1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This defines CStringChecker, which is an assortment of checks on calls
11 // to functions in <string.h>.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/Basic/CharInfo.h"
18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
19 #include "clang/StaticAnalyzer/Core/Checker.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 using namespace clang;
29 using namespace ento;
30 
31 namespace {
32 class CStringChecker : public Checker< eval::Call,
33                                          check::PreStmt<DeclStmt>,
34                                          check::LiveSymbols,
35                                          check::DeadSymbols,
36                                          check::RegionChanges
37                                          > {
38   mutable OwningPtr<BugType> BT_Null,
39                              BT_Bounds,
40                              BT_Overlap,
41                              BT_NotCString,
42                              BT_AdditionOverflow;
43 
44   mutable const char *CurrentFunctionDescription;
45 
46 public:
47   /// The filter is used to filter out the diagnostics which are not enabled by
48   /// the user.
49   struct CStringChecksFilter {
50     DefaultBool CheckCStringNullArg;
51     DefaultBool CheckCStringOutOfBounds;
52     DefaultBool CheckCStringBufferOverlap;
53     DefaultBool CheckCStringNotNullTerm;
54   };
55 
56   CStringChecksFilter Filter;
57 
58   static void *getTag() { static int tag; return &tag; }
59 
60   bool evalCall(const CallExpr *CE, CheckerContext &C) const;
61   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
62   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
63   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
64   bool wantsRegionChangeUpdate(ProgramStateRef state) const;
65 
66   ProgramStateRef
67     checkRegionChanges(ProgramStateRef state,
68                        const InvalidatedSymbols *,
69                        ArrayRef<const MemRegion *> ExplicitRegions,
70                        ArrayRef<const MemRegion *> Regions,
71                        const CallEvent *Call) const;
72 
73   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
74                                           const CallExpr *) const;
75 
76   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
77   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
78   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
79   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
80   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
81                       ProgramStateRef state,
82                       const Expr *Size,
83                       const Expr *Source,
84                       const Expr *Dest,
85                       bool Restricted = false,
86                       bool IsMempcpy = false) const;
87 
88   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
89 
90   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
91   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
92   void evalstrLengthCommon(CheckerContext &C,
93                            const CallExpr *CE,
94                            bool IsStrnlen = false) const;
95 
96   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
97   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
98   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
99   void evalStrcpyCommon(CheckerContext &C,
100                         const CallExpr *CE,
101                         bool returnEnd,
102                         bool isBounded,
103                         bool isAppending) const;
104 
105   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
106   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
107 
108   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
109   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
110   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
111   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
112   void evalStrcmpCommon(CheckerContext &C,
113                         const CallExpr *CE,
114                         bool isBounded = false,
115                         bool ignoreCase = false) const;
116 
117   // Utility methods
118   std::pair<ProgramStateRef , ProgramStateRef >
119   static assumeZero(CheckerContext &C,
120                     ProgramStateRef state, SVal V, QualType Ty);
121 
122   static ProgramStateRef setCStringLength(ProgramStateRef state,
123                                               const MemRegion *MR,
124                                               SVal strLength);
125   static SVal getCStringLengthForRegion(CheckerContext &C,
126                                         ProgramStateRef &state,
127                                         const Expr *Ex,
128                                         const MemRegion *MR,
129                                         bool hypothetical);
130   SVal getCStringLength(CheckerContext &C,
131                         ProgramStateRef &state,
132                         const Expr *Ex,
133                         SVal Buf,
134                         bool hypothetical = false) const;
135 
136   const StringLiteral *getCStringLiteral(CheckerContext &C,
137                                          ProgramStateRef &state,
138                                          const Expr *expr,
139                                          SVal val) const;
140 
141   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
142                                               ProgramStateRef state,
143                                               const Expr *Ex, SVal V);
144 
145   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
146                               const MemRegion *MR);
147 
148   // Re-usable checks
149   ProgramStateRef checkNonNull(CheckerContext &C,
150                                    ProgramStateRef state,
151                                    const Expr *S,
152                                    SVal l) const;
153   ProgramStateRef CheckLocation(CheckerContext &C,
154                                     ProgramStateRef state,
155                                     const Expr *S,
156                                     SVal l,
157                                     const char *message = NULL) const;
158   ProgramStateRef CheckBufferAccess(CheckerContext &C,
159                                         ProgramStateRef state,
160                                         const Expr *Size,
161                                         const Expr *FirstBuf,
162                                         const Expr *SecondBuf,
163                                         const char *firstMessage = NULL,
164                                         const char *secondMessage = NULL,
165                                         bool WarnAboutSize = false) const;
166 
167   ProgramStateRef CheckBufferAccess(CheckerContext &C,
168                                         ProgramStateRef state,
169                                         const Expr *Size,
170                                         const Expr *Buf,
171                                         const char *message = NULL,
172                                         bool WarnAboutSize = false) const {
173     // This is a convenience override.
174     return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
175                              WarnAboutSize);
176   }
177   ProgramStateRef CheckOverlap(CheckerContext &C,
178                                    ProgramStateRef state,
179                                    const Expr *Size,
180                                    const Expr *First,
181                                    const Expr *Second) const;
182   void emitOverlapBug(CheckerContext &C,
183                       ProgramStateRef state,
184                       const Stmt *First,
185                       const Stmt *Second) const;
186 
187   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
188                                             ProgramStateRef state,
189                                             NonLoc left,
190                                             NonLoc right) const;
191 };
192 
193 } //end anonymous namespace
194 
195 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
196 
197 //===----------------------------------------------------------------------===//
198 // Individual checks and utility methods.
199 //===----------------------------------------------------------------------===//
200 
201 std::pair<ProgramStateRef , ProgramStateRef >
202 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
203                            QualType Ty) {
204   DefinedSVal *val = dyn_cast<DefinedSVal>(&V);
205   if (!val)
206     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
207 
208   SValBuilder &svalBuilder = C.getSValBuilder();
209   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
210   return state->assume(svalBuilder.evalEQ(state, *val, zero));
211 }
212 
213 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
214                                             ProgramStateRef state,
215                                             const Expr *S, SVal l) const {
216   // If a previous check has failed, propagate the failure.
217   if (!state)
218     return NULL;
219 
220   ProgramStateRef stateNull, stateNonNull;
221   llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
222 
223   if (stateNull && !stateNonNull) {
224     if (!Filter.CheckCStringNullArg)
225       return NULL;
226 
227     ExplodedNode *N = C.generateSink(stateNull);
228     if (!N)
229       return NULL;
230 
231     if (!BT_Null)
232       BT_Null.reset(new BuiltinBug("Unix API",
233         "Null pointer argument in call to byte string function"));
234 
235     SmallString<80> buf;
236     llvm::raw_svector_ostream os(buf);
237     assert(CurrentFunctionDescription);
238     os << "Null pointer argument in call to " << CurrentFunctionDescription;
239 
240     // Generate a report for this bug.
241     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
242     BugReport *report = new BugReport(*BT, os.str(), N);
243 
244     report->addRange(S->getSourceRange());
245     bugreporter::trackNullOrUndefValue(N, S, *report);
246     C.emitReport(report);
247     return NULL;
248   }
249 
250   // From here on, assume that the value is non-null.
251   assert(stateNonNull);
252   return stateNonNull;
253 }
254 
255 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
256 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
257                                              ProgramStateRef state,
258                                              const Expr *S, SVal l,
259                                              const char *warningMsg) const {
260   // If a previous check has failed, propagate the failure.
261   if (!state)
262     return NULL;
263 
264   // Check for out of bound array element access.
265   const MemRegion *R = l.getAsRegion();
266   if (!R)
267     return state;
268 
269   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
270   if (!ER)
271     return state;
272 
273   assert(ER->getValueType() == C.getASTContext().CharTy &&
274     "CheckLocation should only be called with char* ElementRegions");
275 
276   // Get the size of the array.
277   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
278   SValBuilder &svalBuilder = C.getSValBuilder();
279   SVal Extent =
280     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
281   DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent);
282 
283   // Get the index of the accessed element.
284   DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
285 
286   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
287   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
288   if (StOutBound && !StInBound) {
289     ExplodedNode *N = C.generateSink(StOutBound);
290     if (!N)
291       return NULL;
292 
293     if (!BT_Bounds) {
294       BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
295         "Byte string function accesses out-of-bound array element"));
296     }
297     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
298 
299     // Generate a report for this bug.
