1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 using namespace ento; 31 32 namespace { 33 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 34 class CStringChecker : public Checker< eval::Call, 35 check::PreStmt<DeclStmt>, 36 check::LiveSymbols, 37 check::DeadSymbols, 38 check::RegionChanges 39 > { 40 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 41 BT_NotCString, BT_AdditionOverflow; 42 43 mutable const char *CurrentFunctionDescription; 44 45 public: 46 /// The filter is used to filter out the diagnostics which are not enabled by 47 /// the user. 48 struct CStringChecksFilter { 49 DefaultBool CheckCStringNullArg; 50 DefaultBool CheckCStringOutOfBounds; 51 DefaultBool CheckCStringBufferOverlap; 52 DefaultBool CheckCStringNotNullTerm; 53 54 CheckerNameRef CheckNameCStringNullArg; 55 CheckerNameRef CheckNameCStringOutOfBounds; 56 CheckerNameRef CheckNameCStringBufferOverlap; 57 CheckerNameRef CheckNameCStringNotNullTerm; 58 }; 59 60 CStringChecksFilter Filter; 61 62 static void *getTag() { static int tag; return &tag; } 63 64 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 65 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 66 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 67 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 68 69 ProgramStateRef 70 checkRegionChanges(ProgramStateRef state, 71 const InvalidatedSymbols *, 72 ArrayRef<const MemRegion *> ExplicitRegions, 73 ArrayRef<const MemRegion *> Regions, 74 const LocationContext *LCtx, 75 const CallEvent *Call) const; 76 77 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 78 const CallExpr *) const; 79 CallDescriptionMap<FnCheck> Callbacks = { 80 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 81 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 82 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 83 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 84 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 85 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 86 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 87 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 88 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 89 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 90 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 91 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 92 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 93 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 94 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 95 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 96 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 97 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 98 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 99 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 100 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 101 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 102 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 103 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 104 }; 105 106 // These require a bit of special handling. 107 CallDescription StdCopy{{"std", "copy"}, 3}, 108 StdCopyBackward{{"std", "copy_backward"}, 3}; 109 110 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 111 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 112 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 113 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 114 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 115 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 116 ProgramStateRef state, 117 const Expr *Size, 118 const Expr *Source, 119 const Expr *Dest, 120 bool Restricted = false, 121 bool IsMempcpy = false) const; 122 123 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 124 125 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 126 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 127 void evalstrLengthCommon(CheckerContext &C, 128 const CallExpr *CE, 129 bool IsStrnlen = false) const; 130 131 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 132 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 133 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 134 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 135 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 136 bool IsBounded, ConcatFnKind appendK, 137 bool returnPtr = true) const; 138 139 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 140 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 141 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 142 143 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 144 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 145 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 146 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 147 void evalStrcmpCommon(CheckerContext &C, 148 const CallExpr *CE, 149 bool IsBounded = false, 150 bool IgnoreCase = false) const; 151 152 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 153 154 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 155 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 156 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 157 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 158 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 159 160 // Utility methods 161 std::pair<ProgramStateRef , ProgramStateRef > 162 static assumeZero(CheckerContext &C, 163 ProgramStateRef state, SVal V, QualType Ty); 164 165 static ProgramStateRef setCStringLength(ProgramStateRef state, 166 const MemRegion *MR, 167 SVal strLength); 168 static SVal getCStringLengthForRegion(CheckerContext &C, 169 ProgramStateRef &state, 170 const Expr *Ex, 171 const MemRegion *MR, 172 bool hypothetical); 173 SVal getCStringLength(CheckerContext &C, 174 ProgramStateRef &state, 175 const Expr *Ex, 176 SVal Buf, 177 bool hypothetical = false) const; 178 179 const StringLiteral *getCStringLiteral(CheckerContext &C, 180 ProgramStateRef &state, 181 const Expr *expr, 182 SVal val) const; 183 184 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 185 ProgramStateRef state, 186 const Expr *Ex, SVal V, 187 bool IsSourceBuffer, 188 const Expr *Size); 189 190 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 191 const MemRegion *MR); 192 193 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 194 const Expr *Size, CheckerContext &C, 195 ProgramStateRef &State); 196 197 // Re-usable checks 198 ProgramStateRef checkNonNull(CheckerContext &C, 199 ProgramStateRef state, 200 const Expr *S, 201 SVal l, 202 unsigned IdxOfArg) const; 203 ProgramStateRef CheckLocation(CheckerContext &C, 204 ProgramStateRef state, 205 const Expr *S, 206 SVal l, 207 const char *message = nullptr) const; 208 ProgramStateRef CheckBufferAccess(CheckerContext &C, 209 ProgramStateRef state, 210 const Expr *Size, 211 const Expr *FirstBuf, 212 const Expr *SecondBuf, 213 const char *firstMessage = nullptr, 214 const char *secondMessage = nullptr, 215 bool WarnAboutSize = false) const; 216 217 ProgramStateRef CheckBufferAccess(CheckerContext &C, 218 ProgramStateRef state, 219 const Expr *Size, 220 const Expr *Buf, 221 const char *message = nullptr, 222 bool WarnAboutSize = false) const { 223 // This is a convenience overload. 224 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 225 WarnAboutSize); 226 } 227 ProgramStateRef CheckOverlap(CheckerContext &C, 228 ProgramStateRef state, 229 const Expr *Size, 230 const Expr *First, 231 const Expr *Second) const; 232 void emitOverlapBug(CheckerContext &C, 233 ProgramStateRef state, 234 const Stmt *First, 235 const Stmt *Second) const; 236 237 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 238 StringRef WarningMsg) const; 239 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 240 const Stmt *S, StringRef WarningMsg) const; 241 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 242 const Stmt *S, StringRef WarningMsg) const; 243 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 244 245 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 246 ProgramStateRef state, 247 NonLoc left, 248 NonLoc right) const; 249 250 // Return true if the destination buffer of the copy function may be in bound. 251 // Expects SVal of Size to be positive and unsigned. 252 // Expects SVal of FirstBuf to be a FieldRegion. 253 static bool IsFirstBufInBound(CheckerContext &C, 254 ProgramStateRef state, 255 const Expr *FirstBuf, 256 const Expr *Size); 257 }; 258 259 } //end anonymous namespace 260 261 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 262 263 //===----------------------------------------------------------------------===// 264 // Individual checks and utility methods. 265 //===----------------------------------------------------------------------===// 266 267 std::pair<ProgramStateRef , ProgramStateRef > 268 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 269 QualType Ty) { 270 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 271 if (!val) 272 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 273 274 SValBuilder &svalBuilder = C.getSValBuilder(); 275 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 276 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 277 } 278 279 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 280 ProgramStateRef state, 281 const Expr *S, SVal l, 282 unsigned IdxOfArg) const { 283 // If a previous check has failed, propagate the failure. 284 if (!state) 285 return nullptr; 286 287 ProgramStateRef stateNull, stateNonNull; 288 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 289 290 if (stateNull && !stateNonNull) { 291 if (Filter.CheckCStringNullArg) { 292 SmallString<80> buf; 293 llvm::raw_svector_ostream OS(buf); 294 assert(CurrentFunctionDescription); 295 OS << "Null pointer passed as " << IdxOfArg 296 << llvm::getOrdinalSuffix(IdxOfArg) << " argument to " 297 << CurrentFunctionDescription; 298 299 emitNullArgBug(C, stateNull, S, OS.str()); 300 } 301 return nullptr; 302 } 303 304 // From here on, assume that the value is non-null. 305 assert(stateNonNull); 306 return stateNonNull; 307 } 308 309 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 310 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 311 ProgramStateRef state, 312 const Expr *S, SVal l, 313 const char *warningMsg) const { 314 // If a previous check has failed, propagate the failure. 315 if (!state) 316 return nullptr; 317 318 // Check for out of bound array element access. 319 const MemRegion *R = l.getAsRegion(); 320 if (!R) 321 return state; 322 323 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 324 if (!ER) 325 return state; 326 327 if (ER->getValueType() != C.getASTContext().CharTy) 328 return state; 329 330 // Get the size of the array. 