1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This defines CStringChecker, which is an assortment of checks on calls 11 // to functions in <string.h>. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/Basic/CharInfo.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckName CheckNameCStringNullArg; 52 CheckName CheckNameCStringOutOfBounds; 53 CheckName CheckNameCStringBufferOverlap; 54 CheckName CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallExpr *CE, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 77 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 78 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 79 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 80 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 81 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 82 ProgramStateRef state, 83 const Expr *Size, 84 const Expr *Source, 85 const Expr *Dest, 86 bool Restricted = false, 87 bool IsMempcpy = false) const; 88 89 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 90 91 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 92 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 93 void evalstrLengthCommon(CheckerContext &C, 94 const CallExpr *CE, 95 bool IsStrnlen = false) const; 96 97 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 98 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 99 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 100 void evalStrcpyCommon(CheckerContext &C, 101 const CallExpr *CE, 102 bool returnEnd, 103 bool isBounded, 104 bool isAppending) const; 105 106 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 107 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 108 109 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 110 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 111 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 112 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 113 void evalStrcmpCommon(CheckerContext &C, 114 const CallExpr *CE, 115 bool isBounded = false, 116 bool ignoreCase = false) const; 117 118 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 119 120 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 121 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 122 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 123 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 124 125 // Utility methods 126 std::pair<ProgramStateRef , ProgramStateRef > 127 static assumeZero(CheckerContext &C, 128 ProgramStateRef state, SVal V, QualType Ty); 129 130 static ProgramStateRef setCStringLength(ProgramStateRef state, 131 const MemRegion *MR, 132 SVal strLength); 133 static SVal getCStringLengthForRegion(CheckerContext &C, 134 ProgramStateRef &state, 135 const Expr *Ex, 136 const MemRegion *MR, 137 bool hypothetical); 138 SVal getCStringLength(CheckerContext &C, 139 ProgramStateRef &state, 140 const Expr *Ex, 141 SVal Buf, 142 bool hypothetical = false) const; 143 144 const StringLiteral *getCStringLiteral(CheckerContext &C, 145 ProgramStateRef &state, 146 const Expr *expr, 147 SVal val) const; 148 149 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 150 ProgramStateRef state, 151 const Expr *Ex, SVal V, 152 bool IsSourceBuffer, 153 const Expr *Size); 154 155 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 156 const MemRegion *MR); 157 158 // Re-usable checks 159 ProgramStateRef checkNonNull(CheckerContext &C, 160 ProgramStateRef state, 161 const Expr *S, 162 SVal l) const; 163 ProgramStateRef CheckLocation(CheckerContext &C, 164 ProgramStateRef state, 165 const Expr *S, 166 SVal l, 167 const char *message = nullptr) const; 168 ProgramStateRef CheckBufferAccess(CheckerContext &C, 169 ProgramStateRef state, 170 const Expr *Size, 171 const Expr *FirstBuf, 172 const Expr *SecondBuf, 173 const char *firstMessage = nullptr, 174 const char *secondMessage = nullptr, 175 bool WarnAboutSize = false) const; 176 177 ProgramStateRef CheckBufferAccess(CheckerContext &C, 178 ProgramStateRef state, 179 const Expr *Size, 180 const Expr *Buf, 181 const char *message = nullptr, 182 bool WarnAboutSize = false) const { 183 // This is a convenience override. 184 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 185 WarnAboutSize); 186 } 187 ProgramStateRef CheckOverlap(CheckerContext &C, 188 ProgramStateRef state, 189 const Expr *Size, 190 const Expr *First, 191 const Expr *Second) const; 192 void emitOverlapBug(CheckerContext &C, 193 ProgramStateRef state, 194 const Stmt *First, 195 const Stmt *Second) const; 196 197 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 198 ProgramStateRef state, 199 NonLoc left, 200 NonLoc right) const; 201 202 // Return true if the destination buffer of the copy function may be in bound. 203 // Expects SVal of Size to be positive and unsigned. 204 // Expects SVal of FirstBuf to be a FieldRegion. 205 static bool IsFirstBufInBound(CheckerContext &C, 206 ProgramStateRef state, 207 const Expr *FirstBuf, 208 const Expr *Size); 209 }; 210 211 } //end anonymous namespace 212 213 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 214 215 //===----------------------------------------------------------------------===// 216 // Individual checks and utility methods. 217 //===----------------------------------------------------------------------===// 218 219 std::pair<ProgramStateRef , ProgramStateRef > 220 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 221 QualType Ty) { 222 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 223 if (!val) 224 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 225 226 SValBuilder &svalBuilder = C.getSValBuilder(); 227 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 228 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 229 } 230 231 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 232 ProgramStateRef state, 233 const Expr *S, SVal l) const { 234 // If a previous check has failed, propagate the failure. 235 if (!state) 236 return nullptr; 237 238 ProgramStateRef stateNull, stateNonNull; 239 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 240 241 if (stateNull && !stateNonNull) { 242 if (!Filter.CheckCStringNullArg) 243 return nullptr; 244 245 ExplodedNode *N = C.generateErrorNode(stateNull); 246 if (!N) 247 return nullptr; 248 249 if (!BT_Null) 250 BT_Null.reset(new BuiltinBug( 251 Filter.CheckNameCStringNullArg, categories::UnixAPI, 252 "Null pointer argument in call to byte string function")); 253 254 SmallString<80> buf; 255 llvm::raw_svector_ostream os(buf); 256 assert(CurrentFunctionDescription); 257 os << "Null pointer argument in call to " << CurrentFunctionDescription; 258 259 // Generate a report for this bug. 260 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get()); 261 auto report = llvm::make_unique<BugReport>(*BT, os.str(), N); 262 263 report->addRange(S->getSourceRange()); 264 bugreporter::trackNullOrUndefValue(N, S, *report); 265 C.emitReport(std::move(report)); 266 return nullptr; 267 } 268 269 // From here on, assume that the value is non-null. 270 assert(stateNonNull); 271 return stateNonNull; 272 } 273 274 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 275 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 276 ProgramStateRef state, 277 const Expr *S, SVal l, 278 const char *warningMsg) const { 279 // If a previous check has failed, propagate the failure. 280 if (!state) 281 return nullptr; 282 283 // Check for out of bound array element access. 284 const MemRegion *R = l.getAsRegion(); 285 if (!R) 286 return state; 287 288 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 289 if (!ER) 290 return state; 291 292 assert(ER->getValueType() == C.getASTContext().CharTy && 293 "CheckLocation should only be called with char* ElementRegions"); 294 295 // Get the size of the array. 296 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 297 SValBuilder &svalBuilder = C.getSValBuilder(); 298 SVal Extent = 299 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 300 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 301 302 // Get the index of the accessed element. 303 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 304 305 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 306 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 307 if (StOutBound && !StInBound) { 308 ExplodedNode *N = C.generateErrorNode(StOutBound); 309 if (!N) 310 return nullptr; 311 312 if (!BT_Bounds) { 313 BT_Bounds.reset(new BuiltinBug( 314 Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access", 315 "Byte string function accesses out-of-bound array element")); 316 } 317 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get()); 318 319 // Generate a report for this bug. 320 std::unique_ptr<BugReport> report; 321 if (warningMsg) { 322 report = llvm::make_unique<BugReport>(*BT, warningMsg, N); 323 } else { 324 assert(CurrentFunctionDescription); 325 assert(CurrentFunctionDescription[0] != '\0'); 326 327 SmallString<80> buf; 328 llvm::raw_svector_ostream os(buf); 329 os << toUppercase(CurrentFunctionDescription[0]) 330 << &CurrentFunctionDescription[1] 331 << " accesses out-of-bound array element"; 332 report = llvm::make_unique<BugReport>(*BT, os.str(), N); 333 } 334 335 // FIXME: It would be nice to eventually make this diagnostic more clear, 336 // e.g., by referencing the original declaration or by saying *why* this 337 // reference is outside the range. 338 339 report->addRange(S->getSourceRange()); 340 C.emitReport(std::move(report)); 341 return nullptr; 342 } 343 344 // Array bound check succeeded. From this point forward the array bound 345 // should always succeed. 