1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This defines CStringChecker, which is an assortment of checks on calls 11 // to functions in <string.h>. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/Basic/CharInfo.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckName CheckNameCStringNullArg; 52 CheckName CheckNameCStringOutOfBounds; 53 CheckName CheckNameCStringBufferOverlap; 54 CheckName CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallExpr *CE, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 77 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 78 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 79 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 80 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 81 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 82 ProgramStateRef state, 83 const Expr *Size, 84 const Expr *Source, 85 const Expr *Dest, 86 bool Restricted = false, 87 bool IsMempcpy = false) const; 88 89 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 90 91 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 92 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 93 void evalstrLengthCommon(CheckerContext &C, 94 const CallExpr *CE, 95 bool IsStrnlen = false) const; 96 97 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 98 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 99 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 100 void evalStrcpyCommon(CheckerContext &C, 101 const CallExpr *CE, 102 bool returnEnd, 103 bool isBounded, 104 bool isAppending) const; 105 106 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 107 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 108 109 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 110 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 111 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 112 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 113 void evalStrcmpCommon(CheckerContext &C, 114 const CallExpr *CE, 115 bool isBounded = false, 116 bool ignoreCase = false) const; 117 118 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 119 120 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 121 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 122 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 123 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 124 125 // Utility methods 126 std::pair<ProgramStateRef , ProgramStateRef > 127 static assumeZero(CheckerContext &C, 128 ProgramStateRef state, SVal V, QualType Ty); 129 130 static ProgramStateRef setCStringLength(ProgramStateRef state, 131 const MemRegion *MR, 132 SVal strLength); 133 static SVal getCStringLengthForRegion(CheckerContext &C, 134 ProgramStateRef &state, 135 const Expr *Ex, 136 const MemRegion *MR, 137 bool hypothetical); 138 SVal getCStringLength(CheckerContext &C, 139 ProgramStateRef &state, 140 const Expr *Ex, 141 SVal Buf, 142 bool hypothetical = false) const; 143 144 const StringLiteral *getCStringLiteral(CheckerContext &C, 145 ProgramStateRef &state, 146 const Expr *expr, 147 SVal val) const; 148 149 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 150 ProgramStateRef state, 151 const Expr *Ex, SVal V, 152 bool IsSourceBuffer, 153 const Expr *Size); 154 155 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 156 const MemRegion *MR); 157 158 // Re-usable checks 159 ProgramStateRef checkNonNull(CheckerContext &C, 160 ProgramStateRef state, 161 const Expr *S, 162 SVal l) const; 163 ProgramStateRef CheckLocation(CheckerContext &C, 164 ProgramStateRef state, 165 const Expr *S, 166 SVal l, 167 const char *message = nullptr) const; 168 ProgramStateRef CheckBufferAccess(CheckerContext &C, 169 ProgramStateRef state, 170 const Expr *Size, 171 const Expr *FirstBuf, 172 const Expr *SecondBuf, 173 const char *firstMessage = nullptr, 174 const char *secondMessage = nullptr, 175 bool WarnAboutSize = false) const; 176 177 ProgramStateRef CheckBufferAccess(CheckerContext &C, 178 ProgramStateRef state, 179 const Expr *Size, 180 const Expr *Buf, 181 const char *message = nullptr, 182 bool WarnAboutSize = false) const { 183 // This is a convenience override. 184 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 185 WarnAboutSize); 186 } 187 ProgramStateRef CheckOverlap(CheckerContext &C, 188 ProgramStateRef state, 189 const Expr *Size, 190 const Expr *First, 191 const Expr *Second) const; 192 void emitOverlapBug(CheckerContext &C, 193 ProgramStateRef state, 194 const Stmt *First, 195 const Stmt *Second) const; 196 197 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 198 ProgramStateRef state, 199 NonLoc left, 200 NonLoc right) const; 201 202 // Return true if the destination buffer of the copy function may be in bound. 203 // Expects SVal of Size to be positive and unsigned. 204 // Expects SVal of FirstBuf to be a FieldRegion. 205 static bool IsFirstBufInBound(CheckerContext &C, 206 ProgramStateRef state, 207 const Expr *FirstBuf, 208 const Expr *Size); 209 }; 210 211 } //end anonymous namespace 212 213 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 214 215 //===----------------------------------------------------------------------===// 216 // Individual checks and utility methods. 217 //===----------------------------------------------------------------------===// 218 219 std::pair<ProgramStateRef , ProgramStateRef > 220 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 221 QualType Ty) { 222 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 223 if (!val) 224 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 225 226 SValBuilder &svalBuilder = C.getSValBuilder(); 227 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 228 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 229 } 230 231 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 232 ProgramStateRef state, 233 const Expr *S, SVal l) const { 234 // If a previous check has failed, propagate the failure. 235 if (!state) 236 return nullptr; 237 238 ProgramStateRef stateNull, stateNonNull; 239 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 240 241 if (stateNull && !stateNonNull) { 242 if (!Filter.CheckCStringNullArg) 243 return nullptr; 244 245 ExplodedNode *N = C.generateErrorNode(stateNull); 246 if (!N) 247 return nullptr; 248 249 if (!BT_Null) 250 BT_Null.reset(new BuiltinBug( 251 Filter.CheckNameCStringNullArg, categories::UnixAPI, 252 "Null pointer argument in call to byte string function")); 253 254 SmallString<80> buf; 255 llvm::raw_svector_ostream os(buf); 256 assert(CurrentFunctionDescription); 257 os << "Null pointer argument in call to " << CurrentFunctionDescription; 258 259 // Generate a report for this bug. 260 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get()); 261 auto report = llvm::make_unique<BugReport>(*BT, os.str(), N); 262 263 report->addRange(S->getSourceRange()); 264 bugreporter::trackNullOrUndefValue(N, S, *report); 265 C.emitReport(std::move(report)); 266 return nullptr; 267 } 268 269 // From here on, assume that the value is non-null. 270 assert(stateNonNull); 271 return stateNonNull; 272 } 273 274 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 275 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 276 ProgramStateRef state, 277 const Expr *S, SVal l, 278 const char *warningMsg) const { 279 // If a previous check has failed, propagate the failure. 280 if (!state) 281 return nullptr; 282 283 // Check for out of bound array element access. 284 const MemRegion *R = l.getAsRegion(); 285 if (!R) 286 return state; 287 288 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 289 if (!ER) 290 return state; 291 292 if (ER->getValueType() != C.getASTContext().CharTy) 293 return state; 294 295 // Get the size of the array. 296 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 297 SValBuilder &svalBuilder = C.getSValBuilder(); 298 SVal Extent = 299 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 300 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 301 302 // Get the index of the accessed element. 303 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 304 305 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 306 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 307 if (StOutBound && !StInBound) { 308 ExplodedNode *N = C.generateErrorNode(StOutBound); 309 if (!N) 310 return nullptr; 311 312 CheckName Name; 313 // These checks are either enabled by the CString out-of-bounds checker 314 // explicitly or the "basic" CStringNullArg checker support that Malloc 315 // checker enables. 316 assert(Filter.CheckCStringOutOfBounds || Filter.CheckCStringNullArg); 317 if (Filter.CheckCStringOutOfBounds) 318 Name = Filter.CheckNameCStringOutOfBounds; 319 else 320 Name = Filter.CheckNameCStringNullArg; 321 322 if (!BT_Bounds) { 323 BT_Bounds.reset(new BuiltinBug( 324 Name, "Out-of-bound array access", 325 "Byte string function accesses out-of-bound array element")); 326 } 327 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get()); 328 329 // Generate a report for this bug. 330 std::unique_ptr<BugReport> report; 331 if (warningMsg) { 332 report = llvm::make_unique<BugReport>(*BT, warningMsg, N); 333 } else { 334 assert(CurrentFunctionDescription); 335 assert(CurrentFunctionDescription[0] != '\0'); 336 337 SmallString<80> buf; 338 llvm::raw_svector_ostream os(buf); 339 os << toUppercase(CurrentFunctionDescription[0]) 340 << &CurrentFunctionDescription[1] 341 << " accesses out-of-bound array element"; 342 report = llvm::make_unique<BugReport>(*BT, os.str(), N); 343 } 344 345 // FIXME: It would be nice to eventually make this diagnostic more clear, 346 // e.g., by referencing the original declaration or by saying *why* this 347 // reference is outside the range. 