331 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 332 DefinedOrUnknownSVal Size = 333 getDynamicSize(state, superReg, C.getSValBuilder()); 334 335 // Get the index of the accessed element. 336 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 337 338 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 339 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 340 if (StOutBound && !StInBound) { 341 // These checks are either enabled by the CString out-of-bounds checker 342 // explicitly or implicitly by the Malloc checker. 343 // In the latter case we only do modeling but do not emit warning. 344 if (!Filter.CheckCStringOutOfBounds) 345 return nullptr; 346 // Emit a bug report. 347 if (warningMsg) { 348 emitOutOfBoundsBug(C, StOutBound, S, warningMsg); 349 } else { 350 assert(CurrentFunctionDescription); 351 assert(CurrentFunctionDescription[0] != '\0'); 352 353 SmallString<80> buf; 354 llvm::raw_svector_ostream os(buf); 355 os << toUppercase(CurrentFunctionDescription[0]) 356 << &CurrentFunctionDescription[1] 357 << " accesses out-of-bound array element"; 358 emitOutOfBoundsBug(C, StOutBound, S, os.str()); 359 } 360 return nullptr; 361 } 362 363 // Array bound check succeeded. From this point forward the array bound 364 // should always succeed. 365 return StInBound; 366 } 367 368 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 369 ProgramStateRef state, 370 const Expr *Size, 371 const Expr *FirstBuf, 372 const Expr *SecondBuf, 373 const char *firstMessage, 374 const char *secondMessage, 375 bool WarnAboutSize) const { 376 // If a previous check has failed, propagate the failure. 377 if (!state) 378 return nullptr; 379 380 SValBuilder &svalBuilder = C.getSValBuilder(); 381 ASTContext &Ctx = svalBuilder.getContext(); 382 const LocationContext *LCtx = C.getLocationContext(); 383 384 QualType sizeTy = Size->getType(); 385 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 386 387 // Check that the first buffer is non-null. 388 SVal BufVal = C.getSVal(FirstBuf); 389 state = checkNonNull(C, state, FirstBuf, BufVal, 1); 390 if (!state) 391 return nullptr; 392 393 // If out-of-bounds checking is turned off, skip the rest. 394 if (!Filter.CheckCStringOutOfBounds) 395 return state; 396 397 // Get the access length and make sure it is known. 398 // FIXME: This assumes the caller has already checked that the access length 399 // is positive. And that it's unsigned. 400 SVal LengthVal = C.getSVal(Size); 401 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 402 if (!Length) 403 return state; 404 405 // Compute the offset of the last element to be accessed: size-1. 406 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 407 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 408 if (Offset.isUnknown()) 409 return nullptr; 410 NonLoc LastOffset = Offset.castAs<NonLoc>(); 411 412 // Check that the first buffer is sufficiently long. 413 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 414 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 415 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 416 417 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 418 LastOffset, PtrTy); 419 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 420 421 // If the buffer isn't large enough, abort. 422 if (!state) 423 return nullptr; 424 } 425 426 // If there's a second buffer, check it as well. 427 if (SecondBuf) { 428 BufVal = state->getSVal(SecondBuf, LCtx); 429 state = checkNonNull(C, state, SecondBuf, BufVal, 2); 430 if (!state) 431 return nullptr; 432 433 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 434 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 435 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 436 437 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 438 LastOffset, PtrTy); 439 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 440 } 441 } 442 443 // Large enough or not, return this state! 444 return state; 445 } 446 447 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 448 ProgramStateRef state, 449 const Expr *Size, 450 const Expr *First, 451 const Expr *Second) const { 452 if (!Filter.CheckCStringBufferOverlap) 453 return state; 454 455 // Do a simple check for overlap: if the two arguments are from the same 456 // buffer, see if the end of the first is greater than the start of the second 457 // or vice versa. 458 459 // If a previous check has failed, propagate the failure. 460 if (!state) 461 return nullptr; 462 463 ProgramStateRef stateTrue, stateFalse; 464 465 // Get the buffer values and make sure they're known locations. 466 const LocationContext *LCtx = C.getLocationContext(); 467 SVal firstVal = state->getSVal(First, LCtx); 468 SVal secondVal = state->getSVal(Second, LCtx); 469 470 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 471 if (!firstLoc) 472 return state; 473 474 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 475 if (!secondLoc) 476 return state; 477 478 // Are the two values the same? 479 SValBuilder &svalBuilder = C.getSValBuilder(); 480 std::tie(stateTrue, stateFalse) = 481 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 482 483 if (stateTrue && !stateFalse) { 484 // If the values are known to be equal, that's automatically an overlap. 485 emitOverlapBug(C, stateTrue, First, Second); 486 return nullptr; 487 } 488 489 // assume the two expressions are not equal. 490 assert(stateFalse); 491 state = stateFalse; 492 493 // Which value comes first? 494 QualType cmpTy = svalBuilder.getConditionType(); 495 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 496 *firstLoc, *secondLoc, cmpTy); 497 Optional<DefinedOrUnknownSVal> reverseTest = 498 reverse.getAs<DefinedOrUnknownSVal>(); 499 if (!reverseTest) 500 return state; 501 502 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 503 if (stateTrue) { 504 if (stateFalse) { 505 // If we don't know which one comes first, we can't perform this test. 506 return state; 507 } else { 508 // Switch the values so that firstVal is before secondVal. 509 std::swap(firstLoc, secondLoc); 510 511 // Switch the Exprs as well, so that they still correspond. 512 std::swap(First, Second); 513 } 514 } 515 516 // Get the length, and make sure it too is known. 517 SVal LengthVal = state->getSVal(Size, LCtx); 518 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 519 if (!Length) 520 return state; 521 522 // Convert the first buffer's start address to char*. 523 // Bail out if the cast fails. 524 ASTContext &Ctx = svalBuilder.getContext(); 525 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 526 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 527 First->getType()); 528 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 529 if (!FirstStartLoc) 530 return state; 531 532 // Compute the end of the first buffer. Bail out if THAT fails. 533 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 534 *FirstStartLoc, *Length, CharPtrTy); 535 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 536 if (!FirstEndLoc) 537 return state; 538 539 // Is the end of the first buffer past the start of the second buffer? 540 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 541 *FirstEndLoc, *secondLoc, cmpTy); 542 Optional<DefinedOrUnknownSVal> OverlapTest = 543 Overlap.getAs<DefinedOrUnknownSVal>(); 544 if (!OverlapTest) 545 return state; 546 547 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 548 549 if (stateTrue && !stateFalse) { 550 // Overlap! 551 emitOverlapBug(C, stateTrue, First, Second); 552 return nullptr; 553 } 554 555 // assume the two expressions don't overlap. 556 assert(stateFalse); 557 return stateFalse; 558 } 559 560 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 561 const Stmt *First, const Stmt *Second) const { 562 ExplodedNode *N = C.generateErrorNode(state); 563 if (!N) 564 return; 565 566 if (!BT_Overlap) 567 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 568 categories::UnixAPI, "Improper arguments")); 569 570 // Generate a report for this bug. 571 auto report = std::make_unique<PathSensitiveBugReport>( 572 *BT_Overlap, "Arguments must not be overlapping buffers", N); 573 report->addRange(First->getSourceRange()); 574 report->addRange(Second->getSourceRange()); 575 576 C.emitReport(std::move(report)); 577 } 578 579 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 580 const Stmt *S, StringRef WarningMsg) const { 581 if (ExplodedNode *N = C.generateErrorNode(State)) { 582 if (!BT_Null) 583 BT_Null.reset(new BuiltinBug( 584 Filter.CheckNameCStringNullArg, categories::UnixAPI, 585 "Null pointer argument in call to byte string function")); 586 587 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 588 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 589 Report->addRange(S->getSourceRange()); 590 if (const auto *Ex = dyn_cast<Expr>(S)) 591 bugreporter::trackExpressionValue(N, Ex, *Report); 592 C.emitReport(std::move(Report)); 593 } 594 } 595 596 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 597 ProgramStateRef State, const Stmt *S, 598 StringRef WarningMsg) const { 599 if (ExplodedNode *N = C.generateErrorNode(State)) { 600 if (!BT_Bounds) 601 BT_Bounds.reset(new BuiltinBug( 602 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 603 : Filter.CheckNameCStringNullArg, 604 "Out-of-bound array access", 605 "Byte string function accesses out-of-bound array element")); 606 607 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 608 609 // FIXME: It would be nice to eventually make this diagnostic more clear, 610 // e.g., by referencing the original declaration or by saying *why* this 611 // reference is outside the range. 612 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 613 Report->addRange(S->getSourceRange()); 614 C.emitReport(std::move(Report)); 615 } 616 } 617 618 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 619 const Stmt *S, 620 StringRef WarningMsg) const { 621 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 622 if (!BT_NotCString) 623 BT_NotCString.reset(new BuiltinBug( 624 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 625 "Argument is not a null-terminated string.")); 626 627 auto Report = 628 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 629 630 Report->addRange(S->getSourceRange()); 631 C.emitReport(std::move(Report)); 632 } 633 } 634 635 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 636 ProgramStateRef State) const { 637 if (ExplodedNode *N = C.generateErrorNode(State)) { 638 if (!BT_NotCString) 639 BT_NotCString.reset( 640 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 641 "Sum of expressions causes overflow.")); 642 643 // This isn't a great error message, but this should never occur in real 644 // code anyway -- you'd have to create a buffer longer than a size_t can 645 // represent, which is sort of a contradiction. 