1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 using namespace ento; 32 33 namespace { 34 struct AnyArgExpr { 35 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 36 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 37 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 38 const Expr *Expression; 39 unsigned ArgumentIndex; 40 }; 41 42 struct SourceArgExpr : AnyArgExpr { 43 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 44 }; 45 46 struct DestinationArgExpr : AnyArgExpr { 47 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 48 }; 49 50 struct SizeArgExpr : AnyArgExpr { 51 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 52 }; 53 54 using ErrorMessage = SmallString<128>; 55 enum class AccessKind { write, read }; 56 57 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 58 AccessKind Access) { 59 ErrorMessage Message; 60 llvm::raw_svector_ostream Os(Message); 61 62 // Function classification like: Memory copy function 63 Os << toUppercase(FunctionDescription.front()) 64 << &FunctionDescription.data()[1]; 65 66 if (Access == AccessKind::write) { 67 Os << " overflows the destination buffer"; 68 } else { // read access 69 Os << " accesses out-of-bound array element"; 70 } 71 72 return Message; 73 } 74 75 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 76 class CStringChecker : public Checker< eval::Call, 77 check::PreStmt<DeclStmt>, 78 check::LiveSymbols, 79 check::DeadSymbols, 80 check::RegionChanges 81 > { 82 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 83 BT_NotCString, BT_AdditionOverflow; 84 85 mutable const char *CurrentFunctionDescription; 86 87 public: 88 /// The filter is used to filter out the diagnostics which are not enabled by 89 /// the user. 90 struct CStringChecksFilter { 91 DefaultBool CheckCStringNullArg; 92 DefaultBool CheckCStringOutOfBounds; 93 DefaultBool CheckCStringBufferOverlap; 94 DefaultBool CheckCStringNotNullTerm; 95 96 CheckerNameRef CheckNameCStringNullArg; 97 CheckerNameRef CheckNameCStringOutOfBounds; 98 CheckerNameRef CheckNameCStringBufferOverlap; 99 CheckerNameRef CheckNameCStringNotNullTerm; 100 }; 101 102 CStringChecksFilter Filter; 103 104 static void *getTag() { static int tag; return &tag; } 105 106 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 107 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 108 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 109 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 110 111 ProgramStateRef 112 checkRegionChanges(ProgramStateRef state, 113 const InvalidatedSymbols *, 114 ArrayRef<const MemRegion *> ExplicitRegions, 115 ArrayRef<const MemRegion *> Regions, 116 const LocationContext *LCtx, 117 const CallEvent *Call) const; 118 119 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 120 const CallExpr *) const; 121 CallDescriptionMap<FnCheck> Callbacks = { 122 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 123 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 124 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 125 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 126 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 127 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 128 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 129 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 130 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 131 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 132 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 133 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 134 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 135 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 136 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 137 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 138 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 139 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 140 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 141 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 142 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 143 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 144 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 145 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 146 }; 147 148 // These require a bit of special handling. 149 CallDescription StdCopy{{"std", "copy"}, 3}, 150 StdCopyBackward{{"std", "copy_backward"}, 3}; 151 152 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 153 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 154 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 155 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 156 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 157 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 158 ProgramStateRef state, SizeArgExpr Size, 159 DestinationArgExpr Dest, SourceArgExpr Source, 160 bool Restricted, bool IsMempcpy) const; 161 162 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 163 164 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 165 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 166 void evalstrLengthCommon(CheckerContext &C, 167 const CallExpr *CE, 168 bool IsStrnlen = false) const; 169 170 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 171 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 172 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 173 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 174 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 175 bool IsBounded, ConcatFnKind appendK, 176 bool returnPtr = true) const; 177 178 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 179 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 180 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 181 182 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 183 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 184 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 185 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 186 void evalStrcmpCommon(CheckerContext &C, 187 const CallExpr *CE, 188 bool IsBounded = false, 189 bool IgnoreCase = false) const; 190 191 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 192 193 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 194 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 195 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 196 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 197 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 198 199 // Utility methods 200 std::pair<ProgramStateRef , ProgramStateRef > 201 static assumeZero(CheckerContext &C, 202 ProgramStateRef state, SVal V, QualType Ty); 203 204 static ProgramStateRef setCStringLength(ProgramStateRef state, 205 const MemRegion *MR, 206 SVal strLength); 207 static SVal getCStringLengthForRegion(CheckerContext &C, 208 ProgramStateRef &state, 209 const Expr *Ex, 210 const MemRegion *MR, 211 bool hypothetical); 212 SVal getCStringLength(CheckerContext &C, 213 ProgramStateRef &state, 214 const Expr *Ex, 215 SVal Buf, 216 bool hypothetical = false) const; 217 218 const StringLiteral *getCStringLiteral(CheckerContext &C, 219 ProgramStateRef &state, 220 const Expr *expr, 221 SVal val) const; 222 223 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 224 ProgramStateRef state, 225 const Expr *Ex, SVal V, 226 bool IsSourceBuffer, 227 const Expr *Size); 228 229 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 230 const MemRegion *MR); 231 232 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 233 const Expr *Size, CheckerContext &C, 234 ProgramStateRef &State); 235 236 // Re-usable checks 237 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 238 AnyArgExpr Arg, SVal l) const; 239 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 240 AnyArgExpr Buffer, SVal Element, 241 AccessKind Access) const; 242 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 243 AnyArgExpr Buffer, SizeArgExpr Size, 244 AccessKind Access) const; 245 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 246 SizeArgExpr Size, AnyArgExpr First, 247 AnyArgExpr Second) const; 248 void emitOverlapBug(CheckerContext &C, 249 ProgramStateRef state, 250 const Stmt *First, 251 const Stmt *Second) const; 252 253 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 254 StringRef WarningMsg) const; 255 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 256 const Stmt *S, StringRef WarningMsg) const; 257 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 258 const Stmt *S, StringRef WarningMsg) const; 259 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 260 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 261 ProgramStateRef state, 262 NonLoc left, 263 NonLoc right) const; 264 265 // Return true if the destination buffer of the copy function may be in bound. 266 // Expects SVal of Size to be positive and unsigned. 267 // Expects SVal of FirstBuf to be a FieldRegion. 268 static bool IsFirstBufInBound(CheckerContext &C, 269 ProgramStateRef state, 270 const Expr *FirstBuf, 271 const Expr *Size); 272 }; 273 274 } //end anonymous namespace 275 276 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 277 278 //===----------------------------------------------------------------------===// 279 // Individual checks and utility methods. 280 //===----------------------------------------------------------------------===// 281 282 std::pair<ProgramStateRef , ProgramStateRef > 283 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 284 QualType Ty) { 285 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 286 if (!val) 287 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 288 289 SValBuilder &svalBuilder = C.getSValBuilder(); 290 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 291 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 292 } 293 294 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 295 ProgramStateRef State, 296 AnyArgExpr Arg, SVal l) const { 297 // If a previous check has failed, propagate the failure. 298 if (!State) 299 return nullptr; 300 301 ProgramStateRef stateNull, stateNonNull; 302 std::tie(stateNull, stateNonNull) = 303 assumeZero(C, State, l, Arg.Expression->getType()); 304 305 if (stateNull && !stateNonNull) { 306 if (Filter.CheckCStringNullArg) { 307 SmallString<80> buf; 308 llvm::raw_svector_ostream OS(buf); 309 assert(CurrentFunctionDescription); 310 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 311 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 312 << CurrentFunctionDescription; 313 314 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 315 } 316 return nullptr; 317 } 318 319 // From here on, assume that the value is non-null. 320 assert(stateNonNull); 321 return stateNonNull; 322 } 323 324 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 325 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 326 ProgramStateRef state, 327 AnyArgExpr Buffer, SVal Element, 328 AccessKind Access) const { 329 330 // If a previous check has failed, propagate the failure. 