346 return StInBound; 347 } 348 349 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 350 ProgramStateRef state, 351 const Expr *Size, 352 const Expr *FirstBuf, 353 const Expr *SecondBuf, 354 const char *firstMessage, 355 const char *secondMessage, 356 bool WarnAboutSize) const { 357 // If a previous check has failed, propagate the failure. 358 if (!state) 359 return nullptr; 360 361 SValBuilder &svalBuilder = C.getSValBuilder(); 362 ASTContext &Ctx = svalBuilder.getContext(); 363 const LocationContext *LCtx = C.getLocationContext(); 364 365 QualType sizeTy = Size->getType(); 366 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 367 368 // Check that the first buffer is non-null. 369 SVal BufVal = state->getSVal(FirstBuf, LCtx); 370 state = checkNonNull(C, state, FirstBuf, BufVal); 371 if (!state) 372 return nullptr; 373 374 // If out-of-bounds checking is turned off, skip the rest. 375 if (!Filter.CheckCStringOutOfBounds) 376 return state; 377 378 // Get the access length and make sure it is known. 379 // FIXME: This assumes the caller has already checked that the access length 380 // is positive. And that it's unsigned. 381 SVal LengthVal = state->getSVal(Size, LCtx); 382 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 383 if (!Length) 384 return state; 385 386 // Compute the offset of the last element to be accessed: size-1. 387 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 388 NonLoc LastOffset = svalBuilder 389 .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>(); 390 391 // Check that the first buffer is sufficiently long. 392 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 393 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 394 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 395 396 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 397 LastOffset, PtrTy); 398 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 399 400 // If the buffer isn't large enough, abort. 401 if (!state) 402 return nullptr; 403 } 404 405 // If there's a second buffer, check it as well. 406 if (SecondBuf) { 407 BufVal = state->getSVal(SecondBuf, LCtx); 408 state = checkNonNull(C, state, SecondBuf, BufVal); 409 if (!state) 410 return nullptr; 411 412 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 413 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 414 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 415 416 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 417 LastOffset, PtrTy); 418 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 419 } 420 } 421 422 // Large enough or not, return this state! 423 return state; 424 } 425 426 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 427 ProgramStateRef state, 428 const Expr *Size, 429 const Expr *First, 430 const Expr *Second) const { 431 if (!Filter.CheckCStringBufferOverlap) 432 return state; 433 434 // Do a simple check for overlap: if the two arguments are from the same 435 // buffer, see if the end of the first is greater than the start of the second 436 // or vice versa. 437 438 // If a previous check has failed, propagate the failure. 439 if (!state) 440 return nullptr; 441 442 ProgramStateRef stateTrue, stateFalse; 443 444 // Get the buffer values and make sure they're known locations. 445 const LocationContext *LCtx = C.getLocationContext(); 446 SVal firstVal = state->getSVal(First, LCtx); 447 SVal secondVal = state->getSVal(Second, LCtx); 448 449 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 450 if (!firstLoc) 451 return state; 452 453 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 454 if (!secondLoc) 455 return state; 456 457 // Are the two values the same? 458 SValBuilder &svalBuilder = C.getSValBuilder(); 459 std::tie(stateTrue, stateFalse) = 460 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 461 462 if (stateTrue && !stateFalse) { 463 // If the values are known to be equal, that's automatically an overlap. 464 emitOverlapBug(C, stateTrue, First, Second); 465 return nullptr; 466 } 467 468 // assume the two expressions are not equal. 469 assert(stateFalse); 470 state = stateFalse; 471 472 // Which value comes first? 473 QualType cmpTy = svalBuilder.getConditionType(); 474 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 475 *firstLoc, *secondLoc, cmpTy); 476 Optional<DefinedOrUnknownSVal> reverseTest = 477 reverse.getAs<DefinedOrUnknownSVal>(); 478 if (!reverseTest) 479 return state; 480 481 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 482 if (stateTrue) { 483 if (stateFalse) { 484 // If we don't know which one comes first, we can't perform this test. 485 return state; 486 } else { 487 // Switch the values so that firstVal is before secondVal. 488 std::swap(firstLoc, secondLoc); 489 490 // Switch the Exprs as well, so that they still correspond. 491 std::swap(First, Second); 492 } 493 } 494 495 // Get the length, and make sure it too is known. 496 SVal LengthVal = state->getSVal(Size, LCtx); 497 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 498 if (!Length) 499 return state; 500 501 // Convert the first buffer's start address to char*. 502 // Bail out if the cast fails. 503 ASTContext &Ctx = svalBuilder.getContext(); 504 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 505 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 506 First->getType()); 507 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 508 if (!FirstStartLoc) 509 return state; 510 511 // Compute the end of the first buffer. Bail out if THAT fails. 512 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 513 *FirstStartLoc, *Length, CharPtrTy); 514 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 515 if (!FirstEndLoc) 516 return state; 517 518 // Is the end of the first buffer past the start of the second buffer? 519 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 520 *FirstEndLoc, *secondLoc, cmpTy); 521 Optional<DefinedOrUnknownSVal> OverlapTest = 522 Overlap.getAs<DefinedOrUnknownSVal>(); 523 if (!OverlapTest) 524 return state; 525 526 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 527 528 if (stateTrue && !stateFalse) { 529 // Overlap! 530 emitOverlapBug(C, stateTrue, First, Second); 531 return nullptr; 532 } 533 534 // assume the two expressions don't overlap. 535 assert(stateFalse); 536 return stateFalse; 537 } 538 539 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 540 const Stmt *First, const Stmt *Second) const { 541 ExplodedNode *N = C.generateErrorNode(state); 542 if (!N) 543 return; 544 545 if (!BT_Overlap) 546 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 547 categories::UnixAPI, "Improper arguments")); 548 549 // Generate a report for this bug. 550 auto report = llvm::make_unique<BugReport>( 551 *BT_Overlap, "Arguments must not be overlapping buffers", N); 552 report->addRange(First->getSourceRange()); 553 report->addRange(Second->getSourceRange()); 554 555 C.emitReport(std::move(report)); 556 } 557 558 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 559 ProgramStateRef state, 560 NonLoc left, 561 NonLoc right) const { 562 // If out-of-bounds checking is turned off, skip the rest. 563 if (!Filter.CheckCStringOutOfBounds) 564 return state; 565 566 // If a previous check has failed, propagate the failure. 567 if (!state) 568 return nullptr; 569 570 SValBuilder &svalBuilder = C.getSValBuilder(); 571 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 572 573 QualType sizeTy = svalBuilder.getContext().getSizeType(); 574 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 575 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 576 577 SVal maxMinusRight; 578 if (right.getAs<nonloc::ConcreteInt>()) { 579 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 580 sizeTy); 581 } else { 582 // Try switching the operands. (The order of these two assignments is 583 // important!) 584 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 585 sizeTy); 586 left = right; 587 } 588 589 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 590 QualType cmpTy = svalBuilder.getConditionType(); 591 // If left > max - right, we have an overflow. 592 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 593 *maxMinusRightNL, cmpTy); 594 595 ProgramStateRef stateOverflow, stateOkay; 596 std::tie(stateOverflow, stateOkay) = 597 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 598 599 if (stateOverflow && !stateOkay) { 600 // We have an overflow. Emit a bug report. 601 ExplodedNode *N = C.generateErrorNode(stateOverflow); 602 if (!N) 603 return nullptr; 604 605 if (!BT_AdditionOverflow) 606 BT_AdditionOverflow.reset( 607 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 608 "Sum of expressions causes overflow")); 609 610 // This isn't a great error message, but this should never occur in real 611 // code anyway -- you'd have to create a buffer longer than a size_t can 612 // represent, which is sort of a contradiction. 613 const char *warning = 614 "This expression will create a string whose length is too big to " 615 "be represented as a size_t"; 616 617 // Generate a report for this bug. 618 C.emitReport( 619 llvm::make_unique<BugReport>(*BT_AdditionOverflow, warning, N)); 620 621 return nullptr; 622 } 623 624 // From now on, assume an overflow didn't occur. 