300     BugReport *report;
301     if (warningMsg) {
302       report = new BugReport(*BT, warningMsg, N);
303     } else {
304       assert(CurrentFunctionDescription);
305       assert(CurrentFunctionDescription[0] != '\0');
306 
307       SmallString<80> buf;
308       llvm::raw_svector_ostream os(buf);
309       os << toUppercase(CurrentFunctionDescription[0])
310          << &CurrentFunctionDescription[1]
311          << " accesses out-of-bound array element";
312       report = new BugReport(*BT, os.str(), N);
313     }
314 
315     // FIXME: It would be nice to eventually make this diagnostic more clear,
316     // e.g., by referencing the original declaration or by saying *why* this
317     // reference is outside the range.
318 
319     report->addRange(S->getSourceRange());
320     C.emitReport(report);
321     return NULL;
322   }
323 
324   // Array bound check succeeded.  From this point forward the array bound
325   // should always succeed.
326   return StInBound;
327 }
328 
329 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
330                                                  ProgramStateRef state,
331                                                  const Expr *Size,
332                                                  const Expr *FirstBuf,
333                                                  const Expr *SecondBuf,
334                                                  const char *firstMessage,
335                                                  const char *secondMessage,
336                                                  bool WarnAboutSize) const {
337   // If a previous check has failed, propagate the failure.
338   if (!state)
339     return NULL;
340 
341   SValBuilder &svalBuilder = C.getSValBuilder();
342   ASTContext &Ctx = svalBuilder.getContext();
343   const LocationContext *LCtx = C.getLocationContext();
344 
345   QualType sizeTy = Size->getType();
346   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
347 
348   // Check that the first buffer is non-null.
349   SVal BufVal = state->getSVal(FirstBuf, LCtx);
350   state = checkNonNull(C, state, FirstBuf, BufVal);
351   if (!state)
352     return NULL;
353 
354   // If out-of-bounds checking is turned off, skip the rest.
355   if (!Filter.CheckCStringOutOfBounds)
356     return state;
357 
358   // Get the access length and make sure it is known.
359   // FIXME: This assumes the caller has already checked that the access length
360   // is positive. And that it's unsigned.
361   SVal LengthVal = state->getSVal(Size, LCtx);
362   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
363   if (!Length)
364     return state;
365 
366   // Compute the offset of the last element to be accessed: size-1.
367   NonLoc One = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
368   NonLoc LastOffset = cast<NonLoc>(svalBuilder.evalBinOpNN(state, BO_Sub,
369                                                     *Length, One, sizeTy));
370 
371   // Check that the first buffer is sufficiently long.
372   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
373   if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
374     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
375 
376     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
377                                           LastOffset, PtrTy);
378     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
379 
380     // If the buffer isn't large enough, abort.
381     if (!state)
382       return NULL;
383   }
384 
385   // If there's a second buffer, check it as well.
386   if (SecondBuf) {
387     BufVal = state->getSVal(SecondBuf, LCtx);
388     state = checkNonNull(C, state, SecondBuf, BufVal);
389     if (!state)
390       return NULL;
391 
392     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
393     if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
394       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
395 
396       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
397                                             LastOffset, PtrTy);
398       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
399     }
400   }
401 
402   // Large enough or not, return this state!
403   return state;
404 }
405 
406 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
407                                             ProgramStateRef state,
408                                             const Expr *Size,
409                                             const Expr *First,
410                                             const Expr *Second) const {
411   if (!Filter.CheckCStringBufferOverlap)
412     return state;
413 
414   // Do a simple check for overlap: if the two arguments are from the same
415   // buffer, see if the end of the first is greater than the start of the second
416   // or vice versa.
417 
418   // If a previous check has failed, propagate the failure.
419   if (!state)
420     return NULL;
421 
422   ProgramStateRef stateTrue, stateFalse;
423 
424   // Get the buffer values and make sure they're known locations.
425   const LocationContext *LCtx = C.getLocationContext();
426   SVal firstVal = state->getSVal(First, LCtx);
427   SVal secondVal = state->getSVal(Second, LCtx);
428 
429   Loc *firstLoc = dyn_cast<Loc>(&firstVal);
430   if (!firstLoc)
431     return state;
432 
433   Loc *secondLoc = dyn_cast<Loc>(&secondVal);
434   if (!secondLoc)
435     return state;
436 
437   // Are the two values the same?
438   SValBuilder &svalBuilder = C.getSValBuilder();
439   llvm::tie(stateTrue, stateFalse) =
440     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
441 
442   if (stateTrue && !stateFalse) {
443     // If the values are known to be equal, that's automatically an overlap.
444     emitOverlapBug(C, stateTrue, First, Second);
445     return NULL;
446   }
447 
448   // assume the two expressions are not equal.
449   assert(stateFalse);
450   state = stateFalse;
451 
452   // Which value comes first?
453   QualType cmpTy = svalBuilder.getConditionType();
454   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
455                                          *firstLoc, *secondLoc, cmpTy);
456   DefinedOrUnknownSVal *reverseTest = dyn_cast<DefinedOrUnknownSVal>(&reverse);
457   if (!reverseTest)
458     return state;
459 
460   llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
461   if (stateTrue) {
462     if (stateFalse) {
463       // If we don't know which one comes first, we can't perform this test.
464       return state;
465     } else {
466       // Switch the values so that firstVal is before secondVal.
467       Loc *tmpLoc = firstLoc;
468       firstLoc = secondLoc;
469       secondLoc = tmpLoc;
470 
471       // Switch the Exprs as well, so that they still correspond.
472       const Expr *tmpExpr = First;
473       First = Second;
474       Second = tmpExpr;
475     }
476   }
477 
478   // Get the length, and make sure it too is known.
479   SVal LengthVal = state->getSVal(Size, LCtx);
480   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
481   if (!Length)
482     return state;
483 
484   // Convert the first buffer's start address to char*.
485   // Bail out if the cast fails.
486   ASTContext &Ctx = svalBuilder.getContext();
487   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
488   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
489                                          First->getType());
490   Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart);
491   if (!FirstStartLoc)
492     return state;
493 
494   // Compute the end of the first buffer. Bail out if THAT fails.
495   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
496                                  *FirstStartLoc, *Length, CharPtrTy);
497   Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd);
498   if (!FirstEndLoc)
499     return state;
500 
501   // Is the end of the first buffer past the start of the second buffer?
502   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
503                                 *FirstEndLoc, *secondLoc, cmpTy);
504   DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap);
505   if (!OverlapTest)
506     return state;
507 
508   llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
509 
510   if (stateTrue && !stateFalse) {
511     // Overlap!
512     emitOverlapBug(C, stateTrue, First, Second);
513     return NULL;
514   }
515 
516   // assume the two expressions don't overlap.
517   assert(stateFalse);
518   return stateFalse;
519 }
520 
521 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
522                                   const Stmt *First, const Stmt *Second) const {
523   ExplodedNode *N = C.generateSink(state);
524   if (!N)
525     return;
526 
527   if (!BT_Overlap)
528     BT_Overlap.reset(new BugType("Unix API", "Improper arguments"));
529 
530   // Generate a report for this bug.
531   BugReport *report =
532     new BugReport(*BT_Overlap,
533       "Arguments must not be overlapping buffers", N);
534   report->addRange(First->getSourceRange());
535   report->addRange(Second->getSourceRange());
536 
537   C.emitReport(report);
538 }
539 
540 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
541                                                      ProgramStateRef state,
542                                                      NonLoc left,
543                                                      NonLoc right) const {
544   // If out-of-bounds checking is turned off, skip the rest.
545   if (!Filter.CheckCStringOutOfBounds)
546     return state;
547 
548   // If a previous check has failed, propagate the failure.
549   if (!state)
550     return NULL;
551 
552   SValBuilder &svalBuilder = C.getSValBuilder();
553   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
554 
555   QualType sizeTy = svalBuilder.getContext().getSizeType();
556   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
557   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
558 
559   SVal maxMinusRight;
560   if (isa<nonloc::ConcreteInt>(right)) {
561     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
562                                                  sizeTy);
563   } else {
564     // Try switching the operands. (The order of these two assignments is
565     // important!)