331 if (!state) 332 return nullptr; 333 334 // Check for out of bound array element access. 335 const MemRegion *R = Element.getAsRegion(); 336 if (!R) 337 return state; 338 339 const auto *ER = dyn_cast<ElementRegion>(R); 340 if (!ER) 341 return state; 342 343 if (ER->getValueType() != C.getASTContext().CharTy) 344 return state; 345 346 // Get the size of the array. 347 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 348 DefinedOrUnknownSVal Size = 349 getDynamicExtent(state, superReg, C.getSValBuilder()); 350 351 // Get the index of the accessed element. 352 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 353 354 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 355 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 356 if (StOutBound && !StInBound) { 357 // These checks are either enabled by the CString out-of-bounds checker 358 // explicitly or implicitly by the Malloc checker. 359 // In the latter case we only do modeling but do not emit warning. 360 if (!Filter.CheckCStringOutOfBounds) 361 return nullptr; 362 363 // Emit a bug report. 364 ErrorMessage Message = 365 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 366 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 367 return nullptr; 368 } 369 370 // Array bound check succeeded. From this point forward the array bound 371 // should always succeed. 372 return StInBound; 373 } 374 375 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 376 ProgramStateRef State, 377 AnyArgExpr Buffer, 378 SizeArgExpr Size, 379 AccessKind Access) const { 380 // If a previous check has failed, propagate the failure. 381 if (!State) 382 return nullptr; 383 384 SValBuilder &svalBuilder = C.getSValBuilder(); 385 ASTContext &Ctx = svalBuilder.getContext(); 386 387 QualType SizeTy = Size.Expression->getType(); 388 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 389 390 // Check that the first buffer is non-null. 391 SVal BufVal = C.getSVal(Buffer.Expression); 392 State = checkNonNull(C, State, Buffer, BufVal); 393 if (!State) 394 return nullptr; 395 396 // If out-of-bounds checking is turned off, skip the rest. 397 if (!Filter.CheckCStringOutOfBounds) 398 return State; 399 400 // Get the access length and make sure it is known. 401 // FIXME: This assumes the caller has already checked that the access length 402 // is positive. And that it's unsigned. 403 SVal LengthVal = C.getSVal(Size.Expression); 404 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 405 if (!Length) 406 return State; 407 408 // Compute the offset of the last element to be accessed: size-1. 409 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 410 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 411 if (Offset.isUnknown()) 412 return nullptr; 413 NonLoc LastOffset = Offset.castAs<NonLoc>(); 414 415 // Check that the first buffer is sufficiently long. 416 SVal BufStart = 417 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 418 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 419 420 SVal BufEnd = 421 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 422 State = CheckLocation(C, State, Buffer, BufEnd, Access); 423 424 // If the buffer isn't large enough, abort. 425 if (!State) 426 return nullptr; 427 } 428 429 // Large enough or not, return this state! 430 return State; 431 } 432 433 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 434 ProgramStateRef state, 435 SizeArgExpr Size, AnyArgExpr First, 436 AnyArgExpr Second) const { 437 if (!Filter.CheckCStringBufferOverlap) 438 return state; 439 440 // Do a simple check for overlap: if the two arguments are from the same 441 // buffer, see if the end of the first is greater than the start of the second 442 // or vice versa. 443 444 // If a previous check has failed, propagate the failure. 445 if (!state) 446 return nullptr; 447 448 ProgramStateRef stateTrue, stateFalse; 449 450 // Get the buffer values and make sure they're known locations. 451 const LocationContext *LCtx = C.getLocationContext(); 452 SVal firstVal = state->getSVal(First.Expression, LCtx); 453 SVal secondVal = state->getSVal(Second.Expression, LCtx); 454 455 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 456 if (!firstLoc) 457 return state; 458 459 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 460 if (!secondLoc) 461 return state; 462 463 // Are the two values the same? 464 SValBuilder &svalBuilder = C.getSValBuilder(); 465 std::tie(stateTrue, stateFalse) = 466 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 467 468 if (stateTrue && !stateFalse) { 469 // If the values are known to be equal, that's automatically an overlap. 470 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 471 return nullptr; 472 } 473 474 // assume the two expressions are not equal. 475 assert(stateFalse); 476 state = stateFalse; 477 478 // Which value comes first? 479 QualType cmpTy = svalBuilder.getConditionType(); 480 SVal reverse = 481 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 482 Optional<DefinedOrUnknownSVal> reverseTest = 483 reverse.getAs<DefinedOrUnknownSVal>(); 484 if (!reverseTest) 485 return state; 486 487 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 488 if (stateTrue) { 489 if (stateFalse) { 490 // If we don't know which one comes first, we can't perform this test. 491 return state; 492 } else { 493 // Switch the values so that firstVal is before secondVal. 494 std::swap(firstLoc, secondLoc); 495 496 // Switch the Exprs as well, so that they still correspond. 497 std::swap(First, Second); 498 } 499 } 500 501 // Get the length, and make sure it too is known. 502 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 503 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 504 if (!Length) 505 return state; 506 507 // Convert the first buffer's start address to char*. 508 // Bail out if the cast fails. 509 ASTContext &Ctx = svalBuilder.getContext(); 510 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 511 SVal FirstStart = 512 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 513 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 514 if (!FirstStartLoc) 515 return state; 516 517 // Compute the end of the first buffer. Bail out if THAT fails. 518 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 519 *Length, CharPtrTy); 520 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 521 if (!FirstEndLoc) 522 return state; 523 524 // Is the end of the first buffer past the start of the second buffer? 525 SVal Overlap = 526 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 527 Optional<DefinedOrUnknownSVal> OverlapTest = 528 Overlap.getAs<DefinedOrUnknownSVal>(); 529 if (!OverlapTest) 530 return state; 531 532 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 533 534 if (stateTrue && !stateFalse) { 535 // Overlap! 536 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 537 return nullptr; 538 } 539 540 // assume the two expressions don't overlap. 541 assert(stateFalse); 542 return stateFalse; 543 } 544 545 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 546 const Stmt *First, const Stmt *Second) const { 547 ExplodedNode *N = C.generateErrorNode(state); 548 if (!N) 549 return; 550 551 if (!BT_Overlap) 552 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 553 categories::UnixAPI, "Improper arguments")); 554 555 // Generate a report for this bug. 556 auto report = std::make_unique<PathSensitiveBugReport>( 557 *BT_Overlap, "Arguments must not be overlapping buffers", N); 558 report->addRange(First->getSourceRange()); 559 report->addRange(Second->getSourceRange()); 560 561 C.emitReport(std::move(report)); 562 } 563 564 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 565 const Stmt *S, StringRef WarningMsg) const { 566 if (ExplodedNode *N = C.generateErrorNode(State)) { 567 if (!BT_Null) 568 BT_Null.reset(new BuiltinBug( 569 Filter.CheckNameCStringNullArg, categories::UnixAPI, 570 "Null pointer argument in call to byte string function")); 571 572 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 573 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 574 Report->addRange(S->getSourceRange()); 575 if (const auto *Ex = dyn_cast<Expr>(S)) 576 bugreporter::trackExpressionValue(N, Ex, *Report); 577 C.emitReport(std::move(Report)); 578 } 579 } 580 581 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 582 ProgramStateRef State, const Stmt *S, 583 StringRef WarningMsg) const { 584 if (ExplodedNode *N = C.generateErrorNode(State)) { 585 if (!BT_Bounds) 586 BT_Bounds.reset(new BuiltinBug( 587 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 588 : Filter.CheckNameCStringNullArg, 589 "Out-of-bound array access", 590 "Byte string function accesses out-of-bound array element")); 591 592 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 593 594 // FIXME: It would be nice to eventually make this diagnostic more clear, 595 // e.g., by referencing the original declaration or by saying *why* this 596 // reference is outside the range. 597 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 598 Report->addRange(S->getSourceRange()); 599 C.emitReport(std::move(Report)); 600 } 601 } 602 603 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 604 const Stmt *S, 605 StringRef WarningMsg) const { 606 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 607 if (!BT_NotCString) 608 BT_NotCString.reset(new BuiltinBug( 609 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 610 "Argument is not a null-terminated string.")); 611 612 auto Report = 613 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 614 615 Report->addRange(S->getSourceRange()); 616 C.emitReport(std::move(Report)); 617 } 618 } 619 620 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 621 ProgramStateRef State) const { 622 if (ExplodedNode *N = C.generateErrorNode(State)) { 623 if (!BT_AdditionOverflow) 624 BT_AdditionOverflow.reset( 625 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 626 "Sum of expressions causes overflow.")); 627 628 // This isn't a great error message, but this should never occur in real 629 // code anyway -- you'd have to create a buffer longer than a size_t can 630 // represent, which is sort of a contradiction. 631 const char *WarningMsg = 632 "This expression will create a string whose length is too big to " 633 "be represented as a size_t"; 634 635 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow, 636 WarningMsg, N); 637 C.emitReport(std::move(Report)); 638 } 639 } 640 641 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 642 ProgramStateRef state, 643 NonLoc left, 644 NonLoc right) const { 645 // If out-of-bounds checking is turned off, skip the rest. 646 if (!Filter.CheckCStringOutOfBounds) 647 return state; 648 649 // If a previous check has failed, propagate the failure. 