625 assert(stateOkay); 626 state = stateOkay; 627 } 628 629 return state; 630 } 631 632 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 633 const MemRegion *MR, 634 SVal strLength) { 635 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 636 637 MR = MR->StripCasts(); 638 639 switch (MR->getKind()) { 640 case MemRegion::StringRegionKind: 641 // FIXME: This can happen if we strcpy() into a string region. This is 642 // undefined [C99 6.4.5p6], but we should still warn about it. 643 return state; 644 645 case MemRegion::SymbolicRegionKind: 646 case MemRegion::AllocaRegionKind: 647 case MemRegion::VarRegionKind: 648 case MemRegion::FieldRegionKind: 649 case MemRegion::ObjCIvarRegionKind: 650 // These are the types we can currently track string lengths for. 651 break; 652 653 case MemRegion::ElementRegionKind: 654 // FIXME: Handle element regions by upper-bounding the parent region's 655 // string length. 656 return state; 657 658 default: 659 // Other regions (mostly non-data) can't have a reliable C string length. 660 // For now, just ignore the change. 661 // FIXME: These are rare but not impossible. We should output some kind of 662 // warning for things like strcpy((char[]){'a', 0}, "b"); 663 return state; 664 } 665 666 if (strLength.isUnknown()) 667 return state->remove<CStringLength>(MR); 668 669 return state->set<CStringLength>(MR, strLength); 670 } 671 672 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 673 ProgramStateRef &state, 674 const Expr *Ex, 675 const MemRegion *MR, 676 bool hypothetical) { 677 if (!hypothetical) { 678 // If there's a recorded length, go ahead and return it. 679 const SVal *Recorded = state->get<CStringLength>(MR); 680 if (Recorded) 681 return *Recorded; 682 } 683 684 // Otherwise, get a new symbol and update the state. 685 SValBuilder &svalBuilder = C.getSValBuilder(); 686 QualType sizeTy = svalBuilder.getContext().getSizeType(); 687 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 688 MR, Ex, sizeTy, 689 C.getLocationContext(), 690 C.blockCount()); 691 692 if (!hypothetical) { 693 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 694 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 695 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 696 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 697 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 698 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 699 fourInt); 700 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 701 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 702 maxLength, sizeTy); 703 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 704 } 705 state = state->set<CStringLength>(MR, strLength); 706 } 707 708 return strLength; 709 } 710 711 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 712 const Expr *Ex, SVal Buf, 713 bool hypothetical) const { 714 const MemRegion *MR = Buf.getAsRegion(); 715 if (!MR) { 716 // If we can't get a region, see if it's something we /know/ isn't a 717 // C string. In the context of locations, the only time we can issue such 718 // a warning is for labels. 719 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 720 if (!Filter.CheckCStringNotNullTerm) 721 return UndefinedVal(); 722 723 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 724 if (!BT_NotCString) 725 BT_NotCString.reset(new BuiltinBug( 726 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 727 "Argument is not a null-terminated string.")); 728 729 SmallString<120> buf; 730 llvm::raw_svector_ostream os(buf); 731 assert(CurrentFunctionDescription); 732 os << "Argument to " << CurrentFunctionDescription 733 << " is the address of the label '" << Label->getLabel()->getName() 734 << "', which is not a null-terminated string"; 735 736 // Generate a report for this bug. 737 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 738 739 report->addRange(Ex->getSourceRange()); 740 C.emitReport(std::move(report)); 741 } 742 return UndefinedVal(); 743 744 } 745 746 // If it's not a region and not a label, give up. 747 return UnknownVal(); 748 } 749 750 // If we have a region, strip casts from it and see if we can figure out 751 // its length. For anything we can't figure out, just return UnknownVal. 752 MR = MR->StripCasts(); 753 754 switch (MR->getKind()) { 755 case MemRegion::StringRegionKind: { 756 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 757 // so we can assume that the byte length is the correct C string length. 758 SValBuilder &svalBuilder = C.getSValBuilder(); 759 QualType sizeTy = svalBuilder.getContext().getSizeType(); 760 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 761 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 762 } 763 case MemRegion::SymbolicRegionKind: 764 case MemRegion::AllocaRegionKind: 765 case MemRegion::VarRegionKind: 766 case MemRegion::FieldRegionKind: 767 case MemRegion::ObjCIvarRegionKind: 768 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 769 case MemRegion::CompoundLiteralRegionKind: 770 // FIXME: Can we track this? Is it necessary? 771 return UnknownVal(); 772 case MemRegion::ElementRegionKind: 773 // FIXME: How can we handle this? It's not good enough to subtract the 774 // offset from the base string length; consider "123\x00567" and &a[5]. 775 return UnknownVal(); 776 default: 777 // Other regions (mostly non-data) can't have a reliable C string length. 778 // In this case, an error is emitted and UndefinedVal is returned. 779 // The caller should always be prepared to handle this case. 780 if (!Filter.CheckCStringNotNullTerm) 781 return UndefinedVal(); 782 783 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 784 if (!BT_NotCString) 785 BT_NotCString.reset(new BuiltinBug( 786 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 787 "Argument is not a null-terminated string.")); 788 789 SmallString<120> buf; 790 llvm::raw_svector_ostream os(buf); 791 792 assert(CurrentFunctionDescription); 793 os << "Argument to " << CurrentFunctionDescription << " is "; 794 795 if (SummarizeRegion(os, C.getASTContext(), MR)) 796 os << ", which is not a null-terminated string"; 797 else 798 os << "not a null-terminated string"; 799 800 // Generate a report for this bug. 801 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 802 803 report->addRange(Ex->getSourceRange()); 804 C.emitReport(std::move(report)); 805 } 806 807 return UndefinedVal(); 808 } 809 } 810 811 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 812 ProgramStateRef &state, const Expr *expr, SVal val) const { 813 814 // Get the memory region pointed to by the val. 815 const MemRegion *bufRegion = val.getAsRegion(); 816 if (!bufRegion) 817 return nullptr; 818 819 // Strip casts off the memory region. 820 bufRegion = bufRegion->StripCasts(); 821 822 // Cast the memory region to a string region. 823 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 824 if (!strRegion) 825 return nullptr; 826 827 // Return the actual string in the string region. 828 return strRegion->getStringLiteral(); 829 } 830 831 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 832 ProgramStateRef state, 833 const Expr *FirstBuf, 834 const Expr *Size) { 835 // If we do not know that the buffer is long enough we return 'true'. 836 // Otherwise the parent region of this field region would also get 837 // invalidated, which would lead to warnings based on an unknown state. 838 839 // Originally copied from CheckBufferAccess and CheckLocation. 840 SValBuilder &svalBuilder = C.getSValBuilder(); 841 ASTContext &Ctx = svalBuilder.getContext(); 842 const LocationContext *LCtx = C.getLocationContext(); 843 844 QualType sizeTy = Size->getType(); 845 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 846 SVal BufVal = state->getSVal(FirstBuf, LCtx); 847 848 SVal LengthVal = state->getSVal(Size, LCtx); 849 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 850 if (!Length) 851 return true; // cf top comment. 852 853 // Compute the offset of the last element to be accessed: size-1. 854 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 855 NonLoc LastOffset = 856 svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy) 857 .castAs<NonLoc>(); 858 859 // Check that the first buffer is sufficiently long. 860 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 861 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 862 if (!BufLoc) 863 return true; // cf top comment. 864 865 SVal BufEnd = 866 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 867 868 // Check for out of bound array element access. 869 const MemRegion *R = BufEnd.getAsRegion(); 870 if (!R) 871 return true; // cf top comment. 872 873 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 874 if (!ER) 875 return true; // cf top comment. 876 877 assert(ER->getValueType() == C.getASTContext().CharTy && 878 "IsFirstBufInBound should only be called with char* ElementRegions"); 879 880 // Get the size of the array. 881 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 882 SVal Extent = 883 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 884 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 885 886 // Get the index of the accessed element. 887 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 888 889 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 890 891 return static_cast<bool>(StInBound); 892 } 893 894 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 895 ProgramStateRef state, 896 const Expr *E, SVal V, 897 bool IsSourceBuffer, 898 const Expr *Size) { 899 Optional<Loc> L = V.getAs<Loc>(); 900 if (!L) 901 return state; 902 903 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 904 // some assumptions about the value that CFRefCount can't. Even so, it should 905 // probably be refactored. 906 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 907 const MemRegion *R = MR->getRegion()->StripCasts(); 908 909 // Are we dealing with an ElementRegion? If so, we should be invalidating 910 // the super-region. 