566     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
567                                             sizeTy);
568     left = right;
569   }
570 
571   if (NonLoc *maxMinusRightNL = dyn_cast<NonLoc>(&maxMinusRight)) {
572     QualType cmpTy = svalBuilder.getConditionType();
573     // If left > max - right, we have an overflow.
574     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
575                                                 *maxMinusRightNL, cmpTy);
576 
577     ProgramStateRef stateOverflow, stateOkay;
578     llvm::tie(stateOverflow, stateOkay) =
579       state->assume(cast<DefinedOrUnknownSVal>(willOverflow));
580 
581     if (stateOverflow && !stateOkay) {
582       // We have an overflow. Emit a bug report.
583       ExplodedNode *N = C.generateSink(stateOverflow);
584       if (!N)
585         return NULL;
586 
587       if (!BT_AdditionOverflow)
588         BT_AdditionOverflow.reset(new BuiltinBug("API",
589           "Sum of expressions causes overflow"));
590 
591       // This isn't a great error message, but this should never occur in real
592       // code anyway -- you'd have to create a buffer longer than a size_t can
593       // represent, which is sort of a contradiction.
594       const char *warning =
595         "This expression will create a string whose length is too big to "
596         "be represented as a size_t";
597 
598       // Generate a report for this bug.
599       BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
600       C.emitReport(report);
601 
602       return NULL;
603     }
604 
605     // From now on, assume an overflow didn't occur.
606     assert(stateOkay);
607     state = stateOkay;
608   }
609 
610   return state;
611 }
612 
613 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
614                                                 const MemRegion *MR,
615                                                 SVal strLength) {
616   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
617 
618   MR = MR->StripCasts();
619 
620   switch (MR->getKind()) {
621   case MemRegion::StringRegionKind:
622     // FIXME: This can happen if we strcpy() into a string region. This is
623     // undefined [C99 6.4.5p6], but we should still warn about it.
624     return state;
625 
626   case MemRegion::SymbolicRegionKind:
627   case MemRegion::AllocaRegionKind:
628   case MemRegion::VarRegionKind:
629   case MemRegion::FieldRegionKind:
630   case MemRegion::ObjCIvarRegionKind:
631     // These are the types we can currently track string lengths for.
632     break;
633 
634   case MemRegion::ElementRegionKind:
635     // FIXME: Handle element regions by upper-bounding the parent region's
636     // string length.
637     return state;
638 
639   default:
640     // Other regions (mostly non-data) can't have a reliable C string length.
641     // For now, just ignore the change.
642     // FIXME: These are rare but not impossible. We should output some kind of
643     // warning for things like strcpy((char[]){'a', 0}, "b");
644     return state;
645   }
646 
647   if (strLength.isUnknown())
648     return state->remove<CStringLength>(MR);
649 
650   return state->set<CStringLength>(MR, strLength);
651 }
652 
653 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
654                                                ProgramStateRef &state,
655                                                const Expr *Ex,
656                                                const MemRegion *MR,
657                                                bool hypothetical) {
658   if (!hypothetical) {
659     // If there's a recorded length, go ahead and return it.
660     const SVal *Recorded = state->get<CStringLength>(MR);
661     if (Recorded)
662       return *Recorded;
663   }
664 
665   // Otherwise, get a new symbol and update the state.
666   SValBuilder &svalBuilder = C.getSValBuilder();
667   QualType sizeTy = svalBuilder.getContext().getSizeType();
668   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
669                                                     MR, Ex, sizeTy,
670                                                     C.blockCount());
671 
672   if (!hypothetical)
673     state = state->set<CStringLength>(MR, strLength);
674 
675   return strLength;
676 }
677 
678 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
679                                       const Expr *Ex, SVal Buf,
680                                       bool hypothetical) const {
681   const MemRegion *MR = Buf.getAsRegion();
682   if (!MR) {
683     // If we can't get a region, see if it's something we /know/ isn't a
684     // C string. In the context of locations, the only time we can issue such
685     // a warning is for labels.
686     if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) {
687       if (!Filter.CheckCStringNotNullTerm)
688         return UndefinedVal();
689 
690       if (ExplodedNode *N = C.addTransition(state)) {
691         if (!BT_NotCString)
692           BT_NotCString.reset(new BuiltinBug("Unix API",
693             "Argument is not a null-terminated string."));
694 
695         SmallString<120> buf;
696         llvm::raw_svector_ostream os(buf);
697         assert(CurrentFunctionDescription);
698         os << "Argument to " << CurrentFunctionDescription
699            << " is the address of the label '" << Label->getLabel()->getName()
700            << "', which is not a null-terminated string";
701 
702         // Generate a report for this bug.
703         BugReport *report = new BugReport(*BT_NotCString,
704                                                           os.str(), N);
705 
706         report->addRange(Ex->getSourceRange());
707         C.emitReport(report);
708       }
709       return UndefinedVal();
710 
711     }
712 
713     // If it's not a region and not a label, give up.
714     return UnknownVal();
715   }
716 
717   // If we have a region, strip casts from it and see if we can figure out
718   // its length. For anything we can't figure out, just return UnknownVal.
719   MR = MR->StripCasts();
720 
721   switch (MR->getKind()) {
722   case MemRegion::StringRegionKind: {
723     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
724     // so we can assume that the byte length is the correct C string length.
725     SValBuilder &svalBuilder = C.getSValBuilder();
726     QualType sizeTy = svalBuilder.getContext().getSizeType();
727     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
728     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
729   }
730   case MemRegion::SymbolicRegionKind:
731   case MemRegion::AllocaRegionKind:
732   case MemRegion::VarRegionKind:
733   case MemRegion::FieldRegionKind:
734   case MemRegion::ObjCIvarRegionKind:
735     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
736   case MemRegion::CompoundLiteralRegionKind:
737     // FIXME: Can we track this? Is it necessary?
738     return UnknownVal();
739   case MemRegion::ElementRegionKind:
740     // FIXME: How can we handle this? It's not good enough to subtract the
741     // offset from the base string length; consider "123\x00567" and &a[5].
742     return UnknownVal();
743   default:
744     // Other regions (mostly non-data) can't have a reliable C string length.
745     // In this case, an error is emitted and UndefinedVal is returned.
746     // The caller should always be prepared to handle this case.
747     if (!Filter.CheckCStringNotNullTerm)
748       return UndefinedVal();
749 
750     if (ExplodedNode *N = C.addTransition(state)) {
751       if (!BT_NotCString)
752         BT_NotCString.reset(new BuiltinBug("Unix API",
753           "Argument is not a null-terminated string."));
754 
755       SmallString<120> buf;
756       llvm::raw_svector_ostream os(buf);
757 
758       assert(CurrentFunctionDescription);
759       os << "Argument to " << CurrentFunctionDescription << " is ";
760 
761       if (SummarizeRegion(os, C.getASTContext(), MR))
762         os << ", which is not a null-terminated string";
763       else
764         os << "not a null-terminated string";
765 
766       // Generate a report for this bug.
767       BugReport *report = new BugReport(*BT_NotCString,
768                                                         os.str(), N);
769 
770       report->addRange(Ex->getSourceRange());
771       C.emitReport(report);
772     }
773 
774     return UndefinedVal();
775   }
776 }
777 
778 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
779   ProgramStateRef &state, const Expr *expr, SVal val) const {
780 
781   // Get the memory region pointed to by the val.
782   const MemRegion *bufRegion = val.getAsRegion();
783   if (!bufRegion)
784     return NULL;
785 
786   // Strip casts off the memory region.
787   bufRegion = bufRegion->StripCasts();
788 
789   // Cast the memory region to a string region.
790   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
791   if (!strRegion)
792     return NULL;
793 
794   // Return the actual string in the string region.
795   return strRegion->getStringLiteral();
796 }
797 
798 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
799                                                 ProgramStateRef state,
800                                                 const Expr *E, SVal V) {
801   Loc *L = dyn_cast<Loc>(&V);
802   if (!L)
803     return state;
804 
805   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
806   // some assumptions about the value that CFRefCount can't. Even so, it should
807   // probably be refactored.
808   if (loc::MemRegionVal* MR = dyn_cast<loc::MemRegionVal>(L)) {
809     const MemRegion *R = MR->getRegion()->StripCasts();
810 
811     // Are we dealing with an ElementRegion?  If so, we should be invalidating
812     // the super-region.