348 349 report->addRange(S->getSourceRange()); 350 C.emitReport(std::move(report)); 351 return nullptr; 352 } 353 354 // Array bound check succeeded. From this point forward the array bound 355 // should always succeed. 356 return StInBound; 357 } 358 359 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 360 ProgramStateRef state, 361 const Expr *Size, 362 const Expr *FirstBuf, 363 const Expr *SecondBuf, 364 const char *firstMessage, 365 const char *secondMessage, 366 bool WarnAboutSize) const { 367 // If a previous check has failed, propagate the failure. 368 if (!state) 369 return nullptr; 370 371 SValBuilder &svalBuilder = C.getSValBuilder(); 372 ASTContext &Ctx = svalBuilder.getContext(); 373 const LocationContext *LCtx = C.getLocationContext(); 374 375 QualType sizeTy = Size->getType(); 376 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 377 378 // Check that the first buffer is non-null. 379 SVal BufVal = C.getSVal(FirstBuf); 380 state = checkNonNull(C, state, FirstBuf, BufVal); 381 if (!state) 382 return nullptr; 383 384 // If out-of-bounds checking is turned off, skip the rest. 385 if (!Filter.CheckCStringOutOfBounds) 386 return state; 387 388 // Get the access length and make sure it is known. 389 // FIXME: This assumes the caller has already checked that the access length 390 // is positive. And that it's unsigned. 391 SVal LengthVal = C.getSVal(Size); 392 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 393 if (!Length) 394 return state; 395 396 // Compute the offset of the last element to be accessed: size-1. 397 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 398 NonLoc LastOffset = svalBuilder 399 .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>(); 400 401 // Check that the first buffer is sufficiently long. 402 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 403 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 404 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 405 406 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 407 LastOffset, PtrTy); 408 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 409 410 // If the buffer isn't large enough, abort. 411 if (!state) 412 return nullptr; 413 } 414 415 // If there's a second buffer, check it as well. 416 if (SecondBuf) { 417 BufVal = state->getSVal(SecondBuf, LCtx); 418 state = checkNonNull(C, state, SecondBuf, BufVal); 419 if (!state) 420 return nullptr; 421 422 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 423 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 424 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 425 426 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 427 LastOffset, PtrTy); 428 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 429 } 430 } 431 432 // Large enough or not, return this state! 433 return state; 434 } 435 436 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 437 ProgramStateRef state, 438 const Expr *Size, 439 const Expr *First, 440 const Expr *Second) const { 441 if (!Filter.CheckCStringBufferOverlap) 442 return state; 443 444 // Do a simple check for overlap: if the two arguments are from the same 445 // buffer, see if the end of the first is greater than the start of the second 446 // or vice versa. 447 448 // If a previous check has failed, propagate the failure. 449 if (!state) 450 return nullptr; 451 452 ProgramStateRef stateTrue, stateFalse; 453 454 // Get the buffer values and make sure they're known locations. 455 const LocationContext *LCtx = C.getLocationContext(); 456 SVal firstVal = state->getSVal(First, LCtx); 457 SVal secondVal = state->getSVal(Second, LCtx); 458 459 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 460 if (!firstLoc) 461 return state; 462 463 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 464 if (!secondLoc) 465 return state; 466 467 // Are the two values the same? 468 SValBuilder &svalBuilder = C.getSValBuilder(); 469 std::tie(stateTrue, stateFalse) = 470 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 471 472 if (stateTrue && !stateFalse) { 473 // If the values are known to be equal, that's automatically an overlap. 474 emitOverlapBug(C, stateTrue, First, Second); 475 return nullptr; 476 } 477 478 // assume the two expressions are not equal. 479 assert(stateFalse); 480 state = stateFalse; 481 482 // Which value comes first? 483 QualType cmpTy = svalBuilder.getConditionType(); 484 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 485 *firstLoc, *secondLoc, cmpTy); 486 Optional<DefinedOrUnknownSVal> reverseTest = 487 reverse.getAs<DefinedOrUnknownSVal>(); 488 if (!reverseTest) 489 return state; 490 491 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 492 if (stateTrue) { 493 if (stateFalse) { 494 // If we don't know which one comes first, we can't perform this test. 495 return state; 496 } else { 497 // Switch the values so that firstVal is before secondVal. 498 std::swap(firstLoc, secondLoc); 499 500 // Switch the Exprs as well, so that they still correspond. 501 std::swap(First, Second); 502 } 503 } 504 505 // Get the length, and make sure it too is known. 506 SVal LengthVal = state->getSVal(Size, LCtx); 507 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 508 if (!Length) 509 return state; 510 511 // Convert the first buffer's start address to char*. 512 // Bail out if the cast fails. 513 ASTContext &Ctx = svalBuilder.getContext(); 514 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 515 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 516 First->getType()); 517 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 518 if (!FirstStartLoc) 519 return state; 520 521 // Compute the end of the first buffer. Bail out if THAT fails. 522 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 523 *FirstStartLoc, *Length, CharPtrTy); 524 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 525 if (!FirstEndLoc) 526 return state; 527 528 // Is the end of the first buffer past the start of the second buffer? 529 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 530 *FirstEndLoc, *secondLoc, cmpTy); 531 Optional<DefinedOrUnknownSVal> OverlapTest = 532 Overlap.getAs<DefinedOrUnknownSVal>(); 533 if (!OverlapTest) 534 return state; 535 536 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 537 538 if (stateTrue && !stateFalse) { 539 // Overlap! 540 emitOverlapBug(C, stateTrue, First, Second); 541 return nullptr; 542 } 543 544 // assume the two expressions don't overlap. 545 assert(stateFalse); 546 return stateFalse; 547 } 548 549 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 550 const Stmt *First, const Stmt *Second) const { 551 ExplodedNode *N = C.generateErrorNode(state); 552 if (!N) 553 return; 554 555 if (!BT_Overlap) 556 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 557 categories::UnixAPI, "Improper arguments")); 558 559 // Generate a report for this bug. 560 auto report = llvm::make_unique<BugReport>( 561 *BT_Overlap, "Arguments must not be overlapping buffers", N); 562 report->addRange(First->getSourceRange()); 563 report->addRange(Second->getSourceRange()); 564 565 C.emitReport(std::move(report)); 566 } 567 568 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 569 ProgramStateRef state, 570 NonLoc left, 571 NonLoc right) const { 572 // If out-of-bounds checking is turned off, skip the rest. 573 if (!Filter.CheckCStringOutOfBounds) 574 return state; 575 576 // If a previous check has failed, propagate the failure. 577 if (!state) 578 return nullptr; 579 580 SValBuilder &svalBuilder = C.getSValBuilder(); 581 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 582 583 QualType sizeTy = svalBuilder.getContext().getSizeType(); 584 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 585 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 586 587 SVal maxMinusRight; 588 if (right.getAs<nonloc::ConcreteInt>()) { 589 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 590 sizeTy); 591 } else { 592 // Try switching the operands. (The order of these two assignments is 593 // important!) 594 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 595 sizeTy); 596 left = right; 597 } 598 599 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 600 QualType cmpTy = svalBuilder.getConditionType(); 601 // If left > max - right, we have an overflow. 602 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 603 *maxMinusRightNL, cmpTy); 604 605 ProgramStateRef stateOverflow, stateOkay; 606 std::tie(stateOverflow, stateOkay) = 607 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 608 609 if (stateOverflow && !stateOkay) { 610 // We have an overflow. Emit a bug report. 611 ExplodedNode *N = C.generateErrorNode(stateOverflow); 612 if (!N) 613 return nullptr; 614 615 if (!BT_AdditionOverflow) 616 BT_AdditionOverflow.reset( 617 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 618 "Sum of expressions causes overflow")); 619 620 // This isn't a great error message, but this should never occur in real 621 // code anyway -- you'd have to create a buffer longer than a size_t can 622 // represent, which is sort of a contradiction. 623 const char *warning = 624 "This expression will create a string whose length is too big to " 625 "be represented as a size_t"; 626 627 // Generate a report for this bug. 628 C.emitReport( 629 llvm::make_unique<BugReport>(*BT_AdditionOverflow, warning, N)); 630 631 return nullptr; 632 } 633 634 // From now on, assume an overflow didn't occur. 