911 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 912 R = ER->getSuperRegion(); 913 // FIXME: What about layers of ElementRegions? 914 } 915 916 // Invalidate this region. 917 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 918 919 bool CausesPointerEscape = false; 920 RegionAndSymbolInvalidationTraits ITraits; 921 // Invalidate and escape only indirect regions accessible through the source 922 // buffer. 923 if (IsSourceBuffer) { 924 ITraits.setTrait(R->getBaseRegion(), 925 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 926 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 927 CausesPointerEscape = true; 928 } else { 929 const MemRegion::Kind& K = R->getKind(); 930 if (K == MemRegion::FieldRegionKind) 931 if (Size && IsFirstBufInBound(C, state, E, Size)) { 932 // If destination buffer is a field region and access is in bound, 933 // do not invalidate its super region. 934 ITraits.setTrait( 935 R, 936 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 937 } 938 } 939 940 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 941 CausesPointerEscape, nullptr, nullptr, 942 &ITraits); 943 } 944 945 // If we have a non-region value by chance, just remove the binding. 946 // FIXME: is this necessary or correct? This handles the non-Region 947 // cases. Is it ever valid to store to these? 948 return state->killBinding(*L); 949 } 950 951 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 952 const MemRegion *MR) { 953 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 954 955 switch (MR->getKind()) { 956 case MemRegion::FunctionCodeRegionKind: { 957 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 958 if (FD) 959 os << "the address of the function '" << *FD << '\''; 960 else 961 os << "the address of a function"; 962 return true; 963 } 964 case MemRegion::BlockCodeRegionKind: 965 os << "block text"; 966 return true; 967 case MemRegion::BlockDataRegionKind: 968 os << "a block"; 969 return true; 970 case MemRegion::CXXThisRegionKind: 971 case MemRegion::CXXTempObjectRegionKind: 972 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 973 return true; 974 case MemRegion::VarRegionKind: 975 os << "a variable of type" << TVR->getValueType().getAsString(); 976 return true; 977 case MemRegion::FieldRegionKind: 978 os << "a field of type " << TVR->getValueType().getAsString(); 979 return true; 980 case MemRegion::ObjCIvarRegionKind: 981 os << "an instance variable of type " << TVR->getValueType().getAsString(); 982 return true; 983 default: 984 return false; 985 } 986 } 987 988 //===----------------------------------------------------------------------===// 989 // evaluation of individual function calls. 990 //===----------------------------------------------------------------------===// 991 992 void CStringChecker::evalCopyCommon(CheckerContext &C, 993 const CallExpr *CE, 994 ProgramStateRef state, 995 const Expr *Size, const Expr *Dest, 996 const Expr *Source, bool Restricted, 997 bool IsMempcpy) const { 998 CurrentFunctionDescription = "memory copy function"; 999 1000 // See if the size argument is zero. 1001 const LocationContext *LCtx = C.getLocationContext(); 1002 SVal sizeVal = state->getSVal(Size, LCtx); 1003 QualType sizeTy = Size->getType(); 1004 1005 ProgramStateRef stateZeroSize, stateNonZeroSize; 1006 std::tie(stateZeroSize, stateNonZeroSize) = 1007 assumeZero(C, state, sizeVal, sizeTy); 1008 1009 // Get the value of the Dest. 1010 SVal destVal = state->getSVal(Dest, LCtx); 1011 1012 // If the size is zero, there won't be any actual memory access, so 1013 // just bind the return value to the destination buffer and return. 1014 if (stateZeroSize && !stateNonZeroSize) { 1015 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1016 C.addTransition(stateZeroSize); 1017 return; 1018 } 1019 1020 // If the size can be nonzero, we have to check the other arguments. 1021 if (stateNonZeroSize) { 1022 state = stateNonZeroSize; 1023 1024 // Ensure the destination is not null. If it is NULL there will be a 1025 // NULL pointer dereference. 1026 state = checkNonNull(C, state, Dest, destVal); 1027 if (!state) 1028 return; 1029 1030 // Get the value of the Src. 1031 SVal srcVal = state->getSVal(Source, LCtx); 1032 1033 // Ensure the source is not null. If it is NULL there will be a 1034 // NULL pointer dereference. 1035 state = checkNonNull(C, state, Source, srcVal); 1036 if (!state) 1037 return; 1038 1039 // Ensure the accesses are valid and that the buffers do not overlap. 1040 const char * const writeWarning = 1041 "Memory copy function overflows destination buffer"; 1042 state = CheckBufferAccess(C, state, Size, Dest, Source, 1043 writeWarning, /* sourceWarning = */ nullptr); 1044 if (Restricted) 1045 state = CheckOverlap(C, state, Size, Dest, Source); 1046 1047 if (!state) 1048 return; 1049 1050 // If this is mempcpy, get the byte after the last byte copied and 1051 // bind the expr. 1052 if (IsMempcpy) { 1053 // Get the byte after the last byte copied. 1054 SValBuilder &SvalBuilder = C.getSValBuilder(); 1055 ASTContext &Ctx = SvalBuilder.getContext(); 1056 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1057 SVal DestRegCharVal = 1058 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1059 SVal lastElement = C.getSValBuilder().evalBinOp( 1060 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1061 // If we don't know how much we copied, we can at least 1062 // conjure a return value for later. 1063 if (lastElement.isUnknown()) 1064 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1065 C.blockCount()); 1066 1067 // The byte after the last byte copied is the return value. 1068 state = state->BindExpr(CE, LCtx, lastElement); 1069 } else { 1070 // All other copies return the destination buffer. 1071 // (Well, bcopy() has a void return type, but this won't hurt.) 1072 state = state->BindExpr(CE, LCtx, destVal); 1073 } 1074 1075 // Invalidate the destination (regular invalidation without pointer-escaping 1076 // the address of the top-level region). 1077 // FIXME: Even if we can't perfectly model the copy, we should see if we 1078 // can use LazyCompoundVals to copy the source values into the destination. 1079 // This would probably remove any existing bindings past the end of the 1080 // copied region, but that's still an improvement over blank invalidation. 1081 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1082 /*IsSourceBuffer*/false, Size); 1083 1084 // Invalidate the source (const-invalidation without const-pointer-escaping 1085 // the address of the top-level region). 1086 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1087 /*IsSourceBuffer*/true, nullptr); 1088 1089 C.addTransition(state); 1090 } 1091 } 1092 1093 1094 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1095 if (CE->getNumArgs() < 3) 1096 return; 1097 1098 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1099 // The return value is the address of the destination buffer. 1100 const Expr *Dest = CE->getArg(0); 1101 ProgramStateRef state = C.getState(); 1102 1103 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1104 } 1105 1106 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1107 if (CE->getNumArgs() < 3) 1108 return; 1109 1110 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1111 // The return value is a pointer to the byte following the last written byte. 1112 const Expr *Dest = CE->getArg(0); 1113 ProgramStateRef state = C.getState(); 1114 1115 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1116 } 1117 1118 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1119 if (CE->getNumArgs() < 3) 1120 return; 1121 1122 // void *memmove(void *dst, const void *src, size_t n); 1123 // The return value is the address of the destination buffer. 1124 const Expr *Dest = CE->getArg(0); 1125 ProgramStateRef state = C.getState(); 1126 1127 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1128 } 1129 1130 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1131 if (CE->getNumArgs() < 3) 1132 return; 1133 1134 // void bcopy(const void *src, void *dst, size_t n); 1135 evalCopyCommon(C, CE, C.getState(), 1136 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1137 } 1138 1139 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1140 if (CE->getNumArgs() < 3) 1141 return; 1142 1143 // int memcmp(const void *s1, const void *s2, size_t n); 1144 CurrentFunctionDescription = "memory comparison function"; 1145 1146 const Expr *Left = CE->getArg(0); 1147 const Expr *Right = CE->getArg(1); 1148 const Expr *Size = CE->getArg(2); 1149 1150 ProgramStateRef state = C.getState(); 1151 SValBuilder &svalBuilder = C.getSValBuilder(); 1152 1153 // See if the size argument is zero. 1154 const LocationContext *LCtx = C.getLocationContext(); 1155 SVal sizeVal = state->getSVal(Size, LCtx); 1156 QualType sizeTy = Size->getType(); 1157 1158 ProgramStateRef stateZeroSize, stateNonZeroSize; 1159 std::tie(stateZeroSize, stateNonZeroSize) = 1160 assumeZero(C, state, sizeVal, sizeTy); 1161 1162 // If the size can be zero, the result will be 0 in that case, and we don't 1163 // have to check either of the buffers. 1164 if (stateZeroSize) { 1165 state = stateZeroSize; 1166 state = state->BindExpr(CE, LCtx, 1167 svalBuilder.makeZeroVal(CE->getType())); 1168 C.addTransition(state); 1169 } 1170 1171 // If the size can be nonzero, we have to check the other arguments. 1172 if (stateNonZeroSize) { 1173 state = stateNonZeroSize; 1174 // If we know the two buffers are the same, we know the result is 0. 