813     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
814       R = ER->getSuperRegion();
815       // FIXME: What about layers of ElementRegions?
816     }
817 
818     // Invalidate this region.
819     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
820     return state->invalidateRegions(R, E, C.blockCount(), LCtx,
821                                     /*CausesPointerEscape*/ false);
822   }
823 
824   // If we have a non-region value by chance, just remove the binding.
825   // FIXME: is this necessary or correct? This handles the non-Region
826   //  cases.  Is it ever valid to store to these?
827   return state->killBinding(*L);
828 }
829 
830 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
831                                      const MemRegion *MR) {
832   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
833 
834   switch (MR->getKind()) {
835   case MemRegion::FunctionTextRegionKind: {
836     const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
837     if (FD)
838       os << "the address of the function '" << *FD << '\'';
839     else
840       os << "the address of a function";
841     return true;
842   }
843   case MemRegion::BlockTextRegionKind:
844     os << "block text";
845     return true;
846   case MemRegion::BlockDataRegionKind:
847     os << "a block";
848     return true;
849   case MemRegion::CXXThisRegionKind:
850   case MemRegion::CXXTempObjectRegionKind:
851     os << "a C++ temp object of type " << TVR->getValueType().getAsString();
852     return true;
853   case MemRegion::VarRegionKind:
854     os << "a variable of type" << TVR->getValueType().getAsString();
855     return true;
856   case MemRegion::FieldRegionKind:
857     os << "a field of type " << TVR->getValueType().getAsString();
858     return true;
859   case MemRegion::ObjCIvarRegionKind:
860     os << "an instance variable of type " << TVR->getValueType().getAsString();
861     return true;
862   default:
863     return false;
864   }
865 }
866 
867 //===----------------------------------------------------------------------===//
868 // evaluation of individual function calls.
869 //===----------------------------------------------------------------------===//
870 
871 void CStringChecker::evalCopyCommon(CheckerContext &C,
872                                     const CallExpr *CE,
873                                     ProgramStateRef state,
874                                     const Expr *Size, const Expr *Dest,
875                                     const Expr *Source, bool Restricted,
876                                     bool IsMempcpy) const {
877   CurrentFunctionDescription = "memory copy function";
878 
879   // See if the size argument is zero.
880   const LocationContext *LCtx = C.getLocationContext();
881   SVal sizeVal = state->getSVal(Size, LCtx);
882   QualType sizeTy = Size->getType();
883 
884   ProgramStateRef stateZeroSize, stateNonZeroSize;
885   llvm::tie(stateZeroSize, stateNonZeroSize) =
886     assumeZero(C, state, sizeVal, sizeTy);
887 
888   // Get the value of the Dest.
889   SVal destVal = state->getSVal(Dest, LCtx);
890 
891   // If the size is zero, there won't be any actual memory access, so
892   // just bind the return value to the destination buffer and return.
893   if (stateZeroSize && !stateNonZeroSize) {
894     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
895     C.addTransition(stateZeroSize);
896     return;
897   }
898 
899   // If the size can be nonzero, we have to check the other arguments.
900   if (stateNonZeroSize) {
901     state = stateNonZeroSize;
902 
903     // Ensure the destination is not null. If it is NULL there will be a
904     // NULL pointer dereference.
905     state = checkNonNull(C, state, Dest, destVal);
906     if (!state)
907       return;
908 
909     // Get the value of the Src.
910     SVal srcVal = state->getSVal(Source, LCtx);
911 
912     // Ensure the source is not null. If it is NULL there will be a
913     // NULL pointer dereference.
914     state = checkNonNull(C, state, Source, srcVal);
915     if (!state)
916       return;
917 
918     // Ensure the accesses are valid and that the buffers do not overlap.
919     const char * const writeWarning =
920       "Memory copy function overflows destination buffer";
921     state = CheckBufferAccess(C, state, Size, Dest, Source,
922                               writeWarning, /* sourceWarning = */ NULL);
923     if (Restricted)
924       state = CheckOverlap(C, state, Size, Dest, Source);
925 
926     if (!state)
927       return;
928 
929     // If this is mempcpy, get the byte after the last byte copied and
930     // bind the expr.
931     if (IsMempcpy) {
932       loc::MemRegionVal *destRegVal = dyn_cast<loc::MemRegionVal>(&destVal);
933       assert(destRegVal && "Destination should be a known MemRegionVal here");
934 
935       // Get the length to copy.
936       NonLoc *lenValNonLoc = dyn_cast<NonLoc>(&sizeVal);
937 
938       if (lenValNonLoc) {
939         // Get the byte after the last byte copied.
940         SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
941                                                           *destRegVal,
942                                                           *lenValNonLoc,
943                                                           Dest->getType());
944 
945         // The byte after the last byte copied is the return value.
946         state = state->BindExpr(CE, LCtx, lastElement);
947       } else {
948         // If we don't know how much we copied, we can at least
949         // conjure a return value for later.
950         SVal result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx,
951                                                           C.blockCount());
952         state = state->BindExpr(CE, LCtx, result);
953       }
954 
955     } else {
956       // All other copies return the destination buffer.
957       // (Well, bcopy() has a void return type, but this won't hurt.)
958       state = state->BindExpr(CE, LCtx, destVal);
959     }
960 
961     // Invalidate the destination.
962     // FIXME: Even if we can't perfectly model the copy, we should see if we
963     // can use LazyCompoundVals to copy the source values into the destination.
964     // This would probably remove any existing bindings past the end of the
965     // copied region, but that's still an improvement over blank invalidation.
966     state = InvalidateBuffer(C, state, Dest,
967                              state->getSVal(Dest, C.getLocationContext()));
968     C.addTransition(state);
969   }
970 }
971 
972 
973 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
974   if (CE->getNumArgs() < 3)
975     return;
976 
977   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
978   // The return value is the address of the destination buffer.
979   const Expr *Dest = CE->getArg(0);
980   ProgramStateRef state = C.getState();
981 
982   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
983 }
984 
985 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
986   if (CE->getNumArgs() < 3)
987     return;
988 
989   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
990   // The return value is a pointer to the byte following the last written byte.
991   const Expr *Dest = CE->getArg(0);
992   ProgramStateRef state = C.getState();
993 
994   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
995 }
996 
997 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
998   if (CE->getNumArgs() < 3)
999     return;
1000 
1001   // void *memmove(void *dst, const void *src, size_t n);
1002   // The return value is the address of the destination buffer.
1003   const Expr *Dest = CE->getArg(0);
1004   ProgramStateRef state = C.getState();
1005 
1006   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1007 }
1008 
1009 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1010   if (CE->getNumArgs() < 3)
1011     return;
1012 
1013   // void bcopy(const void *src, void *dst, size_t n);
1014   evalCopyCommon(C, CE, C.getState(),
1015                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
1016 }
1017 
1018 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1019   if (CE->getNumArgs() < 3)
1020     return;
1021 
1022   // int memcmp(const void *s1, const void *s2, size_t n);
1023   CurrentFunctionDescription = "memory comparison function";
1024 
1025   const Expr *Left = CE->getArg(0);
1026   const Expr *Right = CE->getArg(1);
1027   const Expr *Size = CE->getArg(2);
1028 
1029   ProgramStateRef state = C.getState();
1030   SValBuilder &svalBuilder = C.getSValBuilder();
1031 
1032   // See if the size argument is zero.
1033   const LocationContext *LCtx = C.getLocationContext();
1034   SVal sizeVal = state->getSVal(Size, LCtx);
1035   QualType sizeTy = Size->getType();
1036 
1037   ProgramStateRef stateZeroSize, stateNonZeroSize;
1038   llvm::tie(stateZeroSize, stateNonZeroSize) =
1039     assumeZero(C, state, sizeVal, sizeTy);
1040 
1041   // If the size can be zero, the result will be 0 in that case, and we don't
1042   // have to check either of the buffers.
1043   if (stateZeroSize) {
1044     state = stateZeroSize;
1045     state = state->BindExpr(CE, LCtx,
1046                             svalBuilder.makeZeroVal(CE->getType()));
1047     C.addTransition(state);
1048   }
1049 
1050   // If the size can be nonzero, we have to check the other arguments.
1051   if (stateNonZeroSize) {
1052     state = stateNonZeroSize;
1053     // If we know the two buffers are the same, we know the result is 0.
