries in the current state.
2449 for (CStringLengthTy::iterator I = Entries.begin(),
2450 E = Entries.end(); I != E; ++I) {
2451 const MemRegion *MR = I.getKey();
2452
2453 // Is this entry for a super-region of a changed region?
2454 if (SuperRegions.count(MR)) {
2455 Entries = F.remove(Entries, MR);
2456 continue;
2457 }
2458
2459 // Is this entry for a sub-region of a changed region?
2460 const MemRegion *Super = MR;
2461 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2462 Super = SR->getSuperRegion();
2463 if (Invalidated.count(Super)) {
2464 Entries = F.remove(Entries, MR);
2465 break;
2466 }
2467 }
2468 }
2469
2470 return state->set<CStringLength>(Entries);
2471 }
2472
checkLiveSymbols(ProgramStateRef state,SymbolReaper & SR) const2473 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2474 SymbolReaper &SR) const {
2475 // Mark all symbols in our string length map as valid.
2476 CStringLengthTy Entries = state->get<CStringLength>();
2477
2478 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2479 I != E; ++I) {
2480 SVal Len = I.getData();
2481
2482 for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2483 se = Len.symbol_end(); si != se; ++si)
2484 SR.markInUse(*si);
2485 }
2486 }
2487
checkDeadSymbols(SymbolReaper & SR,CheckerContext & C) const2488 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2489 CheckerContext &C) const {
2490 ProgramStateRef state = C.getState();
2491 CStringLengthTy Entries = state->get<CStringLength>();
2492 if (Entries.isEmpty())
2493 return;
2494
2495 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2496 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2497 I != E; ++I) {
2498 SVal Len = I.getData();
2499 if (SymbolRef Sym = Len.getAsSymbol()) {
2500 if (SR.isDead(Sym))
2501 Entries = F.remove(Entries, I.getKey());
2502 }
2503 }
2504
2505 state = state->set<CStringLength>(Entries);
2506 C.addTransition(state);
2507 }
2508
registerCStringModeling(CheckerManager & Mgr)2509 void ento::registerCStringModeling(CheckerManager &Mgr) {
2510 Mgr.registerChecker<CStringChecker>();
2511 }
2512
shouldRegisterCStringModeling(const CheckerManager & mgr)2513 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2514 return true;
2515 }
2516
2517 #define REGISTER_CHECKER(name) \
2518 void ento::register##name(CheckerManager &mgr) { \
2519 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \
2520 checker->Filter.Check##name = true; \
2521 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \
2522 } \
2523 \
2524 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2525
2526 REGISTER_CHECKER(CStringNullArg)
2527 REGISTER_CHECKER(CStringOutOfBounds)
2528 REGISTER_CHECKER(CStringBufferOverlap)
2529 REGISTER_CHECKER(CStringNotNullTerm)
2530 REGISTER_CHECKER(CStringUninitializedRead)
2531