1175 // First, get the two buffers' addresses. Another checker will have already 1176 // made sure they're not undefined. 1177 DefinedOrUnknownSVal LV = 1178 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1179 DefinedOrUnknownSVal RV = 1180 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1181 1182 // See if they are the same. 1183 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1184 ProgramStateRef StSameBuf, StNotSameBuf; 1185 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1186 1187 // If the two arguments might be the same buffer, we know the result is 0, 1188 // and we only need to check one size. 1189 if (StSameBuf) { 1190 state = StSameBuf; 1191 state = CheckBufferAccess(C, state, Size, Left); 1192 if (state) { 1193 state = StSameBuf->BindExpr(CE, LCtx, 1194 svalBuilder.makeZeroVal(CE->getType())); 1195 C.addTransition(state); 1196 } 1197 } 1198 1199 // If the two arguments might be different buffers, we have to check the 1200 // size of both of them. 1201 if (StNotSameBuf) { 1202 state = StNotSameBuf; 1203 state = CheckBufferAccess(C, state, Size, Left, Right); 1204 if (state) { 1205 // The return value is the comparison result, which we don't know. 1206 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1207 C.blockCount()); 1208 state = state->BindExpr(CE, LCtx, CmpV); 1209 C.addTransition(state); 1210 } 1211 } 1212 } 1213 } 1214 1215 void CStringChecker::evalstrLength(CheckerContext &C, 1216 const CallExpr *CE) const { 1217 if (CE->getNumArgs() < 1) 1218 return; 1219 1220 // size_t strlen(const char *s); 1221 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1222 } 1223 1224 void CStringChecker::evalstrnLength(CheckerContext &C, 1225 const CallExpr *CE) const { 1226 if (CE->getNumArgs() < 2) 1227 return; 1228 1229 // size_t strnlen(const char *s, size_t maxlen); 1230 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1231 } 1232 1233 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1234 bool IsStrnlen) const { 1235 CurrentFunctionDescription = "string length function"; 1236 ProgramStateRef state = C.getState(); 1237 const LocationContext *LCtx = C.getLocationContext(); 1238 1239 if (IsStrnlen) { 1240 const Expr *maxlenExpr = CE->getArg(1); 1241 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1242 1243 ProgramStateRef stateZeroSize, stateNonZeroSize; 1244 std::tie(stateZeroSize, stateNonZeroSize) = 1245 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1246 1247 // If the size can be zero, the result will be 0 in that case, and we don't 1248 // have to check the string itself. 1249 if (stateZeroSize) { 1250 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1251 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1252 C.addTransition(stateZeroSize); 1253 } 1254 1255 // If the size is GUARANTEED to be zero, we're done! 1256 if (!stateNonZeroSize) 1257 return; 1258 1259 // Otherwise, record the assumption that the size is nonzero. 1260 state = stateNonZeroSize; 1261 } 1262 1263 // Check that the string argument is non-null. 1264 const Expr *Arg = CE->getArg(0); 1265 SVal ArgVal = state->getSVal(Arg, LCtx); 1266 1267 state = checkNonNull(C, state, Arg, ArgVal); 1268 1269 if (!state) 1270 return; 1271 1272 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1273 1274 // If the argument isn't a valid C string, there's no valid state to 1275 // transition to. 1276 if (strLength.isUndef()) 1277 return; 1278 1279 DefinedOrUnknownSVal result = UnknownVal(); 1280 1281 // If the check is for strnlen() then bind the return value to no more than 1282 // the maxlen value. 1283 if (IsStrnlen) { 1284 QualType cmpTy = C.getSValBuilder().getConditionType(); 1285 1286 // It's a little unfortunate to be getting this again, 1287 // but it's not that expensive... 1288 const Expr *maxlenExpr = CE->getArg(1); 1289 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1290 1291 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1292 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1293 1294 if (strLengthNL && maxlenValNL) { 1295 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1296 1297 // Check if the strLength is greater than the maxlen. 1298 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1299 C.getSValBuilder() 1300 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1301 .castAs<DefinedOrUnknownSVal>()); 1302 1303 if (stateStringTooLong && !stateStringNotTooLong) { 1304 // If the string is longer than maxlen, return maxlen. 1305 result = *maxlenValNL; 1306 } else if (stateStringNotTooLong && !stateStringTooLong) { 1307 // If the string is shorter than maxlen, return its length. 1308 result = *strLengthNL; 1309 } 1310 } 1311 1312 if (result.isUnknown()) { 1313 // If we don't have enough information for a comparison, there's 1314 // no guarantee the full string length will actually be returned. 1315 // All we know is the return value is the min of the string length 1316 // and the limit. This is better than nothing. 1317 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1318 C.blockCount()); 1319 NonLoc resultNL = result.castAs<NonLoc>(); 1320 1321 if (strLengthNL) { 1322 state = state->assume(C.getSValBuilder().evalBinOpNN( 1323 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1324 .castAs<DefinedOrUnknownSVal>(), true); 1325 } 1326 1327 if (maxlenValNL) { 1328 state = state->assume(C.getSValBuilder().evalBinOpNN( 1329 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1330 .castAs<DefinedOrUnknownSVal>(), true); 1331 } 1332 } 1333 1334 } else { 1335 // This is a plain strlen(), not strnlen(). 1336 result = strLength.castAs<DefinedOrUnknownSVal>(); 1337 1338 // If we don't know the length of the string, conjure a return 1339 // value, so it can be used in constraints, at least. 1340 if (result.isUnknown()) { 1341 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1342 C.blockCount()); 1343 } 1344 } 1345 1346 // Bind the return value. 1347 assert(!result.isUnknown() && "Should have conjured a value by now"); 1348 state = state->BindExpr(CE, LCtx, result); 1349 C.addTransition(state); 1350 } 1351 1352 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1353 if (CE->getNumArgs() < 2) 1354 return; 1355 1356 // char *strcpy(char *restrict dst, const char *restrict src); 1357 evalStrcpyCommon(C, CE, 1358 /* returnEnd = */ false, 1359 /* isBounded = */ false, 1360 /* isAppending = */ false); 1361 } 1362 1363 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1364 if (CE->getNumArgs() < 3) 1365 return; 1366 1367 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1368 evalStrcpyCommon(C, CE, 1369 /* returnEnd = */ false, 1370 /* isBounded = */ true, 1371 /* isAppending = */ false); 1372 } 1373 1374 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1375 if (CE->getNumArgs() < 2) 1376 return; 1377 1378 // char *stpcpy(char *restrict dst, const char *restrict src); 1379 evalStrcpyCommon(C, CE, 1380 /* returnEnd = */ true, 1381 /* isBounded = */ false, 1382 /* isAppending = */ false); 1383 } 1384 1385 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1386 if (CE->getNumArgs() < 2) 1387 return; 1388 1389 //char *strcat(char *restrict s1, const char *restrict s2); 1390 evalStrcpyCommon(C, CE, 1391 /* returnEnd = */ false, 1392 /* isBounded = */ false, 1393 /* isAppending = */ true); 1394 } 1395 1396 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1397 if (CE->getNumArgs() < 3) 1398 return; 1399 1400 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1401 evalStrcpyCommon(C, CE, 1402 /* returnEnd = */ false, 1403 /* isBounded = */ true, 1404 /* isAppending = */ true); 1405 } 1406 1407 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1408 bool returnEnd, bool isBounded, 1409 bool isAppending) const { 1410 CurrentFunctionDescription = "string copy function"; 1411 ProgramStateRef state = C.getState(); 1412 const LocationContext *LCtx = C.getLocationContext(); 1413 1414 // Check that the destination is non-null. 1415 const Expr *Dst = CE->getArg(0); 1416 SVal DstVal = state->getSVal(Dst, LCtx); 1417 1418 state = checkNonNull(C, state, Dst, DstVal); 1419 if (!state) 1420 return; 1421 1422 // Check that the source is non-null. 1423 const Expr *srcExpr = CE->getArg(1); 1424 SVal srcVal = state->getSVal(srcExpr, LCtx); 1425 state = checkNonNull(C, state, srcExpr, srcVal); 1426 if (!state) 1427 return; 1428 1429 // Get the string length of the source. 1430 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1431 1432 // If the source isn't a valid C string, give up. 1433 if (strLength.isUndef()) 1434 return; 1435 1436 SValBuilder &svalBuilder = C.getSValBuilder(); 1437 QualType cmpTy = svalBuilder.getConditionType(); 1438 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1439 1440 // These two values allow checking two kinds of errors: 1441 // - actual overflows caused by a source that doesn't fit in the destination 1442 // - potential overflows caused by a bound that could exceed the destination 1443 SVal amountCopied = UnknownVal(); 1444 SVal maxLastElementIndex = UnknownVal(); 1445 const char *boundWarning = nullptr; 1446 1447 // If the function is strncpy, strncat, etc... it is bounded. 1448 if (isBounded) { 1449 // Get the max number of characters to copy. 1450 const Expr *lenExpr = CE->getArg(2); 1451 SVal lenVal = state->getSVal(lenExpr, LCtx); 1452 1453 // Protect against misdeclared strncpy(). 1454 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1455 1456 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1457 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1458 1459 // If we know both values, we might be able to figure out how much 1460 // we're copying. 