1054     // First, get the two buffers' addresses. Another checker will have already
1055     // made sure they're not undefined.
1056     DefinedOrUnknownSVal LV =
1057       cast<DefinedOrUnknownSVal>(state->getSVal(Left, LCtx));
1058     DefinedOrUnknownSVal RV =
1059       cast<DefinedOrUnknownSVal>(state->getSVal(Right, LCtx));
1060 
1061     // See if they are the same.
1062     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1063     ProgramStateRef StSameBuf, StNotSameBuf;
1064     llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1065 
1066     // If the two arguments might be the same buffer, we know the result is 0,
1067     // and we only need to check one size.
1068     if (StSameBuf) {
1069       state = StSameBuf;
1070       state = CheckBufferAccess(C, state, Size, Left);
1071       if (state) {
1072         state = StSameBuf->BindExpr(CE, LCtx,
1073                                     svalBuilder.makeZeroVal(CE->getType()));
1074         C.addTransition(state);
1075       }
1076     }
1077 
1078     // If the two arguments might be different buffers, we have to check the
1079     // size of both of them.
1080     if (StNotSameBuf) {
1081       state = StNotSameBuf;
1082       state = CheckBufferAccess(C, state, Size, Left, Right);
1083       if (state) {
1084         // The return value is the comparison result, which we don't know.
1085         SVal CmpV = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1086         state = state->BindExpr(CE, LCtx, CmpV);
1087         C.addTransition(state);
1088       }
1089     }
1090   }
1091 }
1092 
1093 void CStringChecker::evalstrLength(CheckerContext &C,
1094                                    const CallExpr *CE) const {
1095   if (CE->getNumArgs() < 1)
1096     return;
1097 
1098   // size_t strlen(const char *s);
1099   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1100 }
1101 
1102 void CStringChecker::evalstrnLength(CheckerContext &C,
1103                                     const CallExpr *CE) const {
1104   if (CE->getNumArgs() < 2)
1105     return;
1106 
1107   // size_t strnlen(const char *s, size_t maxlen);
1108   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1109 }
1110 
1111 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1112                                          bool IsStrnlen) const {
1113   CurrentFunctionDescription = "string length function";
1114   ProgramStateRef state = C.getState();
1115   const LocationContext *LCtx = C.getLocationContext();
1116 
1117   if (IsStrnlen) {
1118     const Expr *maxlenExpr = CE->getArg(1);
1119     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1120 
1121     ProgramStateRef stateZeroSize, stateNonZeroSize;
1122     llvm::tie(stateZeroSize, stateNonZeroSize) =
1123       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1124 
1125     // If the size can be zero, the result will be 0 in that case, and we don't
1126     // have to check the string itself.
1127     if (stateZeroSize) {
1128       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1129       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1130       C.addTransition(stateZeroSize);
1131     }
1132 
1133     // If the size is GUARANTEED to be zero, we're done!
1134     if (!stateNonZeroSize)
1135       return;
1136 
1137     // Otherwise, record the assumption that the size is nonzero.
1138     state = stateNonZeroSize;
1139   }
1140 
1141   // Check that the string argument is non-null.
1142   const Expr *Arg = CE->getArg(0);
1143   SVal ArgVal = state->getSVal(Arg, LCtx);
1144 
1145   state = checkNonNull(C, state, Arg, ArgVal);
1146 
1147   if (!state)
1148     return;
1149 
1150   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1151 
1152   // If the argument isn't a valid C string, there's no valid state to
1153   // transition to.
1154   if (strLength.isUndef())
1155     return;
1156 
1157   DefinedOrUnknownSVal result = UnknownVal();
1158 
1159   // If the check is for strnlen() then bind the return value to no more than
1160   // the maxlen value.
1161   if (IsStrnlen) {
1162     QualType cmpTy = C.getSValBuilder().getConditionType();
1163 
1164     // It's a little unfortunate to be getting this again,
1165     // but it's not that expensive...
1166     const Expr *maxlenExpr = CE->getArg(1);
1167     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1168 
1169     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
1170     NonLoc *maxlenValNL = dyn_cast<NonLoc>(&maxlenVal);
1171 
1172     if (strLengthNL && maxlenValNL) {
1173       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1174 
1175       // Check if the strLength is greater than the maxlen.
1176       llvm::tie(stateStringTooLong, stateStringNotTooLong) =
1177         state->assume(cast<DefinedOrUnknownSVal>
1178                       (C.getSValBuilder().evalBinOpNN(state, BO_GT,
1179                                                       *strLengthNL,
1180                                                       *maxlenValNL,
1181                                                       cmpTy)));
1182 
1183       if (stateStringTooLong && !stateStringNotTooLong) {
1184         // If the string is longer than maxlen, return maxlen.
1185         result = *maxlenValNL;
1186       } else if (stateStringNotTooLong && !stateStringTooLong) {
1187         // If the string is shorter than maxlen, return its length.
1188         result = *strLengthNL;
1189       }
1190     }
1191 
1192     if (result.isUnknown()) {
1193       // If we don't have enough information for a comparison, there's
1194       // no guarantee the full string length will actually be returned.
1195       // All we know is the return value is the min of the string length
1196       // and the limit. This is better than nothing.
1197       result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1198       NonLoc *resultNL = cast<NonLoc>(&result);
1199 
1200       if (strLengthNL) {
1201         state = state->assume(cast<DefinedOrUnknownSVal>
1202                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
1203                                                               *resultNL,
1204                                                               *strLengthNL,
1205                                                               cmpTy)), true);
1206       }
1207 
1208       if (maxlenValNL) {
1209         state = state->assume(cast<DefinedOrUnknownSVal>
1210                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
1211                                                               *resultNL,
1212                                                               *maxlenValNL,
1213                                                               cmpTy)), true);
1214       }
1215     }
1216 
1217   } else {
1218     // This is a plain strlen(), not strnlen().
1219     result = cast<DefinedOrUnknownSVal>(strLength);
1220 
1221     // If we don't know the length of the string, conjure a return
1222     // value, so it can be used in constraints, at least.
1223     if (result.isUnknown()) {
1224       result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1225     }
1226   }
1227 
1228   // Bind the return value.
1229   assert(!result.isUnknown() && "Should have conjured a value by now");
1230   state = state->BindExpr(CE, LCtx, result);
1231   C.addTransition(state);
1232 }
1233 
1234 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1235   if (CE->getNumArgs() < 2)
1236     return;
1237 
1238   // char *strcpy(char *restrict dst, const char *restrict src);
1239   evalStrcpyCommon(C, CE,
1240                    /* returnEnd = */ false,
1241                    /* isBounded = */ false,
1242                    /* isAppending = */ false);
1243 }
1244 
1245 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1246   if (CE->getNumArgs() < 3)
1247     return;
1248 
1249   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1250   evalStrcpyCommon(C, CE,
1251                    /* returnEnd = */ false,
1252                    /* isBounded = */ true,
1253                    /* isAppending = */ false);
1254 }
1255 
1256 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1257   if (CE->getNumArgs() < 2)
1258     return;
1259 
1260   // char *stpcpy(char *restrict dst, const char *restrict src);
1261   evalStrcpyCommon(C, CE,
1262                    /* returnEnd = */ true,
1263                    /* isBounded = */ false,
1264                    /* isAppending = */ false);
1265 }
1266 
1267 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1268   if (CE->getNumArgs() < 2)
1269     return;
1270 
1271   //char *strcat(char *restrict s1, const char *restrict s2);
1272   evalStrcpyCommon(C, CE,
1273                    /* returnEnd = */ false,
1274                    /* isBounded = */ false,
1275                    /* isAppending = */ true);
1276 }
1277 
1278 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1279   if (CE->getNumArgs() < 3)
1280     return;
1281 
1282   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1283   evalStrcpyCommon(C, CE,
1284                    /* returnEnd = */ false,
1285                    /* isBounded = */ true,
1286                    /* isAppending = */ true);
1287 }
1288 
1289 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1290                                       bool returnEnd, bool isBounded,
1291                                       bool isAppending) const {
1292   CurrentFunctionDescription = "string copy function";
1293   ProgramStateRef state = C.getState();
1294   const LocationContext *LCtx = C.getLocationContext();
1295 
1296   // Check that the destination is non-null.