646 const char *WarningMsg = 647 "This expression will create a string whose length is too big to " 648 "be represented as a size_t"; 649 650 auto Report = 651 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 652 C.emitReport(std::move(Report)); 653 } 654 } 655 656 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 657 ProgramStateRef state, 658 NonLoc left, 659 NonLoc right) const { 660 // If out-of-bounds checking is turned off, skip the rest. 661 if (!Filter.CheckCStringOutOfBounds) 662 return state; 663 664 // If a previous check has failed, propagate the failure. 665 if (!state) 666 return nullptr; 667 668 SValBuilder &svalBuilder = C.getSValBuilder(); 669 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 670 671 QualType sizeTy = svalBuilder.getContext().getSizeType(); 672 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 673 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 674 675 SVal maxMinusRight; 676 if (right.getAs<nonloc::ConcreteInt>()) { 677 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 678 sizeTy); 679 } else { 680 // Try switching the operands. (The order of these two assignments is 681 // important!) 682 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 683 sizeTy); 684 left = right; 685 } 686 687 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 688 QualType cmpTy = svalBuilder.getConditionType(); 689 // If left > max - right, we have an overflow. 690 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 691 *maxMinusRightNL, cmpTy); 692 693 ProgramStateRef stateOverflow, stateOkay; 694 std::tie(stateOverflow, stateOkay) = 695 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 696 697 if (stateOverflow && !stateOkay) { 698 // We have an overflow. Emit a bug report. 699 emitAdditionOverflowBug(C, stateOverflow); 700 return nullptr; 701 } 702 703 // From now on, assume an overflow didn't occur. 704 assert(stateOkay); 705 state = stateOkay; 706 } 707 708 return state; 709 } 710 711 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 712 const MemRegion *MR, 713 SVal strLength) { 714 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 715 716 MR = MR->StripCasts(); 717 718 switch (MR->getKind()) { 719 case MemRegion::StringRegionKind: 720 // FIXME: This can happen if we strcpy() into a string region. This is 721 // undefined [C99 6.4.5p6], but we should still warn about it. 722 return state; 723 724 case MemRegion::SymbolicRegionKind: 725 case MemRegion::AllocaRegionKind: 726 case MemRegion::VarRegionKind: 727 case MemRegion::FieldRegionKind: 728 case MemRegion::ObjCIvarRegionKind: 729 // These are the types we can currently track string lengths for. 730 break; 731 732 case MemRegion::ElementRegionKind: 733 // FIXME: Handle element regions by upper-bounding the parent region's 734 // string length. 735 return state; 736 737 default: 738 // Other regions (mostly non-data) can't have a reliable C string length. 739 // For now, just ignore the change. 740 // FIXME: These are rare but not impossible. We should output some kind of 741 // warning for things like strcpy((char[]){'a', 0}, "b"); 742 return state; 743 } 744 745 if (strLength.isUnknown()) 746 return state->remove<CStringLength>(MR); 747 748 return state->set<CStringLength>(MR, strLength); 749 } 750 751 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 752 ProgramStateRef &state, 753 const Expr *Ex, 754 const MemRegion *MR, 755 bool hypothetical) { 756 if (!hypothetical) { 757 // If there's a recorded length, go ahead and return it. 758 const SVal *Recorded = state->get<CStringLength>(MR); 759 if (Recorded) 760 return *Recorded; 761 } 762 763 // Otherwise, get a new symbol and update the state. 764 SValBuilder &svalBuilder = C.getSValBuilder(); 765 QualType sizeTy = svalBuilder.getContext().getSizeType(); 766 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 767 MR, Ex, sizeTy, 768 C.getLocationContext(), 769 C.blockCount()); 770 771 if (!hypothetical) { 772 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 773 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 774 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 775 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 776 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 777 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 778 fourInt); 779 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 780 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 781 maxLength, sizeTy); 782 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 783 } 784 state = state->set<CStringLength>(MR, strLength); 785 } 786 787 return strLength; 788 } 789 790 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 791 const Expr *Ex, SVal Buf, 792 bool hypothetical) const { 793 const MemRegion *MR = Buf.getAsRegion(); 794 if (!MR) { 795 // If we can't get a region, see if it's something we /know/ isn't a 796 // C string. In the context of locations, the only time we can issue such 797 // a warning is for labels. 798 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 799 if (Filter.CheckCStringNotNullTerm) { 800 SmallString<120> buf; 801 llvm::raw_svector_ostream os(buf); 802 assert(CurrentFunctionDescription); 803 os << "Argument to " << CurrentFunctionDescription 804 << " is the address of the label '" << Label->getLabel()->getName() 805 << "', which is not a null-terminated string"; 806 807 emitNotCStringBug(C, state, Ex, os.str()); 808 } 809 return UndefinedVal(); 810 } 811 812 // If it's not a region and not a label, give up. 813 return UnknownVal(); 814 } 815 816 // If we have a region, strip casts from it and see if we can figure out 817 // its length. For anything we can't figure out, just return UnknownVal. 818 MR = MR->StripCasts(); 819 820 switch (MR->getKind()) { 821 case MemRegion::StringRegionKind: { 822 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 823 // so we can assume that the byte length is the correct C string length. 824 SValBuilder &svalBuilder = C.getSValBuilder(); 825 QualType sizeTy = svalBuilder.getContext().getSizeType(); 826 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 827 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 828 } 829 case MemRegion::SymbolicRegionKind: 830 case MemRegion::AllocaRegionKind: 831 case MemRegion::VarRegionKind: 832 case MemRegion::FieldRegionKind: 833 case MemRegion::ObjCIvarRegionKind: 834 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 835 case MemRegion::CompoundLiteralRegionKind: 836 // FIXME: Can we track this? Is it necessary? 837 return UnknownVal(); 838 case MemRegion::ElementRegionKind: 839 // FIXME: How can we handle this? It's not good enough to subtract the 840 // offset from the base string length; consider "123\x00567" and &a[5]. 841 return UnknownVal(); 842 default: 843 // Other regions (mostly non-data) can't have a reliable C string length. 844 // In this case, an error is emitted and UndefinedVal is returned. 845 // The caller should always be prepared to handle this case. 846 if (Filter.CheckCStringNotNullTerm) { 847 SmallString<120> buf; 848 llvm::raw_svector_ostream os(buf); 849 850 assert(CurrentFunctionDescription); 851 os << "Argument to " << CurrentFunctionDescription << " is "; 852 853 if (SummarizeRegion(os, C.getASTContext(), MR)) 854 os << ", which is not a null-terminated string"; 855 else 856 os << "not a null-terminated string"; 857 858 emitNotCStringBug(C, state, Ex, os.str()); 859 } 860 return UndefinedVal(); 861 } 862 } 863 864 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 865 ProgramStateRef &state, const Expr *expr, SVal val) const { 866 867 // Get the memory region pointed to by the val. 868 const MemRegion *bufRegion = val.getAsRegion(); 869 if (!bufRegion) 870 return nullptr; 871 872 // Strip casts off the memory region. 873 bufRegion = bufRegion->StripCasts(); 874 875 // Cast the memory region to a string region. 876 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 877 if (!strRegion) 878 return nullptr; 879 880 // Return the actual string in the string region. 881 return strRegion->getStringLiteral(); 882 } 883 884 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 885 ProgramStateRef state, 886 const Expr *FirstBuf, 887 const Expr *Size) { 888 // If we do not know that the buffer is long enough we return 'true'. 889 // Otherwise the parent region of this field region would also get 890 // invalidated, which would lead to warnings based on an unknown state. 891 892 // Originally copied from CheckBufferAccess and CheckLocation. 893 SValBuilder &svalBuilder = C.getSValBuilder(); 894 ASTContext &Ctx = svalBuilder.getContext(); 895 const LocationContext *LCtx = C.getLocationContext(); 896 897 QualType sizeTy = Size->getType(); 898 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 899 SVal BufVal = state->getSVal(FirstBuf, LCtx); 900 901 SVal LengthVal = state->getSVal(Size, LCtx); 902 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 903 if (!Length) 904 return true; // cf top comment. 905 906 // Compute the offset of the last element to be accessed: size-1. 907 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 908 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 909 if (Offset.isUnknown()) 910 return true; // cf top comment 911 NonLoc LastOffset = Offset.castAs<NonLoc>(); 912 913 // Check that the first buffer is sufficiently long. 914 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 915 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 916 if (!BufLoc) 917 return true; // cf top comment. 918 919 SVal BufEnd = 920 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 921 922 // Check for out of bound array element access. 923 const MemRegion *R = BufEnd.getAsRegion(); 924 if (!R) 925 return true; // cf top comment. 926 927 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 928 if (!ER) 929 return true; // cf top comment. 930 931 // FIXME: Does this crash when a non-standard definition 932 // of a library function is encountered? 933 assert(ER->getValueType() == C.getASTContext().CharTy && 934 "IsFirstBufInBound should only be called with char* ElementRegions"); 935 936 // Get the size of the array. 937 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 938 DefinedOrUnknownSVal SizeDV = getDynamicSize(state, superReg, svalBuilder); 939 940 // Get the index of the accessed element. 941 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 942 943 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 944 945 return static_cast<bool>(StInBound); 946 } 947 948 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 949 ProgramStateRef state, 950 const Expr *E, SVal V, 951 bool IsSourceBuffer, 952 const Expr *Size) { 953 Optional<Loc> L = V.getAs<Loc>(); 954 if (!L) 955 return state; 956 957 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 958 // some assumptions about the value that CFRefCount can't. Even so, it should 959 // probably be refactored. 