1461 if (strLengthNL && lenValNL) { 1462 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1463 1464 // Check if the max number to copy is less than the length of the src. 1465 // If the bound is equal to the source length, strncpy won't null- 1466 // terminate the result! 1467 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1468 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1469 .castAs<DefinedOrUnknownSVal>()); 1470 1471 if (stateSourceTooLong && !stateSourceNotTooLong) { 1472 // Max number to copy is less than the length of the src, so the actual 1473 // strLength copied is the max number arg. 1474 state = stateSourceTooLong; 1475 amountCopied = lenVal; 1476 1477 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1478 // The source buffer entirely fits in the bound. 1479 state = stateSourceNotTooLong; 1480 amountCopied = strLength; 1481 } 1482 } 1483 1484 // We still want to know if the bound is known to be too large. 1485 if (lenValNL) { 1486 if (isAppending) { 1487 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1488 1489 // Get the string length of the destination. If the destination is 1490 // memory that can't have a string length, we shouldn't be copying 1491 // into it anyway. 1492 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1493 if (dstStrLength.isUndef()) 1494 return; 1495 1496 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1497 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1498 *lenValNL, 1499 *dstStrLengthNL, 1500 sizeTy); 1501 boundWarning = "Size argument is greater than the free space in the " 1502 "destination buffer"; 1503 } 1504 1505 } else { 1506 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1507 // (Yes, strncpy and strncat differ in how they treat termination. 1508 // strncat ALWAYS terminates, but strncpy doesn't.) 1509 1510 // We need a special case for when the copy size is zero, in which 1511 // case strncpy will do no work at all. Our bounds check uses n-1 1512 // as the last element accessed, so n == 0 is problematic. 1513 ProgramStateRef StateZeroSize, StateNonZeroSize; 1514 std::tie(StateZeroSize, StateNonZeroSize) = 1515 assumeZero(C, state, *lenValNL, sizeTy); 1516 1517 // If the size is known to be zero, we're done. 1518 if (StateZeroSize && !StateNonZeroSize) { 1519 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1520 C.addTransition(StateZeroSize); 1521 return; 1522 } 1523 1524 // Otherwise, go ahead and figure out the last element we'll touch. 1525 // We don't record the non-zero assumption here because we can't 1526 // be sure. We won't warn on a possible zero. 1527 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1528 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1529 one, sizeTy); 1530 boundWarning = "Size argument is greater than the length of the " 1531 "destination buffer"; 1532 } 1533 } 1534 1535 // If we couldn't pin down the copy length, at least bound it. 1536 // FIXME: We should actually run this code path for append as well, but 1537 // right now it creates problems with constraints (since we can end up 1538 // trying to pass constraints from symbol to symbol). 1539 if (amountCopied.isUnknown() && !isAppending) { 1540 // Try to get a "hypothetical" string length symbol, which we can later 1541 // set as a real value if that turns out to be the case. 1542 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1543 assert(!amountCopied.isUndef()); 1544 1545 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1546 if (lenValNL) { 1547 // amountCopied <= lenVal 1548 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1549 *amountCopiedNL, 1550 *lenValNL, 1551 cmpTy); 1552 state = state->assume( 1553 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1554 if (!state) 1555 return; 1556 } 1557 1558 if (strLengthNL) { 1559 // amountCopied <= strlen(source) 1560 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1561 *amountCopiedNL, 1562 *strLengthNL, 1563 cmpTy); 1564 state = state->assume( 1565 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1566 if (!state) 1567 return; 1568 } 1569 } 1570 } 1571 1572 } else { 1573 // The function isn't bounded. The amount copied should match the length 1574 // of the source buffer. 1575 amountCopied = strLength; 1576 } 1577 1578 assert(state); 1579 1580 // This represents the number of characters copied into the destination 1581 // buffer. (It may not actually be the strlen if the destination buffer 1582 // is not terminated.) 1583 SVal finalStrLength = UnknownVal(); 1584 1585 // If this is an appending function (strcat, strncat...) then set the 1586 // string length to strlen(src) + strlen(dst) since the buffer will 1587 // ultimately contain both. 1588 if (isAppending) { 1589 // Get the string length of the destination. If the destination is memory 1590 // that can't have a string length, we shouldn't be copying into it anyway. 1591 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1592 if (dstStrLength.isUndef()) 1593 return; 1594 1595 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1596 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1597 1598 // If we know both string lengths, we might know the final string length. 1599 if (srcStrLengthNL && dstStrLengthNL) { 1600 // Make sure the two lengths together don't overflow a size_t. 1601 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1602 if (!state) 1603 return; 1604 1605 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1606 *dstStrLengthNL, sizeTy); 1607 } 1608 1609 // If we couldn't get a single value for the final string length, 1610 // we can at least bound it by the individual lengths. 1611 if (finalStrLength.isUnknown()) { 1612 // Try to get a "hypothetical" string length symbol, which we can later 1613 // set as a real value if that turns out to be the case. 1614 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1615 assert(!finalStrLength.isUndef()); 1616 1617 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1618 if (srcStrLengthNL) { 1619 // finalStrLength >= srcStrLength 1620 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1621 *finalStrLengthNL, 1622 *srcStrLengthNL, 1623 cmpTy); 1624 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1625 true); 1626 if (!state) 1627 return; 1628 } 1629 1630 if (dstStrLengthNL) { 1631 // finalStrLength >= dstStrLength 1632 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1633 *finalStrLengthNL, 1634 *dstStrLengthNL, 1635 cmpTy); 1636 state = 1637 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1638 if (!state) 1639 return; 1640 } 1641 } 1642 } 1643 1644 } else { 1645 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1646 // the final string length will match the input string length. 1647 finalStrLength = amountCopied; 1648 } 1649 1650 // The final result of the function will either be a pointer past the last 1651 // copied element, or a pointer to the start of the destination buffer. 1652 SVal Result = (returnEnd ? UnknownVal() : DstVal); 1653 1654 assert(state); 1655 1656 // If the destination is a MemRegion, try to check for a buffer overflow and 1657 // record the new string length. 1658 if (Optional<loc::MemRegionVal> dstRegVal = 1659 DstVal.getAs<loc::MemRegionVal>()) { 1660 QualType ptrTy = Dst->getType(); 1661 1662 // If we have an exact value on a bounded copy, use that to check for 1663 // overflows, rather than our estimate about how much is actually copied. 1664 if (boundWarning) { 1665 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1666 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1667 *maxLastNL, ptrTy); 1668 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1669 boundWarning); 1670 if (!state) 1671 return; 1672 } 1673 } 1674 1675 // Then, if the final length is known... 1676 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1677 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1678 *knownStrLength, ptrTy); 1679 1680 // ...and we haven't checked the bound, we'll check the actual copy. 1681 if (!boundWarning) { 1682 const char * const warningMsg = 1683 "String copy function overflows destination buffer"; 1684 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1685 if (!state) 1686 return; 1687 } 1688 1689 // If this is a stpcpy-style copy, the last element is the return value. 1690 if (returnEnd) 1691 Result = lastElement; 1692 } 1693 1694 // Invalidate the destination (regular invalidation without pointer-escaping 1695 // the address of the top-level region). This must happen before we set the 1696 // C string length because invalidation will clear the length. 1697 // FIXME: Even if we can't perfectly model the copy, we should see if we 1698 // can use LazyCompoundVals to copy the source values into the destination. 1699 // This would probably remove any existing bindings past the end of the 1700 // string, but that's still an improvement over blank invalidation. 1701 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1702 /*IsSourceBuffer*/false, nullptr); 1703 1704 // Invalidate the source (const-invalidation without const-pointer-escaping 1705 // the address of the top-level region). 1706 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1707 nullptr); 1708 1709 // Set the C string length of the destination, if we know it. 1710 if (isBounded && !isAppending) { 1711 // strncpy is annoying in that it doesn't guarantee to null-terminate 1712 // the result string. If the original string didn't fit entirely inside 1713 // the bound (including the null-terminator), we don't know how long the 1714 // result is. 1715 if (amountCopied != strLength) 1716 finalStrLength = UnknownVal(); 1717 } 1718 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1719 } 1720 1721 assert(state); 1722 1723 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1724 // overflow, we still need a result. Conjure a return value. 