635 assert(stateOkay); 636 state = stateOkay; 637 } 638 639 return state; 640 } 641 642 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 643 const MemRegion *MR, 644 SVal strLength) { 645 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 646 647 MR = MR->StripCasts(); 648 649 switch (MR->getKind()) { 650 case MemRegion::StringRegionKind: 651 // FIXME: This can happen if we strcpy() into a string region. This is 652 // undefined [C99 6.4.5p6], but we should still warn about it. 653 return state; 654 655 case MemRegion::SymbolicRegionKind: 656 case MemRegion::AllocaRegionKind: 657 case MemRegion::VarRegionKind: 658 case MemRegion::FieldRegionKind: 659 case MemRegion::ObjCIvarRegionKind: 660 // These are the types we can currently track string lengths for. 661 break; 662 663 case MemRegion::ElementRegionKind: 664 // FIXME: Handle element regions by upper-bounding the parent region's 665 // string length. 666 return state; 667 668 default: 669 // Other regions (mostly non-data) can't have a reliable C string length. 670 // For now, just ignore the change. 671 // FIXME: These are rare but not impossible. We should output some kind of 672 // warning for things like strcpy((char[]){'a', 0}, "b"); 673 return state; 674 } 675 676 if (strLength.isUnknown()) 677 return state->remove<CStringLength>(MR); 678 679 return state->set<CStringLength>(MR, strLength); 680 } 681 682 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 683 ProgramStateRef &state, 684 const Expr *Ex, 685 const MemRegion *MR, 686 bool hypothetical) { 687 if (!hypothetical) { 688 // If there's a recorded length, go ahead and return it. 689 const SVal *Recorded = state->get<CStringLength>(MR); 690 if (Recorded) 691 return *Recorded; 692 } 693 694 // Otherwise, get a new symbol and update the state. 695 SValBuilder &svalBuilder = C.getSValBuilder(); 696 QualType sizeTy = svalBuilder.getContext().getSizeType(); 697 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 698 MR, Ex, sizeTy, 699 C.getLocationContext(), 700 C.blockCount()); 701 702 if (!hypothetical) { 703 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 704 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 705 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 706 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 707 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 708 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 709 fourInt); 710 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 711 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 712 maxLength, sizeTy); 713 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 714 } 715 state = state->set<CStringLength>(MR, strLength); 716 } 717 718 return strLength; 719 } 720 721 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 722 const Expr *Ex, SVal Buf, 723 bool hypothetical) const { 724 const MemRegion *MR = Buf.getAsRegion(); 725 if (!MR) { 726 // If we can't get a region, see if it's something we /know/ isn't a 727 // C string. In the context of locations, the only time we can issue such 728 // a warning is for labels. 729 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 730 if (!Filter.CheckCStringNotNullTerm) 731 return UndefinedVal(); 732 733 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 734 if (!BT_NotCString) 735 BT_NotCString.reset(new BuiltinBug( 736 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 737 "Argument is not a null-terminated string.")); 738 739 SmallString<120> buf; 740 llvm::raw_svector_ostream os(buf); 741 assert(CurrentFunctionDescription); 742 os << "Argument to " << CurrentFunctionDescription 743 << " is the address of the label '" << Label->getLabel()->getName() 744 << "', which is not a null-terminated string"; 745 746 // Generate a report for this bug. 747 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 748 749 report->addRange(Ex->getSourceRange()); 750 C.emitReport(std::move(report)); 751 } 752 return UndefinedVal(); 753 754 } 755 756 // If it's not a region and not a label, give up. 757 return UnknownVal(); 758 } 759 760 // If we have a region, strip casts from it and see if we can figure out 761 // its length. For anything we can't figure out, just return UnknownVal. 762 MR = MR->StripCasts(); 763 764 switch (MR->getKind()) { 765 case MemRegion::StringRegionKind: { 766 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 767 // so we can assume that the byte length is the correct C string length. 768 SValBuilder &svalBuilder = C.getSValBuilder(); 769 QualType sizeTy = svalBuilder.getContext().getSizeType(); 770 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 771 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 772 } 773 case MemRegion::SymbolicRegionKind: 774 case MemRegion::AllocaRegionKind: 775 case MemRegion::VarRegionKind: 776 case MemRegion::FieldRegionKind: 777 case MemRegion::ObjCIvarRegionKind: 778 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 779 case MemRegion::CompoundLiteralRegionKind: 780 // FIXME: Can we track this? Is it necessary? 781 return UnknownVal(); 782 case MemRegion::ElementRegionKind: 783 // FIXME: How can we handle this? It's not good enough to subtract the 784 // offset from the base string length; consider "123\x00567" and &a[5]. 785 return UnknownVal(); 786 default: 787 // Other regions (mostly non-data) can't have a reliable C string length. 788 // In this case, an error is emitted and UndefinedVal is returned. 789 // The caller should always be prepared to handle this case. 790 if (!Filter.CheckCStringNotNullTerm) 791 return UndefinedVal(); 792 793 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 794 if (!BT_NotCString) 795 BT_NotCString.reset(new BuiltinBug( 796 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 797 "Argument is not a null-terminated string.")); 798 799 SmallString<120> buf; 800 llvm::raw_svector_ostream os(buf); 801 802 assert(CurrentFunctionDescription); 803 os << "Argument to " << CurrentFunctionDescription << " is "; 804 805 if (SummarizeRegion(os, C.getASTContext(), MR)) 806 os << ", which is not a null-terminated string"; 807 else 808 os << "not a null-terminated string"; 809 810 // Generate a report for this bug. 811 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 812 813 report->addRange(Ex->getSourceRange()); 814 C.emitReport(std::move(report)); 815 } 816 817 return UndefinedVal(); 818 } 819 } 820 821 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 822 ProgramStateRef &state, const Expr *expr, SVal val) const { 823 824 // Get the memory region pointed to by the val. 825 const MemRegion *bufRegion = val.getAsRegion(); 826 if (!bufRegion) 827 return nullptr; 828 829 // Strip casts off the memory region. 830 bufRegion = bufRegion->StripCasts(); 831 832 // Cast the memory region to a string region. 833 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 834 if (!strRegion) 835 return nullptr; 836 837 // Return the actual string in the string region. 838 return strRegion->getStringLiteral(); 839 } 840 841 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 842 ProgramStateRef state, 843 const Expr *FirstBuf, 844 const Expr *Size) { 845 // If we do not know that the buffer is long enough we return 'true'. 846 // Otherwise the parent region of this field region would also get 847 // invalidated, which would lead to warnings based on an unknown state. 848 849 // Originally copied from CheckBufferAccess and CheckLocation. 850 SValBuilder &svalBuilder = C.getSValBuilder(); 851 ASTContext &Ctx = svalBuilder.getContext(); 852 const LocationContext *LCtx = C.getLocationContext(); 853 854 QualType sizeTy = Size->getType(); 855 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 856 SVal BufVal = state->getSVal(FirstBuf, LCtx); 857 858 SVal LengthVal = state->getSVal(Size, LCtx); 859 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 860 if (!Length) 861 return true; // cf top comment. 862 863 // Compute the offset of the last element to be accessed: size-1. 864 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 865 NonLoc LastOffset = 866 svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy) 867 .castAs<NonLoc>(); 868 869 // Check that the first buffer is sufficiently long. 870 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 871 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 872 if (!BufLoc) 873 return true; // cf top comment. 874 875 SVal BufEnd = 876 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 877 878 // Check for out of bound array element access. 879 const MemRegion *R = BufEnd.getAsRegion(); 880 if (!R) 881 return true; // cf top comment. 882 883 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 884 if (!ER) 885 return true; // cf top comment. 886 887 // FIXME: Does this crash when a non-standard definition 888 // of a library function is encountered? 889 assert(ER->getValueType() == C.getASTContext().CharTy && 890 "IsFirstBufInBound should only be called with char* ElementRegions"); 891 892 // Get the size of the array. 893 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 894 SVal Extent = 895 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 896 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 897 898 // Get the index of the accessed element. 