960 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 961 const MemRegion *R = MR->getRegion()->StripCasts(); 962 963 // Are we dealing with an ElementRegion? If so, we should be invalidating 964 // the super-region. 965 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 966 R = ER->getSuperRegion(); 967 // FIXME: What about layers of ElementRegions? 968 } 969 970 // Invalidate this region. 971 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 972 973 bool CausesPointerEscape = false; 974 RegionAndSymbolInvalidationTraits ITraits; 975 // Invalidate and escape only indirect regions accessible through the source 976 // buffer. 977 if (IsSourceBuffer) { 978 ITraits.setTrait(R->getBaseRegion(), 979 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 980 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 981 CausesPointerEscape = true; 982 } else { 983 const MemRegion::Kind& K = R->getKind(); 984 if (K == MemRegion::FieldRegionKind) 985 if (Size && IsFirstBufInBound(C, state, E, Size)) { 986 // If destination buffer is a field region and access is in bound, 987 // do not invalidate its super region. 988 ITraits.setTrait( 989 R, 990 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 991 } 992 } 993 994 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 995 CausesPointerEscape, nullptr, nullptr, 996 &ITraits); 997 } 998 999 // If we have a non-region value by chance, just remove the binding. 1000 // FIXME: is this necessary or correct? This handles the non-Region 1001 // cases. Is it ever valid to store to these? 1002 return state->killBinding(*L); 1003 } 1004 1005 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1006 const MemRegion *MR) { 1007 switch (MR->getKind()) { 1008 case MemRegion::FunctionCodeRegionKind: { 1009 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 1010 os << "the address of the function '" << *FD << '\''; 1011 else 1012 os << "the address of a function"; 1013 return true; 1014 } 1015 case MemRegion::BlockCodeRegionKind: 1016 os << "block text"; 1017 return true; 1018 case MemRegion::BlockDataRegionKind: 1019 os << "a block"; 1020 return true; 1021 case MemRegion::CXXThisRegionKind: 1022 case MemRegion::CXXTempObjectRegionKind: 1023 os << "a C++ temp object of type " 1024 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1025 return true; 1026 case MemRegion::VarRegionKind: 1027 os << "a variable of type" 1028 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1029 return true; 1030 case MemRegion::FieldRegionKind: 1031 os << "a field of type " 1032 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1033 return true; 1034 case MemRegion::ObjCIvarRegionKind: 1035 os << "an instance variable of type " 1036 << cast<TypedValueRegion>(MR)->getValueType().getAsString(); 1037 return true; 1038 default: 1039 return false; 1040 } 1041 } 1042 1043 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1044 const Expr *Size, CheckerContext &C, 1045 ProgramStateRef &State) { 1046 SVal MemVal = C.getSVal(DstBuffer); 1047 SVal SizeVal = C.getSVal(Size); 1048 const MemRegion *MR = MemVal.getAsRegion(); 1049 if (!MR) 1050 return false; 1051 1052 // We're about to model memset by producing a "default binding" in the Store. 1053 // Our current implementation - RegionStore - doesn't support default bindings 1054 // that don't cover the whole base region. So we should first get the offset 1055 // and the base region to figure out whether the offset of buffer is 0. 1056 RegionOffset Offset = MR->getAsOffset(); 1057 const MemRegion *BR = Offset.getRegion(); 1058 1059 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1060 if (!SizeNL) 1061 return false; 1062 1063 SValBuilder &svalBuilder = C.getSValBuilder(); 1064 ASTContext &Ctx = C.getASTContext(); 1065 1066 // void *memset(void *dest, int ch, size_t count); 1067 // For now we can only handle the case of offset is 0 and concrete char value. 1068 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1069 Offset.getOffset() == 0) { 1070 // Get the base region's size. 1071 DefinedOrUnknownSVal SizeDV = getDynamicSize(State, BR, svalBuilder); 1072 1073 ProgramStateRef StateWholeReg, StateNotWholeReg; 1074 std::tie(StateWholeReg, StateNotWholeReg) = 1075 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1076 1077 // With the semantic of 'memset()', we should convert the CharVal to 1078 // unsigned char. 1079 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1080 1081 ProgramStateRef StateNullChar, StateNonNullChar; 1082 std::tie(StateNullChar, StateNonNullChar) = 1083 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1084 1085 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1086 !StateNonNullChar) { 1087 // If the 'memset()' acts on the whole region of destination buffer and 1088 // the value of the second argument of 'memset()' is zero, bind the second 1089 // argument's value to the destination buffer with 'default binding'. 1090 // FIXME: Since there is no perfect way to bind the non-zero character, we 1091 // can only deal with zero value here. In the future, we need to deal with 1092 // the binding of non-zero value in the case of whole region. 1093 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1094 C.getLocationContext()); 1095 } else { 1096 // If the destination buffer's extent is not equal to the value of 1097 // third argument, just invalidate buffer. 1098 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1099 /*IsSourceBuffer*/ false, Size); 1100 } 1101 1102 if (StateNullChar && !StateNonNullChar) { 1103 // If the value of the second argument of 'memset()' is zero, set the 1104 // string length of destination buffer to 0 directly. 1105 State = setCStringLength(State, MR, 1106 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1107 } else if (!StateNullChar && StateNonNullChar) { 1108 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1109 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1110 C.getLocationContext(), C.blockCount()); 1111 1112 // If the value of second argument is not zero, then the string length 1113 // is at least the size argument. 1114 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1115 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1116 1117 State = setCStringLength( 1118 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1119 MR, NewStrLen); 1120 } 1121 } else { 1122 // If the offset is not zero and char value is not concrete, we can do 1123 // nothing but invalidate the buffer. 1124 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1125 /*IsSourceBuffer*/ false, Size); 1126 } 1127 return true; 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // evaluation of individual function calls. 1132 //===----------------------------------------------------------------------===// 1133 1134 void CStringChecker::evalCopyCommon(CheckerContext &C, 1135 const CallExpr *CE, 1136 ProgramStateRef state, 1137 const Expr *Size, const Expr *Dest, 1138 const Expr *Source, bool Restricted, 1139 bool IsMempcpy) const { 1140 CurrentFunctionDescription = "memory copy function"; 1141 1142 // See if the size argument is zero. 1143 const LocationContext *LCtx = C.getLocationContext(); 1144 SVal sizeVal = state->getSVal(Size, LCtx); 1145 QualType sizeTy = Size->getType(); 1146 1147 ProgramStateRef stateZeroSize, stateNonZeroSize; 1148 std::tie(stateZeroSize, stateNonZeroSize) = 1149 assumeZero(C, state, sizeVal, sizeTy); 1150 1151 // Get the value of the Dest. 1152 SVal destVal = state->getSVal(Dest, LCtx); 1153 1154 // If the size is zero, there won't be any actual memory access, so 1155 // just bind the return value to the destination buffer and return. 1156 if (stateZeroSize && !stateNonZeroSize) { 1157 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1158 C.addTransition(stateZeroSize); 1159 return; 1160 } 1161 1162 // If the size can be nonzero, we have to check the other arguments. 1163 if (stateNonZeroSize) { 1164 state = stateNonZeroSize; 1165 1166 // Ensure the destination is not null. If it is NULL there will be a 1167 // NULL pointer dereference. 1168 state = checkNonNull(C, state, Dest, destVal, 1); 1169 if (!state) 1170 return; 1171 1172 // Get the value of the Src. 1173 SVal srcVal = state->getSVal(Source, LCtx); 1174 1175 // Ensure the source is not null. If it is NULL there will be a 1176 // NULL pointer dereference. 1177 state = checkNonNull(C, state, Source, srcVal, 2); 1178 if (!state) 1179 return; 1180 1181 // Ensure the accesses are valid and that the buffers do not overlap. 1182 const char * const writeWarning = 1183 "Memory copy function overflows destination buffer"; 1184 state = CheckBufferAccess(C, state, Size, Dest, Source, 1185 writeWarning, /* sourceWarning = */ nullptr); 1186 if (Restricted) 1187 state = CheckOverlap(C, state, Size, Dest, Source); 1188 1189 if (!state) 1190 return; 1191 1192 // If this is mempcpy, get the byte after the last byte copied and 1193 // bind the expr. 1194 if (IsMempcpy) { 1195 // Get the byte after the last byte copied. 1196 SValBuilder &SvalBuilder = C.getSValBuilder(); 1197 ASTContext &Ctx = SvalBuilder.getContext(); 1198 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1199 SVal DestRegCharVal = 1200 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1201 SVal lastElement = C.getSValBuilder().evalBinOp( 1202 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1203 // If we don't know how much we copied, we can at least 1204 // conjure a return value for later. 1205 if (lastElement.isUnknown()) 1206 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1207 C.blockCount()); 1208 1209 // The byte after the last byte copied is the return value. 1210 state = state->BindExpr(CE, LCtx, lastElement); 1211 } else { 1212 // All other copies return the destination buffer. 1213 // (Well, bcopy() has a void return type, but this won't hurt.) 1214 state = state->BindExpr(CE, LCtx, destVal); 1215 } 1216 1217 // Invalidate the destination (regular invalidation without pointer-escaping 1218 // the address of the top-level region). 1219 // FIXME: Even if we can't perfectly model the copy, we should see if we 1220 // can use LazyCompoundVals to copy the source values into the destination. 1221 // This would probably remove any existing bindings past the end of the 1222 // copied region, but that's still an improvement over blank invalidation. 1223 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1224 /*IsSourceBuffer*/false, Size); 1225 1226 // Invalidate the source (const-invalidation without const-pointer-escaping 1227 // the address of the top-level region). 