1725 if (returnEnd && Result.isUnknown()) { 1726 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1727 } 1728 1729 // Set the return value. 1730 state = state->BindExpr(CE, LCtx, Result); 1731 C.addTransition(state); 1732 } 1733 1734 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1735 if (CE->getNumArgs() < 2) 1736 return; 1737 1738 //int strcmp(const char *s1, const char *s2); 1739 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1740 } 1741 1742 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1743 if (CE->getNumArgs() < 3) 1744 return; 1745 1746 //int strncmp(const char *s1, const char *s2, size_t n); 1747 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1748 } 1749 1750 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1751 const CallExpr *CE) const { 1752 if (CE->getNumArgs() < 2) 1753 return; 1754 1755 //int strcasecmp(const char *s1, const char *s2); 1756 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1757 } 1758 1759 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1760 const CallExpr *CE) const { 1761 if (CE->getNumArgs() < 3) 1762 return; 1763 1764 //int strncasecmp(const char *s1, const char *s2, size_t n); 1765 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1766 } 1767 1768 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1769 bool isBounded, bool ignoreCase) const { 1770 CurrentFunctionDescription = "string comparison function"; 1771 ProgramStateRef state = C.getState(); 1772 const LocationContext *LCtx = C.getLocationContext(); 1773 1774 // Check that the first string is non-null 1775 const Expr *s1 = CE->getArg(0); 1776 SVal s1Val = state->getSVal(s1, LCtx); 1777 state = checkNonNull(C, state, s1, s1Val); 1778 if (!state) 1779 return; 1780 1781 // Check that the second string is non-null. 1782 const Expr *s2 = CE->getArg(1); 1783 SVal s2Val = state->getSVal(s2, LCtx); 1784 state = checkNonNull(C, state, s2, s2Val); 1785 if (!state) 1786 return; 1787 1788 // Get the string length of the first string or give up. 1789 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1790 if (s1Length.isUndef()) 1791 return; 1792 1793 // Get the string length of the second string or give up. 1794 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1795 if (s2Length.isUndef()) 1796 return; 1797 1798 // If we know the two buffers are the same, we know the result is 0. 1799 // First, get the two buffers' addresses. Another checker will have already 1800 // made sure they're not undefined. 1801 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1802 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1803 1804 // See if they are the same. 1805 SValBuilder &svalBuilder = C.getSValBuilder(); 1806 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1807 ProgramStateRef StSameBuf, StNotSameBuf; 1808 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1809 1810 // If the two arguments might be the same buffer, we know the result is 0, 1811 // and we only need to check one size. 1812 if (StSameBuf) { 1813 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1814 svalBuilder.makeZeroVal(CE->getType())); 1815 C.addTransition(StSameBuf); 1816 1817 // If the two arguments are GUARANTEED to be the same, we're done! 1818 if (!StNotSameBuf) 1819 return; 1820 } 1821 1822 assert(StNotSameBuf); 1823 state = StNotSameBuf; 1824 1825 // At this point we can go about comparing the two buffers. 1826 // For now, we only do this if they're both known string literals. 1827 1828 // Attempt to extract string literals from both expressions. 1829 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1830 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1831 bool canComputeResult = false; 1832 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1833 C.blockCount()); 1834 1835 if (s1StrLiteral && s2StrLiteral) { 1836 StringRef s1StrRef = s1StrLiteral->getString(); 1837 StringRef s2StrRef = s2StrLiteral->getString(); 1838 1839 if (isBounded) { 1840 // Get the max number of characters to compare. 1841 const Expr *lenExpr = CE->getArg(2); 1842 SVal lenVal = state->getSVal(lenExpr, LCtx); 1843 1844 // If the length is known, we can get the right substrings. 1845 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1846 // Create substrings of each to compare the prefix. 1847 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1848 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1849 canComputeResult = true; 1850 } 1851 } else { 1852 // This is a normal, unbounded strcmp. 1853 canComputeResult = true; 1854 } 1855 1856 if (canComputeResult) { 1857 // Real strcmp stops at null characters. 1858 size_t s1Term = s1StrRef.find('\0'); 1859 if (s1Term != StringRef::npos) 1860 s1StrRef = s1StrRef.substr(0, s1Term); 1861 1862 size_t s2Term = s2StrRef.find('\0'); 1863 if (s2Term != StringRef::npos) 1864 s2StrRef = s2StrRef.substr(0, s2Term); 1865 1866 // Use StringRef's comparison methods to compute the actual result. 1867 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 1868 : s1StrRef.compare(s2StrRef); 1869 1870 // The strcmp function returns an integer greater than, equal to, or less 1871 // than zero, [c11, p7.24.4.2]. 1872 if (compareRes == 0) { 1873 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 1874 } 1875 else { 1876 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 1877 // Constrain strcmp's result range based on the result of StringRef's 1878 // comparison methods. 1879 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 1880 SVal compareWithZero = 1881 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 1882 svalBuilder.getConditionType()); 1883 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 1884 state = state->assume(compareWithZeroVal, true); 1885 } 1886 } 1887 } 1888 1889 state = state->BindExpr(CE, LCtx, resultVal); 1890 1891 // Record this as a possible path. 1892 C.addTransition(state); 1893 } 1894 1895 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 1896 //char *strsep(char **stringp, const char *delim); 1897 if (CE->getNumArgs() < 2) 1898 return; 1899 1900 // Sanity: does the search string parameter match the return type? 1901 const Expr *SearchStrPtr = CE->getArg(0); 1902 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 1903 if (CharPtrTy.isNull() || 1904 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 1905 return; 1906 1907 CurrentFunctionDescription = "strsep()"; 1908 ProgramStateRef State = C.getState(); 1909 const LocationContext *LCtx = C.getLocationContext(); 1910 1911 // Check that the search string pointer is non-null (though it may point to 1912 // a null string). 1913 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 1914 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 1915 if (!State) 1916 return; 1917 1918 // Check that the delimiter string is non-null. 1919 const Expr *DelimStr = CE->getArg(1); 1920 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 1921 State = checkNonNull(C, State, DelimStr, DelimStrVal); 1922 if (!State) 1923 return; 1924 1925 SValBuilder &SVB = C.getSValBuilder(); 1926 SVal Result; 1927 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 1928 // Get the current value of the search string pointer, as a char*. 1929 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 1930 1931 // Invalidate the search string, representing the change of one delimiter 1932 // character to NUL. 1933 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 1934 /*IsSourceBuffer*/false, nullptr); 1935 1936 // Overwrite the search string pointer. The new value is either an address 1937 // further along in the same string, or NULL if there are no more tokens. 1938 State = State->bindLoc(*SearchStrLoc, 1939 SVB.conjureSymbolVal(getTag(), 1940 CE, 1941 LCtx, 1942 CharPtrTy, 1943 C.blockCount()), 1944 LCtx); 1945 } else { 1946 assert(SearchStrVal.isUnknown()); 1947 // Conjure a symbolic value. It's the best we can do. 1948 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1949 } 1950 1951 // Set the return value, and finish. 1952 State = State->BindExpr(CE, LCtx, Result); 1953 C.addTransition(State); 1954 } 1955 1956 // These should probably be moved into a C++ standard library checker. 1957 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 1958 evalStdCopyCommon(C, CE); 1959 } 1960 1961 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 1962 const CallExpr *CE) const { 1963 evalStdCopyCommon(C, CE); 1964 } 1965 1966 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 1967 const CallExpr *CE) const { 1968 if (CE->getNumArgs() < 3) 1969 return; 1970 1971 ProgramStateRef State = C.getState(); 1972 1973 const LocationContext *LCtx = C.getLocationContext(); 1974 1975 // template <class _InputIterator, class _OutputIterator> 1976 // _OutputIterator 1977 // copy(_InputIterator __first, _InputIterator __last, 1978 // _OutputIterator __result) 1979 1980 // Invalidate the destination buffer 1981 const Expr *Dst = CE->getArg(2); 1982 SVal DstVal = State->getSVal(Dst, LCtx); 1983 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 1984 /*Size=*/nullptr); 1985 1986 SValBuilder &SVB = C.getSValBuilder(); 1987 1988 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1989 State = State->BindExpr(CE, LCtx, ResultVal); 1990 1991 C.addTransition(State); 1992 } 1993 1994 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 1995 if (CE->getNumArgs() != 3) 1996 return; 1997 1998 CurrentFunctionDescription = "memory set function"; 1999 2000 const Expr *Mem = CE->getArg(0); 2001 const Expr *Size = CE->getArg(2); 2002 ProgramStateRef State = C.getState(); 2003 2004 // See if the size argument is zero. 2005 const LocationContext *LCtx = C.getLocationContext(); 2006 SVal SizeVal = State->getSVal(Size, LCtx); 2007 QualType SizeTy = Size->getType(); 2008 2009 ProgramStateRef StateZeroSize, StateNonZeroSize; 2010 std::tie(StateZeroSize, StateNonZeroSize) = 2011 assumeZero(C, State, SizeVal, SizeTy); 2012 2013 // Get the value of the memory area. 2014 SVal MemVal = State->getSVal(Mem, LCtx); 2015 2016 // If the size is zero, there won't be any actual memory access, so 2017 // just bind the return value to the Mem buffer and return. 