899 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 900 901 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 902 903 return static_cast<bool>(StInBound); 904 } 905 906 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 907 ProgramStateRef state, 908 const Expr *E, SVal V, 909 bool IsSourceBuffer, 910 const Expr *Size) { 911 Optional<Loc> L = V.getAs<Loc>(); 912 if (!L) 913 return state; 914 915 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 916 // some assumptions about the value that CFRefCount can't. Even so, it should 917 // probably be refactored. 918 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 919 const MemRegion *R = MR->getRegion()->StripCasts(); 920 921 // Are we dealing with an ElementRegion? If so, we should be invalidating 922 // the super-region. 923 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 924 R = ER->getSuperRegion(); 925 // FIXME: What about layers of ElementRegions? 926 } 927 928 // Invalidate this region. 929 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 930 931 bool CausesPointerEscape = false; 932 RegionAndSymbolInvalidationTraits ITraits; 933 // Invalidate and escape only indirect regions accessible through the source 934 // buffer. 935 if (IsSourceBuffer) { 936 ITraits.setTrait(R->getBaseRegion(), 937 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 938 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 939 CausesPointerEscape = true; 940 } else { 941 const MemRegion::Kind& K = R->getKind(); 942 if (K == MemRegion::FieldRegionKind) 943 if (Size && IsFirstBufInBound(C, state, E, Size)) { 944 // If destination buffer is a field region and access is in bound, 945 // do not invalidate its super region. 946 ITraits.setTrait( 947 R, 948 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 949 } 950 } 951 952 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 953 CausesPointerEscape, nullptr, nullptr, 954 &ITraits); 955 } 956 957 // If we have a non-region value by chance, just remove the binding. 958 // FIXME: is this necessary or correct? This handles the non-Region 959 // cases. Is it ever valid to store to these? 960 return state->killBinding(*L); 961 } 962 963 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 964 const MemRegion *MR) { 965 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 966 967 switch (MR->getKind()) { 968 case MemRegion::FunctionCodeRegionKind: { 969 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 970 if (FD) 971 os << "the address of the function '" << *FD << '\''; 972 else 973 os << "the address of a function"; 974 return true; 975 } 976 case MemRegion::BlockCodeRegionKind: 977 os << "block text"; 978 return true; 979 case MemRegion::BlockDataRegionKind: 980 os << "a block"; 981 return true; 982 case MemRegion::CXXThisRegionKind: 983 case MemRegion::CXXTempObjectRegionKind: 984 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 985 return true; 986 case MemRegion::VarRegionKind: 987 os << "a variable of type" << TVR->getValueType().getAsString(); 988 return true; 989 case MemRegion::FieldRegionKind: 990 os << "a field of type " << TVR->getValueType().getAsString(); 991 return true; 992 case MemRegion::ObjCIvarRegionKind: 993 os << "an instance variable of type " << TVR->getValueType().getAsString(); 994 return true; 995 default: 996 return false; 997 } 998 } 999 1000 //===----------------------------------------------------------------------===// 1001 // evaluation of individual function calls. 1002 //===----------------------------------------------------------------------===// 1003 1004 void CStringChecker::evalCopyCommon(CheckerContext &C, 1005 const CallExpr *CE, 1006 ProgramStateRef state, 1007 const Expr *Size, const Expr *Dest, 1008 const Expr *Source, bool Restricted, 1009 bool IsMempcpy) const { 1010 CurrentFunctionDescription = "memory copy function"; 1011 1012 // See if the size argument is zero. 1013 const LocationContext *LCtx = C.getLocationContext(); 1014 SVal sizeVal = state->getSVal(Size, LCtx); 1015 QualType sizeTy = Size->getType(); 1016 1017 ProgramStateRef stateZeroSize, stateNonZeroSize; 1018 std::tie(stateZeroSize, stateNonZeroSize) = 1019 assumeZero(C, state, sizeVal, sizeTy); 1020 1021 // Get the value of the Dest. 1022 SVal destVal = state->getSVal(Dest, LCtx); 1023 1024 // If the size is zero, there won't be any actual memory access, so 1025 // just bind the return value to the destination buffer and return. 1026 if (stateZeroSize && !stateNonZeroSize) { 1027 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1028 C.addTransition(stateZeroSize); 1029 return; 1030 } 1031 1032 // If the size can be nonzero, we have to check the other arguments. 1033 if (stateNonZeroSize) { 1034 state = stateNonZeroSize; 1035 1036 // Ensure the accesses are valid and that the buffers do not overlap. 1037 const char * const writeWarning = 1038 "Memory copy function overflows destination buffer"; 1039 state = CheckBufferAccess(C, state, Size, Dest, Source, 1040 writeWarning, /* sourceWarning = */ nullptr); 1041 if (Restricted) 1042 state = CheckOverlap(C, state, Size, Dest, Source); 1043 1044 if (!state) 1045 return; 1046 1047 // If this is mempcpy, get the byte after the last byte copied and 1048 // bind the expr. 1049 if (IsMempcpy) { 1050 // Get the byte after the last byte copied. 1051 SValBuilder &SvalBuilder = C.getSValBuilder(); 1052 ASTContext &Ctx = SvalBuilder.getContext(); 1053 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1054 SVal DestRegCharVal = 1055 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1056 SVal lastElement = C.getSValBuilder().evalBinOp( 1057 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1058 // If we don't know how much we copied, we can at least 1059 // conjure a return value for later. 1060 if (lastElement.isUnknown()) 1061 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1062 C.blockCount()); 1063 1064 // The byte after the last byte copied is the return value. 1065 state = state->BindExpr(CE, LCtx, lastElement); 1066 } else { 1067 // All other copies return the destination buffer. 1068 // (Well, bcopy() has a void return type, but this won't hurt.) 1069 state = state->BindExpr(CE, LCtx, destVal); 1070 } 1071 1072 // Invalidate the destination (regular invalidation without pointer-escaping 1073 // the address of the top-level region). 1074 // FIXME: Even if we can't perfectly model the copy, we should see if we 1075 // can use LazyCompoundVals to copy the source values into the destination. 1076 // This would probably remove any existing bindings past the end of the 1077 // copied region, but that's still an improvement over blank invalidation. 1078 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1079 /*IsSourceBuffer*/false, Size); 1080 1081 // Invalidate the source (const-invalidation without const-pointer-escaping 1082 // the address of the top-level region). 1083 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1084 /*IsSourceBuffer*/true, nullptr); 1085 1086 C.addTransition(state); 1087 } 1088 } 1089 1090 1091 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1092 if (CE->getNumArgs() < 3) 1093 return; 1094 1095 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1096 // The return value is the address of the destination buffer. 1097 const Expr *Dest = CE->getArg(0); 1098 ProgramStateRef state = C.getState(); 1099 1100 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1101 } 1102 1103 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1104 if (CE->getNumArgs() < 3) 1105 return; 1106 1107 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1108 // The return value is a pointer to the byte following the last written byte. 1109 const Expr *Dest = CE->getArg(0); 1110 ProgramStateRef state = C.getState(); 1111 1112 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1113 } 1114 1115 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1116 if (CE->getNumArgs() < 3) 1117 return; 1118 1119 // void *memmove(void *dst, const void *src, size_t n); 1120 // The return value is the address of the destination buffer. 1121 const Expr *Dest = CE->getArg(0); 1122 ProgramStateRef state = C.getState(); 1123 1124 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1125 } 1126 1127 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1128 if (CE->getNumArgs() < 3) 1129 return; 1130 1131 // void bcopy(const void *src, void *dst, size_t n); 1132 evalCopyCommon(C, CE, C.getState(), 1133 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1134 } 1135 1136 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1137 if (CE->getNumArgs() < 3) 1138 return; 1139 1140 // int memcmp(const void *s1, const void *s2, size_t n); 1141 CurrentFunctionDescription = "memory comparison function"; 1142 1143 const Expr *Left = CE->getArg(0); 1144 const Expr *Right = CE->getArg(1); 1145 const Expr *Size = CE->getArg(2); 1146 1147 ProgramStateRef state = C.getState(); 1148 SValBuilder &svalBuilder = C.getSValBuilder(); 1149 1150 // See if the size argument is zero. 1151 const LocationContext *LCtx = C.getLocationContext(); 1152 SVal sizeVal = state->getSVal(Size, LCtx); 1153 QualType sizeTy = Size->getType(); 1154 1155 ProgramStateRef stateZeroSize, stateNonZeroSize; 1156 std::tie(stateZeroSize, stateNonZeroSize) = 1157 assumeZero(C, state, sizeVal, sizeTy); 1158 1159 // If the size can be zero, the result will be 0 in that case, and we don't 1160 // have to check either of the buffers. 1161 if (stateZeroSize) { 1162 state = stateZeroSize; 1163 state = state->BindExpr(CE, LCtx, 1164 svalBuilder.makeZeroVal(CE->getType())); 1165 C.addTransition(state); 1166 } 1167 1168 // If the size can be nonzero, we have to check the other arguments. 