1228 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1229 /*IsSourceBuffer*/true, nullptr); 1230 1231 C.addTransition(state); 1232 } 1233 } 1234 1235 1236 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1237 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1238 // The return value is the address of the destination buffer. 1239 const Expr *Dest = CE->getArg(0); 1240 ProgramStateRef state = C.getState(); 1241 1242 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1243 } 1244 1245 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1246 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1247 // The return value is a pointer to the byte following the last written byte. 1248 const Expr *Dest = CE->getArg(0); 1249 ProgramStateRef state = C.getState(); 1250 1251 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1252 } 1253 1254 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1255 // void *memmove(void *dst, const void *src, size_t n); 1256 // The return value is the address of the destination buffer. 1257 const Expr *Dest = CE->getArg(0); 1258 ProgramStateRef state = C.getState(); 1259 1260 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1261 } 1262 1263 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1264 // void bcopy(const void *src, void *dst, size_t n); 1265 evalCopyCommon(C, CE, C.getState(), 1266 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1267 } 1268 1269 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1270 // int memcmp(const void *s1, const void *s2, size_t n); 1271 CurrentFunctionDescription = "memory comparison function"; 1272 1273 const Expr *Left = CE->getArg(0); 1274 const Expr *Right = CE->getArg(1); 1275 const Expr *Size = CE->getArg(2); 1276 1277 ProgramStateRef state = C.getState(); 1278 SValBuilder &svalBuilder = C.getSValBuilder(); 1279 1280 // See if the size argument is zero. 1281 const LocationContext *LCtx = C.getLocationContext(); 1282 SVal sizeVal = state->getSVal(Size, LCtx); 1283 QualType sizeTy = Size->getType(); 1284 1285 ProgramStateRef stateZeroSize, stateNonZeroSize; 1286 std::tie(stateZeroSize, stateNonZeroSize) = 1287 assumeZero(C, state, sizeVal, sizeTy); 1288 1289 // If the size can be zero, the result will be 0 in that case, and we don't 1290 // have to check either of the buffers. 1291 if (stateZeroSize) { 1292 state = stateZeroSize; 1293 state = state->BindExpr(CE, LCtx, 1294 svalBuilder.makeZeroVal(CE->getType())); 1295 C.addTransition(state); 1296 } 1297 1298 // If the size can be nonzero, we have to check the other arguments. 1299 if (stateNonZeroSize) { 1300 state = stateNonZeroSize; 1301 // If we know the two buffers are the same, we know the result is 0. 1302 // First, get the two buffers' addresses. Another checker will have already 1303 // made sure they're not undefined. 1304 DefinedOrUnknownSVal LV = 1305 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1306 DefinedOrUnknownSVal RV = 1307 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1308 1309 // See if they are the same. 1310 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1311 ProgramStateRef StSameBuf, StNotSameBuf; 1312 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1313 1314 // If the two arguments are the same buffer, we know the result is 0, 1315 // and we only need to check one size. 1316 if (StSameBuf && !StNotSameBuf) { 1317 state = StSameBuf; 1318 state = CheckBufferAccess(C, state, Size, Left); 1319 if (state) { 1320 state = StSameBuf->BindExpr(CE, LCtx, 1321 svalBuilder.makeZeroVal(CE->getType())); 1322 C.addTransition(state); 1323 } 1324 return; 1325 } 1326 1327 // If the two arguments might be different buffers, we have to check 1328 // the size of both of them. 1329 assert(StNotSameBuf); 1330 state = CheckBufferAccess(C, state, Size, Left, Right); 1331 if (state) { 1332 // The return value is the comparison result, which we don't know. 1333 SVal CmpV = 1334 svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1335 state = state->BindExpr(CE, LCtx, CmpV); 1336 C.addTransition(state); 1337 } 1338 } 1339 } 1340 1341 void CStringChecker::evalstrLength(CheckerContext &C, 1342 const CallExpr *CE) const { 1343 // size_t strlen(const char *s); 1344 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1345 } 1346 1347 void CStringChecker::evalstrnLength(CheckerContext &C, 1348 const CallExpr *CE) const { 1349 // size_t strnlen(const char *s, size_t maxlen); 1350 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1351 } 1352 1353 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1354 bool IsStrnlen) const { 1355 CurrentFunctionDescription = "string length function"; 1356 ProgramStateRef state = C.getState(); 1357 const LocationContext *LCtx = C.getLocationContext(); 1358 1359 if (IsStrnlen) { 1360 const Expr *maxlenExpr = CE->getArg(1); 1361 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1362 1363 ProgramStateRef stateZeroSize, stateNonZeroSize; 1364 std::tie(stateZeroSize, stateNonZeroSize) = 1365 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1366 1367 // If the size can be zero, the result will be 0 in that case, and we don't 1368 // have to check the string itself. 1369 if (stateZeroSize) { 1370 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1371 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1372 C.addTransition(stateZeroSize); 1373 } 1374 1375 // If the size is GUARANTEED to be zero, we're done! 1376 if (!stateNonZeroSize) 1377 return; 1378 1379 // Otherwise, record the assumption that the size is nonzero. 1380 state = stateNonZeroSize; 1381 } 1382 1383 // Check that the string argument is non-null. 1384 const Expr *Arg = CE->getArg(0); 1385 SVal ArgVal = state->getSVal(Arg, LCtx); 1386 1387 state = checkNonNull(C, state, Arg, ArgVal, 1); 1388 1389 if (!state) 1390 return; 1391 1392 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1393 1394 // If the argument isn't a valid C string, there's no valid state to 1395 // transition to. 1396 if (strLength.isUndef()) 1397 return; 1398 1399 DefinedOrUnknownSVal result = UnknownVal(); 1400 1401 // If the check is for strnlen() then bind the return value to no more than 1402 // the maxlen value. 1403 if (IsStrnlen) { 1404 QualType cmpTy = C.getSValBuilder().getConditionType(); 1405 1406 // It's a little unfortunate to be getting this again, 1407 // but it's not that expensive... 1408 const Expr *maxlenExpr = CE->getArg(1); 1409 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1410 1411 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1412 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1413 1414 if (strLengthNL && maxlenValNL) { 1415 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1416 1417 // Check if the strLength is greater than the maxlen. 1418 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1419 C.getSValBuilder() 1420 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1421 .castAs<DefinedOrUnknownSVal>()); 1422 1423 if (stateStringTooLong && !stateStringNotTooLong) { 1424 // If the string is longer than maxlen, return maxlen. 1425 result = *maxlenValNL; 1426 } else if (stateStringNotTooLong && !stateStringTooLong) { 1427 // If the string is shorter than maxlen, return its length. 1428 result = *strLengthNL; 1429 } 1430 } 1431 1432 if (result.isUnknown()) { 1433 // If we don't have enough information for a comparison, there's 1434 // no guarantee the full string length will actually be returned. 1435 // All we know is the return value is the min of the string length 1436 // and the limit. This is better than nothing. 1437 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1438 C.blockCount()); 1439 NonLoc resultNL = result.castAs<NonLoc>(); 1440 1441 if (strLengthNL) { 1442 state = state->assume(C.getSValBuilder().evalBinOpNN( 1443 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1444 .castAs<DefinedOrUnknownSVal>(), true); 1445 } 1446 1447 if (maxlenValNL) { 1448 state = state->assume(C.getSValBuilder().evalBinOpNN( 1449 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1450 .castAs<DefinedOrUnknownSVal>(), true); 1451 } 1452 } 1453 1454 } else { 1455 // This is a plain strlen(), not strnlen(). 1456 result = strLength.castAs<DefinedOrUnknownSVal>(); 1457 1458 // If we don't know the length of the string, conjure a return 1459 // value, so it can be used in constraints, at least. 1460 if (result.isUnknown()) { 1461 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1462 C.blockCount()); 1463 } 1464 } 1465 1466 // Bind the return value. 1467 assert(!result.isUnknown() && "Should have conjured a value by now"); 1468 state = state->BindExpr(CE, LCtx, result); 1469 C.addTransition(state); 1470 } 1471 1472 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1473 // char *strcpy(char *restrict dst, const char *restrict src); 1474 evalStrcpyCommon(C, CE, 1475 /* ReturnEnd = */ false, 1476 /* IsBounded = */ false, 1477 /* appendK = */ ConcatFnKind::none); 1478 } 1479 1480 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1481 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1482 evalStrcpyCommon(C, CE, 1483 /* ReturnEnd = */ false, 1484 /* IsBounded = */ true, 1485 /* appendK = */ ConcatFnKind::none); 1486 } 1487 1488 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1489 // char *stpcpy(char *restrict dst, const char *restrict src); 1490 evalStrcpyCommon(C, CE, 1491 /* ReturnEnd = */ true, 1492 /* IsBounded = */ false, 1493 /* appendK = */ ConcatFnKind::none); 1494 } 1495 1496 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1497 // size_t strlcpy(char *dest, const char *src, size_t size); 1498 evalStrcpyCommon(C, CE, 1499 /* ReturnEnd = */ true, 1500 /* IsBounded = */ true, 1501 /* appendK = */ ConcatFnKind::none, 1502 /* returnPtr = */ false); 1503 } 1504 1505 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1506 // char *strcat(char *restrict s1, const char *restrict s2); 1507 evalStrcpyCommon(C, CE, 1508 /* ReturnEnd = */ false, 1509 /* IsBounded = */ false, 1510 /* appendK = */ ConcatFnKind::strcat); 1511 } 1512 1513 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1514 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1515 evalStrcpyCommon(C, CE, 1516 /* ReturnEnd = */ false, 1517 /* IsBounded = */ true, 1518 /* appendK = */ ConcatFnKind::strcat); 1519 } 1520 1521 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1522 // size_t strlcat(char *dst, const char *src, size_t size); 1523 // It will append at most size - strlen(dst) - 1 bytes, 1524 // NULL-terminating the result. 