650 if (!state) 651 return nullptr; 652 653 SValBuilder &svalBuilder = C.getSValBuilder(); 654 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 655 656 QualType sizeTy = svalBuilder.getContext().getSizeType(); 657 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 658 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 659 660 SVal maxMinusRight; 661 if (right.getAs<nonloc::ConcreteInt>()) { 662 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 663 sizeTy); 664 } else { 665 // Try switching the operands. (The order of these two assignments is 666 // important!) 667 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 668 sizeTy); 669 left = right; 670 } 671 672 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 673 QualType cmpTy = svalBuilder.getConditionType(); 674 // If left > max - right, we have an overflow. 675 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 676 *maxMinusRightNL, cmpTy); 677 678 ProgramStateRef stateOverflow, stateOkay; 679 std::tie(stateOverflow, stateOkay) = 680 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 681 682 if (stateOverflow && !stateOkay) { 683 // We have an overflow. Emit a bug report. 684 emitAdditionOverflowBug(C, stateOverflow); 685 return nullptr; 686 } 687 688 // From now on, assume an overflow didn't occur. 689 assert(stateOkay); 690 state = stateOkay; 691 } 692 693 return state; 694 } 695 696 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 697 const MemRegion *MR, 698 SVal strLength) { 699 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 700 701 MR = MR->StripCasts(); 702 703 switch (MR->getKind()) { 704 case MemRegion::StringRegionKind: 705 // FIXME: This can happen if we strcpy() into a string region. This is 706 // undefined [C99 6.4.5p6], but we should still warn about it. 707 return state; 708 709 case MemRegion::SymbolicRegionKind: 710 case MemRegion::AllocaRegionKind: 711 case MemRegion::NonParamVarRegionKind: 712 case MemRegion::ParamVarRegionKind: 713 case MemRegion::FieldRegionKind: 714 case MemRegion::ObjCIvarRegionKind: 715 // These are the types we can currently track string lengths for. 716 break; 717 718 case MemRegion::ElementRegionKind: 719 // FIXME: Handle element regions by upper-bounding the parent region's 720 // string length. 721 return state; 722 723 default: 724 // Other regions (mostly non-data) can't have a reliable C string length. 725 // For now, just ignore the change. 726 // FIXME: These are rare but not impossible. We should output some kind of 727 // warning for things like strcpy((char[]){'a', 0}, "b"); 728 return state; 729 } 730 731 if (strLength.isUnknown()) 732 return state->remove<CStringLength>(MR); 733 734 return state->set<CStringLength>(MR, strLength); 735 } 736 737 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 738 ProgramStateRef &state, 739 const Expr *Ex, 740 const MemRegion *MR, 741 bool hypothetical) { 742 if (!hypothetical) { 743 // If there's a recorded length, go ahead and return it. 744 const SVal *Recorded = state->get<CStringLength>(MR); 745 if (Recorded) 746 return *Recorded; 747 } 748 749 // Otherwise, get a new symbol and update the state. 750 SValBuilder &svalBuilder = C.getSValBuilder(); 751 QualType sizeTy = svalBuilder.getContext().getSizeType(); 752 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 753 MR, Ex, sizeTy, 754 C.getLocationContext(), 755 C.blockCount()); 756 757 if (!hypothetical) { 758 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 759 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 760 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 761 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 762 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 763 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 764 fourInt); 765 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 766 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 767 maxLength, sizeTy); 768 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 769 } 770 state = state->set<CStringLength>(MR, strLength); 771 } 772 773 return strLength; 774 } 775 776 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 777 const Expr *Ex, SVal Buf, 778 bool hypothetical) const { 779 const MemRegion *MR = Buf.getAsRegion(); 780 if (!MR) { 781 // If we can't get a region, see if it's something we /know/ isn't a 782 // C string. In the context of locations, the only time we can issue such 783 // a warning is for labels. 784 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 785 if (Filter.CheckCStringNotNullTerm) { 786 SmallString<120> buf; 787 llvm::raw_svector_ostream os(buf); 788 assert(CurrentFunctionDescription); 789 os << "Argument to " << CurrentFunctionDescription 790 << " is the address of the label '" << Label->getLabel()->getName() 791 << "', which is not a null-terminated string"; 792 793 emitNotCStringBug(C, state, Ex, os.str()); 794 } 795 return UndefinedVal(); 796 } 797 798 // If it's not a region and not a label, give up. 799 return UnknownVal(); 800 } 801 802 // If we have a region, strip casts from it and see if we can figure out 803 // its length. For anything we can't figure out, just return UnknownVal. 804 MR = MR->StripCasts(); 805 806 switch (MR->getKind()) { 807 case MemRegion::StringRegionKind: { 808 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 809 // so we can assume that the byte length is the correct C string length. 810 SValBuilder &svalBuilder = C.getSValBuilder(); 811 QualType sizeTy = svalBuilder.getContext().getSizeType(); 812 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 813 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 814 } 815 case MemRegion::SymbolicRegionKind: 816 case MemRegion::AllocaRegionKind: 817 case MemRegion::NonParamVarRegionKind: 818 case MemRegion::ParamVarRegionKind: 819 case MemRegion::FieldRegionKind: 820 case MemRegion::ObjCIvarRegionKind: 821 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 822 case MemRegion::CompoundLiteralRegionKind: 823 // FIXME: Can we track this? Is it necessary? 824 return UnknownVal(); 825 case MemRegion::ElementRegionKind: 826 // FIXME: How can we handle this? It's not good enough to subtract the 827 // offset from the base string length; consider "123\x00567" and &a[5]. 828 return UnknownVal(); 829 default: 830 // Other regions (mostly non-data) can't have a reliable C string length. 831 // In this case, an error is emitted and UndefinedVal is returned. 832 // The caller should always be prepared to handle this case. 833 if (Filter.CheckCStringNotNullTerm) { 834 SmallString<120> buf; 835 llvm::raw_svector_ostream os(buf); 836 837 assert(CurrentFunctionDescription); 838 os << "Argument to " << CurrentFunctionDescription << " is "; 839 840 if (SummarizeRegion(os, C.getASTContext(), MR)) 841 os << ", which is not a null-terminated string"; 842 else 843 os << "not a null-terminated string"; 844 845 emitNotCStringBug(C, state, Ex, os.str()); 846 } 847 return UndefinedVal(); 848 } 849 } 850 851 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 852 ProgramStateRef &state, const Expr *expr, SVal val) const { 853 854 // Get the memory region pointed to by the val. 855 const MemRegion *bufRegion = val.getAsRegion(); 856 if (!bufRegion) 857 return nullptr; 858 859 // Strip casts off the memory region. 860 bufRegion = bufRegion->StripCasts(); 861 862 // Cast the memory region to a string region. 863 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 864 if (!strRegion) 865 return nullptr; 866 867 // Return the actual string in the string region. 868 return strRegion->getStringLiteral(); 869 } 870 871 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 872 ProgramStateRef state, 873 const Expr *FirstBuf, 874 const Expr *Size) { 875 // If we do not know that the buffer is long enough we return 'true'. 876 // Otherwise the parent region of this field region would also get 877 // invalidated, which would lead to warnings based on an unknown state. 878 879 // Originally copied from CheckBufferAccess and CheckLocation. 880 SValBuilder &svalBuilder = C.getSValBuilder(); 881 ASTContext &Ctx = svalBuilder.getContext(); 882 const LocationContext *LCtx = C.getLocationContext(); 883 884 QualType sizeTy = Size->getType(); 885 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 886 SVal BufVal = state->getSVal(FirstBuf, LCtx); 887 888 SVal LengthVal = state->getSVal(Size, LCtx); 889 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 890 if (!Length) 891 return true; // cf top comment. 892 893 // Compute the offset of the last element to be accessed: size-1. 894 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 895 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 896 if (Offset.isUnknown()) 897 return true; // cf top comment 898 NonLoc LastOffset = Offset.castAs<NonLoc>(); 899 900 // Check that the first buffer is sufficiently long. 901 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 902 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 903 if (!BufLoc) 904 return true; // cf top comment. 905 906 SVal BufEnd = 907 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 908 909 // Check for out of bound array element access. 910 const MemRegion *R = BufEnd.getAsRegion(); 911 if (!R) 912 return true; // cf top comment. 913 914 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 915 if (!ER) 916 return true; // cf top comment. 917 918 // FIXME: Does this crash when a non-standard definition 919 // of a library function is encountered? 920 assert(ER->getValueType() == C.getASTContext().CharTy && 921 "IsFirstBufInBound should only be called with char* ElementRegions"); 922 923 // Get the size of the array. 924 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 925 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder); 926 927 // Get the index of the accessed element. 928 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 929 930 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 931 932 return static_cast<bool>(StInBound); 933 } 934 935 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 936 ProgramStateRef state, 937 const Expr *E, SVal V, 938 bool IsSourceBuffer, 939 const Expr *Size) { 940 Optional<Loc> L = V.getAs<Loc>(); 941 if (!L) 942 return state; 943 944 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 945 // some assumptions about the value that CFRefCount can't. Even so, it should 946 // probably be refactored. 947 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 948 const MemRegion *R = MR->getRegion()->StripCasts(); 949 950 // Are we dealing with an ElementRegion? If so, we should be invalidating 951 // the super-region. 952 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 953 R = ER->getSuperRegion(); 954 // FIXME: What about layers of ElementRegions? 955 } 956 957 // Invalidate this region. 