1169 if (stateNonZeroSize) { 1170 state = stateNonZeroSize; 1171 // If we know the two buffers are the same, we know the result is 0. 1172 // First, get the two buffers' addresses. Another checker will have already 1173 // made sure they're not undefined. 1174 DefinedOrUnknownSVal LV = 1175 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1176 DefinedOrUnknownSVal RV = 1177 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1178 1179 // See if they are the same. 1180 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1181 ProgramStateRef StSameBuf, StNotSameBuf; 1182 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1183 1184 // If the two arguments might be the same buffer, we know the result is 0, 1185 // and we only need to check one size. 1186 if (StSameBuf) { 1187 state = StSameBuf; 1188 state = CheckBufferAccess(C, state, Size, Left); 1189 if (state) { 1190 state = StSameBuf->BindExpr(CE, LCtx, 1191 svalBuilder.makeZeroVal(CE->getType())); 1192 C.addTransition(state); 1193 } 1194 } 1195 1196 // If the two arguments might be different buffers, we have to check the 1197 // size of both of them. 1198 if (StNotSameBuf) { 1199 state = StNotSameBuf; 1200 state = CheckBufferAccess(C, state, Size, Left, Right); 1201 if (state) { 1202 // The return value is the comparison result, which we don't know. 1203 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1204 C.blockCount()); 1205 state = state->BindExpr(CE, LCtx, CmpV); 1206 C.addTransition(state); 1207 } 1208 } 1209 } 1210 } 1211 1212 void CStringChecker::evalstrLength(CheckerContext &C, 1213 const CallExpr *CE) const { 1214 if (CE->getNumArgs() < 1) 1215 return; 1216 1217 // size_t strlen(const char *s); 1218 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1219 } 1220 1221 void CStringChecker::evalstrnLength(CheckerContext &C, 1222 const CallExpr *CE) const { 1223 if (CE->getNumArgs() < 2) 1224 return; 1225 1226 // size_t strnlen(const char *s, size_t maxlen); 1227 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1228 } 1229 1230 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1231 bool IsStrnlen) const { 1232 CurrentFunctionDescription = "string length function"; 1233 ProgramStateRef state = C.getState(); 1234 const LocationContext *LCtx = C.getLocationContext(); 1235 1236 if (IsStrnlen) { 1237 const Expr *maxlenExpr = CE->getArg(1); 1238 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1239 1240 ProgramStateRef stateZeroSize, stateNonZeroSize; 1241 std::tie(stateZeroSize, stateNonZeroSize) = 1242 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1243 1244 // If the size can be zero, the result will be 0 in that case, and we don't 1245 // have to check the string itself. 1246 if (stateZeroSize) { 1247 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1248 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1249 C.addTransition(stateZeroSize); 1250 } 1251 1252 // If the size is GUARANTEED to be zero, we're done! 1253 if (!stateNonZeroSize) 1254 return; 1255 1256 // Otherwise, record the assumption that the size is nonzero. 1257 state = stateNonZeroSize; 1258 } 1259 1260 // Check that the string argument is non-null. 1261 const Expr *Arg = CE->getArg(0); 1262 SVal ArgVal = state->getSVal(Arg, LCtx); 1263 1264 state = checkNonNull(C, state, Arg, ArgVal); 1265 1266 if (!state) 1267 return; 1268 1269 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1270 1271 // If the argument isn't a valid C string, there's no valid state to 1272 // transition to. 1273 if (strLength.isUndef()) 1274 return; 1275 1276 DefinedOrUnknownSVal result = UnknownVal(); 1277 1278 // If the check is for strnlen() then bind the return value to no more than 1279 // the maxlen value. 1280 if (IsStrnlen) { 1281 QualType cmpTy = C.getSValBuilder().getConditionType(); 1282 1283 // It's a little unfortunate to be getting this again, 1284 // but it's not that expensive... 1285 const Expr *maxlenExpr = CE->getArg(1); 1286 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1287 1288 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1289 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1290 1291 if (strLengthNL && maxlenValNL) { 1292 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1293 1294 // Check if the strLength is greater than the maxlen. 1295 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1296 C.getSValBuilder() 1297 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1298 .castAs<DefinedOrUnknownSVal>()); 1299 1300 if (stateStringTooLong && !stateStringNotTooLong) { 1301 // If the string is longer than maxlen, return maxlen. 1302 result = *maxlenValNL; 1303 } else if (stateStringNotTooLong && !stateStringTooLong) { 1304 // If the string is shorter than maxlen, return its length. 1305 result = *strLengthNL; 1306 } 1307 } 1308 1309 if (result.isUnknown()) { 1310 // If we don't have enough information for a comparison, there's 1311 // no guarantee the full string length will actually be returned. 1312 // All we know is the return value is the min of the string length 1313 // and the limit. This is better than nothing. 1314 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1315 C.blockCount()); 1316 NonLoc resultNL = result.castAs<NonLoc>(); 1317 1318 if (strLengthNL) { 1319 state = state->assume(C.getSValBuilder().evalBinOpNN( 1320 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1321 .castAs<DefinedOrUnknownSVal>(), true); 1322 } 1323 1324 if (maxlenValNL) { 1325 state = state->assume(C.getSValBuilder().evalBinOpNN( 1326 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1327 .castAs<DefinedOrUnknownSVal>(), true); 1328 } 1329 } 1330 1331 } else { 1332 // This is a plain strlen(), not strnlen(). 1333 result = strLength.castAs<DefinedOrUnknownSVal>(); 1334 1335 // If we don't know the length of the string, conjure a return 1336 // value, so it can be used in constraints, at least. 1337 if (result.isUnknown()) { 1338 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1339 C.blockCount()); 1340 } 1341 } 1342 1343 // Bind the return value. 1344 assert(!result.isUnknown() && "Should have conjured a value by now"); 1345 state = state->BindExpr(CE, LCtx, result); 1346 C.addTransition(state); 1347 } 1348 1349 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1350 if (CE->getNumArgs() < 2) 1351 return; 1352 1353 // char *strcpy(char *restrict dst, const char *restrict src); 1354 evalStrcpyCommon(C, CE, 1355 /* returnEnd = */ false, 1356 /* isBounded = */ false, 1357 /* isAppending = */ false); 1358 } 1359 1360 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1361 if (CE->getNumArgs() < 3) 1362 return; 1363 1364 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1365 evalStrcpyCommon(C, CE, 1366 /* returnEnd = */ false, 1367 /* isBounded = */ true, 1368 /* isAppending = */ false); 1369 } 1370 1371 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1372 if (CE->getNumArgs() < 2) 1373 return; 1374 1375 // char *stpcpy(char *restrict dst, const char *restrict src); 1376 evalStrcpyCommon(C, CE, 1377 /* returnEnd = */ true, 1378 /* isBounded = */ false, 1379 /* isAppending = */ false); 1380 } 1381 1382 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1383 if (CE->getNumArgs() < 2) 1384 return; 1385 1386 //char *strcat(char *restrict s1, const char *restrict s2); 1387 evalStrcpyCommon(C, CE, 1388 /* returnEnd = */ false, 1389 /* isBounded = */ false, 1390 /* isAppending = */ true); 1391 } 1392 1393 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1394 if (CE->getNumArgs() < 3) 1395 return; 1396 1397 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1398 evalStrcpyCommon(C, CE, 1399 /* returnEnd = */ false, 1400 /* isBounded = */ true, 1401 /* isAppending = */ true); 1402 } 1403 1404 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1405 bool returnEnd, bool isBounded, 1406 bool isAppending) const { 1407 CurrentFunctionDescription = "string copy function"; 1408 ProgramStateRef state = C.getState(); 1409 const LocationContext *LCtx = C.getLocationContext(); 1410 1411 // Check that the destination is non-null. 1412 const Expr *Dst = CE->getArg(0); 1413 SVal DstVal = state->getSVal(Dst, LCtx); 1414 1415 state = checkNonNull(C, state, Dst, DstVal); 1416 if (!state) 1417 return; 1418 1419 // Check that the source is non-null. 1420 const Expr *srcExpr = CE->getArg(1); 1421 SVal srcVal = state->getSVal(srcExpr, LCtx); 1422 state = checkNonNull(C, state, srcExpr, srcVal); 1423 if (!state) 1424 return; 1425 1426 // Get the string length of the source. 1427 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1428 1429 // If the source isn't a valid C string, give up. 1430 if (strLength.isUndef()) 1431 return; 1432 1433 SValBuilder &svalBuilder = C.getSValBuilder(); 1434 QualType cmpTy = svalBuilder.getConditionType(); 1435 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1436 1437 // These two values allow checking two kinds of errors: 1438 // - actual overflows caused by a source that doesn't fit in the destination 1439 // - potential overflows caused by a bound that could exceed the destination 1440 SVal amountCopied = UnknownVal(); 1441 SVal maxLastElementIndex = UnknownVal(); 1442 const char *boundWarning = nullptr; 1443 1444 // If the function is strncpy, strncat, etc... it is bounded. 1445 if (isBounded) { 1446 // Get the max number of characters to copy. 1447 const Expr *lenExpr = CE->getArg(2); 1448 SVal lenVal = state->getSVal(lenExpr, LCtx); 1449 1450 // Protect against misdeclared strncpy(). 