1525 evalStrcpyCommon(C, CE, 1526 /* ReturnEnd = */ false, 1527 /* IsBounded = */ true, 1528 /* appendK = */ ConcatFnKind::strlcat, 1529 /* returnPtr = */ false); 1530 } 1531 1532 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1533 bool ReturnEnd, bool IsBounded, 1534 ConcatFnKind appendK, 1535 bool returnPtr) const { 1536 if (appendK == ConcatFnKind::none) 1537 CurrentFunctionDescription = "string copy function"; 1538 else 1539 CurrentFunctionDescription = "string concatenation function"; 1540 ProgramStateRef state = C.getState(); 1541 const LocationContext *LCtx = C.getLocationContext(); 1542 1543 // Check that the destination is non-null. 1544 const Expr *Dst = CE->getArg(0); 1545 SVal DstVal = state->getSVal(Dst, LCtx); 1546 1547 state = checkNonNull(C, state, Dst, DstVal, 1); 1548 if (!state) 1549 return; 1550 1551 // Check that the source is non-null. 1552 const Expr *srcExpr = CE->getArg(1); 1553 SVal srcVal = state->getSVal(srcExpr, LCtx); 1554 state = checkNonNull(C, state, srcExpr, srcVal, 2); 1555 if (!state) 1556 return; 1557 1558 // Get the string length of the source. 1559 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1560 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1561 1562 // Get the string length of the destination buffer. 1563 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1564 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1565 1566 // If the source isn't a valid C string, give up. 1567 if (strLength.isUndef()) 1568 return; 1569 1570 SValBuilder &svalBuilder = C.getSValBuilder(); 1571 QualType cmpTy = svalBuilder.getConditionType(); 1572 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1573 1574 // These two values allow checking two kinds of errors: 1575 // - actual overflows caused by a source that doesn't fit in the destination 1576 // - potential overflows caused by a bound that could exceed the destination 1577 SVal amountCopied = UnknownVal(); 1578 SVal maxLastElementIndex = UnknownVal(); 1579 const char *boundWarning = nullptr; 1580 1581 state = CheckOverlap(C, state, IsBounded ? CE->getArg(2) : CE->getArg(1), Dst, 1582 srcExpr); 1583 1584 if (!state) 1585 return; 1586 1587 // If the function is strncpy, strncat, etc... it is bounded. 1588 if (IsBounded) { 1589 // Get the max number of characters to copy. 1590 const Expr *lenExpr = CE->getArg(2); 1591 SVal lenVal = state->getSVal(lenExpr, LCtx); 1592 1593 // Protect against misdeclared strncpy(). 1594 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1595 1596 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1597 1598 // If we know both values, we might be able to figure out how much 1599 // we're copying. 1600 if (strLengthNL && lenValNL) { 1601 switch (appendK) { 1602 case ConcatFnKind::none: 1603 case ConcatFnKind::strcat: { 1604 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1605 // Check if the max number to copy is less than the length of the src. 1606 // If the bound is equal to the source length, strncpy won't null- 1607 // terminate the result! 1608 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1609 svalBuilder 1610 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1611 .castAs<DefinedOrUnknownSVal>()); 1612 1613 if (stateSourceTooLong && !stateSourceNotTooLong) { 1614 // Max number to copy is less than the length of the src, so the 1615 // actual strLength copied is the max number arg. 1616 state = stateSourceTooLong; 1617 amountCopied = lenVal; 1618 1619 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1620 // The source buffer entirely fits in the bound. 1621 state = stateSourceNotTooLong; 1622 amountCopied = strLength; 1623 } 1624 break; 1625 } 1626 case ConcatFnKind::strlcat: 1627 if (!dstStrLengthNL) 1628 return; 1629 1630 // amountCopied = min (size - dstLen - 1 , srcLen) 1631 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1632 *dstStrLengthNL, sizeTy); 1633 if (!freeSpace.getAs<NonLoc>()) 1634 return; 1635 freeSpace = 1636 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1637 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1638 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1639 1640 // While unlikely, it is possible that the subtraction is 1641 // too complex to compute, let's check whether it succeeded. 1642 if (!freeSpaceNL) 1643 return; 1644 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1645 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1646 1647 ProgramStateRef TrueState, FalseState; 1648 std::tie(TrueState, FalseState) = 1649 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1650 1651 // srcStrLength <= size - dstStrLength -1 1652 if (TrueState && !FalseState) { 1653 amountCopied = strLength; 1654 } 1655 1656 // srcStrLength > size - dstStrLength -1 1657 if (!TrueState && FalseState) { 1658 amountCopied = freeSpace; 1659 } 1660 1661 if (TrueState && FalseState) 1662 amountCopied = UnknownVal(); 1663 break; 1664 } 1665 } 1666 // We still want to know if the bound is known to be too large. 1667 if (lenValNL) { 1668 switch (appendK) { 1669 case ConcatFnKind::strcat: 1670 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1671 1672 // Get the string length of the destination. If the destination is 1673 // memory that can't have a string length, we shouldn't be copying 1674 // into it anyway. 1675 if (dstStrLength.isUndef()) 1676 return; 1677 1678 if (dstStrLengthNL) { 1679 maxLastElementIndex = svalBuilder.evalBinOpNN( 1680 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1681 1682 boundWarning = "Size argument is greater than the free space in the " 1683 "destination buffer"; 1684 } 1685 break; 1686 case ConcatFnKind::none: 1687 case ConcatFnKind::strlcat: 1688 // For strncpy and strlcat, this is just checking 1689 // that lenVal <= sizeof(dst). 1690 // (Yes, strncpy and strncat differ in how they treat termination. 1691 // strncat ALWAYS terminates, but strncpy doesn't.) 1692 1693 // We need a special case for when the copy size is zero, in which 1694 // case strncpy will do no work at all. Our bounds check uses n-1 1695 // as the last element accessed, so n == 0 is problematic. 1696 ProgramStateRef StateZeroSize, StateNonZeroSize; 1697 std::tie(StateZeroSize, StateNonZeroSize) = 1698 assumeZero(C, state, *lenValNL, sizeTy); 1699 1700 // If the size is known to be zero, we're done. 1701 if (StateZeroSize && !StateNonZeroSize) { 1702 if (returnPtr) { 1703 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1704 } else { 1705 if (appendK == ConcatFnKind::none) { 1706 // strlcpy returns strlen(src) 1707 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1708 } else { 1709 // strlcat returns strlen(src) + strlen(dst) 1710 SVal retSize = svalBuilder.evalBinOp( 1711 state, BO_Add, strLength, dstStrLength, sizeTy); 1712 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1713 } 1714 } 1715 C.addTransition(StateZeroSize); 1716 return; 1717 } 1718 1719 // Otherwise, go ahead and figure out the last element we'll touch. 1720 // We don't record the non-zero assumption here because we can't 1721 // be sure. We won't warn on a possible zero. 1722 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1723 maxLastElementIndex = 1724 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1725 boundWarning = "Size argument is greater than the length of the " 1726 "destination buffer"; 1727 break; 1728 } 1729 } 1730 } else { 1731 // The function isn't bounded. The amount copied should match the length 1732 // of the source buffer. 1733 amountCopied = strLength; 1734 } 1735 1736 assert(state); 1737 1738 // This represents the number of characters copied into the destination 1739 // buffer. (It may not actually be the strlen if the destination buffer 1740 // is not terminated.) 1741 SVal finalStrLength = UnknownVal(); 1742 SVal strlRetVal = UnknownVal(); 1743 1744 if (appendK == ConcatFnKind::none && !returnPtr) { 1745 // strlcpy returns the sizeof(src) 1746 strlRetVal = strLength; 1747 } 1748 1749 // If this is an appending function (strcat, strncat...) then set the 1750 // string length to strlen(src) + strlen(dst) since the buffer will 1751 // ultimately contain both. 1752 if (appendK != ConcatFnKind::none) { 1753 // Get the string length of the destination. If the destination is memory 1754 // that can't have a string length, we shouldn't be copying into it anyway. 1755 if (dstStrLength.isUndef()) 1756 return; 1757 1758 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1759 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1760 *dstStrLengthNL, sizeTy); 1761 } 1762 1763 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1764 1765 // If we know both string lengths, we might know the final string length. 1766 if (amountCopiedNL && dstStrLengthNL) { 1767 // Make sure the two lengths together don't overflow a size_t. 1768 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1769 if (!state) 1770 return; 1771 1772 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1773 *dstStrLengthNL, sizeTy); 1774 } 1775 1776 // If we couldn't get a single value for the final string length, 1777 // we can at least bound it by the individual lengths. 1778 if (finalStrLength.isUnknown()) { 1779 // Try to get a "hypothetical" string length symbol, which we can later 1780 // set as a real value if that turns out to be the case. 1781 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1782 assert(!finalStrLength.isUndef()); 1783 1784 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1785 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1786 // we overwrite dst string with the src 1787 // finalStrLength >= srcStrLength 1788 SVal sourceInResult = svalBuilder.evalBinOpNN( 1789 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1790 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1791 true); 1792 if (!state) 1793 return; 1794 } 1795 1796 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1797 // we extend the dst string with the src 1798 // finalStrLength >= dstStrLength 1799 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1800 *finalStrLengthNL, 1801 *dstStrLengthNL, 1802 cmpTy); 1803 state = 1804 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1805 if (!state) 1806 return; 1807 } 1808 } 1809 } 1810 1811 } else { 1812 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1813 // the final string length will match the input string length. 1814 finalStrLength = amountCopied; 1815 } 1816 1817 SVal Result; 1818 1819 if (returnPtr) { 1820 // The final result of the function will either be a pointer past the last 1821 // copied element, or a pointer to the start of the destination buffer. 1822 Result = (ReturnEnd ? UnknownVal() : DstVal); 1823 } else { 1824 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1825 //strlcpy, strlcat 1826 Result = strlRetVal; 1827 else 1828 Result = finalStrLength; 1829 } 1830 1831 assert(state); 1832 1833 // If the destination is a MemRegion, try to check for a buffer overflow and 1834 // record the new string length. 