958 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 959 960 bool CausesPointerEscape = false; 961 RegionAndSymbolInvalidationTraits ITraits; 962 // Invalidate and escape only indirect regions accessible through the source 963 // buffer. 964 if (IsSourceBuffer) { 965 ITraits.setTrait(R->getBaseRegion(), 966 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 967 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 968 CausesPointerEscape = true; 969 } else { 970 const MemRegion::Kind& K = R->getKind(); 971 if (K == MemRegion::FieldRegionKind) 972 if (Size && IsFirstBufInBound(C, state, E, Size)) { 973 // If destination buffer is a field region and access is in bound, 974 // do not invalidate its super region. 975 ITraits.setTrait( 976 R, 977 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 978 } 979 } 980 981 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 982 CausesPointerEscape, nullptr, nullptr, 983 &ITraits); 984 } 985 986 // If we have a non-region value by chance, just remove the binding. 987 // FIXME: is this necessary or correct? This handles the non-Region 988 // cases. Is it ever valid to store to these? 989 return state->killBinding(*L); 990 } 991 992 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 993 const MemRegion *MR) { 994 switch (MR->getKind()) { 995 case MemRegion::FunctionCodeRegionKind: { 996 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 997 os << "the address of the function '" << *FD << '\''; 998 else 999 os << "the address of a function"; 1000 return true; 1001 } 1002 case MemRegion::BlockCodeRegionKind: 1003 os << "block text"; 1004 return true; 1005 case MemRegion::BlockDataRegionKind: 1006 os << "a block"; 1007 return true; 1008 case MemRegion::CXXThisRegionKind: 1009 case MemRegion::CXXTempObjectRegionKind: 1010 os << "a C++ temp object of type " 1011 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1012 return true; 1013 case MemRegion::NonParamVarRegionKind: 1014 os << "a variable of type" 1015 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1016 return true; 1017 case MemRegion::ParamVarRegionKind: 1018 os << "a parameter of type" 1019 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1020 return true; 1021 case MemRegion::FieldRegionKind: 1022 os << "a field of type " 1023 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1024 return true; 1025 case MemRegion::ObjCIvarRegionKind: 1026 os << "an instance variable of type " 1027 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1028 return true; 1029 default: 1030 return false; 1031 } 1032 } 1033 1034 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1035 const Expr *Size, CheckerContext &C, 1036 ProgramStateRef &State) { 1037 SVal MemVal = C.getSVal(DstBuffer); 1038 SVal SizeVal = C.getSVal(Size); 1039 const MemRegion *MR = MemVal.getAsRegion(); 1040 if (!MR) 1041 return false; 1042 1043 // We're about to model memset by producing a "default binding" in the Store. 1044 // Our current implementation - RegionStore - doesn't support default bindings 1045 // that don't cover the whole base region. So we should first get the offset 1046 // and the base region to figure out whether the offset of buffer is 0. 1047 RegionOffset Offset = MR->getAsOffset(); 1048 const MemRegion *BR = Offset.getRegion(); 1049 1050 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1051 if (!SizeNL) 1052 return false; 1053 1054 SValBuilder &svalBuilder = C.getSValBuilder(); 1055 ASTContext &Ctx = C.getASTContext(); 1056 1057 // void *memset(void *dest, int ch, size_t count); 1058 // For now we can only handle the case of offset is 0 and concrete char value. 1059 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1060 Offset.getOffset() == 0) { 1061 // Get the base region's size. 1062 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1063 1064 ProgramStateRef StateWholeReg, StateNotWholeReg; 1065 std::tie(StateWholeReg, StateNotWholeReg) = 1066 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1067 1068 // With the semantic of 'memset()', we should convert the CharVal to 1069 // unsigned char. 1070 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1071 1072 ProgramStateRef StateNullChar, StateNonNullChar; 1073 std::tie(StateNullChar, StateNonNullChar) = 1074 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1075 1076 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1077 !StateNonNullChar) { 1078 // If the 'memset()' acts on the whole region of destination buffer and 1079 // the value of the second argument of 'memset()' is zero, bind the second 1080 // argument's value to the destination buffer with 'default binding'. 1081 // FIXME: Since there is no perfect way to bind the non-zero character, we 1082 // can only deal with zero value here. In the future, we need to deal with 1083 // the binding of non-zero value in the case of whole region. 1084 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1085 C.getLocationContext()); 1086 } else { 1087 // If the destination buffer's extent is not equal to the value of 1088 // third argument, just invalidate buffer. 1089 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1090 /*IsSourceBuffer*/ false, Size); 1091 } 1092 1093 if (StateNullChar && !StateNonNullChar) { 1094 // If the value of the second argument of 'memset()' is zero, set the 1095 // string length of destination buffer to 0 directly. 1096 State = setCStringLength(State, MR, 1097 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1098 } else if (!StateNullChar && StateNonNullChar) { 1099 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1100 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1101 C.getLocationContext(), C.blockCount()); 1102 1103 // If the value of second argument is not zero, then the string length 1104 // is at least the size argument. 1105 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1106 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1107 1108 State = setCStringLength( 1109 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1110 MR, NewStrLen); 1111 } 1112 } else { 1113 // If the offset is not zero and char value is not concrete, we can do 1114 // nothing but invalidate the buffer. 1115 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1116 /*IsSourceBuffer*/ false, Size); 1117 } 1118 return true; 1119 } 1120 1121 //===----------------------------------------------------------------------===// 1122 // evaluation of individual function calls. 1123 //===----------------------------------------------------------------------===// 1124 1125 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1126 ProgramStateRef state, SizeArgExpr Size, 1127 DestinationArgExpr Dest, 1128 SourceArgExpr Source, bool Restricted, 1129 bool IsMempcpy) const { 1130 CurrentFunctionDescription = "memory copy function"; 1131 1132 // See if the size argument is zero. 1133 const LocationContext *LCtx = C.getLocationContext(); 1134 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1135 QualType sizeTy = Size.Expression->getType(); 1136 1137 ProgramStateRef stateZeroSize, stateNonZeroSize; 1138 std::tie(stateZeroSize, stateNonZeroSize) = 1139 assumeZero(C, state, sizeVal, sizeTy); 1140 1141 // Get the value of the Dest. 1142 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1143 1144 // If the size is zero, there won't be any actual memory access, so 1145 // just bind the return value to the destination buffer and return. 1146 if (stateZeroSize && !stateNonZeroSize) { 1147 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1148 C.addTransition(stateZeroSize); 1149 return; 1150 } 1151 1152 // If the size can be nonzero, we have to check the other arguments. 1153 if (stateNonZeroSize) { 1154 state = stateNonZeroSize; 1155 1156 // Ensure the destination is not null. If it is NULL there will be a 1157 // NULL pointer dereference. 1158 state = checkNonNull(C, state, Dest, destVal); 1159 if (!state) 1160 return; 1161 1162 // Get the value of the Src. 1163 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1164 1165 // Ensure the source is not null. If it is NULL there will be a 1166 // NULL pointer dereference. 1167 state = checkNonNull(C, state, Source, srcVal); 1168 if (!state) 1169 return; 1170 1171 // Ensure the accesses are valid and that the buffers do not overlap. 1172 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write); 1173 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read); 1174 1175 if (Restricted) 1176 state = CheckOverlap(C, state, Size, Dest, Source); 1177 1178 if (!state) 1179 return; 1180 1181 // If this is mempcpy, get the byte after the last byte copied and 1182 // bind the expr. 1183 if (IsMempcpy) { 1184 // Get the byte after the last byte copied. 1185 SValBuilder &SvalBuilder = C.getSValBuilder(); 1186 ASTContext &Ctx = SvalBuilder.getContext(); 1187 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1188 SVal DestRegCharVal = 1189 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1190 SVal lastElement = C.getSValBuilder().evalBinOp( 1191 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1192 // If we don't know how much we copied, we can at least 1193 // conjure a return value for later. 1194 if (lastElement.isUnknown()) 1195 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1196 C.blockCount()); 1197 1198 // The byte after the last byte copied is the return value. 1199 state = state->BindExpr(CE, LCtx, lastElement); 1200 } else { 1201 // All other copies return the destination buffer. 1202 // (Well, bcopy() has a void return type, but this won't hurt.) 1203 state = state->BindExpr(CE, LCtx, destVal); 1204 } 1205 1206 // Invalidate the destination (regular invalidation without pointer-escaping 1207 // the address of the top-level region). 1208 // FIXME: Even if we can't perfectly model the copy, we should see if we 1209 // can use LazyCompoundVals to copy the source values into the destination. 1210 // This would probably remove any existing bindings past the end of the 1211 // copied region, but that's still an improvement over blank invalidation. 1212 state = 1213 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1214 /*IsSourceBuffer*/ false, Size.Expression); 1215 1216 // Invalidate the source (const-invalidation without const-pointer-escaping 1217 // the address of the top-level region). 1218 state = InvalidateBuffer(C, state, Source.Expression, 1219 C.getSVal(Source.Expression), 1220 /*IsSourceBuffer*/ true, nullptr); 1221 1222 C.addTransition(state); 1223 } 1224 } 1225 1226 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1227 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1228 // The return value is the address of the destination buffer. 