1451 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1452 1453 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1454 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1455 1456 // If we know both values, we might be able to figure out how much 1457 // we're copying. 1458 if (strLengthNL && lenValNL) { 1459 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1460 1461 // Check if the max number to copy is less than the length of the src. 1462 // If the bound is equal to the source length, strncpy won't null- 1463 // terminate the result! 1464 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1465 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1466 .castAs<DefinedOrUnknownSVal>()); 1467 1468 if (stateSourceTooLong && !stateSourceNotTooLong) { 1469 // Max number to copy is less than the length of the src, so the actual 1470 // strLength copied is the max number arg. 1471 state = stateSourceTooLong; 1472 amountCopied = lenVal; 1473 1474 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1475 // The source buffer entirely fits in the bound. 1476 state = stateSourceNotTooLong; 1477 amountCopied = strLength; 1478 } 1479 } 1480 1481 // We still want to know if the bound is known to be too large. 1482 if (lenValNL) { 1483 if (isAppending) { 1484 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1485 1486 // Get the string length of the destination. If the destination is 1487 // memory that can't have a string length, we shouldn't be copying 1488 // into it anyway. 1489 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1490 if (dstStrLength.isUndef()) 1491 return; 1492 1493 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1494 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1495 *lenValNL, 1496 *dstStrLengthNL, 1497 sizeTy); 1498 boundWarning = "Size argument is greater than the free space in the " 1499 "destination buffer"; 1500 } 1501 1502 } else { 1503 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1504 // (Yes, strncpy and strncat differ in how they treat termination. 1505 // strncat ALWAYS terminates, but strncpy doesn't.) 1506 1507 // We need a special case for when the copy size is zero, in which 1508 // case strncpy will do no work at all. Our bounds check uses n-1 1509 // as the last element accessed, so n == 0 is problematic. 1510 ProgramStateRef StateZeroSize, StateNonZeroSize; 1511 std::tie(StateZeroSize, StateNonZeroSize) = 1512 assumeZero(C, state, *lenValNL, sizeTy); 1513 1514 // If the size is known to be zero, we're done. 1515 if (StateZeroSize && !StateNonZeroSize) { 1516 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1517 C.addTransition(StateZeroSize); 1518 return; 1519 } 1520 1521 // Otherwise, go ahead and figure out the last element we'll touch. 1522 // We don't record the non-zero assumption here because we can't 1523 // be sure. We won't warn on a possible zero. 1524 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1525 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1526 one, sizeTy); 1527 boundWarning = "Size argument is greater than the length of the " 1528 "destination buffer"; 1529 } 1530 } 1531 1532 // If we couldn't pin down the copy length, at least bound it. 1533 // FIXME: We should actually run this code path for append as well, but 1534 // right now it creates problems with constraints (since we can end up 1535 // trying to pass constraints from symbol to symbol). 1536 if (amountCopied.isUnknown() && !isAppending) { 1537 // Try to get a "hypothetical" string length symbol, which we can later 1538 // set as a real value if that turns out to be the case. 1539 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1540 assert(!amountCopied.isUndef()); 1541 1542 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1543 if (lenValNL) { 1544 // amountCopied <= lenVal 1545 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1546 *amountCopiedNL, 1547 *lenValNL, 1548 cmpTy); 1549 state = state->assume( 1550 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1551 if (!state) 1552 return; 1553 } 1554 1555 if (strLengthNL) { 1556 // amountCopied <= strlen(source) 1557 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1558 *amountCopiedNL, 1559 *strLengthNL, 1560 cmpTy); 1561 state = state->assume( 1562 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1563 if (!state) 1564 return; 1565 } 1566 } 1567 } 1568 1569 } else { 1570 // The function isn't bounded. The amount copied should match the length 1571 // of the source buffer. 1572 amountCopied = strLength; 1573 } 1574 1575 assert(state); 1576 1577 // This represents the number of characters copied into the destination 1578 // buffer. (It may not actually be the strlen if the destination buffer 1579 // is not terminated.) 1580 SVal finalStrLength = UnknownVal(); 1581 1582 // If this is an appending function (strcat, strncat...) then set the 1583 // string length to strlen(src) + strlen(dst) since the buffer will 1584 // ultimately contain both. 1585 if (isAppending) { 1586 // Get the string length of the destination. If the destination is memory 1587 // that can't have a string length, we shouldn't be copying into it anyway. 1588 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1589 if (dstStrLength.isUndef()) 1590 return; 1591 1592 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1593 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1594 1595 // If we know both string lengths, we might know the final string length. 1596 if (srcStrLengthNL && dstStrLengthNL) { 1597 // Make sure the two lengths together don't overflow a size_t. 1598 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1599 if (!state) 1600 return; 1601 1602 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1603 *dstStrLengthNL, sizeTy); 1604 } 1605 1606 // If we couldn't get a single value for the final string length, 1607 // we can at least bound it by the individual lengths. 1608 if (finalStrLength.isUnknown()) { 1609 // Try to get a "hypothetical" string length symbol, which we can later 1610 // set as a real value if that turns out to be the case. 1611 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1612 assert(!finalStrLength.isUndef()); 1613 1614 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1615 if (srcStrLengthNL) { 1616 // finalStrLength >= srcStrLength 1617 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1618 *finalStrLengthNL, 1619 *srcStrLengthNL, 1620 cmpTy); 1621 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1622 true); 1623 if (!state) 1624 return; 1625 } 1626 1627 if (dstStrLengthNL) { 1628 // finalStrLength >= dstStrLength 1629 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1630 *finalStrLengthNL, 1631 *dstStrLengthNL, 1632 cmpTy); 1633 state = 1634 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1635 if (!state) 1636 return; 1637 } 1638 } 1639 } 1640 1641 } else { 1642 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1643 // the final string length will match the input string length. 1644 finalStrLength = amountCopied; 1645 } 1646 1647 // The final result of the function will either be a pointer past the last 1648 // copied element, or a pointer to the start of the destination buffer. 1649 SVal Result = (returnEnd ? UnknownVal() : DstVal); 1650 1651 assert(state); 1652 1653 // If the destination is a MemRegion, try to check for a buffer overflow and 1654 // record the new string length. 1655 if (Optional<loc::MemRegionVal> dstRegVal = 1656 DstVal.getAs<loc::MemRegionVal>()) { 1657 QualType ptrTy = Dst->getType(); 1658 1659 // If we have an exact value on a bounded copy, use that to check for 1660 // overflows, rather than our estimate about how much is actually copied. 1661 if (boundWarning) { 1662 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1663 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1664 *maxLastNL, ptrTy); 1665 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1666 boundWarning); 1667 if (!state) 1668 return; 1669 } 1670 } 1671 1672 // Then, if the final length is known... 1673 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1674 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1675 *knownStrLength, ptrTy); 1676 1677 // ...and we haven't checked the bound, we'll check the actual copy. 1678 if (!boundWarning) { 1679 const char * const warningMsg = 1680 "String copy function overflows destination buffer"; 1681 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1682 if (!state) 1683 return; 1684 } 1685 1686 // If this is a stpcpy-style copy, the last element is the return value. 1687 if (returnEnd) 1688 Result = lastElement; 1689 } 1690 1691 // Invalidate the destination (regular invalidation without pointer-escaping 1692 // the address of the top-level region). This must happen before we set the 1693 // C string length because invalidation will clear the length. 1694 // FIXME: Even if we can't perfectly model the copy, we should see if we 1695 // can use LazyCompoundVals to copy the source values into the destination. 1696 // This would probably remove any existing bindings past the end of the 1697 // string, but that's still an improvement over blank invalidation. 1698 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1699 /*IsSourceBuffer*/false, nullptr); 1700 1701 // Invalidate the source (const-invalidation without const-pointer-escaping 1702 // the address of the top-level region). 