1297   const Expr *Dst = CE->getArg(0);
1298   SVal DstVal = state->getSVal(Dst, LCtx);
1299 
1300   state = checkNonNull(C, state, Dst, DstVal);
1301   if (!state)
1302     return;
1303 
1304   // Check that the source is non-null.
1305   const Expr *srcExpr = CE->getArg(1);
1306   SVal srcVal = state->getSVal(srcExpr, LCtx);
1307   state = checkNonNull(C, state, srcExpr, srcVal);
1308   if (!state)
1309     return;
1310 
1311   // Get the string length of the source.
1312   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1313 
1314   // If the source isn't a valid C string, give up.
1315   if (strLength.isUndef())
1316     return;
1317 
1318   SValBuilder &svalBuilder = C.getSValBuilder();
1319   QualType cmpTy = svalBuilder.getConditionType();
1320   QualType sizeTy = svalBuilder.getContext().getSizeType();
1321 
1322   // These two values allow checking two kinds of errors:
1323   // - actual overflows caused by a source that doesn't fit in the destination
1324   // - potential overflows caused by a bound that could exceed the destination
1325   SVal amountCopied = UnknownVal();
1326   SVal maxLastElementIndex = UnknownVal();
1327   const char *boundWarning = NULL;
1328 
1329   // If the function is strncpy, strncat, etc... it is bounded.
1330   if (isBounded) {
1331     // Get the max number of characters to copy.
1332     const Expr *lenExpr = CE->getArg(2);
1333     SVal lenVal = state->getSVal(lenExpr, LCtx);
1334 
1335     // Protect against misdeclared strncpy().
1336     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1337 
1338     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
1339     NonLoc *lenValNL = dyn_cast<NonLoc>(&lenVal);
1340 
1341     // If we know both values, we might be able to figure out how much
1342     // we're copying.
1343     if (strLengthNL && lenValNL) {
1344       ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1345 
1346       // Check if the max number to copy is less than the length of the src.
1347       // If the bound is equal to the source length, strncpy won't null-
1348       // terminate the result!
1349       llvm::tie(stateSourceTooLong, stateSourceNotTooLong) =
1350         state->assume(cast<DefinedOrUnknownSVal>
1351                       (svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL,
1352                                                *lenValNL, cmpTy)));
1353 
1354       if (stateSourceTooLong && !stateSourceNotTooLong) {
1355         // Max number to copy is less than the length of the src, so the actual
1356         // strLength copied is the max number arg.
1357         state = stateSourceTooLong;
1358         amountCopied = lenVal;
1359 
1360       } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1361         // The source buffer entirely fits in the bound.
1362         state = stateSourceNotTooLong;
1363         amountCopied = strLength;
1364       }
1365     }
1366 
1367     // We still want to know if the bound is known to be too large.
1368     if (lenValNL) {
1369       if (isAppending) {
1370         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1371 
1372         // Get the string length of the destination. If the destination is
1373         // memory that can't have a string length, we shouldn't be copying
1374         // into it anyway.
1375         SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1376         if (dstStrLength.isUndef())
1377           return;
1378 
1379         if (NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength)) {
1380           maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1381                                                         *lenValNL,
1382                                                         *dstStrLengthNL,
1383                                                         sizeTy);
1384           boundWarning = "Size argument is greater than the free space in the "
1385                          "destination buffer";
1386         }
1387 
1388       } else {
1389         // For strncpy, this is just checking that lenVal <= sizeof(dst)
1390         // (Yes, strncpy and strncat differ in how they treat termination.
1391         // strncat ALWAYS terminates, but strncpy doesn't.)
1392 
1393         // We need a special case for when the copy size is zero, in which
1394         // case strncpy will do no work at all. Our bounds check uses n-1
1395         // as the last element accessed, so n == 0 is problematic.
1396         ProgramStateRef StateZeroSize, StateNonZeroSize;
1397         llvm::tie(StateZeroSize, StateNonZeroSize) =
1398           assumeZero(C, state, *lenValNL, sizeTy);
1399 
1400         // If the size is known to be zero, we're done.
1401         if (StateZeroSize && !StateNonZeroSize) {
1402           StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1403           C.addTransition(StateZeroSize);
1404           return;
1405         }
1406 
1407         // Otherwise, go ahead and figure out the last element we'll touch.
1408         // We don't record the non-zero assumption here because we can't
1409         // be sure. We won't warn on a possible zero.
1410         NonLoc one = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
1411         maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1412                                                       one, sizeTy);
1413         boundWarning = "Size argument is greater than the length of the "
1414                        "destination buffer";
1415       }
1416     }
1417 
1418     // If we couldn't pin down the copy length, at least bound it.
1419     // FIXME: We should actually run this code path for append as well, but
1420     // right now it creates problems with constraints (since we can end up
1421     // trying to pass constraints from symbol to symbol).
1422     if (amountCopied.isUnknown() && !isAppending) {
1423       // Try to get a "hypothetical" string length symbol, which we can later
1424       // set as a real value if that turns out to be the case.
1425       amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1426       assert(!amountCopied.isUndef());
1427 
1428       if (NonLoc *amountCopiedNL = dyn_cast<NonLoc>(&amountCopied)) {
1429         if (lenValNL) {
1430           // amountCopied <= lenVal
1431           SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1432                                                              *amountCopiedNL,
1433                                                              *lenValNL,
1434                                                              cmpTy);
1435           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanBound),
1436                                 true);
1437           if (!state)
1438             return;
1439         }
1440 
1441         if (strLengthNL) {
1442           // amountCopied <= strlen(source)
1443           SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1444                                                            *amountCopiedNL,
1445                                                            *strLengthNL,
1446                                                            cmpTy);
1447           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanSrc),
1448                                 true);
1449           if (!state)
1450             return;
1451         }
1452       }
1453     }
1454 
1455   } else {
1456     // The function isn't bounded. The amount copied should match the length
1457     // of the source buffer.
1458     amountCopied = strLength;
1459   }
1460 
1461   assert(state);
1462 
1463   // This represents the number of characters copied into the destination
1464   // buffer. (It may not actually be the strlen if the destination buffer
1465   // is not terminated.)
1466   SVal finalStrLength = UnknownVal();
1467 
1468   // If this is an appending function (strcat, strncat...) then set the
1469   // string length to strlen(src) + strlen(dst) since the buffer will
1470   // ultimately contain both.
1471   if (isAppending) {
1472     // Get the string length of the destination. If the destination is memory
1473     // that can't have a string length, we shouldn't be copying into it anyway.
1474     SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1475     if (dstStrLength.isUndef())
1476       return;
1477 
1478     NonLoc *srcStrLengthNL = dyn_cast<NonLoc>(&amountCopied);
1479     NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength);
1480 
1481     // If we know both string lengths, we might know the final string length.
1482     if (srcStrLengthNL && dstStrLengthNL) {
1483       // Make sure the two lengths together don't overflow a size_t.
1484       state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1485       if (!state)
1486         return;
1487 
1488       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1489                                                *dstStrLengthNL, sizeTy);
1490     }
1491 
1492     // If we couldn't get a single value for the final string length,
1493     // we can at least bound it by the individual lengths.
1494     if (finalStrLength.isUnknown()) {
1495       // Try to get a "hypothetical" string length symbol, which we can later
1496       // set as a real value if that turns out to be the case.
1497       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1498       assert(!finalStrLength.isUndef());
1499 
1500       if (NonLoc *finalStrLengthNL = dyn_cast<NonLoc>(&finalStrLength)) {
1501         if (srcStrLengthNL) {
1502           // finalStrLength >= srcStrLength
1503           SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1504                                                         *finalStrLengthNL,
1505                                                         *srcStrLengthNL,
1506                                                         cmpTy);
1507           state = state->assume(cast<DefinedOrUnknownSVal>(sourceInResult),
1508                                 true);
1509           if (!state)
1510             return;
1511         }
1512 
1513         if (dstStrLengthNL) {
1514           // finalStrLength >= dstStrLength
1515           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1516                                                       *finalStrLengthNL,
1517                                                       *dstStrLengthNL,
1518                                                       cmpTy);
1519           state = state->assume(cast<DefinedOrUnknownSVal>(destInResult),
1520                                 true);
1521           if (!state)
1522             return;
1523         }
1524       }
1525     }
1526 
1527   } else {
1528     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1529     // the final string length will match the input string length.