1229 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1230 SourceArgExpr Src = {CE->getArg(1), 1}; 1231 SizeArgExpr Size = {CE->getArg(2), 2}; 1232 1233 ProgramStateRef State = C.getState(); 1234 1235 constexpr bool IsRestricted = true; 1236 constexpr bool IsMempcpy = false; 1237 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy); 1238 } 1239 1240 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1241 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1242 // The return value is a pointer to the byte following the last written byte. 1243 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1244 SourceArgExpr Src = {CE->getArg(1), 1}; 1245 SizeArgExpr Size = {CE->getArg(2), 2}; 1246 1247 constexpr bool IsRestricted = true; 1248 constexpr bool IsMempcpy = true; 1249 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1250 } 1251 1252 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1253 // void *memmove(void *dst, const void *src, size_t n); 1254 // The return value is the address of the destination buffer. 1255 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1256 SourceArgExpr Src = {CE->getArg(1), 1}; 1257 SizeArgExpr Size = {CE->getArg(2), 2}; 1258 1259 constexpr bool IsRestricted = false; 1260 constexpr bool IsMempcpy = false; 1261 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1262 } 1263 1264 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1265 // void bcopy(const void *src, void *dst, size_t n); 1266 SourceArgExpr Src(CE->getArg(0), 0); 1267 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1268 SizeArgExpr Size = {CE->getArg(2), 2}; 1269 1270 constexpr bool IsRestricted = false; 1271 constexpr bool IsMempcpy = false; 1272 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1273 } 1274 1275 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1276 // int memcmp(const void *s1, const void *s2, size_t n); 1277 CurrentFunctionDescription = "memory comparison function"; 1278 1279 AnyArgExpr Left = {CE->getArg(0), 0}; 1280 AnyArgExpr Right = {CE->getArg(1), 1}; 1281 SizeArgExpr Size = {CE->getArg(2), 2}; 1282 1283 ProgramStateRef State = C.getState(); 1284 SValBuilder &Builder = C.getSValBuilder(); 1285 const LocationContext *LCtx = C.getLocationContext(); 1286 1287 // See if the size argument is zero. 1288 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1289 QualType sizeTy = Size.Expression->getType(); 1290 1291 ProgramStateRef stateZeroSize, stateNonZeroSize; 1292 std::tie(stateZeroSize, stateNonZeroSize) = 1293 assumeZero(C, State, sizeVal, sizeTy); 1294 1295 // If the size can be zero, the result will be 0 in that case, and we don't 1296 // have to check either of the buffers. 1297 if (stateZeroSize) { 1298 State = stateZeroSize; 1299 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1300 C.addTransition(State); 1301 } 1302 1303 // If the size can be nonzero, we have to check the other arguments. 1304 if (stateNonZeroSize) { 1305 State = stateNonZeroSize; 1306 // If we know the two buffers are the same, we know the result is 0. 1307 // First, get the two buffers' addresses. Another checker will have already 1308 // made sure they're not undefined. 1309 DefinedOrUnknownSVal LV = 1310 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1311 DefinedOrUnknownSVal RV = 1312 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1313 1314 // See if they are the same. 1315 ProgramStateRef SameBuffer, NotSameBuffer; 1316 std::tie(SameBuffer, NotSameBuffer) = 1317 State->assume(Builder.evalEQ(State, LV, RV)); 1318 1319 // If the two arguments are the same buffer, we know the result is 0, 1320 // and we only need to check one size. 1321 if (SameBuffer && !NotSameBuffer) { 1322 State = SameBuffer; 1323 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1324 if (State) { 1325 State = 1326 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1327 C.addTransition(State); 1328 } 1329 return; 1330 } 1331 1332 // If the two arguments might be different buffers, we have to check 1333 // the size of both of them. 1334 assert(NotSameBuffer); 1335 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read); 1336 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1337 if (State) { 1338 // The return value is the comparison result, which we don't know. 1339 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1340 State = State->BindExpr(CE, LCtx, CmpV); 1341 C.addTransition(State); 1342 } 1343 } 1344 } 1345 1346 void CStringChecker::evalstrLength(CheckerContext &C, 1347 const CallExpr *CE) const { 1348 // size_t strlen(const char *s); 1349 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1350 } 1351 1352 void CStringChecker::evalstrnLength(CheckerContext &C, 1353 const CallExpr *CE) const { 1354 // size_t strnlen(const char *s, size_t maxlen); 1355 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1356 } 1357 1358 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1359 bool IsStrnlen) const { 1360 CurrentFunctionDescription = "string length function"; 1361 ProgramStateRef state = C.getState(); 1362 const LocationContext *LCtx = C.getLocationContext(); 1363 1364 if (IsStrnlen) { 1365 const Expr *maxlenExpr = CE->getArg(1); 1366 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1367 1368 ProgramStateRef stateZeroSize, stateNonZeroSize; 1369 std::tie(stateZeroSize, stateNonZeroSize) = 1370 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1371 1372 // If the size can be zero, the result will be 0 in that case, and we don't 1373 // have to check the string itself. 1374 if (stateZeroSize) { 1375 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1376 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1377 C.addTransition(stateZeroSize); 1378 } 1379 1380 // If the size is GUARANTEED to be zero, we're done! 1381 if (!stateNonZeroSize) 1382 return; 1383 1384 // Otherwise, record the assumption that the size is nonzero. 1385 state = stateNonZeroSize; 1386 } 1387 1388 // Check that the string argument is non-null. 1389 AnyArgExpr Arg = {CE->getArg(0), 0}; 1390 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1391 state = checkNonNull(C, state, Arg, ArgVal); 1392 1393 if (!state) 1394 return; 1395 1396 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1397 1398 // If the argument isn't a valid C string, there's no valid state to 1399 // transition to. 1400 if (strLength.isUndef()) 1401 return; 1402 1403 DefinedOrUnknownSVal result = UnknownVal(); 1404 1405 // If the check is for strnlen() then bind the return value to no more than 1406 // the maxlen value. 1407 if (IsStrnlen) { 1408 QualType cmpTy = C.getSValBuilder().getConditionType(); 1409 1410 // It's a little unfortunate to be getting this again, 1411 // but it's not that expensive... 1412 const Expr *maxlenExpr = CE->getArg(1); 1413 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1414 1415 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1416 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1417 1418 if (strLengthNL && maxlenValNL) { 1419 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1420 1421 // Check if the strLength is greater than the maxlen. 1422 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1423 C.getSValBuilder() 1424 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1425 .castAs<DefinedOrUnknownSVal>()); 1426 1427 if (stateStringTooLong && !stateStringNotTooLong) { 1428 // If the string is longer than maxlen, return maxlen. 1429 result = *maxlenValNL; 1430 } else if (stateStringNotTooLong && !stateStringTooLong) { 1431 // If the string is shorter than maxlen, return its length. 1432 result = *strLengthNL; 1433 } 1434 } 1435 1436 if (result.isUnknown()) { 1437 // If we don't have enough information for a comparison, there's 1438 // no guarantee the full string length will actually be returned. 1439 // All we know is the return value is the min of the string length 1440 // and the limit. This is better than nothing. 1441 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1442 C.blockCount()); 1443 NonLoc resultNL = result.castAs<NonLoc>(); 1444 1445 if (strLengthNL) { 1446 state = state->assume(C.getSValBuilder().evalBinOpNN( 1447 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1448 .castAs<DefinedOrUnknownSVal>(), true); 1449 } 1450 1451 if (maxlenValNL) { 1452 state = state->assume(C.getSValBuilder().evalBinOpNN( 1453 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1454 .castAs<DefinedOrUnknownSVal>(), true); 1455 } 1456 } 1457 1458 } else { 1459 // This is a plain strlen(), not strnlen(). 1460 result = strLength.castAs<DefinedOrUnknownSVal>(); 1461 1462 // If we don't know the length of the string, conjure a return 1463 // value, so it can be used in constraints, at least. 1464 if (result.isUnknown()) { 1465 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1466 C.blockCount()); 1467 } 1468 } 1469 1470 // Bind the return value. 1471 assert(!result.isUnknown() && "Should have conjured a value by now"); 1472 state = state->BindExpr(CE, LCtx, result); 1473 C.addTransition(state); 1474 } 1475 1476 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1477 // char *strcpy(char *restrict dst, const char *restrict src); 1478 evalStrcpyCommon(C, CE, 1479 /* ReturnEnd = */ false, 1480 /* IsBounded = */ false, 1481 /* appendK = */ ConcatFnKind::none); 1482 } 1483 1484 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1485 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1486 evalStrcpyCommon(C, CE, 1487 /* ReturnEnd = */ false, 1488 /* IsBounded = */ true, 1489 /* appendK = */ ConcatFnKind::none); 1490 } 1491 1492 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1493 // char *stpcpy(char *restrict dst, const char *restrict src); 1494 evalStrcpyCommon(C, CE, 1495 /* ReturnEnd = */ true, 1496 /* IsBounded = */ false, 1497 /* appendK = */ ConcatFnKind::none); 1498 } 1499 1500 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1501 // size_t strlcpy(char *dest, const char *src, size_t size); 1502 evalStrcpyCommon(C, CE, 1503 /* ReturnEnd = */ true, 1504 /* IsBounded = */ true, 1505 /* appendK = */ ConcatFnKind::none, 1506 /* returnPtr = */ false); 1507 } 1508 1509 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1510 // char *strcat(char *restrict s1, const char *restrict s2); 1511 evalStrcpyCommon(C, CE, 1512 /* ReturnEnd = */ false, 1513 /* IsBounded = */ false, 1514 /* appendK = */ ConcatFnKind::strcat); 1515 } 1516 1517 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1518 // char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1519 evalStrcpyCommon(C, CE, 1520 /* ReturnEnd = */ false, 1521 /* IsBounded = */ true, 1522 /* appendK = */ ConcatFnKind::strcat); 1523 } 1524 1525 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1526 // size_t strlcat(char *dst, const char *src, size_t size); 1527 // It will append at most size - strlen(dst) - 1 bytes, 1528 // NULL-terminating the result. 