1703 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1704 nullptr); 1705 1706 // Set the C string length of the destination, if we know it. 1707 if (isBounded && !isAppending) { 1708 // strncpy is annoying in that it doesn't guarantee to null-terminate 1709 // the result string. If the original string didn't fit entirely inside 1710 // the bound (including the null-terminator), we don't know how long the 1711 // result is. 1712 if (amountCopied != strLength) 1713 finalStrLength = UnknownVal(); 1714 } 1715 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1716 } 1717 1718 assert(state); 1719 1720 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1721 // overflow, we still need a result. Conjure a return value. 1722 if (returnEnd && Result.isUnknown()) { 1723 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1724 } 1725 1726 // Set the return value. 1727 state = state->BindExpr(CE, LCtx, Result); 1728 C.addTransition(state); 1729 } 1730 1731 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1732 if (CE->getNumArgs() < 2) 1733 return; 1734 1735 //int strcmp(const char *s1, const char *s2); 1736 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1737 } 1738 1739 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1740 if (CE->getNumArgs() < 3) 1741 return; 1742 1743 //int strncmp(const char *s1, const char *s2, size_t n); 1744 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1745 } 1746 1747 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1748 const CallExpr *CE) const { 1749 if (CE->getNumArgs() < 2) 1750 return; 1751 1752 //int strcasecmp(const char *s1, const char *s2); 1753 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1754 } 1755 1756 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1757 const CallExpr *CE) const { 1758 if (CE->getNumArgs() < 3) 1759 return; 1760 1761 //int strncasecmp(const char *s1, const char *s2, size_t n); 1762 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1763 } 1764 1765 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1766 bool isBounded, bool ignoreCase) const { 1767 CurrentFunctionDescription = "string comparison function"; 1768 ProgramStateRef state = C.getState(); 1769 const LocationContext *LCtx = C.getLocationContext(); 1770 1771 // Check that the first string is non-null 1772 const Expr *s1 = CE->getArg(0); 1773 SVal s1Val = state->getSVal(s1, LCtx); 1774 state = checkNonNull(C, state, s1, s1Val); 1775 if (!state) 1776 return; 1777 1778 // Check that the second string is non-null. 1779 const Expr *s2 = CE->getArg(1); 1780 SVal s2Val = state->getSVal(s2, LCtx); 1781 state = checkNonNull(C, state, s2, s2Val); 1782 if (!state) 1783 return; 1784 1785 // Get the string length of the first string or give up. 1786 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1787 if (s1Length.isUndef()) 1788 return; 1789 1790 // Get the string length of the second string or give up. 1791 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1792 if (s2Length.isUndef()) 1793 return; 1794 1795 // If we know the two buffers are the same, we know the result is 0. 1796 // First, get the two buffers' addresses. Another checker will have already 1797 // made sure they're not undefined. 1798 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1799 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1800 1801 // See if they are the same. 1802 SValBuilder &svalBuilder = C.getSValBuilder(); 1803 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1804 ProgramStateRef StSameBuf, StNotSameBuf; 1805 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1806 1807 // If the two arguments might be the same buffer, we know the result is 0, 1808 // and we only need to check one size. 1809 if (StSameBuf) { 1810 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1811 svalBuilder.makeZeroVal(CE->getType())); 1812 C.addTransition(StSameBuf); 1813 1814 // If the two arguments are GUARANTEED to be the same, we're done! 1815 if (!StNotSameBuf) 1816 return; 1817 } 1818 1819 assert(StNotSameBuf); 1820 state = StNotSameBuf; 1821 1822 // At this point we can go about comparing the two buffers. 1823 // For now, we only do this if they're both known string literals. 1824 1825 // Attempt to extract string literals from both expressions. 1826 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1827 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1828 bool canComputeResult = false; 1829 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1830 C.blockCount()); 1831 1832 if (s1StrLiteral && s2StrLiteral) { 1833 StringRef s1StrRef = s1StrLiteral->getString(); 1834 StringRef s2StrRef = s2StrLiteral->getString(); 1835 1836 if (isBounded) { 1837 // Get the max number of characters to compare. 1838 const Expr *lenExpr = CE->getArg(2); 1839 SVal lenVal = state->getSVal(lenExpr, LCtx); 1840 1841 // If the length is known, we can get the right substrings. 1842 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1843 // Create substrings of each to compare the prefix. 1844 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1845 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1846 canComputeResult = true; 1847 } 1848 } else { 1849 // This is a normal, unbounded strcmp. 1850 canComputeResult = true; 1851 } 1852 1853 if (canComputeResult) { 1854 // Real strcmp stops at null characters. 1855 size_t s1Term = s1StrRef.find('\0'); 1856 if (s1Term != StringRef::npos) 1857 s1StrRef = s1StrRef.substr(0, s1Term); 1858 1859 size_t s2Term = s2StrRef.find('\0'); 1860 if (s2Term != StringRef::npos) 1861 s2StrRef = s2StrRef.substr(0, s2Term); 1862 1863 // Use StringRef's comparison methods to compute the actual result. 1864 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 1865 : s1StrRef.compare(s2StrRef); 1866 1867 // The strcmp function returns an integer greater than, equal to, or less 1868 // than zero, [c11, p7.24.4.2]. 1869 if (compareRes == 0) { 1870 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 1871 } 1872 else { 1873 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 1874 // Constrain strcmp's result range based on the result of StringRef's 1875 // comparison methods. 1876 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 1877 SVal compareWithZero = 1878 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 1879 svalBuilder.getConditionType()); 1880 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 1881 state = state->assume(compareWithZeroVal, true); 1882 } 1883 } 1884 } 1885 1886 state = state->BindExpr(CE, LCtx, resultVal); 1887 1888 // Record this as a possible path. 1889 C.addTransition(state); 1890 } 1891 1892 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 1893 //char *strsep(char **stringp, const char *delim); 1894 if (CE->getNumArgs() < 2) 1895 return; 1896 1897 // Sanity: does the search string parameter match the return type? 1898 const Expr *SearchStrPtr = CE->getArg(0); 1899 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 1900 if (CharPtrTy.isNull() || 1901 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 1902 return; 1903 1904 CurrentFunctionDescription = "strsep()"; 1905 ProgramStateRef State = C.getState(); 1906 const LocationContext *LCtx = C.getLocationContext(); 1907 1908 // Check that the search string pointer is non-null (though it may point to 1909 // a null string). 1910 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 1911 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 1912 if (!State) 1913 return; 1914 1915 // Check that the delimiter string is non-null. 1916 const Expr *DelimStr = CE->getArg(1); 1917 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 1918 State = checkNonNull(C, State, DelimStr, DelimStrVal); 1919 if (!State) 1920 return; 1921 1922 SValBuilder &SVB = C.getSValBuilder(); 1923 SVal Result; 1924 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 1925 // Get the current value of the search string pointer, as a char*. 1926 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 1927 1928 // Invalidate the search string, representing the change of one delimiter 1929 // character to NUL. 1930 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 1931 /*IsSourceBuffer*/false, nullptr); 1932 1933 // Overwrite the search string pointer. The new value is either an address 1934 // further along in the same string, or NULL if there are no more tokens. 1935 State = State->bindLoc(*SearchStrLoc, 1936 SVB.conjureSymbolVal(getTag(), 1937 CE, 1938 LCtx, 1939 CharPtrTy, 1940 C.blockCount()), 1941 LCtx); 1942 } else { 1943 assert(SearchStrVal.isUnknown()); 1944 // Conjure a symbolic value. It's the best we can do. 1945 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1946 } 1947 1948 // Set the return value, and finish. 1949 State = State->BindExpr(CE, LCtx, Result); 1950 C.addTransition(State); 1951 } 1952 1953 // These should probably be moved into a C++ standard library checker. 