1530     finalStrLength = amountCopied;
1531   }
1532 
1533   // The final result of the function will either be a pointer past the last
1534   // copied element, or a pointer to the start of the destination buffer.
1535   SVal Result = (returnEnd ? UnknownVal() : DstVal);
1536 
1537   assert(state);
1538 
1539   // If the destination is a MemRegion, try to check for a buffer overflow and
1540   // record the new string length.
1541   if (loc::MemRegionVal *dstRegVal = dyn_cast<loc::MemRegionVal>(&DstVal)) {
1542     QualType ptrTy = Dst->getType();
1543 
1544     // If we have an exact value on a bounded copy, use that to check for
1545     // overflows, rather than our estimate about how much is actually copied.
1546     if (boundWarning) {
1547       if (NonLoc *maxLastNL = dyn_cast<NonLoc>(&maxLastElementIndex)) {
1548         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1549                                                       *maxLastNL, ptrTy);
1550         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1551                               boundWarning);
1552         if (!state)
1553           return;
1554       }
1555     }
1556 
1557     // Then, if the final length is known...
1558     if (NonLoc *knownStrLength = dyn_cast<NonLoc>(&finalStrLength)) {
1559       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1560                                                  *knownStrLength, ptrTy);
1561 
1562       // ...and we haven't checked the bound, we'll check the actual copy.
1563       if (!boundWarning) {
1564         const char * const warningMsg =
1565           "String copy function overflows destination buffer";
1566         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1567         if (!state)
1568           return;
1569       }
1570 
1571       // If this is a stpcpy-style copy, the last element is the return value.
1572       if (returnEnd)
1573         Result = lastElement;
1574     }
1575 
1576     // Invalidate the destination. This must happen before we set the C string
1577     // length because invalidation will clear the length.
1578     // FIXME: Even if we can't perfectly model the copy, we should see if we
1579     // can use LazyCompoundVals to copy the source values into the destination.
1580     // This would probably remove any existing bindings past the end of the
1581     // string, but that's still an improvement over blank invalidation.
1582     state = InvalidateBuffer(C, state, Dst, *dstRegVal);
1583 
1584     // Set the C string length of the destination, if we know it.
1585     if (isBounded && !isAppending) {
1586       // strncpy is annoying in that it doesn't guarantee to null-terminate
1587       // the result string. If the original string didn't fit entirely inside
1588       // the bound (including the null-terminator), we don't know how long the
1589       // result is.
1590       if (amountCopied != strLength)
1591         finalStrLength = UnknownVal();
1592     }
1593     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1594   }
1595 
1596   assert(state);
1597 
1598   // If this is a stpcpy-style copy, but we were unable to check for a buffer
1599   // overflow, we still need a result. Conjure a return value.
1600   if (returnEnd && Result.isUnknown()) {
1601     Result = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1602   }
1603 
1604   // Set the return value.
1605   state = state->BindExpr(CE, LCtx, Result);
1606   C.addTransition(state);
1607 }
1608 
1609 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1610   if (CE->getNumArgs() < 2)
1611     return;
1612 
1613   //int strcmp(const char *s1, const char *s2);
1614   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1615 }
1616 
1617 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1618   if (CE->getNumArgs() < 3)
1619     return;
1620 
1621   //int strncmp(const char *s1, const char *s2, size_t n);
1622   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1623 }
1624 
1625 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1626                                     const CallExpr *CE) const {
1627   if (CE->getNumArgs() < 2)
1628     return;
1629 
1630   //int strcasecmp(const char *s1, const char *s2);
1631   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1632 }
1633 
1634 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1635                                      const CallExpr *CE) const {
1636   if (CE->getNumArgs() < 3)
1637     return;
1638 
1639   //int strncasecmp(const char *s1, const char *s2, size_t n);
1640   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1641 }
1642 
1643 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1644                                       bool isBounded, bool ignoreCase) const {
1645   CurrentFunctionDescription = "string comparison function";
1646   ProgramStateRef state = C.getState();
1647   const LocationContext *LCtx = C.getLocationContext();
1648 
1649   // Check that the first string is non-null
1650   const Expr *s1 = CE->getArg(0);
1651   SVal s1Val = state->getSVal(s1, LCtx);
1652   state = checkNonNull(C, state, s1, s1Val);
1653   if (!state)
1654     return;
1655 
1656   // Check that the second string is non-null.
1657   const Expr *s2 = CE->getArg(1);
1658   SVal s2Val = state->getSVal(s2, LCtx);
1659   state = checkNonNull(C, state, s2, s2Val);
1660   if (!state)
1661     return;
1662 
1663   // Get the string length of the first string or give up.
1664   SVal s1Length = getCStringLength(C, state, s1, s1Val);
1665   if (s1Length.isUndef())
1666     return;
1667 
1668   // Get the string length of the second string or give up.
1669   SVal s2Length = getCStringLength(C, state, s2, s2Val);
1670   if (s2Length.isUndef())
1671     return;
1672 
1673   // If we know the two buffers are the same, we know the result is 0.
1674   // First, get the two buffers' addresses. Another checker will have already
1675   // made sure they're not undefined.
1676   DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(s1Val);
1677   DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(s2Val);
1678 
1679   // See if they are the same.
1680   SValBuilder &svalBuilder = C.getSValBuilder();
1681   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1682   ProgramStateRef StSameBuf, StNotSameBuf;
1683   llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1684 
1685   // If the two arguments might be the same buffer, we know the result is 0,
1686   // and we only need to check one size.
1687   if (StSameBuf) {
1688     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1689                                     svalBuilder.makeZeroVal(CE->getType()));
1690     C.addTransition(StSameBuf);
1691 
1692     // If the two arguments are GUARANTEED to be the same, we're done!
1693     if (!StNotSameBuf)
1694       return;
1695   }
1696 
1697   assert(StNotSameBuf);
1698   state = StNotSameBuf;
1699 
1700   // At this point we can go about comparing the two buffers.
1701   // For now, we only do this if they're both known string literals.
1702 
1703   // Attempt to extract string literals from both expressions.
1704   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1705   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1706   bool canComputeResult = false;
1707 
1708   if (s1StrLiteral && s2StrLiteral) {
1709     StringRef s1StrRef = s1StrLiteral->getString();
1710     StringRef s2StrRef = s2StrLiteral->getString();
1711 
1712     if (isBounded) {
1713       // Get the max number of characters to compare.
1714       const Expr *lenExpr = CE->getArg(2);
1715       SVal lenVal = state->getSVal(lenExpr, LCtx);
1716 
1717       // If the length is known, we can get the right substrings.
1718       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1719         // Create substrings of each to compare the prefix.
1720         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1721         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1722         canComputeResult = true;
1723       }
1724     } else {
1725       // This is a normal, unbounded strcmp.
1726       canComputeResult = true;
1727     }
1728 
1729     if (canComputeResult) {
1730       // Real strcmp stops at null characters.
1731       size_t s1Term = s1StrRef.find('\0');
1732       if (s1Term != StringRef::npos)
1733         s1StrRef = s1StrRef.substr(0, s1Term);
1734 
1735       size_t s2Term = s2StrRef.find('\0');
1736       if (s2Term != StringRef::npos)
1737         s2StrRef = s2StrRef.substr(0, s2Term);
1738 
1739       // Use StringRef's comparison methods to compute the actual result.
1740       int result;
1741 
1742       if (ignoreCase) {
1743         // Compare string 1 to string 2 the same way strcasecmp() does.
1744         result = s1StrRef.compare_lower(s2StrRef);
1745       } else {
1746         // Compare string 1 to string 2 the same way strcmp() does.
1747         result = s1StrRef.compare(s2StrRef);
1748       }
1749 
1750       // Build the SVal of the comparison and bind the return value.
1751       SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
1752       state = state->BindExpr(CE, LCtx, resultVal);
1753     }
1754   }
1755 
1756   if (!canComputeResult) {
1757     // Conjure a symbolic value. It's the best we can do.
1758     SVal resultVal = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1759     state = state->BindExpr(CE, LCtx, resultVal);
1760   }
1761 
1762   // Record this as a possible path.
1763   C.addTransition(state);
1764 }
1765 
1766 //===----------------------------------------------------------------------===//
1767 // The driver method, and other Checker callbacks.