1529 evalStrcpyCommon(C, CE, 1530 /* ReturnEnd = */ false, 1531 /* IsBounded = */ true, 1532 /* appendK = */ ConcatFnKind::strlcat, 1533 /* returnPtr = */ false); 1534 } 1535 1536 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1537 bool ReturnEnd, bool IsBounded, 1538 ConcatFnKind appendK, 1539 bool returnPtr) const { 1540 if (appendK == ConcatFnKind::none) 1541 CurrentFunctionDescription = "string copy function"; 1542 else 1543 CurrentFunctionDescription = "string concatenation function"; 1544 1545 ProgramStateRef state = C.getState(); 1546 const LocationContext *LCtx = C.getLocationContext(); 1547 1548 // Check that the destination is non-null. 1549 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1550 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1551 state = checkNonNull(C, state, Dst, DstVal); 1552 if (!state) 1553 return; 1554 1555 // Check that the source is non-null. 1556 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1557 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1558 state = checkNonNull(C, state, srcExpr, srcVal); 1559 if (!state) 1560 return; 1561 1562 // Get the string length of the source. 1563 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1564 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1565 1566 // Get the string length of the destination buffer. 1567 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1568 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1569 1570 // If the source isn't a valid C string, give up. 1571 if (strLength.isUndef()) 1572 return; 1573 1574 SValBuilder &svalBuilder = C.getSValBuilder(); 1575 QualType cmpTy = svalBuilder.getConditionType(); 1576 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1577 1578 // These two values allow checking two kinds of errors: 1579 // - actual overflows caused by a source that doesn't fit in the destination 1580 // - potential overflows caused by a bound that could exceed the destination 1581 SVal amountCopied = UnknownVal(); 1582 SVal maxLastElementIndex = UnknownVal(); 1583 const char *boundWarning = nullptr; 1584 1585 // FIXME: Why do we choose the srcExpr if the access has no size? 1586 // Note that the 3rd argument of the call would be the size parameter. 1587 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1588 state = CheckOverlap( 1589 C, state, 1590 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1591 srcExpr); 1592 1593 if (!state) 1594 return; 1595 1596 // If the function is strncpy, strncat, etc... it is bounded. 1597 if (IsBounded) { 1598 // Get the max number of characters to copy. 1599 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1600 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1601 1602 // Protect against misdeclared strncpy(). 1603 lenVal = 1604 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1605 1606 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1607 1608 // If we know both values, we might be able to figure out how much 1609 // we're copying. 1610 if (strLengthNL && lenValNL) { 1611 switch (appendK) { 1612 case ConcatFnKind::none: 1613 case ConcatFnKind::strcat: { 1614 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1615 // Check if the max number to copy is less than the length of the src. 1616 // If the bound is equal to the source length, strncpy won't null- 1617 // terminate the result! 1618 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1619 svalBuilder 1620 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1621 .castAs<DefinedOrUnknownSVal>()); 1622 1623 if (stateSourceTooLong && !stateSourceNotTooLong) { 1624 // Max number to copy is less than the length of the src, so the 1625 // actual strLength copied is the max number arg. 1626 state = stateSourceTooLong; 1627 amountCopied = lenVal; 1628 1629 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1630 // The source buffer entirely fits in the bound. 1631 state = stateSourceNotTooLong; 1632 amountCopied = strLength; 1633 } 1634 break; 1635 } 1636 case ConcatFnKind::strlcat: 1637 if (!dstStrLengthNL) 1638 return; 1639 1640 // amountCopied = min (size - dstLen - 1 , srcLen) 1641 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1642 *dstStrLengthNL, sizeTy); 1643 if (!freeSpace.getAs<NonLoc>()) 1644 return; 1645 freeSpace = 1646 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1647 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1648 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1649 1650 // While unlikely, it is possible that the subtraction is 1651 // too complex to compute, let's check whether it succeeded. 1652 if (!freeSpaceNL) 1653 return; 1654 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1655 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1656 1657 ProgramStateRef TrueState, FalseState; 1658 std::tie(TrueState, FalseState) = 1659 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1660 1661 // srcStrLength <= size - dstStrLength -1 1662 if (TrueState && !FalseState) { 1663 amountCopied = strLength; 1664 } 1665 1666 // srcStrLength > size - dstStrLength -1 1667 if (!TrueState && FalseState) { 1668 amountCopied = freeSpace; 1669 } 1670 1671 if (TrueState && FalseState) 1672 amountCopied = UnknownVal(); 1673 break; 1674 } 1675 } 1676 // We still want to know if the bound is known to be too large. 1677 if (lenValNL) { 1678 switch (appendK) { 1679 case ConcatFnKind::strcat: 1680 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1681 1682 // Get the string length of the destination. If the destination is 1683 // memory that can't have a string length, we shouldn't be copying 1684 // into it anyway. 1685 if (dstStrLength.isUndef()) 1686 return; 1687 1688 if (dstStrLengthNL) { 1689 maxLastElementIndex = svalBuilder.evalBinOpNN( 1690 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1691 1692 boundWarning = "Size argument is greater than the free space in the " 1693 "destination buffer"; 1694 } 1695 break; 1696 case ConcatFnKind::none: 1697 case ConcatFnKind::strlcat: 1698 // For strncpy and strlcat, this is just checking 1699 // that lenVal <= sizeof(dst). 1700 // (Yes, strncpy and strncat differ in how they treat termination. 1701 // strncat ALWAYS terminates, but strncpy doesn't.) 1702 1703 // We need a special case for when the copy size is zero, in which 1704 // case strncpy will do no work at all. Our bounds check uses n-1 1705 // as the last element accessed, so n == 0 is problematic. 1706 ProgramStateRef StateZeroSize, StateNonZeroSize; 1707 std::tie(StateZeroSize, StateNonZeroSize) = 1708 assumeZero(C, state, *lenValNL, sizeTy); 1709 1710 // If the size is known to be zero, we're done. 1711 if (StateZeroSize && !StateNonZeroSize) { 1712 if (returnPtr) { 1713 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1714 } else { 1715 if (appendK == ConcatFnKind::none) { 1716 // strlcpy returns strlen(src) 1717 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1718 } else { 1719 // strlcat returns strlen(src) + strlen(dst) 1720 SVal retSize = svalBuilder.evalBinOp( 1721 state, BO_Add, strLength, dstStrLength, sizeTy); 1722 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1723 } 1724 } 1725 C.addTransition(StateZeroSize); 1726 return; 1727 } 1728 1729 // Otherwise, go ahead and figure out the last element we'll touch. 1730 // We don't record the non-zero assumption here because we can't 1731 // be sure. We won't warn on a possible zero. 1732 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1733 maxLastElementIndex = 1734 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1735 boundWarning = "Size argument is greater than the length of the " 1736 "destination buffer"; 1737 break; 1738 } 1739 } 1740 } else { 1741 // The function isn't bounded. The amount copied should match the length 1742 // of the source buffer. 1743 amountCopied = strLength; 1744 } 1745 1746 assert(state); 1747 1748 // This represents the number of characters copied into the destination 1749 // buffer. (It may not actually be the strlen if the destination buffer 1750 // is not terminated.) 1751 SVal finalStrLength = UnknownVal(); 1752 SVal strlRetVal = UnknownVal(); 1753 1754 if (appendK == ConcatFnKind::none && !returnPtr) { 1755 // strlcpy returns the sizeof(src) 1756 strlRetVal = strLength; 1757 } 1758 1759 // If this is an appending function (strcat, strncat...) then set the 1760 // string length to strlen(src) + strlen(dst) since the buffer will 1761 // ultimately contain both. 1762 if (appendK != ConcatFnKind::none) { 1763 // Get the string length of the destination. If the destination is memory 1764 // that can't have a string length, we shouldn't be copying into it anyway. 1765 if (dstStrLength.isUndef()) 1766 return; 1767 1768 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1769 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1770 *dstStrLengthNL, sizeTy); 1771 } 1772 1773 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1774 1775 // If we know both string lengths, we might know the final string length. 1776 if (amountCopiedNL && dstStrLengthNL) { 1777 // Make sure the two lengths together don't overflow a size_t. 1778 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1779 if (!state) 1780 return; 1781 1782 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1783 *dstStrLengthNL, sizeTy); 1784 } 1785 1786 // If we couldn't get a single value for the final string length, 1787 // we can at least bound it by the individual lengths. 1788 if (finalStrLength.isUnknown()) { 1789 // Try to get a "hypothetical" string length symbol, which we can later 1790 // set as a real value if that turns out to be the case. 1791 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1792 assert(!finalStrLength.isUndef()); 1793 1794 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1795 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1796 // we overwrite dst string with the src 1797 // finalStrLength >= srcStrLength 1798 SVal sourceInResult = svalBuilder.evalBinOpNN( 1799 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1800 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1801 true); 1802 if (!state) 1803 return; 1804 } 1805 1806 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1807 // we extend the dst string with the src 1808 // finalStrLength >= dstStrLength 1809 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1810 *finalStrLengthNL, 1811 *dstStrLengthNL, 1812 cmpTy); 1813 state = 1814 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1815 if (!state) 1816 return; 1817 } 1818 } 1819 } 1820 1821 } else { 1822 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1823 // the final string length will match the input string length. 1824 finalStrLength = amountCopied; 1825 } 1826 1827 SVal Result; 1828 1829 if (returnPtr) { 1830 // The final result of the function will either be a pointer past the last 1831 // copied element, or a pointer to the start of the destination buffer. 1832 Result = (ReturnEnd ? UnknownVal() : DstVal); 1833 } else { 1834 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1835 //strlcpy, strlcat 1836 Result = strlRetVal; 1837 else 1838 Result = finalStrLength; 1839 } 1840 1841 assert(state); 1842 1843 // If the destination is a MemRegion, try to check for a buffer overflow and 1844 // record the new string length. 