1835 if (Optional<loc::MemRegionVal> dstRegVal = 1836 DstVal.getAs<loc::MemRegionVal>()) { 1837 QualType ptrTy = Dst->getType(); 1838 1839 // If we have an exact value on a bounded copy, use that to check for 1840 // overflows, rather than our estimate about how much is actually copied. 1841 if (boundWarning) { 1842 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1843 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1844 *maxLastNL, ptrTy); 1845 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1846 boundWarning); 1847 if (!state) 1848 return; 1849 } 1850 } 1851 1852 // Then, if the final length is known... 1853 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1854 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1855 *knownStrLength, ptrTy); 1856 1857 // ...and we haven't checked the bound, we'll check the actual copy. 1858 if (!boundWarning) { 1859 const char * const warningMsg = 1860 "String copy function overflows destination buffer"; 1861 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1862 if (!state) 1863 return; 1864 } 1865 1866 // If this is a stpcpy-style copy, the last element is the return value. 1867 if (returnPtr && ReturnEnd) 1868 Result = lastElement; 1869 } 1870 1871 // Invalidate the destination (regular invalidation without pointer-escaping 1872 // the address of the top-level region). This must happen before we set the 1873 // C string length because invalidation will clear the length. 1874 // FIXME: Even if we can't perfectly model the copy, we should see if we 1875 // can use LazyCompoundVals to copy the source values into the destination. 1876 // This would probably remove any existing bindings past the end of the 1877 // string, but that's still an improvement over blank invalidation. 1878 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1879 /*IsSourceBuffer*/false, nullptr); 1880 1881 // Invalidate the source (const-invalidation without const-pointer-escaping 1882 // the address of the top-level region). 1883 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1884 nullptr); 1885 1886 // Set the C string length of the destination, if we know it. 1887 if (IsBounded && (appendK == ConcatFnKind::none)) { 1888 // strncpy is annoying in that it doesn't guarantee to null-terminate 1889 // the result string. If the original string didn't fit entirely inside 1890 // the bound (including the null-terminator), we don't know how long the 1891 // result is. 1892 if (amountCopied != strLength) 1893 finalStrLength = UnknownVal(); 1894 } 1895 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1896 } 1897 1898 assert(state); 1899 1900 if (returnPtr) { 1901 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1902 // overflow, we still need a result. Conjure a return value. 1903 if (ReturnEnd && Result.isUnknown()) { 1904 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1905 } 1906 } 1907 // Set the return value. 1908 state = state->BindExpr(CE, LCtx, Result); 1909 C.addTransition(state); 1910 } 1911 1912 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1913 //int strcmp(const char *s1, const char *s2); 1914 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1915 } 1916 1917 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1918 //int strncmp(const char *s1, const char *s2, size_t n); 1919 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1920 } 1921 1922 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1923 const CallExpr *CE) const { 1924 //int strcasecmp(const char *s1, const char *s2); 1925 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1926 } 1927 1928 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1929 const CallExpr *CE) const { 1930 //int strncasecmp(const char *s1, const char *s2, size_t n); 1931 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1932 } 1933 1934 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1935 bool IsBounded, bool IgnoreCase) const { 1936 CurrentFunctionDescription = "string comparison function"; 1937 ProgramStateRef state = C.getState(); 1938 const LocationContext *LCtx = C.getLocationContext(); 1939 1940 // Check that the first string is non-null 1941 const Expr *s1 = CE->getArg(0); 1942 SVal s1Val = state->getSVal(s1, LCtx); 1943 state = checkNonNull(C, state, s1, s1Val, 1); 1944 if (!state) 1945 return; 1946 1947 // Check that the second string is non-null. 1948 const Expr *s2 = CE->getArg(1); 1949 SVal s2Val = state->getSVal(s2, LCtx); 1950 state = checkNonNull(C, state, s2, s2Val, 2); 1951 if (!state) 1952 return; 1953 1954 // Get the string length of the first string or give up. 1955 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1956 if (s1Length.isUndef()) 1957 return; 1958 1959 // Get the string length of the second string or give up. 1960 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1961 if (s2Length.isUndef()) 1962 return; 1963 1964 // If we know the two buffers are the same, we know the result is 0. 1965 // First, get the two buffers' addresses. Another checker will have already 1966 // made sure they're not undefined. 1967 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1968 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1969 1970 // See if they are the same. 1971 SValBuilder &svalBuilder = C.getSValBuilder(); 1972 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1973 ProgramStateRef StSameBuf, StNotSameBuf; 1974 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1975 1976 // If the two arguments might be the same buffer, we know the result is 0, 1977 // and we only need to check one size. 1978 if (StSameBuf) { 1979 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1980 svalBuilder.makeZeroVal(CE->getType())); 1981 C.addTransition(StSameBuf); 1982 1983 // If the two arguments are GUARANTEED to be the same, we're done! 1984 if (!StNotSameBuf) 1985 return; 1986 } 1987 1988 assert(StNotSameBuf); 1989 state = StNotSameBuf; 1990 1991 // At this point we can go about comparing the two buffers. 1992 // For now, we only do this if they're both known string literals. 1993 1994 // Attempt to extract string literals from both expressions. 1995 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1996 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1997 bool canComputeResult = false; 1998 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1999 C.blockCount()); 2000 2001 if (s1StrLiteral && s2StrLiteral) { 2002 StringRef s1StrRef = s1StrLiteral->getString(); 2003 StringRef s2StrRef = s2StrLiteral->getString(); 2004 2005 if (IsBounded) { 2006 // Get the max number of characters to compare. 2007 const Expr *lenExpr = CE->getArg(2); 2008 SVal lenVal = state->getSVal(lenExpr, LCtx); 2009 2010 // If the length is known, we can get the right substrings. 2011 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2012 // Create substrings of each to compare the prefix. 2013 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 2014 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 2015 canComputeResult = true; 2016 } 2017 } else { 2018 // This is a normal, unbounded strcmp. 2019 canComputeResult = true; 2020 } 2021 2022 if (canComputeResult) { 2023 // Real strcmp stops at null characters. 2024 size_t s1Term = s1StrRef.find('\0'); 2025 if (s1Term != StringRef::npos) 2026 s1StrRef = s1StrRef.substr(0, s1Term); 2027 2028 size_t s2Term = s2StrRef.find('\0'); 2029 if (s2Term != StringRef::npos) 2030 s2StrRef = s2StrRef.substr(0, s2Term); 2031 2032 // Use StringRef's comparison methods to compute the actual result. 2033 int compareRes = IgnoreCase ? s1StrRef.compare_lower(s2StrRef) 2034 : s1StrRef.compare(s2StrRef); 2035 2036 // The strcmp function returns an integer greater than, equal to, or less 2037 // than zero, [c11, p7.24.4.2]. 2038 if (compareRes == 0) { 2039 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2040 } 2041 else { 2042 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2043 // Constrain strcmp's result range based on the result of StringRef's 2044 // comparison methods. 2045 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2046 SVal compareWithZero = 2047 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2048 svalBuilder.getConditionType()); 2049 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2050 state = state->assume(compareWithZeroVal, true); 2051 } 2052 } 2053 } 2054 2055 state = state->BindExpr(CE, LCtx, resultVal); 2056 2057 // Record this as a possible path. 2058 C.addTransition(state); 2059 } 2060 2061 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2062 //char *strsep(char **stringp, const char *delim); 2063 // Sanity: does the search string parameter match the return type? 2064 const Expr *SearchStrPtr = CE->getArg(0); 2065 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 2066 if (CharPtrTy.isNull() || 2067 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2068 return; 2069 2070 CurrentFunctionDescription = "strsep()"; 2071 ProgramStateRef State = C.getState(); 2072 const LocationContext *LCtx = C.getLocationContext(); 2073 2074 // Check that the search string pointer is non-null (though it may point to 2075 // a null string). 2076 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 2077 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1); 2078 if (!State) 2079 return; 2080 2081 // Check that the delimiter string is non-null. 2082 const Expr *DelimStr = CE->getArg(1); 2083 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 2084 State = checkNonNull(C, State, DelimStr, DelimStrVal, 2); 2085 if (!State) 2086 return; 2087 2088 SValBuilder &SVB = C.getSValBuilder(); 2089 SVal Result; 2090 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2091 // Get the current value of the search string pointer, as a char*. 2092 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2093 2094 // Invalidate the search string, representing the change of one delimiter 2095 // character to NUL. 2096 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 2097 /*IsSourceBuffer*/false, nullptr); 2098 2099 // Overwrite the search string pointer. The new value is either an address 2100 // further along in the same string, or NULL if there are no more tokens. 2101 State = State->bindLoc(*SearchStrLoc, 2102 SVB.conjureSymbolVal(getTag(), 2103 CE, 2104 LCtx, 2105 CharPtrTy, 2106 C.blockCount()), 2107 LCtx); 2108 } else { 2109 assert(SearchStrVal.isUnknown()); 2110 // Conjure a symbolic value. It's the best we can do. 2111 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2112 } 2113 2114 // Set the return value, and finish. 