1954 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 1955 evalStdCopyCommon(C, CE); 1956 } 1957 1958 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 1959 const CallExpr *CE) const { 1960 evalStdCopyCommon(C, CE); 1961 } 1962 1963 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 1964 const CallExpr *CE) const { 1965 if (CE->getNumArgs() < 3) 1966 return; 1967 1968 ProgramStateRef State = C.getState(); 1969 1970 const LocationContext *LCtx = C.getLocationContext(); 1971 1972 // template <class _InputIterator, class _OutputIterator> 1973 // _OutputIterator 1974 // copy(_InputIterator __first, _InputIterator __last, 1975 // _OutputIterator __result) 1976 1977 // Invalidate the destination buffer 1978 const Expr *Dst = CE->getArg(2); 1979 SVal DstVal = State->getSVal(Dst, LCtx); 1980 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 1981 /*Size=*/nullptr); 1982 1983 SValBuilder &SVB = C.getSValBuilder(); 1984 1985 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1986 State = State->BindExpr(CE, LCtx, ResultVal); 1987 1988 C.addTransition(State); 1989 } 1990 1991 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 1992 if (CE->getNumArgs() != 3) 1993 return; 1994 1995 CurrentFunctionDescription = "memory set function"; 1996 1997 const Expr *Mem = CE->getArg(0); 1998 const Expr *Size = CE->getArg(2); 1999 ProgramStateRef State = C.getState(); 2000 2001 // See if the size argument is zero. 2002 const LocationContext *LCtx = C.getLocationContext(); 2003 SVal SizeVal = State->getSVal(Size, LCtx); 2004 QualType SizeTy = Size->getType(); 2005 2006 ProgramStateRef StateZeroSize, StateNonZeroSize; 2007 std::tie(StateZeroSize, StateNonZeroSize) = 2008 assumeZero(C, State, SizeVal, SizeTy); 2009 2010 // Get the value of the memory area. 2011 SVal MemVal = State->getSVal(Mem, LCtx); 2012 2013 // If the size is zero, there won't be any actual memory access, so 2014 // just bind the return value to the Mem buffer and return. 2015 if (StateZeroSize && !StateNonZeroSize) { 2016 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2017 C.addTransition(StateZeroSize); 2018 return; 2019 } 2020 2021 State = CheckBufferAccess(C, State, Size, Mem); 2022 if (!State) 2023 return; 2024 State = InvalidateBuffer(C, State, Mem, C.getSVal(Mem), 2025 /*IsSourceBuffer*/false, Size); 2026 if (!State) 2027 return; 2028 2029 State = State->BindExpr(CE, LCtx, MemVal); 2030 C.addTransition(State); 2031 } 2032 2033 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) { 2034 IdentifierInfo *II = FD->getIdentifier(); 2035 if (!II) 2036 return false; 2037 2038 if (!AnalysisDeclContext::isInStdNamespace(FD)) 2039 return false; 2040 2041 if (II->getName().equals(Name)) 2042 return true; 2043 2044 return false; 2045 } 2046 //===----------------------------------------------------------------------===// 2047 // The driver method, and other Checker callbacks. 2048 //===----------------------------------------------------------------------===// 2049 2050 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { 2051 const FunctionDecl *FDecl = C.getCalleeDecl(CE); 2052 2053 if (!FDecl) 2054 return false; 2055 2056 // FIXME: Poorly-factored string switches are slow. 2057 FnCheck evalFunction = nullptr; 2058 if (C.isCLibraryFunction(FDecl, "memcpy")) 2059 evalFunction = &CStringChecker::evalMemcpy; 2060 else if (C.isCLibraryFunction(FDecl, "mempcpy")) 2061 evalFunction = &CStringChecker::evalMempcpy; 2062 else if (C.isCLibraryFunction(FDecl, "memcmp")) 2063 evalFunction = &CStringChecker::evalMemcmp; 2064 else if (C.isCLibraryFunction(FDecl, "memmove")) 2065 evalFunction = &CStringChecker::evalMemmove; 2066 else if (C.isCLibraryFunction(FDecl, "memset")) 2067 evalFunction = &CStringChecker::evalMemset; 2068 else if (C.isCLibraryFunction(FDecl, "strcpy")) 2069 evalFunction = &CStringChecker::evalStrcpy; 2070 else if (C.isCLibraryFunction(FDecl, "strncpy")) 2071 evalFunction = &CStringChecker::evalStrncpy; 2072 else if (C.isCLibraryFunction(FDecl, "stpcpy")) 2073 evalFunction = &CStringChecker::evalStpcpy; 2074 else if (C.isCLibraryFunction(FDecl, "strcat")) 2075 evalFunction = &CStringChecker::evalStrcat; 2076 else if (C.isCLibraryFunction(FDecl, "strncat")) 2077 evalFunction = &CStringChecker::evalStrncat; 2078 else if (C.isCLibraryFunction(FDecl, "strlen")) 2079 evalFunction = &CStringChecker::evalstrLength; 2080 else if (C.isCLibraryFunction(FDecl, "strnlen")) 2081 evalFunction = &CStringChecker::evalstrnLength; 2082 else if (C.isCLibraryFunction(FDecl, "strcmp")) 2083 evalFunction = &CStringChecker::evalStrcmp; 2084 else if (C.isCLibraryFunction(FDecl, "strncmp")) 2085 evalFunction = &CStringChecker::evalStrncmp; 2086 else if (C.isCLibraryFunction(FDecl, "strcasecmp")) 2087 evalFunction = &CStringChecker::evalStrcasecmp; 2088 else if (C.isCLibraryFunction(FDecl, "strncasecmp")) 2089 evalFunction = &CStringChecker::evalStrncasecmp; 2090 else if (C.isCLibraryFunction(FDecl, "strsep")) 2091 evalFunction = &CStringChecker::evalStrsep; 2092 else if (C.isCLibraryFunction(FDecl, "bcopy")) 2093 evalFunction = &CStringChecker::evalBcopy; 2094 else if (C.isCLibraryFunction(FDecl, "bcmp")) 2095 evalFunction = &CStringChecker::evalMemcmp; 2096 else if (isCPPStdLibraryFunction(FDecl, "copy")) 2097 evalFunction = &CStringChecker::evalStdCopy; 2098 else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) 2099 evalFunction = &CStringChecker::evalStdCopyBackward; 2100 2101 // If the callee isn't a string function, let another checker handle it. 2102 if (!evalFunction) 2103 return false; 2104 2105 // Check and evaluate the call. 2106 (this->*evalFunction)(C, CE); 2107 2108 // If the evaluate call resulted in no change, chain to the next eval call 2109 // handler. 2110 // Note, the custom CString evaluation calls assume that basic safety 2111 // properties are held. However, if the user chooses to turn off some of these 2112 // checks, we ignore the issues and leave the call evaluation to a generic 2113 // handler. 2114 return C.isDifferent(); 2115 } 2116 2117 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2118 // Record string length for char a[] = "abc"; 2119 ProgramStateRef state = C.getState(); 2120 2121 for (const auto *I : DS->decls()) { 2122 const VarDecl *D = dyn_cast<VarDecl>(I); 2123 if (!D) 2124 continue; 2125 2126 // FIXME: Handle array fields of structs. 2127 if (!D->getType()->isArrayType()) 2128 continue; 2129 2130 const Expr *Init = D->getInit(); 2131 if (!Init) 2132 continue; 2133 if (!isa<StringLiteral>(Init)) 2134 continue; 2135 2136 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2137 const MemRegion *MR = VarLoc.getAsRegion(); 2138 if (!MR) 2139 continue; 2140 2141 SVal StrVal = C.getSVal(Init); 2142 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2143 DefinedOrUnknownSVal strLength = 2144 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2145 2146 state = state->set<CStringLength>(MR, strLength); 2147 } 2148 2149 C.addTransition(state); 2150 } 2151 2152 ProgramStateRef 2153 CStringChecker::checkRegionChanges(ProgramStateRef state, 2154 const InvalidatedSymbols *, 2155 ArrayRef<const MemRegion *> ExplicitRegions, 2156 ArrayRef<const MemRegion *> Regions, 2157 const LocationContext *LCtx, 2158 const CallEvent *Call) const { 2159 CStringLengthTy Entries = state->get<CStringLength>(); 2160 if (Entries.isEmpty()) 2161 return state; 2162 2163 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2164 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2165 2166 // First build sets for the changed regions and their super-regions. 2167 for (ArrayRef<const MemRegion *>::iterator 2168 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2169 const MemRegion *MR = *I; 2170 Invalidated.insert(MR); 2171 2172 SuperRegions.insert(MR); 2173 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2174 MR = SR->getSuperRegion(); 2175 SuperRegions.insert(MR); 2176 } 2177 } 2178 2179 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2180 2181 // Then loop over the entries in the current state. 2182 for (CStringLengthTy::iterator I = Entries.begin(), 2183 E = Entries.end(); I != E; ++I) { 2184 const MemRegion *MR = I.getKey(); 2185 2186 // Is this entry for a super-region of a changed region? 2187 if (SuperRegions.count(MR)) { 2188 Entries = F.remove(Entries, MR); 2189 continue; 2190 } 2191 2192 // Is this entry for a sub-region of a changed region? 2193 const MemRegion *Super = MR; 2194 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2195 Super = SR->getSuperRegion(); 2196 if (Invalidated.count(Super)) { 2197 Entries = F.remove(Entries, MR); 2198 break; 2199 } 2200 } 2201 } 2202 2203 return state->set<CStringLength>(Entries); 2204 } 2205 2206 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2207 SymbolReaper &SR) const { 2208 // Mark all symbols in our string length map as valid. 2209 CStringLengthTy Entries = state->get<CStringLength>(); 2210 2211 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2212 I != E; ++I) { 2213 SVal Len = I.getData(); 2214 2215 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2216 se = Len.symbol_end(); si != se; ++si) 2217 SR.markInUse(*si); 2218 } 2219 } 2220 2221 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2222 CheckerContext &C) const { 2223 if (!SR.hasDeadSymbols()) 2224 return; 2225 2226 ProgramStateRef state = C.getState(); 2227 CStringLengthTy Entries = state->get<CStringLength>(); 2228 if (Entries.isEmpty()) 2229 return; 2230 2231 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2232 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2233 I != E; ++I) { 2234 SVal Len = I.getData(); 2235 if (SymbolRef Sym = Len.getAsSymbol()) { 2236 if (SR.isDead(Sym)) 2237 Entries = F.remove(Entries, I.getKey()); 2238 } 2239 } 2240 2241 state = state->set<CStringLength>(Entries); 2242 C.addTransition(state); 2243 } 2244 2245 #define REGISTER_CHECKER(name) \ 2246 void ento::register##name(CheckerManager &mgr) { \ 2247 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \ 2248 checker->Filter.Check##name = true; \ 2249 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2250 } 2251 2252 REGISTER_CHECKER(CStringNullArg) 2253 REGISTER_CHECKER(CStringOutOfBounds) 2254 REGISTER_CHECKER(CStringBufferOverlap) 2255 REGISTER_CHECKER(CStringNotNullTerm) 2256 2257 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { 2258 registerCStringNullArg(Mgr); 2259 } 2260