2018 if (StateZeroSize && !StateNonZeroSize) { 2019 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2020 C.addTransition(StateZeroSize); 2021 return; 2022 } 2023 2024 // Ensure the memory area is not null. 2025 // If it is NULL there will be a NULL pointer dereference. 2026 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2027 if (!State) 2028 return; 2029 2030 State = CheckBufferAccess(C, State, Size, Mem); 2031 if (!State) 2032 return; 2033 State = InvalidateBuffer(C, State, Mem, C.getSVal(Mem), 2034 /*IsSourceBuffer*/false, Size); 2035 if (!State) 2036 return; 2037 2038 State = State->BindExpr(CE, LCtx, MemVal); 2039 C.addTransition(State); 2040 } 2041 2042 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) { 2043 IdentifierInfo *II = FD->getIdentifier(); 2044 if (!II) 2045 return false; 2046 2047 if (!AnalysisDeclContext::isInStdNamespace(FD)) 2048 return false; 2049 2050 if (II->getName().equals(Name)) 2051 return true; 2052 2053 return false; 2054 } 2055 //===----------------------------------------------------------------------===// 2056 // The driver method, and other Checker callbacks. 2057 //===----------------------------------------------------------------------===// 2058 2059 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { 2060 const FunctionDecl *FDecl = C.getCalleeDecl(CE); 2061 2062 if (!FDecl) 2063 return false; 2064 2065 // FIXME: Poorly-factored string switches are slow. 2066 FnCheck evalFunction = nullptr; 2067 if (C.isCLibraryFunction(FDecl, "memcpy")) 2068 evalFunction = &CStringChecker::evalMemcpy; 2069 else if (C.isCLibraryFunction(FDecl, "mempcpy")) 2070 evalFunction = &CStringChecker::evalMempcpy; 2071 else if (C.isCLibraryFunction(FDecl, "memcmp")) 2072 evalFunction = &CStringChecker::evalMemcmp; 2073 else if (C.isCLibraryFunction(FDecl, "memmove")) 2074 evalFunction = &CStringChecker::evalMemmove; 2075 else if (C.isCLibraryFunction(FDecl, "memset")) 2076 evalFunction = &CStringChecker::evalMemset; 2077 else if (C.isCLibraryFunction(FDecl, "strcpy")) 2078 evalFunction = &CStringChecker::evalStrcpy; 2079 else if (C.isCLibraryFunction(FDecl, "strncpy")) 2080 evalFunction = &CStringChecker::evalStrncpy; 2081 else if (C.isCLibraryFunction(FDecl, "stpcpy")) 2082 evalFunction = &CStringChecker::evalStpcpy; 2083 else if (C.isCLibraryFunction(FDecl, "strcat")) 2084 evalFunction = &CStringChecker::evalStrcat; 2085 else if (C.isCLibraryFunction(FDecl, "strncat")) 2086 evalFunction = &CStringChecker::evalStrncat; 2087 else if (C.isCLibraryFunction(FDecl, "strlen")) 2088 evalFunction = &CStringChecker::evalstrLength; 2089 else if (C.isCLibraryFunction(FDecl, "strnlen")) 2090 evalFunction = &CStringChecker::evalstrnLength; 2091 else if (C.isCLibraryFunction(FDecl, "strcmp")) 2092 evalFunction = &CStringChecker::evalStrcmp; 2093 else if (C.isCLibraryFunction(FDecl, "strncmp")) 2094 evalFunction = &CStringChecker::evalStrncmp; 2095 else if (C.isCLibraryFunction(FDecl, "strcasecmp")) 2096 evalFunction = &CStringChecker::evalStrcasecmp; 2097 else if (C.isCLibraryFunction(FDecl, "strncasecmp")) 2098 evalFunction = &CStringChecker::evalStrncasecmp; 2099 else if (C.isCLibraryFunction(FDecl, "strsep")) 2100 evalFunction = &CStringChecker::evalStrsep; 2101 else if (C.isCLibraryFunction(FDecl, "bcopy")) 2102 evalFunction = &CStringChecker::evalBcopy; 2103 else if (C.isCLibraryFunction(FDecl, "bcmp")) 2104 evalFunction = &CStringChecker::evalMemcmp; 2105 else if (isCPPStdLibraryFunction(FDecl, "copy")) 2106 evalFunction = &CStringChecker::evalStdCopy; 2107 else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) 2108 evalFunction = &CStringChecker::evalStdCopyBackward; 2109 2110 // If the callee isn't a string function, let another checker handle it. 2111 if (!evalFunction) 2112 return false; 2113 2114 // Check and evaluate the call. 2115 (this->*evalFunction)(C, CE); 2116 2117 // If the evaluate call resulted in no change, chain to the next eval call 2118 // handler. 2119 // Note, the custom CString evaluation calls assume that basic safety 2120 // properties are held. However, if the user chooses to turn off some of these 2121 // checks, we ignore the issues and leave the call evaluation to a generic 2122 // handler. 2123 return C.isDifferent(); 2124 } 2125 2126 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2127 // Record string length for char a[] = "abc"; 2128 ProgramStateRef state = C.getState(); 2129 2130 for (const auto *I : DS->decls()) { 2131 const VarDecl *D = dyn_cast<VarDecl>(I); 2132 if (!D) 2133 continue; 2134 2135 // FIXME: Handle array fields of structs. 2136 if (!D->getType()->isArrayType()) 2137 continue; 2138 2139 const Expr *Init = D->getInit(); 2140 if (!Init) 2141 continue; 2142 if (!isa<StringLiteral>(Init)) 2143 continue; 2144 2145 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2146 const MemRegion *MR = VarLoc.getAsRegion(); 2147 if (!MR) 2148 continue; 2149 2150 SVal StrVal = state->getSVal(Init, C.getLocationContext()); 2151 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2152 DefinedOrUnknownSVal strLength = 2153 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2154 2155 state = state->set<CStringLength>(MR, strLength); 2156 } 2157 2158 C.addTransition(state); 2159 } 2160 2161 ProgramStateRef 2162 CStringChecker::checkRegionChanges(ProgramStateRef state, 2163 const InvalidatedSymbols *, 2164 ArrayRef<const MemRegion *> ExplicitRegions, 2165 ArrayRef<const MemRegion *> Regions, 2166 const LocationContext *LCtx, 2167 const CallEvent *Call) const { 2168 CStringLengthTy Entries = state->get<CStringLength>(); 2169 if (Entries.isEmpty()) 2170 return state; 2171 2172 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2173 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2174 2175 // First build sets for the changed regions and their super-regions. 2176 for (ArrayRef<const MemRegion *>::iterator 2177 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2178 const MemRegion *MR = *I; 2179 Invalidated.insert(MR); 2180 2181 SuperRegions.insert(MR); 2182 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2183 MR = SR->getSuperRegion(); 2184 SuperRegions.insert(MR); 2185 } 2186 } 2187 2188 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2189 2190 // Then loop over the entries in the current state. 2191 for (CStringLengthTy::iterator I = Entries.begin(), 2192 E = Entries.end(); I != E; ++I) { 2193 const MemRegion *MR = I.getKey(); 2194 2195 // Is this entry for a super-region of a changed region? 2196 if (SuperRegions.count(MR)) { 2197 Entries = F.remove(Entries, MR); 2198 continue; 2199 } 2200 2201 // Is this entry for a sub-region of a changed region? 2202 const MemRegion *Super = MR; 2203 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2204 Super = SR->getSuperRegion(); 2205 if (Invalidated.count(Super)) { 2206 Entries = F.remove(Entries, MR); 2207 break; 2208 } 2209 } 2210 } 2211 2212 return state->set<CStringLength>(Entries); 2213 } 2214 2215 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2216 SymbolReaper &SR) const { 2217 // Mark all symbols in our string length map as valid. 2218 CStringLengthTy Entries = state->get<CStringLength>(); 2219 2220 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2221 I != E; ++I) { 2222 SVal Len = I.getData(); 2223 2224 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2225 se = Len.symbol_end(); si != se; ++si) 2226 SR.markInUse(*si); 2227 } 2228 } 2229 2230 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2231 CheckerContext &C) const { 2232 if (!SR.hasDeadSymbols()) 2233 return; 2234 2235 ProgramStateRef state = C.getState(); 2236 CStringLengthTy Entries = state->get<CStringLength>(); 2237 if (Entries.isEmpty()) 2238 return; 2239 2240 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2241 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2242 I != E; ++I) { 2243 SVal Len = I.getData(); 2244 if (SymbolRef Sym = Len.getAsSymbol()) { 2245 if (SR.isDead(Sym)) 2246 Entries = F.remove(Entries, I.getKey()); 2247 } 2248 } 2249 2250 state = state->set<CStringLength>(Entries); 2251 C.addTransition(state); 2252 } 2253 2254 #define REGISTER_CHECKER(name) \ 2255 void ento::register##name(CheckerManager &mgr) { \ 2256 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \ 2257 checker->Filter.Check##name = true; \ 2258 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2259 } 2260 2261 REGISTER_CHECKER(CStringNullArg) 2262 REGISTER_CHECKER(CStringOutOfBounds) 2263 REGISTER_CHECKER(CStringBufferOverlap) 2264 REGISTER_CHECKER(CStringNotNullTerm) 2265 2266 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { 2267 registerCStringNullArg(Mgr); 2268 } 2269