2115 State = State->BindExpr(CE, LCtx, Result); 2116 C.addTransition(State); 2117 } 2118 2119 // These should probably be moved into a C++ standard library checker. 2120 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2121 evalStdCopyCommon(C, CE); 2122 } 2123 2124 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2125 const CallExpr *CE) const { 2126 evalStdCopyCommon(C, CE); 2127 } 2128 2129 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2130 const CallExpr *CE) const { 2131 if (!CE->getArg(2)->getType()->isPointerType()) 2132 return; 2133 2134 ProgramStateRef State = C.getState(); 2135 2136 const LocationContext *LCtx = C.getLocationContext(); 2137 2138 // template <class _InputIterator, class _OutputIterator> 2139 // _OutputIterator 2140 // copy(_InputIterator __first, _InputIterator __last, 2141 // _OutputIterator __result) 2142 2143 // Invalidate the destination buffer 2144 const Expr *Dst = CE->getArg(2); 2145 SVal DstVal = State->getSVal(Dst, LCtx); 2146 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2147 /*Size=*/nullptr); 2148 2149 SValBuilder &SVB = C.getSValBuilder(); 2150 2151 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2152 State = State->BindExpr(CE, LCtx, ResultVal); 2153 2154 C.addTransition(State); 2155 } 2156 2157 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2158 CurrentFunctionDescription = "memory set function"; 2159 2160 const Expr *Mem = CE->getArg(0); 2161 const Expr *CharE = CE->getArg(1); 2162 const Expr *Size = CE->getArg(2); 2163 ProgramStateRef State = C.getState(); 2164 2165 // See if the size argument is zero. 2166 const LocationContext *LCtx = C.getLocationContext(); 2167 SVal SizeVal = State->getSVal(Size, LCtx); 2168 QualType SizeTy = Size->getType(); 2169 2170 ProgramStateRef StateZeroSize, StateNonZeroSize; 2171 std::tie(StateZeroSize, StateNonZeroSize) = 2172 assumeZero(C, State, SizeVal, SizeTy); 2173 2174 // Get the value of the memory area. 2175 SVal MemVal = State->getSVal(Mem, LCtx); 2176 2177 // If the size is zero, there won't be any actual memory access, so 2178 // just bind the return value to the Mem buffer and return. 2179 if (StateZeroSize && !StateNonZeroSize) { 2180 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2181 C.addTransition(StateZeroSize); 2182 return; 2183 } 2184 2185 // Ensure the memory area is not null. 2186 // If it is NULL there will be a NULL pointer dereference. 2187 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2188 if (!State) 2189 return; 2190 2191 State = CheckBufferAccess(C, State, Size, Mem); 2192 if (!State) 2193 return; 2194 2195 // According to the values of the arguments, bind the value of the second 2196 // argument to the destination buffer and set string length, or just 2197 // invalidate the destination buffer. 2198 if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) 2199 return; 2200 2201 State = State->BindExpr(CE, LCtx, MemVal); 2202 C.addTransition(State); 2203 } 2204 2205 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2206 CurrentFunctionDescription = "memory clearance function"; 2207 2208 const Expr *Mem = CE->getArg(0); 2209 const Expr *Size = CE->getArg(1); 2210 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2211 2212 ProgramStateRef State = C.getState(); 2213 2214 // See if the size argument is zero. 2215 SVal SizeVal = C.getSVal(Size); 2216 QualType SizeTy = Size->getType(); 2217 2218 ProgramStateRef StateZeroSize, StateNonZeroSize; 2219 std::tie(StateZeroSize, StateNonZeroSize) = 2220 assumeZero(C, State, SizeVal, SizeTy); 2221 2222 // If the size is zero, there won't be any actual memory access, 2223 // In this case we just return. 2224 if (StateZeroSize && !StateNonZeroSize) { 2225 C.addTransition(StateZeroSize); 2226 return; 2227 } 2228 2229 // Get the value of the memory area. 2230 SVal MemVal = C.getSVal(Mem); 2231 2232 // Ensure the memory area is not null. 2233 // If it is NULL there will be a NULL pointer dereference. 2234 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2235 if (!State) 2236 return; 2237 2238 State = CheckBufferAccess(C, State, Size, Mem); 2239 if (!State) 2240 return; 2241 2242 if (!memsetAux(Mem, Zero, Size, C, State)) 2243 return; 2244 2245 C.addTransition(State); 2246 } 2247 2248 //===----------------------------------------------------------------------===// 2249 // The driver method, and other Checker callbacks. 2250 //===----------------------------------------------------------------------===// 2251 2252 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2253 CheckerContext &C) const { 2254 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2255 if (!CE) 2256 return nullptr; 2257 2258 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2259 if (!FD) 2260 return nullptr; 2261 2262 if (Call.isCalled(StdCopy)) { 2263 return &CStringChecker::evalStdCopy; 2264 } else if (Call.isCalled(StdCopyBackward)) { 2265 return &CStringChecker::evalStdCopyBackward; 2266 } 2267 2268 // Pro-actively check that argument types are safe to do arithmetic upon. 2269 // We do not want to crash if someone accidentally passes a structure 2270 // into, say, a C++ overload of any of these functions. We could not check 2271 // that for std::copy because they may have arguments of other types. 2272 for (auto I : CE->arguments()) { 2273 QualType T = I->getType(); 2274 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2275 return nullptr; 2276 } 2277 2278 const FnCheck *Callback = Callbacks.lookup(Call); 2279 if (Callback) 2280 return *Callback; 2281 2282 return nullptr; 2283 } 2284 2285 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2286 FnCheck Callback = identifyCall(Call, C); 2287 2288 // If the callee isn't a string function, let another checker handle it. 2289 if (!Callback) 2290 return false; 2291 2292 // Check and evaluate the call. 2293 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2294 (this->*Callback)(C, CE); 2295 2296 // If the evaluate call resulted in no change, chain to the next eval call 2297 // handler. 2298 // Note, the custom CString evaluation calls assume that basic safety 2299 // properties are held. However, if the user chooses to turn off some of these 2300 // checks, we ignore the issues and leave the call evaluation to a generic 2301 // handler. 2302 return C.isDifferent(); 2303 } 2304 2305 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2306 // Record string length for char a[] = "abc"; 2307 ProgramStateRef state = C.getState(); 2308 2309 for (const auto *I : DS->decls()) { 2310 const VarDecl *D = dyn_cast<VarDecl>(I); 2311 if (!D) 2312 continue; 2313 2314 // FIXME: Handle array fields of structs. 2315 if (!D->getType()->isArrayType()) 2316 continue; 2317 2318 const Expr *Init = D->getInit(); 2319 if (!Init) 2320 continue; 2321 if (!isa<StringLiteral>(Init)) 2322 continue; 2323 2324 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2325 const MemRegion *MR = VarLoc.getAsRegion(); 2326 if (!MR) 2327 continue; 2328 2329 SVal StrVal = C.getSVal(Init); 2330 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2331 DefinedOrUnknownSVal strLength = 2332 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2333 2334 state = state->set<CStringLength>(MR, strLength); 2335 } 2336 2337 C.addTransition(state); 2338 } 2339 2340 ProgramStateRef 2341 CStringChecker::checkRegionChanges(ProgramStateRef state, 2342 const InvalidatedSymbols *, 2343 ArrayRef<const MemRegion *> ExplicitRegions, 2344 ArrayRef<const MemRegion *> Regions, 2345 const LocationContext *LCtx, 2346 const CallEvent *Call) const { 2347 CStringLengthTy Entries = state->get<CStringLength>(); 2348 if (Entries.isEmpty()) 2349 return state; 2350 2351 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2352 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2353 2354 // First build sets for the changed regions and their super-regions. 2355 for (ArrayRef<const MemRegion *>::iterator 2356 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2357 const MemRegion *MR = *I; 2358 Invalidated.insert(MR); 2359 2360 SuperRegions.insert(MR); 2361 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2362 MR = SR->getSuperRegion(); 2363 SuperRegions.insert(MR); 2364 } 2365 } 2366 2367 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2368 2369 // Then loop over the entries in the current state. 2370 for (CStringLengthTy::iterator I = Entries.begin(), 2371 E = Entries.end(); I != E; ++I) { 2372 const MemRegion *MR = I.getKey(); 2373 2374 // Is this entry for a super-region of a changed region? 2375 if (SuperRegions.count(MR)) { 2376 Entries = F.remove(Entries, MR); 2377 continue; 2378 } 2379 2380 // Is this entry for a sub-region of a changed region? 2381 const MemRegion *Super = MR; 2382 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2383 Super = SR->getSuperRegion(); 2384 if (Invalidated.count(Super)) { 2385 Entries = F.remove(Entries, MR); 2386 break; 2387 } 2388 } 2389 } 2390 2391 return state->set<CStringLength>(Entries); 2392 } 2393 2394 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2395 SymbolReaper &SR) const { 2396 // Mark all symbols in our string length map as valid. 2397 CStringLengthTy Entries = state->get<CStringLength>(); 2398 2399 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2400 I != E; ++I) { 2401 SVal Len = I.getData(); 2402 2403 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2404 se = Len.symbol_end(); si != se; ++si) 2405 SR.markInUse(*si); 2406 } 2407 } 2408 2409 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2410 CheckerContext &C) const { 2411 ProgramStateRef state = C.getState(); 2412 CStringLengthTy Entries = state->get<CStringLength>(); 2413 if (Entries.isEmpty()) 2414 return; 2415 2416 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2417 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2418 I != E; ++I) { 2419 SVal Len = I.getData(); 2420 if (SymbolRef Sym = Len.getAsSymbol()) { 2421 if (SR.isDead(Sym)) 2422 Entries = F.remove(Entries, I.getKey()); 2423 } 2424 } 2425 2426 state = state->set<CStringLength>(Entries); 2427 C.addTransition(state); 2428 } 2429 2430 void ento::registerCStringModeling(CheckerManager &Mgr) { 2431 Mgr.registerChecker<CStringChecker>(); 2432 } 2433 2434 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2435 return true; 2436 } 2437 2438 #define REGISTER_CHECKER(name) \ 2439 void ento::register##name(CheckerManager &mgr) { \ 2440 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2441 checker->Filter.Check##name = true; \ 2442 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2443 } \ 2444 \ 2445 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2446 2447 REGISTER_CHECKER(CStringNullArg) 2448 REGISTER_CHECKER(CStringOutOfBounds) 2449 REGISTER_CHECKER(CStringBufferOverlap) 2450 REGISTER_CHECKER(CStringNotNullTerm) 2451