1768 //===----------------------------------------------------------------------===//
1769 
1770 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
1771   const FunctionDecl *FDecl = C.getCalleeDecl(CE);
1772 
1773   if (!FDecl)
1774     return false;
1775 
1776   FnCheck evalFunction = 0;
1777   if (C.isCLibraryFunction(FDecl, "memcpy"))
1778     evalFunction =  &CStringChecker::evalMemcpy;
1779   else if (C.isCLibraryFunction(FDecl, "mempcpy"))
1780     evalFunction =  &CStringChecker::evalMempcpy;
1781   else if (C.isCLibraryFunction(FDecl, "memcmp"))
1782     evalFunction =  &CStringChecker::evalMemcmp;
1783   else if (C.isCLibraryFunction(FDecl, "memmove"))
1784     evalFunction =  &CStringChecker::evalMemmove;
1785   else if (C.isCLibraryFunction(FDecl, "strcpy"))
1786     evalFunction =  &CStringChecker::evalStrcpy;
1787   else if (C.isCLibraryFunction(FDecl, "strncpy"))
1788     evalFunction =  &CStringChecker::evalStrncpy;
1789   else if (C.isCLibraryFunction(FDecl, "stpcpy"))
1790     evalFunction =  &CStringChecker::evalStpcpy;
1791   else if (C.isCLibraryFunction(FDecl, "strcat"))
1792     evalFunction =  &CStringChecker::evalStrcat;
1793   else if (C.isCLibraryFunction(FDecl, "strncat"))
1794     evalFunction =  &CStringChecker::evalStrncat;
1795   else if (C.isCLibraryFunction(FDecl, "strlen"))
1796     evalFunction =  &CStringChecker::evalstrLength;
1797   else if (C.isCLibraryFunction(FDecl, "strnlen"))
1798     evalFunction =  &CStringChecker::evalstrnLength;
1799   else if (C.isCLibraryFunction(FDecl, "strcmp"))
1800     evalFunction =  &CStringChecker::evalStrcmp;
1801   else if (C.isCLibraryFunction(FDecl, "strncmp"))
1802     evalFunction =  &CStringChecker::evalStrncmp;
1803   else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
1804     evalFunction =  &CStringChecker::evalStrcasecmp;
1805   else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
1806     evalFunction =  &CStringChecker::evalStrncasecmp;
1807   else if (C.isCLibraryFunction(FDecl, "bcopy"))
1808     evalFunction =  &CStringChecker::evalBcopy;
1809   else if (C.isCLibraryFunction(FDecl, "bcmp"))
1810     evalFunction =  &CStringChecker::evalMemcmp;
1811 
1812   // If the callee isn't a string function, let another checker handle it.
1813   if (!evalFunction)
1814     return false;
1815 
1816   // Make sure each function sets its own description.
1817   // (But don't bother in a release build.)
1818   assert(!(CurrentFunctionDescription = NULL));
1819 
1820   // Check and evaluate the call.
1821   (this->*evalFunction)(C, CE);
1822 
1823   // If the evaluate call resulted in no change, chain to the next eval call
1824   // handler.
1825   // Note, the custom CString evaluation calls assume that basic safety
1826   // properties are held. However, if the user chooses to turn off some of these
1827   // checks, we ignore the issues and leave the call evaluation to a generic
1828   // handler.
1829   if (!C.isDifferent())
1830     return false;
1831 
1832   return true;
1833 }
1834 
1835 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
1836   // Record string length for char a[] = "abc";
1837   ProgramStateRef state = C.getState();
1838 
1839   for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1840        I != E; ++I) {
1841     const VarDecl *D = dyn_cast<VarDecl>(*I);
1842     if (!D)
1843       continue;
1844 
1845     // FIXME: Handle array fields of structs.
1846     if (!D->getType()->isArrayType())
1847       continue;
1848 
1849     const Expr *Init = D->getInit();
1850     if (!Init)
1851       continue;
1852     if (!isa<StringLiteral>(Init))
1853       continue;
1854 
1855     Loc VarLoc = state->getLValue(D, C.getLocationContext());
1856     const MemRegion *MR = VarLoc.getAsRegion();
1857     if (!MR)
1858       continue;
1859 
1860     SVal StrVal = state->getSVal(Init, C.getLocationContext());
1861     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
1862     DefinedOrUnknownSVal strLength
1863       = cast<DefinedOrUnknownSVal>(getCStringLength(C, state, Init, StrVal));
1864 
1865     state = state->set<CStringLength>(MR, strLength);
1866   }
1867 
1868   C.addTransition(state);
1869 }
1870 
1871 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
1872   CStringLengthTy Entries = state->get<CStringLength>();
1873   return !Entries.isEmpty();
1874 }
1875 
1876 ProgramStateRef
1877 CStringChecker::checkRegionChanges(ProgramStateRef state,
1878                                    const InvalidatedSymbols *,
1879                                    ArrayRef<const MemRegion *> ExplicitRegions,
1880                                    ArrayRef<const MemRegion *> Regions,
1881                                    const CallEvent *Call) const {
1882   CStringLengthTy Entries = state->get<CStringLength>();
1883   if (Entries.isEmpty())
1884     return state;
1885 
1886   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
1887   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
1888 
1889   // First build sets for the changed regions and their super-regions.
1890   for (ArrayRef<const MemRegion *>::iterator
1891        I = Regions.begin(), E = Regions.end(); I != E; ++I) {
1892     const MemRegion *MR = *I;
1893     Invalidated.insert(MR);
1894 
1895     SuperRegions.insert(MR);
1896     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
1897       MR = SR->getSuperRegion();
1898       SuperRegions.insert(MR);
1899     }
1900   }
1901 
1902   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
1903 
1904   // Then loop over the entries in the current state.
1905   for (CStringLengthTy::iterator I = Entries.begin(),
1906        E = Entries.end(); I != E; ++I) {
1907     const MemRegion *MR = I.getKey();
1908 
1909     // Is this entry for a super-region of a changed region?
1910     if (SuperRegions.count(MR)) {
1911       Entries = F.remove(Entries, MR);
1912       continue;
1913     }
1914 
1915     // Is this entry for a sub-region of a changed region?
1916     const MemRegion *Super = MR;
1917     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
1918       Super = SR->getSuperRegion();
1919       if (Invalidated.count(Super)) {
1920         Entries = F.remove(Entries, MR);
1921         break;
1922       }
1923     }
1924   }
1925 
1926   return state->set<CStringLength>(Entries);
1927 }
1928 
1929 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
1930                                       SymbolReaper &SR) const {
1931   // Mark all symbols in our string length map as valid.
1932   CStringLengthTy Entries = state->get<CStringLength>();
1933 
1934   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
1935        I != E; ++I) {
1936     SVal Len = I.getData();
1937 
1938     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
1939                                   se = Len.symbol_end(); si != se; ++si)
1940       SR.markInUse(*si);
1941   }
1942 }
1943 
1944 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
1945                                       CheckerContext &C) const {
1946   if (!SR.hasDeadSymbols())
1947     return;
1948 
1949   ProgramStateRef state = C.getState();
1950   CStringLengthTy Entries = state->get<CStringLength>();
1951   if (Entries.isEmpty())
1952     return;
1953 
1954   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
1955   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
1956        I != E; ++I) {
1957     SVal Len = I.getData();
1958     if (SymbolRef Sym = Len.getAsSymbol()) {
1959       if (SR.isDead(Sym))
1960         Entries = F.remove(Entries, I.getKey());
1961     }
1962   }
1963 
1964   state = state->set<CStringLength>(Entries);
1965   C.addTransition(state);
1966 }
1967 
1968 #define REGISTER_CHECKER(name) \
1969 void ento::register##name(CheckerManager &mgr) {\
1970   static CStringChecker *TheChecker = 0; \
1971   if (TheChecker == 0) \
1972     TheChecker = mgr.registerChecker<CStringChecker>(); \
1973   TheChecker->Filter.Check##name = true; \
1974 }
1975 
1976 REGISTER_CHECKER(CStringNullArg)
1977 REGISTER_CHECKER(CStringOutOfBounds)
1978 REGISTER_CHECKER(CStringBufferOverlap)
1979 REGISTER_CHECKER(CStringNotNullTerm)
1980 
1981 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
1982   registerCStringNullArg(Mgr);
1983 }
1984