1845 if (Optional<loc::MemRegionVal> dstRegVal = 1846 DstVal.getAs<loc::MemRegionVal>()) { 1847 QualType ptrTy = Dst.Expression->getType(); 1848 1849 // If we have an exact value on a bounded copy, use that to check for 1850 // overflows, rather than our estimate about how much is actually copied. 1851 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1852 SVal maxLastElement = 1853 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1854 1855 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1856 if (!state) 1857 return; 1858 } 1859 1860 // Then, if the final length is known... 1861 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1862 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1863 *knownStrLength, ptrTy); 1864 1865 // ...and we haven't checked the bound, we'll check the actual copy. 1866 if (!boundWarning) { 1867 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1868 if (!state) 1869 return; 1870 } 1871 1872 // If this is a stpcpy-style copy, the last element is the return value. 1873 if (returnPtr && ReturnEnd) 1874 Result = lastElement; 1875 } 1876 1877 // Invalidate the destination (regular invalidation without pointer-escaping 1878 // the address of the top-level region). This must happen before we set the 1879 // C string length because invalidation will clear the length. 1880 // FIXME: Even if we can't perfectly model the copy, we should see if we 1881 // can use LazyCompoundVals to copy the source values into the destination. 1882 // This would probably remove any existing bindings past the end of the 1883 // string, but that's still an improvement over blank invalidation. 1884 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1885 /*IsSourceBuffer*/ false, nullptr); 1886 1887 // Invalidate the source (const-invalidation without const-pointer-escaping 1888 // the address of the top-level region). 1889 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1890 /*IsSourceBuffer*/ true, nullptr); 1891 1892 // Set the C string length of the destination, if we know it. 1893 if (IsBounded && (appendK == ConcatFnKind::none)) { 1894 // strncpy is annoying in that it doesn't guarantee to null-terminate 1895 // the result string. If the original string didn't fit entirely inside 1896 // the bound (including the null-terminator), we don't know how long the 1897 // result is. 1898 if (amountCopied != strLength) 1899 finalStrLength = UnknownVal(); 1900 } 1901 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1902 } 1903 1904 assert(state); 1905 1906 if (returnPtr) { 1907 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1908 // overflow, we still need a result. Conjure a return value. 1909 if (ReturnEnd && Result.isUnknown()) { 1910 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1911 } 1912 } 1913 // Set the return value. 1914 state = state->BindExpr(CE, LCtx, Result); 1915 C.addTransition(state); 1916 } 1917 1918 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1919 //int strcmp(const char *s1, const char *s2); 1920 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1921 } 1922 1923 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1924 //int strncmp(const char *s1, const char *s2, size_t n); 1925 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1926 } 1927 1928 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1929 const CallExpr *CE) const { 1930 //int strcasecmp(const char *s1, const char *s2); 1931 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1932 } 1933 1934 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1935 const CallExpr *CE) const { 1936 //int strncasecmp(const char *s1, const char *s2, size_t n); 1937 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1938 } 1939 1940 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1941 bool IsBounded, bool IgnoreCase) const { 1942 CurrentFunctionDescription = "string comparison function"; 1943 ProgramStateRef state = C.getState(); 1944 const LocationContext *LCtx = C.getLocationContext(); 1945 1946 // Check that the first string is non-null 1947 AnyArgExpr Left = {CE->getArg(0), 0}; 1948 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 1949 state = checkNonNull(C, state, Left, LeftVal); 1950 if (!state) 1951 return; 1952 1953 // Check that the second string is non-null. 1954 AnyArgExpr Right = {CE->getArg(1), 1}; 1955 SVal RightVal = state->getSVal(Right.Expression, LCtx); 1956 state = checkNonNull(C, state, Right, RightVal); 1957 if (!state) 1958 return; 1959 1960 // Get the string length of the first string or give up. 1961 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 1962 if (LeftLength.isUndef()) 1963 return; 1964 1965 // Get the string length of the second string or give up. 1966 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 1967 if (RightLength.isUndef()) 1968 return; 1969 1970 // If we know the two buffers are the same, we know the result is 0. 1971 // First, get the two buffers' addresses. Another checker will have already 1972 // made sure they're not undefined. 1973 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 1974 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 1975 1976 // See if they are the same. 1977 SValBuilder &svalBuilder = C.getSValBuilder(); 1978 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1979 ProgramStateRef StSameBuf, StNotSameBuf; 1980 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1981 1982 // If the two arguments might be the same buffer, we know the result is 0, 1983 // and we only need to check one size. 1984 if (StSameBuf) { 1985 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1986 svalBuilder.makeZeroVal(CE->getType())); 1987 C.addTransition(StSameBuf); 1988 1989 // If the two arguments are GUARANTEED to be the same, we're done! 1990 if (!StNotSameBuf) 1991 return; 1992 } 1993 1994 assert(StNotSameBuf); 1995 state = StNotSameBuf; 1996 1997 // At this point we can go about comparing the two buffers. 1998 // For now, we only do this if they're both known string literals. 1999 2000 // Attempt to extract string literals from both expressions. 2001 const StringLiteral *LeftStrLiteral = 2002 getCStringLiteral(C, state, Left.Expression, LeftVal); 2003 const StringLiteral *RightStrLiteral = 2004 getCStringLiteral(C, state, Right.Expression, RightVal); 2005 bool canComputeResult = false; 2006 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2007 C.blockCount()); 2008 2009 if (LeftStrLiteral && RightStrLiteral) { 2010 StringRef LeftStrRef = LeftStrLiteral->getString(); 2011 StringRef RightStrRef = RightStrLiteral->getString(); 2012 2013 if (IsBounded) { 2014 // Get the max number of characters to compare. 2015 const Expr *lenExpr = CE->getArg(2); 2016 SVal lenVal = state->getSVal(lenExpr, LCtx); 2017 2018 // If the length is known, we can get the right substrings. 2019 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2020 // Create substrings of each to compare the prefix. 2021 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2022 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2023 canComputeResult = true; 2024 } 2025 } else { 2026 // This is a normal, unbounded strcmp. 2027 canComputeResult = true; 2028 } 2029 2030 if (canComputeResult) { 2031 // Real strcmp stops at null characters. 2032 size_t s1Term = LeftStrRef.find('\0'); 2033 if (s1Term != StringRef::npos) 2034 LeftStrRef = LeftStrRef.substr(0, s1Term); 2035 2036 size_t s2Term = RightStrRef.find('\0'); 2037 if (s2Term != StringRef::npos) 2038 RightStrRef = RightStrRef.substr(0, s2Term); 2039 2040 // Use StringRef's comparison methods to compute the actual result. 2041 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2042 : LeftStrRef.compare(RightStrRef); 2043 2044 // The strcmp function returns an integer greater than, equal to, or less 2045 // than zero, [c11, p7.24.4.2]. 2046 if (compareRes == 0) { 2047 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2048 } 2049 else { 2050 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2051 // Constrain strcmp's result range based on the result of StringRef's 2052 // comparison methods. 2053 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2054 SVal compareWithZero = 2055 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2056 svalBuilder.getConditionType()); 2057 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2058 state = state->assume(compareWithZeroVal, true); 2059 } 2060 } 2061 } 2062 2063 state = state->BindExpr(CE, LCtx, resultVal); 2064 2065 // Record this as a possible path. 2066 C.addTransition(state); 2067 } 2068 2069 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2070 // char *strsep(char **stringp, const char *delim); 2071 // Verify whether the search string parameter matches the return type. 2072 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2073 2074 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2075 if (CharPtrTy.isNull() || 2076 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2077 return; 2078 2079 CurrentFunctionDescription = "strsep()"; 2080 ProgramStateRef State = C.getState(); 2081 const LocationContext *LCtx = C.getLocationContext(); 2082 2083 // Check that the search string pointer is non-null (though it may point to 2084 // a null string). 2085 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2086 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2087 if (!State) 2088 return; 2089 2090 // Check that the delimiter string is non-null. 2091 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2092 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2093 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2094 if (!State) 2095 return; 2096 2097 SValBuilder &SVB = C.getSValBuilder(); 2098 SVal Result; 2099 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2100 // Get the current value of the search string pointer, as a char*. 2101 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2102 2103 // Invalidate the search string, representing the change of one delimiter 2104 // character to NUL. 2105 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2106 /*IsSourceBuffer*/ false, nullptr); 2107 2108 // Overwrite the search string pointer. The new value is either an address 2109 // further along in the same string, or NULL if there are no more tokens. 2110 State = State->bindLoc(*SearchStrLoc, 2111 SVB.conjureSymbolVal(getTag(), 2112 CE, 2113 LCtx, 2114 CharPtrTy, 2115 C.blockCount()), 2116 LCtx); 2117 } else { 2118 assert(SearchStrVal.isUnknown()); 2119 // Conjure a symbolic value. It's the best we can do. 2120 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2121 } 2122 2123 // Set the return value, and finish. 2124 State = State->BindExpr(CE, LCtx, Result); 2125 C.addTransition(State); 2126 } 2127 2128 // These should probably be moved into a C++ standard library checker. 2129 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2130 evalStdCopyCommon(C, CE); 2131 } 2132 2133 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2134 const CallExpr *CE) const { 2135 evalStdCopyCommon(C, CE); 2136 } 2137 2138 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2139 const CallExpr *CE) const { 2140 if (!CE->getArg(2)->getType()->isPointerType()) 2141 return; 2142 2143 ProgramStateRef State = C.getState(); 2144 2145 const LocationContext *LCtx = C.getLocationContext(); 2146 2147 // template <class _InputIterator, class _OutputIterator> 2148 // _OutputIterator 2149 // copy(_InputIterator __first, _InputIterator __last, 2150 // _OutputIterator __result) 2151 2152 // Invalidate the destination buffer 2153 const Expr *Dst = CE->getArg(2); 2154 SVal DstVal = State->getSVal(Dst, LCtx); 2155 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2156 /*Size=*/nullptr); 2157 2158 SValBuilder &SVB = C.getSValBuilder(); 2159 2160 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2161 State = State->BindExpr(CE, LCtx, ResultVal); 2162 2163 C.addTransition(State); 2164 } 2165 2166 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2167 // void *memset(void *s, int c, size_t n); 2168 CurrentFunctionDescription = "memory set function"; 2169 2170 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2171 AnyArgExpr CharE = {CE->getArg(1), 1}; 2172 SizeArgExpr Size = {CE->getArg(2), 2}; 2173 2174 ProgramStateRef State = C.getState(); 2175 2176 // See if the size argument is zero. 2177 const LocationContext *LCtx = C.getLocationContext(); 2178 SVal SizeVal = C.getSVal(Size.Expression); 2179 QualType SizeTy = Size.Expression->getType(); 2180 2181 ProgramStateRef ZeroSize, NonZeroSize; 2182 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2183 2184 // Get the value of the memory area. 2185 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2186 2187 // If the size is zero, there won't be any actual memory access, so 2188 // just bind the return value to the buffer and return. 2189 if (ZeroSize && !NonZeroSize) { 2190 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2191 C.addTransition(ZeroSize); 2192 return; 2193 } 2194 2195 // Ensure the memory area is not null. 2196 // If it is NULL there will be a NULL pointer dereference. 2197 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2198 if (!State) 2199 return; 2200 2201 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2202 if (!State) 2203 return; 2204 2205 // According to the values of the arguments, bind the value of the second 2206 // argument to the destination buffer and set string length, or just 2207 // invalidate the destination buffer. 2208 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2209 Size.Expression, C, State)) 2210 return; 2211 2212 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2213 C.addTransition(State); 2214 } 2215 2216 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2217 CurrentFunctionDescription = "memory clearance function"; 2218 2219 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2220 SizeArgExpr Size = {CE->getArg(1), 1}; 2221 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2222 2223 ProgramStateRef State = C.getState(); 2224 2225 // See if the size argument is zero. 2226 SVal SizeVal = C.getSVal(Size.Expression); 2227 QualType SizeTy = Size.Expression->getType(); 2228 2229 ProgramStateRef StateZeroSize, StateNonZeroSize; 2230 std::tie(StateZeroSize, StateNonZeroSize) = 2231 assumeZero(C, State, SizeVal, SizeTy); 2232 2233 // If the size is zero, there won't be any actual memory access, 2234 // In this case we just return. 2235 if (StateZeroSize && !StateNonZeroSize) { 2236 C.addTransition(StateZeroSize); 2237 return; 2238 } 2239 2240 // Get the value of the memory area. 2241 SVal MemVal = C.getSVal(Buffer.Expression); 2242 2243 // Ensure the memory area is not null. 2244 // If it is NULL there will be a NULL pointer dereference. 2245 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2246 if (!State) 2247 return; 2248 2249 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2250 if (!State) 2251 return; 2252 2253 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2254 return; 2255 2256 C.addTransition(State); 2257 } 2258 2259 //===----------------------------------------------------------------------===// 2260 // The driver method, and other Checker callbacks. 2261 //===----------------------------------------------------------------------===// 2262 2263 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2264 CheckerContext &C) const { 2265 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2266 if (!CE) 2267 return nullptr; 2268 2269 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2270 if (!FD) 2271 return nullptr; 2272 2273 if (StdCopy.matches(Call)) 2274 return &CStringChecker::evalStdCopy; 2275 if (StdCopyBackward.matches(Call)) 2276 return &CStringChecker::evalStdCopyBackward; 2277 2278 // Pro-actively check that argument types are safe to do arithmetic upon. 2279 // We do not want to crash if someone accidentally passes a structure 2280 // into, say, a C++ overload of any of these functions. We could not check 2281 // that for std::copy because they may have arguments of other types. 2282 for (auto I : CE->arguments()) { 2283 QualType T = I->getType(); 2284 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2285 return nullptr; 2286 } 2287 2288 const FnCheck *Callback = Callbacks.lookup(Call); 2289 if (Callback) 2290 return *Callback; 2291 2292 return nullptr; 2293 } 2294 2295 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2296 FnCheck Callback = identifyCall(Call, C); 2297 2298 // If the callee isn't a string function, let another checker handle it. 2299 if (!Callback) 2300 return false; 2301 2302 // Check and evaluate the call. 2303 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2304 (this->*Callback)(C, CE); 2305 2306 // If the evaluate call resulted in no change, chain to the next eval call 2307 // handler. 2308 // Note, the custom CString evaluation calls assume that basic safety 2309 // properties are held. However, if the user chooses to turn off some of these 2310 // checks, we ignore the issues and leave the call evaluation to a generic 2311 // handler. 2312 return C.isDifferent(); 2313 } 2314 2315 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2316 // Record string length for char a[] = "abc"; 2317 ProgramStateRef state = C.getState(); 2318 2319 for (const auto *I : DS->decls()) { 2320 const VarDecl *D = dyn_cast<VarDecl>(I); 2321 if (!D) 2322 continue; 2323 2324 // FIXME: Handle array fields of structs. 2325 if (!D->getType()->isArrayType()) 2326 continue; 2327 2328 const Expr *Init = D->getInit(); 2329 if (!Init) 2330 continue; 2331 if (!isa<StringLiteral>(Init)) 2332 continue; 2333 2334 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2335 const MemRegion *MR = VarLoc.getAsRegion(); 2336 if (!MR) 2337 continue; 2338 2339 SVal StrVal = C.getSVal(Init); 2340 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2341 DefinedOrUnknownSVal strLength = 2342 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2343 2344 state = state->set<CStringLength>(MR, strLength); 2345 } 2346 2347 C.addTransition(state); 2348 } 2349 2350 ProgramStateRef 2351 CStringChecker::checkRegionChanges(ProgramStateRef state, 2352 const InvalidatedSymbols *, 2353 ArrayRef<const MemRegion *> ExplicitRegions, 2354 ArrayRef<const MemRegion *> Regions, 2355 const LocationContext *LCtx, 2356 const CallEvent *Call) const { 2357 CStringLengthTy Entries = state->get<CStringLength>(); 2358 if (Entries.isEmpty()) 2359 return state; 2360 2361 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2362 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2363 2364 // First build sets for the changed regions and their super-regions. 2365 for (ArrayRef<const MemRegion *>::iterator 2366 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2367 const MemRegion *MR = *I; 2368 Invalidated.insert(MR); 2369 2370 SuperRegions.insert(MR); 2371 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2372 MR = SR->getSuperRegion(); 2373 SuperRegions.insert(MR); 2374 } 2375 } 2376 2377 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2378 2379 // Then loop over the entries in the current state. 2380 for (CStringLengthTy::iterator I = Entries.begin(), 2381 E = Entries.end(); I != E; ++I) { 2382 const MemRegion *MR = I.getKey(); 2383 2384 // Is this entry for a super-region of a changed region? 2385 if (SuperRegions.count(MR)) { 2386 Entries = F.remove(Entries, MR); 2387 continue; 2388 } 2389 2390 // Is this entry for a sub-region of a changed region? 2391 const MemRegion *Super = MR; 2392 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2393 Super = SR->getSuperRegion(); 2394 if (Invalidated.count(Super)) { 2395 Entries = F.remove(Entries, MR); 2396 break; 2397 } 2398 } 2399 } 2400 2401 return state->set<CStringLength>(Entries); 2402 } 2403 2404 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2405 SymbolReaper &SR) const { 2406 // Mark all symbols in our string length map as valid. 2407 CStringLengthTy Entries = state->get<CStringLength>(); 2408 2409 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2410 I != E; ++I) { 2411 SVal Len = I.getData(); 2412 2413 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2414 se = Len.symbol_end(); si != se; ++si) 2415 SR.markInUse(*si); 2416 } 2417 } 2418 2419 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2420 CheckerContext &C) const { 2421 ProgramStateRef state = C.getState(); 2422 CStringLengthTy Entries = state->get<CStringLength>(); 2423 if (Entries.isEmpty()) 2424 return; 2425 2426 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2427 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2428 I != E; ++I) { 2429 SVal Len = I.getData(); 2430 if (SymbolRef Sym = Len.getAsSymbol()) { 2431 if (SR.isDead(Sym)) 2432 Entries = F.remove(Entries, I.getKey()); 2433 } 2434 } 2435 2436 state = state->set<CStringLength>(Entries); 2437 C.addTransition(state); 2438 } 2439 2440 void ento::registerCStringModeling(CheckerManager &Mgr) { 2441 Mgr.registerChecker<CStringChecker>(); 2442 } 2443 2444 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2445 return true; 2446 } 2447 2448 #define REGISTER_CHECKER(name) \ 2449 void ento::register##name(CheckerManager &mgr) { \ 2450 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2451 checker->Filter.Check##name = true; \ 2452 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2453 } \ 2454 \ 2455 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2456 2457 REGISTER_CHECKER(CStringNullArg) 2458 REGISTER_CHECKER(CStringOutOfBounds) 2459 REGISTER_CHECKER(CStringBufferOverlap) 2460 REGISTER_CHECKER(CStringNotNullTerm) 2461